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1 Introduction

Inventory behavior is usually linked to the expectations about the future. In the

discussion of the causes of the recent crude oil price increases especially during 2007-

2008, one key question is whether speculation played an important role. Regardless

of their stand on it, researchers turn to inventory data for a better understanding

of speculative or precautionary incentive in the oil market, as anticipation of future

increases in oil price could lead to speculative inventory increase and result in immediate

price increase.1 Earlier work like Brennan (1958) has already pointed out that inventory

is related to the expected change in price. Applying this intuition in the oil context,

Hamilton (2009b) proposes a link between speculation and the inventory movements.

Empirical studies like Kilian and Murphy (2014) and Knittel and Pindyck (2016) argue

against a major contribution of speculation where the authors identify the forward-

looking element of the real price with data on oil inventories. However, Juvenal and

Petrella (2014) find a more important role of speculation also using data on inventories.

To avoid ambiguity, this paper uses a neutral term “expectation” and defines it

mathematically. Building “expectation” in a rational expectation equilibrium model,

this paper specifically focuses on the difference between shocks to market expectations

and shocks to contemporaneous market condition. It contributes in two ways to the

literature on commodity price dynamics, especially the discussion on the role of specu-

lation. Theoretically, the model solution provides new insights of the features of market

expectations’ effect on price and inventory. Empirically, it estimates a structural model

using oil market data to quantify the contribution of market expectations.

The new insight from the structural model is the dynamic shape of the expectations’

effect. Everything else being equal, an expectations shock leads to a larger change in

the expected future price than in the spot price, while a contemporaneous shock’s effect

1The term “expectations” as discussed in this paper will be defined on page 3.
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is the other way around. As a result, an expectations shock would not only result in

different immediate changes, but also response functions shaped differently over time

compared to a contemporaneous shock. This theoretical knowledge enables more refined

identification of market expectations in the empirical analysis.

The intuition works as follows. Today’s expectations of a strong future demand

relative to supply will result in a higher spot price today, due to the lower current

availability of the commodity from the accumulated inventory in response to such ex-

pectations. This immediate effect has been discussed in earlier literature. Furthermore,

while the inventory accumulation smooths the expected quantity (demand/supply) fluc-

tuations, it would be too costly to accumulate inventory so much that the price does

not change or changes little on the future date when the strong demand actually hits.

Thus the increase in the expected future price would be larger than that in the spot

price. The resulting price response function is hump-shaped.

On the other hand, today’s strong relative demand to supply will also result in a

higher spot price, as discussed in earlier literature. Furthermore, it will also instanta-

neously result in a higher expected future price due to lower future availability from the

depleted inventory (everything else being equal). However, the impact of today’s strong

demand dissipates, thus the increase in the expected future price is smaller than that in

the spot price. The resulting price response function is monotonically decreasing after

the initial jump.

This refined intuition can be captured by an “expectations shock” which has no

contemporaneous but only lagged impact on the supply and demand. Here the “expec-

tations” specifically refers to the innovations and macroeconomic activities that could

affect the commodity market supply and demand with a delay, in the style of the

news shock that has been discussed by Beaudry and Portier (2006) and adopted by

a large macroeconomic (DSGE) literature like Davis (2007), Barsky and Sims (2011),
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Jaimovich and Rebelo (2009) and others.

More specifically, the idea is that agents in the market may learn about some pro-

duction capacity that has been recently installed and will be implemented in the future,

at which time they expect the supply to rise. Similarly, agents could learn that a com-

modity will be utilized with higher efficiency in the future at which time they expect

the demand to shift. Such expectations have no effect on the current market supply

and demand condition, but do affect agents’ current inventory decision, the spot and

expected future prices. It is such expectations that are referred to as the “expectations”

in the model.

In addition to the dynamic shape, the analysis illustrates the key importance of

the price elasticity of demand in the price dynamics, extending the views of Hamilton

(2009b), Baumeister and Peersman (2013) and Kilian and Murphy (2014). This paper

finds that the less elastic the demand, the larger the price and inventory responses to

changes in the market condition, everything else being equal.

The structural model also makes it straightforward to utilize the futures market data

in the empirical application. Recent theoretical work like Sockin and Xiong (2015) high-

lights the informational feedback effects of commodity futures prices. Cheng and Xiong

(2014) aruge that relying on only the inventory data for identifying effects of specu-

lation ignores the futures prices which reflect agents’ expectations. In the empirical

application of this model, both inventory and futures market data have been used to

identify market expectations.

To the best knowledge of the author, this paper is the first to quantify the effect

of expectations by solving and estimating a structural model and introducing a math-

ematical definition of “expectations”. The structural framework allows for the precise

mapping of mathematical expression to economic interpretation, and thus the refined

identification with the additional dynamic shape feature of the expectations versus the
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contemporaneous shocks. This is different from earlier empirical work like Kilian and

Murphy (2014), Juvenal and Petrella (2014), and Baumeister and Hamilton (2015).

Beidas-strom and Pescatori (2014) discusses the dynamic dimension, however argues

instead the price effect of the speculative demand shock is “monotonically declining”

after the initial period. Knittel and Pindyck (2016) constructs an analytical framework

for a storable commodity, but the model is not solved dynamically. In terms of the mod-

elling and empirical methodology, Unalmis et al. (2012) is the mostly closely-related.

They incorporate oil storage into a DSGE model, but does not contain an expectation

component and cannot comment on the cumulative contribution of expectations to the

price movements.

This model differs from one strand of earlier storage and price dynamics literature

like Wright and Williams (1982, 1984) and Deaton and Laroque (1992, 1995, 1996) and

the more recent Dvir and Rogoff (2010) and Arseneau and Leduc (2013) in modelling

inventory stock-out. Instead, observing that oil market does not typically experience

stock-outs, this paper models a non-linear marginal convenience yield function as in

Pindyck (1994) such that when the inventory approaches zero, the marginal convenience

yield approaches infinity. Intuitively this setting implies that it is always beneficial to

hold inventory. As a result the inventory will always stay positive.2

The empirical results using crude oil spot and futures prices and inventory data

show that under conventional assumption of the price elasticity of demand, the market

expectations have contributed little to the crude oil spot price movements from 1987

to 2014. The market fundamentals are the main drivers of the price movements. This

confirms the results of earlier literature studying the role of speculation based on the

theory of storage.

The paper is planned as follows. Section 2 introduces the model. Section 3 solves

2Similarly, Eichenbaum (1984) argues for the technological reason in addition to the speculative
motive for voluntarily-held inventory.
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the model, and discusses the theoretical implications on the price-inventory dynamics

in an equilibrium model under rational expectation. Section 4 presents the estimation

results and the discussion of the role of the shocks during the past price and inventory

movements. Section 5 concludes.

2 The Model

This section sets up the model for oil market equilibrium with inventory. Although

it has been interpreted in the oil market context, the model can be generally applied

to most storable commodity markets in which no stock-out has been observed. In this

model of the world oil market, the price is determined by the oil supply and demand.

The quantities supplied and demanded are not necessarily the same, as the market also

has demand for inventory, based on the current market and the expectations of the

future.

