dc.contributor.author | Regnier-Coudert, Olivier | |
dc.contributor.author | McCall, John | |
dc.contributor.author | Lothian, Robert | |
dc.contributor.author | Lam, Thomas | |
dc.contributor.author | McClinton, Sam | |
dc.contributor.author | N'Dow, James | |
dc.date.accessioned | 2012-05-07T13:39:01Z | |
dc.date.available | 2012-05-07T13:39:01Z | |
dc.date.issued | 2012-05 | |
dc.identifier.citation | Regnier-Coudert , O , McCall , J , Lothian , R , Lam , T , McClinton , S & N'Dow , J 2012 , ' Machine learning for improved pathological staging of prostate cancer : A performance comparison on a range of classifiers ' , Artificial Intelligence in Medicine , vol. 55 , no. 1 , pp. 25-35 . https://doi.org/10.1016/j.artmed.2011.11.003 | en |
dc.identifier.issn | 0933-3657 | |
dc.identifier.other | PURE: 12300529 | |
dc.identifier.other | PURE UUID: 6b62f20e-38fb-44f2-845a-27fa7b252a8b | |
dc.identifier.other | Scopus: 84858859611 | |
dc.identifier.uri | http://hdl.handle.net/2164/2417 | |
dc.format.extent | 11 | |
dc.language.iso | eng | |
dc.relation.ispartof | Artificial Intelligence in Medicine | en |
dc.rights | NOTICE: this is the author’s version of a work that was accepted for publication in Artificial Intelligence in Medicine. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in ARTIFICIAL INTELLIGENCE IN MEDICINE, [VOL 55, ISSUE 1, (2012)] DOI 10.1016/j.artmed.2011.11.003 | en |
dc.subject | SDG 3 - Good Health and Well-being | en |
dc.subject | predictive modelling | en |
dc.subject | bayesian networks | en |
dc.subject | logistic regression | en |
dc.subject | prostate cancer staging | en |
dc.subject | partin tables | en |
dc.subject | RC0254 Neoplasms. Tumors. Oncology (including Cancer) | en |
dc.subject.lcc | RC0254 | en |
dc.title | Machine learning for improved pathological staging of prostate cancer : A performance comparison on a range of classifiers | en |
dc.type | Journal article | en |
dc.contributor.institution | University of Aberdeen.Natural & Computing Sciences | en |
dc.contributor.institution | University of Aberdeen.Other Applied Health Sciences | en |
dc.contributor.institution | University of Aberdeen.Academic Urology Unit | en |
dc.contributor.institution | University of Aberdeen.Institute of Applied Health Sciences | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Postprint | en |
dc.identifier.doi | https://doi.org/10.1016/j.artmed.2011.11.003 | |