dc.contributor.author | Mustafa, Syed | |
dc.contributor.author | Nossent, Jiri | |
dc.contributor.author | Ghysels, Gert | |
dc.contributor.author | Huysmans, Marijke | |
dc.date.accessioned | 2021-02-13T00:09:22Z | |
dc.date.available | 2021-02-13T00:09:22Z | |
dc.date.issued | 2020-04 | |
dc.identifier.citation | Mustafa , S , Nossent , J , Ghysels , G & Huysmans , M 2020 , ' Integrated Bayesian Multi-model approach to quantify input, parameter and conceptual model structure uncertainty in groundwater modeling ' , Environmental Modelling and Software , vol. 126 , 104654 . https://doi.org/10.1016/j.envsoft.2020.104654 | en |
dc.identifier.issn | 1364-8152 | |
dc.identifier.other | PURE: 157602712 | |
dc.identifier.other | PURE UUID: 494b574d-dc75-4a52-bb67-8ac5abea721e | |
dc.identifier.other | WOS: 000522639600010 | |
dc.identifier.other | Scopus: 85079656289 | |
dc.identifier.uri | https://hdl.handle.net/2164/15863 | |
dc.description | We thank Prof. Jasper Vrugt from University of California, Irvine, USA for his advice on the implementation of BMA. A draft version of a conference abstract appears online at AgEng2018.com but has not been published. The data used in this study are summarized and presented in the figures, tables, references and supporting information and will be available from the authors upon request (syed.mustafa@vub.be). | en |
dc.format.extent | 17 | |
dc.language.iso | eng | |
dc.relation.ispartof | Environmental Modelling and Software | en |
dc.rights | © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | Conceptual model structure uncertainty | en |
dc.subject | Bayesian approach | en |
dc.subject | input uncertainty | en |
dc.subject | Bayesian model averaging | en |
dc.subject | uncertainty quantification | en |
dc.subject | groundwater flow model | en |
dc.subject | ENSEMBLE | en |
dc.subject | MANAGEMENT | en |
dc.subject | Uncertainty quantification | en |
dc.subject | DROUGHT | en |
dc.subject | FLOW | en |
dc.subject | PREDICTION | en |
dc.subject | Groundwater flow model | en |
dc.subject | Input uncertainty | en |
dc.subject | FRAMEWORK | en |
dc.subject | BASIN | en |
dc.subject | MONTE-CARLO-SIMULATION | en |
dc.subject | SELECTION | en |
dc.subject | WATER | en |
dc.subject | TA Engineering (General). Civil engineering (General) | en |
dc.subject | Software | en |
dc.subject | Ecological Modelling | en |
dc.subject | Environmental Engineering | en |
dc.subject.lcc | TA | en |
dc.title | Integrated Bayesian Multi-model approach to quantify input, parameter and conceptual model structure uncertainty in groundwater modeling | en |
dc.type | Journal article | en |
dc.contributor.institution | University of Aberdeen.Geography & Environment | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Postprint | en |
dc.identifier.doi | https://doi.org/10.1016/j.envsoft.2020.104654 | |
dc.date.embargoedUntil | 2021-02-13 | |
dc.identifier.url | http://www.scopus.com/inward/record.url?scp=85079656289&partnerID=8YFLogxK | en |
dc.identifier.vol | 126 | en |