2.1 Oil Price Determination

Starting with a general inverse demand function for crude oil, the oil price Pt is

determined by the oil consumption Qd
t , and a measure of overall economic performance

Y d
t . Specifically, Y d

t captures the shifts of the demand curve driven by the global

economic fluctuations. For example, Kilian (2009) has argued that the demand for

industrial raw materials has been fuelled by the emerging economies in Asia such as

China and India after 2002.

Furthermore, this paper posits this inverse demand function to be homogeneous of

degree zero, i.e. only the consumption relative to the overall economic performance

matters, as oil consumption and world economic performance are highly correlated.
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Thus a CES inverse demand function can be used:

Pt = c(
Qd

t

Y d
t

)−
1
γ (1)

where c is a scalar and γ measures the price elasticity of demand. This inverse demand

function is decreasing in Qd
t and increasing in Y d

t .

Denoting the available inventory at the beginning of period t by Nt, and the inven-

tory held for next period t+1 by Nt+1, the crude oil consumption Qd
t equals to the crude

oil production Qs
t less the change in inventory Nt+1 −Nt in the market equilibrium:

Pt = c(
Nt +Qs

t −Nt+1

Y d
t

)−
1
γ (2)

2.2 Inventory Decision

In addition, the demand for inventory-holding arises from the uncertainty about

the future. A profit-maximizing oil producer (or buyer) in a competitive market makes

decision with regards to its inventory-holding following the first-order condition when

the inventory is positive3:

Pt = βEt[Pt+1]− Et[MICt+1] if Nt+1 > 0 (3)

where MIC is the net marginal cost of holding inventory, which includes the physical

cost of storage as well as the convenience of storage (see Brennan (1958) and others).

Whenever positive inventory is held, an optimal inventory decision Nt+1 at time t would

be such that the resulting net marginal cost of holding inventory Et[MICt+1] would

be just covered by the marginal revenue, or the expected intertemporal price change

3This first-order condition is the same regardless of whether it is the producer or the buyer holding
the inventory.
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βEt[Pt+1]− Pt.

Since in the commodity market, zero inventory is rarely observed, the net marginal

cost of holding inventory is modelled such that the optimal Nt+1 would always be posi-

tive. To achieve this it is assumed that the net marginal cost converges to negative in-

finity when inventory is drawn down to near zero. Thus, even when the price is expected

to fall and the expected intertemporal price change βEt[Pt+1]−Pt is very negative, the

inventory still won’t be drawn out completely. Intuitively, inventory facilitates produc-

tion and delivery scheduling and avoids stock-outs in the face of fluctuating demand

and changing supply technology. These benefits motivate producers to hold inventory

even if they expect the price to fall, as discussed in Brennan (1958). The exponential

function for the net marginal cost of holding inventory as suggested by Pindyck (1994)

has been adopted, assuming that there is a constant marginal inventory-holding cost

δ, and that the net marginal cost is affected positively by the current price as well as

the relative inventory held.4 Furthermore an inventory adjustment cost is introduced,

following earlier literature like Eichenbaum (1984), observing that the relative inven-

tory data (the inventory held relative to the quantity demanded) is much less volatile

compared to the price even after removing the seasonality.

MICt+1 = Pt ∗ [δ + α(
Nt+1

Nt+1 +Qs
t+1 −Nt+2

)−ϕ +Θ(
Nt+1

Nt

)− β ∗Θ(
Nt+2

Nt+1

)] (4)

The net marginal cost of storage here takes into consideration the physical cost of

holding inventory δ, the intangible benefit of inventory-holding to avoid stock-out (the

exponential part with α < 0) and the inventory adjustment costs Θ (which is a function

of relative inventory changes) for both the current and next periods. The exponential

4Pindyck (1994) refers to the negative net marginal cost of storage as “the net marginal convenience
yield”, and proposes an exponential form for the latter based on the observation that the scatter plot
of relative inventory against the net marginal cost of storage is nonlinear.
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part captures the intangible benefit of inventory-holding in a way such that the benefit

would be low when the inventory level is already high relative to the quantity demanded,

and vice versa. Such setting guarantees that the optimal inventory level is never drawn

down to zero. Θ is assumed to be zero when there’s no change in inventory, and to have

constant marginal adjustment cost (Θ′). More detailed discussion of the parameters and

the functions will be available in later section of the model solution and its estimation.

2.3 Exogenous Shocks in the Model: Modelling Expectation

The key part is modelling the factors driving the price and inventory, including con-

temporaneous and expectations factors. The model itself does not attempt to explain

how demand, supply and the expectations about them arise, and thus treat them as

exogenous.

On the supply side of the market, the log of world crude oil supply can be reasonably

assumed to follow a random walk process with a drift.5

log(Qs
t) = log(Qs

t−1) + log(µs
t) (5)

log(µs
t) = µ̄+ ϵµt ∼ N(0, σ2

µ) (6)

The process for the demand side is modelled implicitly. The demand shifter, or

the process for overall economic activities Y d
t , can be thought of as some function

of either world GDP or industrial production index as discussed earlier. Regardless

which one of these measures best approximates Y d
t , the process is quite possibly non-

stationary. However, in the oil/commodity market context, it is also reasonable to

think that the overall economic activities are overall balanced with the supply in the

long run, as strong economic activities encourage new production capacity instalment

5Figure 4 and 5 in the empirical section provide more evidence: the log of world crude oil supply
contains a random walk, and its first difference is stationary.
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and new exploration, and weak economic activities lead to fewer drilling activities.

This stationary assumption is especially important for solving the model, and will be

discussed in next subsection.

Thus, instead of modelling Y d
t explicitly as another random walk, the stationary

relative supply
Qs

t

Y d
t
is modelled:

log
Qs

t

Y d
t

= yτt + yct (7)

yτt = ρτyτt−1 + nτ
t−1 + ϵyτt ϵyτt ∼ N(0, σ2

yτ ) (8)

yct = ρcyct−1 + ϵyct ϵyct ∼ N(0, σ2
yc) (9)

nτ
t = ρnτnτ

t−1 + ϵnτ
t ϵnτ

t ∼ N(0, σ2
nτ
) (10)

Here expectation is introduced. The relative supply process contains two types

of components: contemporaneous and forward-looking. The contemporaneous compo-

nents are the persistent yτt and the temporary yct , and both are AR(1) processes, with

ρτ > ρc. The expectation nτ
t is modelled as an AR(1) process with autoregression

coefficient ρnτ .

The expectation nτ
t is modelled similarly to the news in the DSGE literature. It

captures the events that could affect the market demand and supply with delay as

Equation 8 shows.6 When the market expectations at t changes, even though the

relative supply in the current period t is not affected, rational market participants

would still respond immediately to the expectation change by adjusting inventory, which

results in a contemporaneous price change. This expectation in the model captures the

forward-looking component of price determination in the market: if the market agents

6Note the expectation nτ
t is modelled to affect the relative supply

Qs
t

Y d
t

via yτt rather than directly.

This is because the knowledge of a future event might be acquired several periods in advance. Such
parsimonious setting allows more versatile dynamics in capturing the market expectations, so that the
actual peak change in the relative supply takes place several periods afterwards, despite that nτ

t affects
it with a fixed one-period lag. See Figure 1 and Figure 2 in the simulation for the illustration.
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believe that the price would be higher in the future, such expectations would drive up

the price and inventory today.

