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ABSTRACT 
 
Despite their clinical significance, characterization of balanced chromosomal abnormalities (BCAs) has 

largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide 

resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 

93% of karyotypes and revealed complexity that was cryptic to karyotyping in 21% of BCAs, 

highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in 

gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with 

pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) 

encompassing known syndromic loci. Remarkably, 8 subjects harbored BCA breakpoints that localized 

to a single TAD encompassing MEF2C, a known driver of the 5q14.3 microdeletion syndrome, resulting 

in altered MEF2C expression by genomic rewiring. This study proposes that sequence-level resolution 

dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight 

into novel pathogenic mechanisms such as altered regulation due to changes in chromosome topology. 

 
 

Keywords: Cytogenetics, structural variation, balanced chromosomal abnormality, congenital anomaly, 

intellectual disability, autism, translocation, inversion, chromothripsis, topologically associated domain 

(TAD), MEF2C 

 



	 6	

Balanced chromosomal abnormalities (BCA) are a class of structural variation that involve 1 

rearrangement of chromosome structure and result in a change in the orientation or localization of a 2 

genomic segment without a large concomitant gain or loss of DNA. This class of variation includes 3 

inversions, translocations, excisions/insertions, and more complex rearrangements consisting of 4 

combinations of such events. Cytogenetic studies of unselected newborns and control adult males 5 

estimate a prevalence of 0.2-0.5% for BCAs in the general population1-3. By contrast, an approximate 6 

five-fold increase in the prevalence of BCAs detected by karyotyping has been reported among subjects 7 

with neurodevelopmental disorders, particularly intellectual disability (1.5%)4 and autism spectrum 8 

disorder (ASD; 1.3%)5. These data suggest that BCAs represent highly penetrant mutations in a 9 

meaningful fraction of subjects with associated congenital anomalies or neurodevelopmental disorders. 10 

 11 

Delineating the breakpoints of BCAs and the genomic regions that they disrupt has long been a fertile 12 

area of novel gene discovery in human genetic research and has greatly contributed to the annotation of 13 

the morbid map of the human genome6-8. Despite their significance in human disease, the clinical 14 

detection of this unique class of chromosomal rearrangements still relies upon conventional cytogenetic 15 

methods such as karyotyping that are limited to microscopic resolution (~3-10 Mb, depending on the 16 

chromosome banding pattern and specimen type)9. The absence of gross genomic imbalances renders 17 

BCAs invisible to higher resolution techniques that currently serve as first-tier diagnostic screens for 18 

many developmental anomalies of unknown etiology: chromosomal microarray (CMA), which can 19 

detect microscopic and sub-microscopic copy-number variants (CNVs), or whole-exome sequencing 20 

(WES), which surveys single nucleotide variants within coding regions. Without access to precise 21 

breakpoint localization, clinical interpretation of de novo BCAs has been limited to estimates of an 22 

untoward outcome from population cytogenetic studies based solely on the presence of a rearrangement 23 

(6.1% of de novo reciprocal translocations, 9.4% for de novo inversions)10. We have recently shown that 24 

innovations in genomic technologies can efficiently reveal BCA breakpoints at nucleotide resolution 25 

with a cost and timeframe comparable to clinical CMA or karyotyping; however, only a limited number 26 

of BCAs has been evaluated to date11,12,7,13-16. 27 

 28 

In this study, we explored several fundamental but previously intractable questions regarding de novo 29 

BCAs associated with human developmental anomalies, such as the origins of their formation, the 30 

genomic properties of the sequences that they disrupt, and the mechanisms by which BCAs act as 31 

dominant pathogenic mutations. We evaluated 273 subjects ascertained based upon the presence of a 32 
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BCA discovered by karyotyping in a cytogenetics laboratory in a proband that presented with a 33 

developmental anomaly.  We defined the genomic sequences that were altered by the breakpoints and 34 

created a framework in which we interpreted their significance based on convergent genomic datasets. 35 

This included CNV and WES data in tens of thousands of individuals, as well as prediction of long-36 

range regulatory effects from recent studies that have established high-resolution maps of chromosomal 37 

compartmentalization in the nucleus17,18. Our findings indicate that formation of BCAs involves a 38 

variety of mechanisms and sequence characteristics, that the end-result often reflects substantial 39 

complexity invisible to cytogenetic assessment, that BCAs directly disrupt genes likely to contribute to 40 

early developmental abnormalities in at least one-third of subjects, and that BCAs can cause long-range 41 

regulatory changes due to alterations to the chromosome structure. These results highlight the myriad 42 

genomic features of BCAs that have been largely unexplored in conventional cytogenetic research and 43 

demonstrate mechanisms by which they contribute to abnormalities in human development. 44 