It is worth noting that the above assumptions view the supply as exogenous to the

demand while the two remain cointegrated. The assumption that the supply shock ϵµt

is independent of the shocks (ϵyτt , ϵyct and ϵnτ
t ) to the cointegration relationship (log

Qs
t

Y d
t
)

implies that the supply is not affected by the demand side. This is in line with the

empirical findings that the demand side shocks do not affect the supply (see Hurn

and Wright (1994), Mauritzen (2016) and Anderson et al. (to appear)), but sharply

contrasts with the identification restrictions of Kilian and Murphy (2014) and Juvenal

and Petrella (2014).

2.4 Model Overview and Equilibrium

Normalization of some variables is necessary in order to solve for the steady state of

the model and the equilibrium path since they contain trends (Qs
t , Y

d
t ). Following the

macroeconomic literature in treating the variables with a trend, they are normalized

by the world supply. The stationarity assumption on
Qs

t

Y d
t

discussed earlier guarantees

that the model has a steady state.

Such normalization of variables in Equation 2 results in the “relative supply”
Qs

t

Y d
t
,

which will be denoted by a lower-case letter, qst =
Qs

t

Y d
t
, and the “effective inventory”

level, nt+1 =
Nt+1

Qs
t
. Note that the “relative supply” qst is assumed to be stationary (see

Equation 7 to 10), thus the model has a steady state.

Equation 2 then can be rewritten in terms of the “effective inventory” nt and the

“relative supply” qst :

Pt = c[(nt/µ
s
t + 1− nt+1) ∗ qst ]

− 1
γ (11)

Similarly, the normalization of variables in Equation 3 and 4 results in the equations
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rewritten as:

Pt = βEt[Pt+1]− Et[MICt+1] (12)

MICt+1 = Pt ∗ [α(
nt+1/µ

s
t+1

nt+1/µs
t+1 + 1− nt+2

)−ϕ + δ +Θ(
nt+1

nt/µs
t

)− β ∗Θ(
nt+2

nt+1/µs
t+1

)] (13)

where µs
t+1 =

Qs
t+1

Qs
t
, as defined in Equation 5.7

Now the full model is written in the normalized term as Equations 11, 12 and 13,

along with the exogenous processes µs
t , y

τ
t , y

c
t and nτ

t given by Equations 6 7 8 9 10.

The equilibrium path is defined as follows: taking as given the exogenous processes

µs
t , y

τ
t , y

c
t , n

τ
t and the resulting qst , and an initial stock of effective inventory n0, the

equilibrium of the model is a sequence of {Pt, nt+1} that satisfies the optimality con-

ditions of inventory-holding (Equations 12 and 13) and the market clearing condition

(Euquation11).

3 Solving the Model

The solved equilibrium price and inventory are functions of the current and expected

market demand/supply. The model solution is written in a state space form and will

be illustrated using simulated impulse response functions of the price and inventory to

the underlying shocks. The simulated impulse responses will also be compared to the

sign restrictions widely adopted in recent empirical literature epitomized by Kilian and

Murphy (2014).

The illustration shows that “expectation” differs from contemporaneous components

in more than the immediate price and inventory responses they cause. The dynamic

shapes of the responses over time to different shocks also differ. Also, the model solution

7Note that log(µs
t+1) is the world supply growth rate.
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reveals that the price elasticity of demand, γ, plays a key role in the magnitude of

the price and inventory responses. Everything else being equal, the more inelastic the

demand, the larger the magnitude of the price and inventory responses to the underlying

shocks, especially to the expectations shock. The persistence of the underlying shocks

also matters to the magnitude.

3.1 Model Solution

The model is solved as follows: for an arbitrarily parameterized model (the param-

eters will be estimated in section 4), it is first log-linearized around its deterministic

steady state; the resulting linear rational expectations model is then solved as in Blan-

chard and Kahn (1980).

In the first step, the resulting linearized model has all variables measured in terms

of their log deviations from the steady state values. Then, the current-period spot

price (Pt) and next-period effective inventory (nt+1) are solved as linear functions of the

predetermined current-period effective inventory (nt) and the realized shocks (µ̂s
t , y

τ
t , y

c
t ,

nτ
t ). This solution is written in a state space form with the currently available effective

inventory (nt) and the exogenous shocks (µ̂s
t , y

τ
t , y

c
t , n

τ
t ) as the state variables, and

the spot price (Pt) as the observed variable. The expected future spot price (Et(Pt+1))

could also be attained. Appendix A provides the details of the solution algorithm.

3.2 Simulated Impulse Response Functions

The model solution is illustrated by the simulated impulse response functions. The

arbitrary baseline parameterization is summarized in Table 1.
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3.2.1 The Mechanism of the “Expectations Shock”

The illustration of the simulated impulse response functions (Figure 1 and 2) shows

that the “expectations shock” indeed captures how expectations work. The impulse

response functions to the “expectations shock” show zero immediate response of the

relative supply, but non-zero immediate response of the price and inventory.

The response of the relative supply is illustrated in Figure 1. Suppose the world

supply is constrained, or expected to be constrained. All shocks have been normalized to

cause a decrease in the relative supply. Both contemporaneous shocks (persistent yτt and

temporary yct ) cause a drop immediately in the relative supply, while the expectations

shock (nτ
t ) causes zero immediate change, and the drop takes place only from the second

period on8.

The price and inventory responses are compared in Figure 2, first and third columns.

When the world supply is constrained or expected to be constrained, the price and

inventory would respond as follows. The price immediately jumps under all three

shocks. Inventory is also immediately affected, though it is drawn down under the

contemporaneous shocks, but accumulated under the expectations shock.

3.2.2 The “Expectations Shock” Has More than the Immediate Effects

The simulated responses are consistent with what the literature uses to identify

forward-looking behavior. For example, Kilian and Murphy (2014), Juvenal and Pe-

trella (2014) and Beidas-strom and Pescatori (2014) posit that, the “speculative de-

mand” shock has “a positive impact effect on inventory accompanying a spot price

increase”, similar to the immediate effect on the spot price and effective inventory dis-

8The exact peak time and the magnitude of the peak effect of the expectations shock depends on
the specific parameterization of the stochastic process, thus Figure 1 is only for qualitative illustration
in these aspects. The important feature is that when the event is first learned, i.e. “expected”, the
market fundamentals have not changed yet.
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cussed above.9 However, the structural model of inventory shows more features of the

expectations than the immediate effect. Some are different from the literature, some

have not been discussed yet.

First, due to the definition of “expectations” in this paper, the expectations shock

in this model causes zero immediate changes in the market fundamentals (Figure 1),

whereas in the literature, “the speculative demand” is assumed to have a non-zero

impact effect on supply and economic activity (or the overall demand).10 This indicates

that the comparison of the estimation results should be careful.

Second, the time path of price after the expectations shock is qualitatively different

from that after the contemporaneous ones. While all shocks cause a price increase, the

price path after an expectations shock is hump-shaped: it is increasing first, gradually

reaching its peak then returning back down (Figure 2, third row). The peak price

effect coincides with the peak effect on the relative supply. The price path after a

contemporaneous shock is monotonically decreasing: the immediate effect on price is

the peak effect (Figure 2, first row). This is also reflected in the positive expected

change in price (E(Pt+1 − Pt)) after the expectations shock versus the negative change

after the contemporaneous shocks (Figure 2, second column).

Intuitively, under the expectations shock, the relative supply is affected only at

the future date, and it is not economic for the immediate inventory accumulation to

be larger than the actual future reduction in the relative supply. Thus, the immediate

price increase would be smaller than the peak increase caused by the expectations shock.

This dimension of the effect of expectations has not been discussed in the literature,

and the dynamic response profile has been largely ignored in the identification of the

9See for example the sign restrictions adopted to identify “speculative demand shock” in Kilian
and Murphy (2014), Juvenal and Petrella (2014) and Beidas-strom and Pescatori (2014).

10To be exact, in this model the expectations shock causes zero impact changes in the “relative
supply”, since demand and supply are written as a whole and not differentiated. However, in a general
equilibrium framework where demand and supply are modelled explicitly, the expectations modelled
as in Section 2 would still have zero impact effect on both.
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expectations.

Third, the magnitude of the responses depends on the persistence of the shocks.

Using the contemporaneous shocks as an example. In terms of the magnitude of the

effect, the persistent shock affects price more and inventory less than the temporary

shock, other things being equal (Figure 2, first and second rows). Intuitively, when

the disruption to relative supply lasts long, there would be relatively less incentive to

drawn down inventory by a large amount immediately. Rather, it would be drawing

down inventory over a longer period of time, in order to smooth out the disruption in

the relative supply.

Last but not least, the magnitude of the impulse responses also greatly depends

on the price elasticity of demand. Figure 3 illustrates that, other things being equal,

the more inelastic the demand is, the larger the magnitude of the inventory and price

responses to the underlying shocks, especially to the expectations shock11. While the

larger magnitude of the price response under less elastic demand is straightforward

to understand, the larger magnitude of the inventory response needs more discussion.

Take the impulse response function to the temporary shock yct for example. A nega-

tive temporary shock (stronger demand relative to supply) will result in an immediate

increase in the spot price (Pt) and withdrawal of the inventory (nt+1). Suppose the

magnitude of the inventory response remains the same regardless of the price elasticity.

This implies the oil availability remains the same for the next period. However, with

a lower price elasticity of demand the current price (Pt) increase is larger, so is the

expected spot price (E(Pt+1)). Overall the relative increase of the spot price compared

to the expected future price (Pt − Et(Pt+1)) is larger with a lower elasticity. This im-

plies higher opportunity cost for inventory holding (see Equation 3); in other words,

the inventory is too high after the assumed inventory withdrawal. Thus the inventory

11Aside from γ, the three cases in Figure 3 all have the same parameters setting as listed in Table 1
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(nt+1) has to be drawn down more to bring the market back into equilibrium.

This “magnifying role” of the price elasticity of demand implies that when the mar-

ket demand is very inelastic, the rational forward-looking behavior is more possible

to result in highly volatile price movements, in a similar way Baumeister and Peers-

man (2013) argue that small supply or demand disturbances can generate large price

responses.

To summarize, the expectations factor differs from contemporaneous factors in more

than the immediate effect. The structural model is able to use the additional informa-

tion of the dynamic shape and the magnitude of the responses in the identification of

the expectations. In the next section, the model is brought to data and the shocks

behind oil price fluctuations are estimated.

4 Estimation Results

This section presents the data and the model estimation. The estimation results in-

clude the parameter estimates, the estimated impulse response functions, the estimated

underlying shocks and their contribution to the price and inventory dynamics.

4.1 Data and Estimation

4.1.1 Data

The model is estimated using monthly data from 1988 March to 2014 November.

The estimation uses the real spot and futures (1-month) prices, the effective inventory

and the world crude oil supply growth rate.

The estimation uses not only the spot price and inventory data, but also the 1-month

futures price. The finance literature on speculation in the financialization of commodity

markets highlights the spot and futures market interaction, and the information content

17



of the futures prices. The futures market data could provide additional information on

market expectations.12

An overview of the data is presented in Figure 5.13 For the prices (Pt and EtPt+1)

the estimation uses real spot and futures (1-month) prices of WTI deflated by monthly

US CPI (1982-84=100) (see Appendix A.1).

For the effective inventory nt+1, the ratio of the world inventory and the world

supply is used in the model solution. While the world inventory of crude oil is not

available, OECD inventory is used as its proxy, which is end-of-month US commercial

inventory of crude oil scaled by the ratio of OECD to US petroleum products stock,

following Hamilton (2009a), Kilian and Murphy (2014) and Juvenal and Petrella (2014).

The seasonality in the effective inventory data is also adjusted by including additional

monthly dummies in the state equation (see Appendix A.2).

For the world crude oil supply growth rate log(µs
t), the estimation uses the log

first-difference of the world supply, which is available from Energy Information Admin-

istration (EIA).

4.1.2 Which Parameters are Estimated and Why γ is Arbitrarily Set

The parameters estimated are listed in Table 2 and 3. The solved linearized model

allows for estimation of the parameters for the shock processes (ρ’s and σ’s), the pa-

rameters in the net marginal cost of inventory holding (δ and Θ′ in Equation 1314) and

the monthly dummies for the effective inventory.

12Using 1-month WTI futures price for EtPt+1 in the model assumes that there’s no risk premium
in the 1-month futures price. Given the short maturity length, this assumption is not unreasonable.

13The log spot price and effective inventory data have been demeaned for the estimation, as the
model to be estimated has all variables written in their log deviations from the steady state (See earlier
section on model solution and Appendix A)

14Appendix A shows that the log-linearized model no longer contains Θ but only its first derivative
Θ′ evaluated at the steady state, which is assumed to be a constant (see discussion in 2.2). Similarly,
ϕ and δ always appear together as ϕ(1 − β + δ) and cannot be identified separately. Thus, only δ is
estimated and ϕ is arbitrarily set as estimated by Pindyck (1994).
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Two scalars, α in the net marginal inventory cost function, and c in the world

demand for oil, are calibrated from the steady state condition using the estimated

parameters and the data. This is because α and c only matter to the levels of the

variables, not their deviations from the steady state. Once the model is linearized

around the steady state and the variables are written in terms of their deviations from

the steady state, α and c no longer appear and do not matter to the dynamics of the

deviations15. As result, they cannot be estimated using the logged demeaned data

presented in Figure 5.

Two key parameters, γ, the short-run price elasticity of demand for crude oil, and

β, the monthly depreciation rate, have to be arbitrarily set as they cannot be estimated

without any data on the demand. However, as discussed earlier the demand elasticity

is potentially important for the estimation. Thus the range in the literature on demand

elasticity estimation is used as a reference: 0.05 to 0.44 (Dahl (1993), Cooper (2003),

Baumeister and Peersman (2013), Bodenstein and Guerrieri (2011), Kilian and Murphy

(2014))16 with admissible values as low as 0.01 (see Baumeister and Peersman (2013)).

The literature average 0.25 is picked for γ and the results from a lower-bound 0.02 for

robustness is also presented. The monthly depreciation rate is set to be 0.997.