45 



	 8	

RESULTS 46 

Sequencing BCAs reveals cryptic complexity  47 

In this study 273 subjects were sequenced originating from five primary referral sites that collectively 48 

represented an international consortium of over 100 clinical investigators. Subjects harbored a BCA that 49 

was detected by karyotyping and presented with varied developmental anomalies. Most of the 273 50 

subjects were surveyed using large-insert whole-genome sequencing (liWGS or ‘jumping libraries’; 51 

83%), with the remainder of subjects being analyzed by standard short-insert WGS or targeted 52 

breakpoint sequencing (see Online Methods; Supplementary Table 1). Subjects were preferentially 53 

selected with confirmed de novo BCAs based on cytogenetic studies at the referring site or with 54 

rearrangements that segregated with a phenotypic anomaly within a family (72.5% of subjects); 55 

however, inheritance information was unavailable for one or both parents in the remaining 27.5% of 56 

subjects. Notably, subjects harboring BCAs that were inherited from an unaffected parent were excluded 57 

from this study. Of interest, 62.6% of subjects received clinical CMA screening prior to enrollment to 58 

confirm the absence of a pathogenic CNV (Table 1). Subjects presented with a spectrum of clinical 59 

features: congenital anomalies ranged from organ-specific disorders to multisystem abnormalities, as 60 

well as neurodevelopmental conditions such as intellectual disability or autism spectrum disorder (ASD; 61 

Table 1). While no specific phenotypes were prioritized for inclusion (see Supplementary Fig. 1), 62 

neurological defects were the most common feature in the cohort (80.2% of subjects when using 63 

digitalized phenotypes from Human Phenome Ontology [HPO]19; Table 1; Supplementary Table 2). 64 

 65 

Breakpoints were identified in 248 of the 273 cases (90.8%); all subsequent analyses were restricted to 66 

these 248 subjects. This success rate was consistent with expectations, as simulation of one million 67 

random breakpoints in the genome and comparison against all uniquely alignable 10 bp – 100 bp kmers 68 

suggests that 7.6% of simulated breakpoints were localized within N-masked regions or genomic 69 

segments that cannot be confidently mapped by short-read sequencing (Supplementary Fig. 2). 70 

Sequencing identified 876 breakpoints genome-wide (Fig. 1a) and revised the breakpoint localization by 71 

at least one sub-band in 93% of subjects when compared to the karyotype interpretation (breakpoint 72 

positions provided in Supplementary Table 3). Across all rearrangements, 26% (n=65) of BCAs were 73 

found to be complex (i.e., involved three or more breakpoints), including 5.3% (n=13) that were 74 

consistent with the phenomena of chromothripsis or chromoplexy that we and others have previously 75 

defined in cancer genomes and the human germline (complex reorganization of the chromosomes 76 

involving extensive shattering and random ligation of fragments from one or more chromosomes)20-24. 77 
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The most complex BCA involved 57 breakpoints (Supplementary Fig. 3). When analyses were 78 

restricted to the 230 subjects for which the karyotype suggested a simple chromosomal exchange, 48 79 

(21%) were determined to be rearrangements with complexity that was cryptic to the karyotype, 80 

emphasizing the insights that are gained from nucleotide resolution. Across all BCAs, 80.7% resolved to 81 

less than ten kilobases of total genomic imbalance, although several cases harbored large cryptic 82 

imbalances (mostly deletions) of varied impact (Fig. 1b, Supplementary Table 4). Importantly, 9.3% 83 

of BCAs displayed an overall genomic imbalance greater than 1 Mb and only 12.2% had imbalances of 84 

>100 kb in this study, representing a significantly lower fraction than previous cytogenetic estimates25. 85 

The overall genomic imbalance associated with a BCA was larger among cases without CMA pre-86 

screening, and 15.5%/18.8% of these subjects harbored imbalances greater than 1 Mb/100 kb, 87 

respectively (Fig. 1b, Supplementary Table 4). The total genomic imbalance generally increased with 88 

the number of breakpoints, though there were chromothripsis and chromoplexy events that were 89 

essentially balanced (e.g., subject NIJ19 involved 13 junctions across five chromosomes that resolved to 90 

a final genomic imbalance of only 631 bases). 91 

 92 

BCA formation is mediated by multiple molecular mechanisms 93 

Extensive mechanistic studies have been performed on breakpoints of large CNV datasets; however, the 94 

limited scale and resolution of BCA studies have precluded similar analyses for balanced 95 

rearrangements. Using precise junction sequences from 662 breakpoints, we found that nearly half 96 

displayed signatures of blunt-end ligation (45%), presumably driven by non-homologous end joining 97 