4.2 Estimated Parameters and Impulse Response Functions

4.2.1 Estimated Parameters

Tables 2 and 3 summarize the estimation results under different demand elasticity

settings17. In Table 2, for both cases (γ = 0.25 and 0.02) all parameter estimates

are significant at 99% confidence level. In Table 3, estimates of the monthly dummies

15Appendix A presents the log-linearized model and shows that it no longer contains α and c.
16See Hamilton (2009a) for a summary of the estimates in the literature in Table 1. Kilian and

Murphy (2014) also provides a brief survey of the estimates.
17The model is estimated by maximum likelihood and various initial guesses of the parameters have

been tried. The estimation results presented here have the highest likelihood.
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indicate that effective inventory tend to be higher during colder months than warmer

months (dummies for colder months tend to be negative)18. However, the dummies

estimates are significant only for the case of γ = 0.25, though the point estimates for

both cases are similar.

4.2.2 Estimated Impulse Response Functions

Figure 6 plots the impulse response functions of the price and inventory under

different γ settings. All shocks are one-standard deviations, normalized to cause an

increase in the real spot price of oil. Both sets of impulse response functions overall

show the same direction of immediate changes and qualitatively same time paths as

discussed earlier19.

Furthermore, the estimated dynamics under γ = 0.25 shows high persistence in the

persistence shock yτt and the expectations shock nτ
t , as presented in Table 2.20 This is

consistent with the high persistence in the price movement during the sample period. In

the robustness check under γ = 0.02, the estimated dynamics are qualitatively similar.

However, the lower-bound demand elasticity γ indeed works as a magnifier, and the

estimated shocks tend to have either smaller standard deviation or lower persistence

in order to reconcile with the observed price and inventory volatility, as presented in

Table 2.

18Similarly, Byun (2012) finds a higher utilization of inventory in refining production for warmer
seasons.

19For example, in both cases, the persistent shock causes immediate positive changes in the spot
price and negative expected changes in price (E(Pt+1 − Pt)).

20Specifically, the price response to the expectations shock when γ = 0.25 reaches its peak after
more than 60 periods.
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4.3 Estimated Cumulative Effects of the Shocks

The historical decomposition results match the general understanding of the market

and show that the contribution of the expectations shocks is limited. In some cases,

the results even match the specific date of historical events.

Figure 7 plots the decomposed contribution of each shock on the observed real spot

price and the effective inventory when γ = 0.25.21 Overall, under the assumption

of γ = 0.25, the model estimates a persisting, tight market after 2000 as indicated

by the cumulative effect of the persistent shock: the persistent shock contributes to

most of the price increase after 2000, except for a short period during 2008-2009 and

towards the very end of the sample period (November 2014); it also contributes to the

continuing withdrawal of the effective inventory, especially in 2000-2008. The model

also estimates an expectation of tight market condition at the beginning of the sample

period, and after January 2005: the expectation shock contributes to the price increase

at the beginning of the sample period (from March 1988), and also after 2005 though

to a smaller extent; it also contributes to the accumulation of the effective inventory at

the beginning of the sample period and since 2004.

The results show that the price movements are mainly driven by the persistently

tight market. Though the market expectations also drove up the price after 2005,

quantitatively this contribution is limited compared to the overall magnitude of the

price increase. The overall lack of inventory accumulation after 2000 is the result of

the inventory depletion due to the persistently tight market after 1998 dominating the

21It is worth noting that in this model the state variables include both the effective inventory and
the exogenous shocks. As a result, to separate out the effect of a certain exogenous shock from that
of the initial effective inventory and other shocks, the cumulative effect of a shock is calculated as the
hypothetical price and inventory series given the Kalman-smoothed time series of the shock of interest,
keeping the initial effective inventory and all other shocks as zeros. Thus, the historical decomposition
of the price is sometimes negative (meaning that the price is lower than it otherwise would have been
due to the shock), and that of the inventory always starts from zero in all figures. More details are
provided in Appendix B.
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inventory accumulation in expectation of future tight market after 2004. This suggests

an overall shift of the market expectations in 2000s. The results also suggests that the

expectations shock contributes more to the fluctuations in the inventory, rather than

to the fluctuations in the price. Kilian and Murphy (2014) have a similar observation

of their speculative demand shock.

The robustness check results are similar. Figure 8 plot the same when γ = 0.02.

Under the extreme assumption of demand elasticity (γ = 0.02), the estimated cumu-

lative effect of the persistent shock is similar as in the case of γ = 0.25. The model

also estimates similar pattern for the cumulative effect of the expectations shock: the

expectations shock contributes to a price spike in August 1990 (the outbreak of the

Gulf War); it also contributes to the accumulation of the effective inventory in October

1990, and after 2004 except for the period from July 2008 to March 2009 (the oil price

peaked in June 2008).

Again, the results show that the price movements are mainly driven by the per-

sistently tight market. However, the estimation does attribute relatively more of the

price movements to the expectations shock compared to when γ = 0.25, due to the

magnifying role of the price elasticity of demand.

To illustrate and compare their relative contribution, Figure 9 rearranges the plot-

tings and compares the historical decomposition under different elasticities side by side.

The comparison confirms that the overall patterns of the decomposed cumulative effects

are similar, and difference in the magnitude is small. Overall, in both cases, the persis-

tent shock is the largest contributor for the price dynamics, followed by the temporary

shock, and the expectation shock; the temporary shock is the largest contributor to the

effective inventory fluctuations.

The variance decomposition results in Table 4, which reflect the average contribu-

tion of each type of shocks, show that overall the expectations shock is estimated to
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contribute to less than 1% of the price movements. When the price elasticity of demand

is assumed lower, the estimation indeed attributes relatively more importance on the

expectations shock. But contributing by 3.5%, the expectations shock still cannot be

the main driver.

The estimated contribution of the expectations shock is lower compared to the

literature, where Kilian and Murphy (2014) estimate 9% of long-run price variance to

be due to speculative demand shocks and Juvenal and Petrella (2014) estimate 10% -

30%. This is because the expectations shock in this paper is defined such that it does

not cause any immediate changes in the relative supply, which is different from the two

papers mentioned above.

5 Conclusion

This paper models market expectations explicitly in a structural model where the

equilibrium prices and inventory are endogenously determined. The expectation of

future market condition is explicitly modelled as a shock that affects the relatively

supply with a delay, in order to capture the forward-looking component in the price

formation. Bringing the model to data, it is possible to analyze the contribution of

expectations in the oil price dynamics.

This model contributes to the discussion on the role of speculation in commodity

price dynamics by bridging the classic theory of storage and the macroeconomic lit-

erature on the news shock in order to capture market expectations. In the empirical

application, this paper also attempts to incorporate insights of the finance literature on

speculation in the financialization of commodity markets, which approaches speculation

from the perspective of the spot and futures markets interaction.

The model simulation reveals rich dynamics of the way expectations affect the price
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and inventory dynamics, which enriches the previous literature. The model simulation

also shows that the price elasticity of demand plays a key role.

Under reasonable assumption of the price elasticity of demand (-0.25), the oil price

movements have been mostly driven by a persisting, constrained supply relative to

demand especially since 2000s. In addition, the short-run movements in the effective

inventory are mostly contributed by the temporary shock, while the long-run trend

in the relative inventory is driven by the persistent shock and the expectations shock

together. The robustness check assuming an extremely low elasticity (-0.02) also has

similar results.

While the current version of the model finds little evidence for the expectations driv-

ing up the price in the 2000s, this could have to do with how expectation is modelled.

The expectations shock is a shock to the relative supply with a lag, and thus captures

expectations of the future level of relative supply. However, the speculative incentives

also include increased uncertainty about future market condition, which can be mod-

elled as a mean-preserving volatility increase of the relative supply. This would affect

prices and inventory decision without changing future relative supply, which cannot be

captured by the current expectations shock. As Kilian and Murphy (2014) point out,

“news about the level of future oil supplies and the level of future demand for crude oil

are but one example of shocks to expectations in the global market for crude oil.” Such

mean-preserving volatility-increasing expectations shock can be explored in the future

work.

24



For Online Publication

A Solving the Model

To solve the detrended model in Section 2.4, first, its steady state is found and the

model is log-linearized around the steady state, then the log-linearized linear system

is solved using Blanchard and Kahn (1980) and the model solution is written in a

state-space form.

First, the steady state of the model in Section 2.4 is written as follows (the steady

state values are in bold; for example nt = nt+1 = n in steady state ):

P = c[(n/µs + 1− n) ∗ qs]−
1
γ (14)

1 = β − [α(
n/µs

n/µs + 1− n
)−ϕ + δ] (15)

logµs = µ̄ (16)

log qs = 0 (17)

yτ = 0 (18)

yc = 0 (19)

nτ = 0 (20)

Then the model in Section 2.4 is log-linearized around the steady state.

Define P̂t = (Pt−P )/P , n̂t = (nt−n)/n, µ̂s
t = (µs

t −µs)/µs, q̂st = (qst −qs)/qs for

all t, the original model in Section 2.4 can be written as terms of the deviation from

the steady state:
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P̂t = −1

γ
[pn0n̂t − pn1n̂t+1 − puµ̂s

t + pyq̂st ] (21)

where

pn0 =
n/µs

n/µs + 1− n
(22)

pn1 =
n

n/µs + 1− n
(23)

pu =
n/µs

n/µs + 1− n
(24)

py = 1 (25)

P̂t = βEt[P̂t+1]−
MIC

P
Et[ ˆMICt+1] (26)

where

ˆMICt+1 = P̂t +micn0n̂t +micn1n̂t+1 +micn2n̂t+2 +micu0µ̂
s
t +micu1µ̂

s
t+1 (27)

micn0 = − 1

β − 1
∗Θ′ ∗ µs (28)

micn1 =
1

β − 1
[ϕ(1− β + δ)

1− n

n/µs + 1− n
+ (1 + β) ∗Θ′ ∗ µs] (29)

micn2 =
1

β − 1
[ϕ(1− β + δ)

n

n/µs + 1− n
− β ∗Θ′ ∗ µs] (30)

micu0 =
1

β − 1
∗Θ′ ∗ µs (31)

micu1 =
1

β − 1
[ϕ(1− β + δ)

n− 1

n/µs + 1− n
− β ∗Θ′ ∗ µs] (32)

Following Blanchard and Kahn (1980), the log-linearized model’s variables are
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grouped as state variables Xt, costate variables Yt and exogenous shock variables et,

where X ′
t =

[
n̂t n̂t+1

]
, Yt =

[
P̂t

]
, e′t =

[
µ̂s
t yτt yct nτ

t

]
. The above model can be

solved for the state-space form (or more specifically, to solve for F , Z, U , H and R in

the state-space form below from Equation (21) - (32)).

The resulting state-space model is in the format below:

State equation:

n̂t

et

 = F

n̂t−1

et−1

+ Z ∗ vt vt ∼ N(0, U) (33)

where v′t =

[
ϵµ

s

t ϵyτt ϵyct ϵnτ
t

]
, Z =



0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, U =



σ2
µs 0 0 0

0 σ2
yτ 0 0

0 0 σ2
yc 0

0 0 0 σ2
nτ


.

Observation equation:

P̂t = H

n̂t

et

+ u1t ut ∼ N(0, R1) (34)

where u1t is the measurement error for the spot price, and its variance is a small positive

number (in the estimation it is set to be 1/100000).

A.1 Additional Observables

In addition to the spot market, crude oil futures contracts are also actively traded.

If 1-month futures price approximates of the expected 1-month ahead spot price, the

futures price can serve as another observed variable.
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The state space model implies the following for the 1-month ahead expected price:

EtP̂t+1 =H

Etn̂t+1

Etet+1

 (35)

=H ∗ F ∗

n̂t

et

 (36)

This gives rise to the second observation equation:

F̂t,1 = H ∗ F ∗

n̂t

et

+ u2t ut ∼ N(0, R2) (37)

where Ft,1 is the 1-month futures price quoted at t and u2t is the measurement error

for the futures price, and its variance is a small positive number (in the estimation it

is set to be 1/100000).

A.2 Observable State Variables

One advantage of the model is that two of the state variables are actually observed.

Both the effective inventory n̂t+1 and the world supply growth rate µ̂s
t are available.

This provides two additional observation equations in the state-space form:

n̂t

µ̂s
t

 =

1 0 0 0 0

0 1 0 0 0


n̂t

et

+

ϵn̂t
0

 ϵnt ∼ N(0, σ2
n̂) (38)

where ϵnt is the measurement error for the effective inventory. This allows for correcting

possible data inaccuracy due to using the OECD effective inventory as the proxy of

world inventory. On the other hand, the dynamics of world supply growth rate µ̂s
t is
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already modelled in the state equation (see Equation 33) and already contains a shock

ϵµ
s

t , thus the observation equation does not include any error term for µ̂s
t .

In order to remove the seasonality in the inventory data, 11 monthly dummies are

included in the inventory observation equation, so that in the estimation:

n̂t =

[
1 0 0 0 0

]n̂t

et

+ di + ϵn̂t ϵnt ∼ N(0, σ2
n̂) (39)

where di is the dummy variable for month i, with March excluded.

A.3 Equations for the Estimation

To summarize, the equations in the estimation are Equations 33 34 37 39 and the

second row (for µ̂s
t) of Equation 38.

B Estimation of the State Space Model

Given a starting set of parameters, with the state equation 33, the observation

equations 34 37 39 and the second row (for µ̂s
t) of equation 38, and the observed data,

the Kalman filter is used to produce the estimates of the state variables, as well as

the joint likelihood under this set of parameter. The maximum likelihood estimation

of the model involves finding the parameters to maximize the joint likelihood. Once

the parameters are estimated, the estimates of the state variables are also produced,

and smoothed by Kalman smoother. The state variables and the decomposition results

discussed in the paper are all based on smoothed state variables.

For the results discussion, the smoothed state variables are not plotted. Rather the

historical decomposition and variance decomposition are provided for better illustration.