(NHEJ) (Fig. 1c). A substantial fraction (29%) involved microhomology of 2-15 bp at the breakpoint 98 

junction (median: 3-bp microhomology), indicating that template-switching coupled to DNA-replication 99 

mechanisms such as microhomology-mediated break-induced replication (MMBIR) contribute to a 100 

substantial fraction of BCAs26. A comparable fraction (25%) of junctions harbored micro-insertions of 101 

several basepairs (1 to 375 inserted bases, median: 6-bp), consistent with NHEJ or fork stalling and 102 

template switching (FoSTeS) mechanisms (Fig. 1c). Finally, only nine junctions (1%) contained long 103 

stretches of homologous sequences (>100 bp) that would be consistent with homology-mediated repair. 104 

It is important, however, to note that this is almost certainly an underestimate given the limitations of 105 

short-read sequencing to capture rearrangements localized within highly homologous sequences such as 106 

segmental duplications or microsatellites. BCA breakpoint signatures from this study were also 107 

compared to 8,943 deletion breakpoints identified in 1,092 samples from the 1000 Genomes Project27. 108 

BCA breakpoints were enriched for blunt-end signatures while depleted for microhomology and large 109 
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homology sequences compared to deletion breakpoints (Supplementary Fig. 4), suggesting that they 110 

arose from distinct mechanisms.  111 

 112 

Comparison of the observed breakpoints to 100,000 independent sets of simulated breakpoints that 113 

retained the properties of the observed dataset (see Online Methods) established nominal enrichment 114 

for repeat elements (P=0.015) and fragile sites (P=0.043), while no significant enrichment for the other 115 

genomic features tested (recombination hotspots, DNAse-I hypersensitive sites, or transcription factor 116 

binding sites; Supplementary Fig. 5). Incorporating Hi-C interaction data to explore the association 117 

between nuclear organization of the chromosomes and BCA formation revealed that pairs of loci 118 

comprising a BCA breakpoint did not stem from regions with significantly higher contact patterns in the 119 

nucleus18; however, pairs of BCA breakpoint loci displayed genome-wide interaction patterns that were 120 

marginally more correlated than random pairings (P=0.046; see Supplementary Methods and 121 

Supplementary Fig. 6). These results suggest that DNA fragments involved in BCA formation are more 122 

likely to be co-localized in the same or neighboring subcompartments prior to chromosomal reassembly, 123 

though at the sample sizes available they did not necessarily harbor increased direct interactions.  124 

 125 

BCA breakpoints associated with congenital anomalies are enriched for functionally relevant loci 126 

While protein-coding sequences represent less than 2% of the human genome, the total genic space in 127 

which a structural variation can disrupt a transcript is considerable as the cumulative coverage of 128 

transcribed regions is over 60% based on recent annotations28. Consistent with this expectation, 67% 129 

(589/876) of all breakpoints in this study disrupted a gene, and at least one gene was truncated in most 130 

BCAs (75%, 186/248), which did not deviate from random expectations (observed n=408 RefSeq genes, 131 

expected n=392±20, P=0.220; Supplementary Fig. 7). While BCA breakpoints were not enriched for 132 

gene disruptions beyond expectations, the properties of the disrupted genes deviated significantly from 133 

randomly simulated breakpoints for several key features, as described below, suggesting that the 134 

pathogenic impact of BCAs in this cohort ascertained based upon the presence of a developmental 135 

abnormality is not a consequence of their likelihood to disrupt genes but rather a reflection of the 136 

gene(s) that they alter (the list of all disrupted genes at breakpoints is provided in Supplementary Table 137 

5). 138 

 139 

We observed a significant enrichment for disruption of genes highly intolerant to truncating mutations, 140 

as defined by two independent groups (P=0.027 and P=0.001 for Residual Variation Intolerance Score 141 
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[RVIS] and probability of loss-of-function [LoF] intolerance [pLI] scores, respectively; Fig. 2a)29,30. 142 

Embryonically expressed genes (P=0.001)31 and genes previously associated with autosomal dominant 143 

disorders (P=0.002) were also more likely to be disrupted than expected by chance, whereas no 144 

enrichment was observed for genes associated with autosomal recessive disorders (P=0.294; Fig. 2a)32. 145 