The figures of the state variables can be provided on request.
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To compute the historical decomposition of the price and inventory, aside from the

shock of interest, all other shocks are set to be zeros over the whole sample period. The

effective inventory in the first period is also set to be zero. The hypothetical price and

inventory over time is calculated iteratively from the time path of the shock of interest,

using the estimated state space model. Thus the historical decomposition of the price

is sometimes negative (meaning that the price is lower than it otherwise would have

been due to the shock), and that of the inventory always starts from zero in all figures.
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Table 1: Model Parameterization

Parameters Value Description

β 0.997 monthly depreciation rate

γ 0.25 price elasticity of demand

ϕ 1.42 parameter in MIC

Θ′ 0.2 marginal cost of inventory change

δ 0.89 marginal physical storage cost

ρτ 0.9 AR coef of persistent shock

ρc 0.1 AR coef of temporary shock

ρnτ 0.5 AR coef of expectation shock

σyτ 1 s.d. of persistent shock

σyc 1 s.d. of temporary shock

σnτ 1 s.d. of expectation shock

σµs 1 s.d. of growth rate shock

σn̂ 1 s.d. of inventory measurement errora

aIn the observation equation, although the observed effective inventory is mapped 1 to 1 directly
from the state variable effective inventory, measurement errors in the observed values is allowed.
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Table 2: Estimated Model for Crude Oil Market

Parameters γ = 0.25 γ = 0.02 Description

Point Estimate (Standard Error) Point Estimate (Standard Error)

log likelihood 4628 4635

β (set) 0.997 0.997 monthly depreciation rate

γ (set) 0.25 0.02 price elasticity of demand for crude oil

ϕ (set) 1.42 1.42 parameter in net marginal convenience yield

Θ′ 0.0151∗∗∗ (0.0004) 0.0018∗∗∗ (0.0002)

δ 0.0025∗∗∗ (0.0001) 0.0021∗∗∗ (0.0001) marginal physical storage cost

ρτ 0.9993∗∗∗ (0.0000) 0.9998∗∗∗ (0.0000) AR coefficient of persistent shock

ρc 0.0451∗∗∗ (0.0035) 0.0279∗∗∗ (0.0011) AR coefficient of temporary shock

ρnτ 0.9991∗∗∗ (0.0000) 0.0000∗∗∗ (0.0000) AR coefficient of expectation shock

σyτ 0.0197∗∗∗ (0.0001) 0.0010∗∗∗ (0.0002) s.d. of persistent shock

σyc 0.0092∗∗∗ (0.0003) 0.0088∗∗∗ (0.0015) s.d. of temporary shock

σnτ 0.0000∗∗∗ (0.0000) 0.0003∗∗∗ (0.0000) s.d. of expectation shock

σµs (set) 0.0105 0.0105 s.d. of growth rate shock

σn̂ 0.0000∗∗∗ (0.0000) 0.0000∗∗∗ (0.0000) s.d. of inventory measurement errora

Note: (i) Standard errors of the estimates are simulated and reported in parentheses; (ii) *, ** and
***denote that the point estimate is significant at the 90%, 95% and 99% confidence levels,
respectively.
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Table 3: Estimated Model for Crude Oil Market - continued

Parameters γ = 0.25 γ = 0.02 Description

Point Estimate (Standard Error) Point Estimate (Standard Error)

log likelihood 4628 4635

Jan. −0.0377∗∗∗ (0.0052) −0.0383 (0.0329) monthly seasonality dummy

Feb. −0.0105∗∗∗ (0.0036) −0.0109 (0.1042) monthly seasonality dummy

Mar.(set) 0 0 monthly seasonality dummy

Apr. 0.0300∗∗∗ (0.0037) 0.0305 (0.0308) monthly seasonality dummy

May. 0.0419∗∗∗ (0.0050) 0.0429 (0.0307) monthly seasonality dummy

Jun. 0.0337∗∗∗ (0.0060) 0.0348 (0.0309) monthly seasonality dummy

Jul. 0.0112∗ (0.0063) 0.0115 (0.0312) monthly seasonality dummy

Aug. −0.0041 (0.0066) −0.0040 (0.0646) monthly seasonality dummy

Sep. −0.0129∗ (0.0067) −0.0132 (0.0440) monthly seasonality dummy

Oct. −0.0333∗∗∗ (0.0064) −0.0339 (0.0317) monthly seasonality dummy

Nov. −0.0068 (0.0063) −0.0073 (0.0353) monthly seasonality dummy

Dec. −0.0121∗∗ (0.0057) −0.0130 (0.0480) monthly seasonality dummy

Note: (i) Simulated standard errors of the estimates are in parentheses (20000 simulations); (ii) *, **
and ***denote that the point estimate is significant at the 90%, 95% and 99% confidence levels,
respectively.
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Table 4: The Variance Decomposition k-month Ahead under Different γ’s

Forecast
error in

Innovation
in

γ k = 1 k = 3 k = 6 k = 12 k = 24

Pt

yτ
γ = 0.25 0.9967 0.9974 0.9976 0.9978 0.9975

γ = 0.02 0.9501 0.9515 0.9526 0.9546 0.9573

yc
γ = 0.25 0.0013 0.0007 0.0004 0.0002 0.0000

γ = 0.02 0.0109 0.0096 0.0086 0.0068 0.0043

nτ
γ = 0.25 0.0002 0.0002 0.0002 0.0003 0.0008

γ = 0.02 0.0350 0.0351 0.0352 0.0354 0.0357

nt+1

yτ
γ = 0.25 0.0016 0.0073 0.0261 0.1042 0.2686

γ = 0.02 0.0000 0.0000 0.0001 0.0004 0.0017

yc
γ = 0.25 0.8223 0.8083 0.7600 0.5606 0.1473

γ = 0.02 0.8123 0.8126 0.8126 0.8124 0.8115

nτ
γ = 0.25 0.0034 0.0155 0.0551 0.2181 0.5533

γ = 0.02 0.0009 0.0008 0.0008 0.0007 0.0005

Note: (i) Pt: the spot price in period t; nt+1: the effective inventory determined in period t for the
beginning of period t+ 1; (iI) yτ : persistent shock; yc: temporary shock; nτ : expectation shock.
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Figure 1: Effect of the Shocks on Relative Supply under Arbitrary Parameterization

Note: All shocks have been normalized to cause a decrease in the relative supply.
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Figure 2: Impulse Response Functions under Arbitrary Parameterization

Note: 1. yτ : persistent shock; yc: temporary shock; nτ : expectation shock; 2. All shocks have been
normalized to cause an increase in the real spot price of oil.
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Figure 3: Impulse Response Functions under Arbitrary Parameterization with different
γ’s

Note: 1. yτ : persistent shock; yc: temporary shock; nτ : expectation shock; 2. All shocks have been
normalized to cause an increase in the real spot price of oil.
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Figure 4: World Supply of Crude Oil

Source: Author’s calculation. Energy Information Administration (EIA).
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Figure 5: Data Overview

Source: Author’s calculation. Energy Information Administration (EIA).
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Figure 6: Estimated Impulse Response Functions

Note: 1. yτ : persistent shock; yc: temporary shock; nτ : expectation shock; 2. All shocks have been
normalized to cause an increase in the real spot price of oil.

40



Jan90 Jan00 Jan10
−2

0

2
persistent shock −−> spot price

Jan90 Jan00 Jan10
−0.1

0

0.1
persistent shock −−> inventory

Jan90 Jan00 Jan10
−0.02

0

0.02
temporary shock −−> spot price

Jan90 Jan00 Jan10
−0.2

0

0.2
temporary shock −−> inventory

Jan90 Jan00 Jan10
−0.01

0

0.01

0.02
expectation shock −−> spot price

Jan90 Jan00 Jan10
−0.1

0

0.1
expectation shock −−> inventory

Figure 7: Cumulative Effect of Shocks on the Prices and Effective Inventory with 90%
CI: γ = 0.25

41



Jan90 Jan00 Jan10
−2

0

2
persistent shock −−> spot price

Jan90 Jan00 Jan10
−0.02

0

0.02
persistent shock −−> inventory

Jan90 Jan00 Jan10
−0.2

0

0.2
temporary shock −−> spot price

Jan90 Jan00 Jan10
−0.5

0

0.5
temporary shock −−> inventory

Jan90 Jan00 Jan10
−0.02

0

0.02

0.04
expectation shock −−> spot price

Jan90 Jan00 Jan10
−2

0

2

4
x 10

−3expectation shock −−> inventory
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Note: For illustration purpose, the CI’s from Figure 7 and Figure 8 are not included in the
rearranged plottings.

43



References

Anderson, Soren T., Ryan Kellogg, and Stephen W. Salant (to appear), “Hotelling

under pressure.” Journal of Political Economy, forthcoming.

Arseneau, David M. and Sylvain Leduc (2013), “Commodity price movements in a

general equilibrium model of storage.” IMF Economic Review, 61, 199–244.

Barsky, Robert B. and Eric R. Sims (2011), “News shocks and business cycles.” Journal

of Monetary Economics, 58, 273–289.

Baumeister, Christiane and James D Hamilton (2015), “Structural Interpretation of

Vector Autoregressions with Incomplete Identification : Revisiting the Role of Oil

Supply and Demand Shocks.”

Baumeister, Christiane and Gert Peersman (2013), “The Role of Time-varying Price

Elasticities in Accounting for Volatility Changes in the Crude Oil Market.” Journal

of Applied Econometrics, 28, 1087–1109.

Beaudry, Paul and Franck Portier (2006), “Stock Prices, News, and Economic Fluctu-

ations.” American Economic Review, 96, 1293–1307.

Beidas-strom, Samya and Andrea Pescatori (2014), “Oil Price Volatility and the Role

of Speculation.”

Blanchard, Olivier Jean and Charles M Kahn (1980), “The solution of linear difference

models under rational expectations.” Econometrica, 48, 1305–11.

Bodenstein, Martin and Luca Guerrieri (2011), “Oil efficiency, demand, and prices: a

tale of ups and downs.” International Finance Discussion Papers.

Brennan, M.J. (1958), “The supply of storage.” The American Economic Review, 48,

50–72.

44



Byun, Sungje (2012), “Speculation in commodity futures market, inventories and the

price of crude oil.” Working Paper.

Cheng, Ing-Haw and Wei Xiong (2014), “Financialization of Commodity Markets.”

Annual Review of Financial Economics, 6, 419–441.

Cooper, John C.B. (2003), “Price elasticity of demand for crude oil: estimates for 23

countries.” OPEC Energy Review, 27, 1–8.

Dahl, Carol (1993), “A survey of oil demand elasticities for developing countries.”

OPEC Review, 17, 399–420.

Davis, Joshua Mark (2007), “News and the Term Structure in General Equilibrium.”

Deaton, Angus and Guy Laroque (1992), “On the behaviour of commodity prices.”

Review of Economic Studies, 59, 1–23.

Deaton, Angus and Guy Laroque (1995), “Estimating a nonlinear rational expecta-

tions commodity price model with unobservable state variables.” Journal of Applied

Econometrics, 10, S9–S40.

Deaton, Angus and Guy Laroque (1996), “Competitive storage and commodity price

dynamics.” Journal of Political Economy, 104, 896–923.

Dvir, Eyal and Kenneth S. Rogoff (2010), “Three epochs of oil.” NBER. Working Paper

No. 14927.

Eichenbaum, Martin S. (1984), “Rational expectations and the smoothing properties

of inventories of finished goods.” Journal of Monetary Economics, 14, 71–96.

Hamilton, James D. (2009a), “Causes and consequences of the oil shock of 2007-08.”

Brookings Papers on Economic Activity, 40, 215–283.

45



Hamilton, James D. (2009b), “Understanding crude oil prices.” The Energy Journal,

30, 179–206.

Hurn, A Stan and Robert E Wright (1994), “Geology or economics? Testing models

of irreversible investment using North Sea oil data.” The Economic Journal, 104,

363–371.

Jaimovich, Nir and Sergio Rebelo (2009), “Can news about the future drive the business

cycle?” American Economic Review, 99, 1097–1118.

Juvenal, Luciana and Ivan Petrella (2014), “Speculation in the Oil Market.” Journal of

Applied Econometrics, 30, 621–649.

Kilian, Lutz (2009), “Not all oil price shocks are alike: Disentangling demand and

supply shocks in the crude oil market.” American Economic Review, 99, 1053–69.

Kilian, Lutz and Dan Murphy (2014), “The role of inventories and speculative trading

in the global market for crude oil.” Journal of Applied Econometrics, 29, 454–478.

Knittel, Christopher R. and Robert S. Pindyck (2016), “The simple economics of com-

modity price speculation.” American Economic Journal: Macroeconomics, 8, 85–110.

Mauritzen, Johannes (2016), “The effect of oil price on field production: Evidence from

the norwegian continental shelf.” Oxford Bulletin of Economics and Statistics.

Pindyck, Robert S. (1994), “Inventories and the short-run dynamics of commodity

prices.” RAND Journal of Economics, 25, 141–159.

Sockin, Michael and Wei Xiong (2015), “Informational Frictions and Commodity Mar-

kets.” Journal of Finance, 70, 2063–2098.

Unalmis, Deren, Ibrahim Unalmis, and Derya Filiz Unsal (2012), “On Oil Price Shocks:

The Role of Storage.” IMF Economic Review, 60, 505–532.

46



Wright, Brian D. and Jeffrey C. Williams (1982), “The economic role of commodity

storage.” The Economic Journal, 92, pp. 596–614.

Wright, Brian D. and Jeffrey C. Williams (1984), “The Quarterly Journal of Eco-

nomics.” The Quarterly Journal of Economics, 99, 169–192.

47


	Cover 2017-7
	xin 2017 working paper 
	Introduction
	The Model
	Oil Price Determination
	Inventory Decision
	Exogenous Shocks in the Model: Modelling Expectation
	Model Overview and Equilibrium

	Solving the Model
	Model Solution
	Simulated Impulse Response Functions
	The Mechanism of the ``Expectations Shock"
	The ``Expectations Shock" Has More than the Immediate Effects


	Estimation Results
	Data and Estimation
	Data
	Which Parameters are Estimated and Why  is Arbitrarily Set

	Estimated Parameters and Impulse Response Functions
	Estimated Parameters
	Estimated Impulse Response Functions

	Estimated Cumulative Effects of the Shocks

	Conclusion
	Solving the Model
	Additional Observables
	Observable State Variables
	Equations for the Estimation

	Estimation of the State Space Model