The strongest enrichment at breakpoints was detected for genes previously associated with 146 

developmental disorders (≥2 de novo LoF mutations [dnLoF]) as amalgamated from multiple 147 

independent datasets (P=2x10-5; Supplementary Table 6). Significant enrichment was also observed at 148 

breakpoints for FMRP-target genes and chromatin remodeling genes33,34, replicating the enrichment 149 

observed for genes with dnLoF in subjects with neurodevelopmental disorders (Fig. 2b)35-37,7,38,31. No 150 

enrichments were observed for CHD8 target genes39,40. When further incorporating expression data of 151 

the developing brain from BrainSpan41, truncated genes showed higher expression patterns during early 152 

developmental stages than randomly simulated datasets (Supplementary Fig. 8). These results appeared 153 

to be specific to early developmental anomalies; there was no significant enrichment of genes associated 154 

with schizophrenia42,43, or gene-sets associated with complex disorders that were considered as negative 155 

controls such as type-II diabetes, cancer, or height. Given the distribution of clinical phenotypes in the 156 

cohort, we hypothesized that enrichment signals were driven by the predominance of neurological 157 

abnormalities among the subjects. We therefore performed analyses that segregated subjects with or 158 

without nervous system related conditions using HPO-reported phenotypes, and replicated most 159 

associations for the subset of cases with neurological conditions while enrichments were not significant 160 

for the smaller subset of subjects without reported nervous system abnormalities (Supplementary Fig. 161 

9).   162 

 163 

BCAs predominantly contribute to developmental anomalies by direct gene truncation 164 

We next asked the fundamental question: “How often does a BCA represent a likely pathogenic 165 

mutation that contributes to the subject’s abnormal developmental phenotype?” We sought to interpret 166 

the clinical significance of each BCA with reference to the phenotype reported in the proband and the 167 

genomic region(s) altered by the rearrangement. We built our interpretation using categories comparable 168 

to those established by ClinVar and the Deciphering Developmental Disorders consortium (DDD)44; 169 

however, we restricted interpretation of variants of potential clinical relevance to Pathogenic or Likely 170 

Pathogenic, as detailed below and in Supplementary Table 7. All other variants were interpreted as 171 

Variant of Unknown Significance (VUS), as we lacked sufficient clinical and functional data to interpret 172 
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variants as Benign or Likely Benign. The overall summary of the predicted impact for each mapped BCA 173 

is provided in Supplementary Table 8. 174 

 175 

Pathogenic: We compared loci disrupted by BCAs to genes that had been robustly associated with 176 

dominant developmental disorders (≥3 reported cases with dnLoF in OMIM, DDD, and amalgamated 177 

large-scale sequencing studies in neurodevelopmental disorders; see Supplementary Methods and 178 

Supplementary Table 6). In total, 66 subjects (26.6%) harbored Pathogenic BCAs that disrupted these 179 

previously defined developmental loci either through direct gene disruption or genomic imbalance (Fig. 180 

2c; Table 2; Supplementary Table 9). In the majority of these subjects (53/66), the rearrangement 181 

truncated a high confidence syndromic locus. These included known drivers of recurrent microdeletion 182 

syndromes (e.g., SATB2, MBD5, EHMT1, NFIA, ZBTB20)45-49, loci associated with imprinted disorders 183 

(SNURF-SNRPN), and genes well-established as highly penetrant loci in developmental disorders (e.g., 184 

CHD7, CHD8, CDKL5, CUL3, DYRK1A, GRIN2B), as well as more recently implicated genes such as 185 

AHDC1, CTNND2 and WAC (Fig. 2c; Table 2; Supplementary Table 9). Several genes were disrupted 186 

in two or more subjects in this cohort, further confirming their significant role in developmental 187 

anomalies: AUTS2, KDM6A, MBD5, MYO6, MYT1L, PHF21A, PHIP, SNURF-SNRPN, SOX5 and 188 

ZBTB20. Importantly, ten subjects harbored BCAs that disrupted genes associated with dominant 189 

disorders for which the expected phenotype such as cardiovascular defects, childhood or late-onset 190 

hearing loss, neurodegenerative disorder, were not observed in the proband (Supplementary Table 9); 191 

in those subjects the rearrangements were likely incidental findings, but could alternatively represent 192 

pleiotropy in which disruption of the same locus can manifest in multiple distinct phenotypes. In the 193 

remaining 13 subjects with Pathogenic BCAs (13/66), genomic imbalances at the breakpoints either 194 

overlapped with known microdeletion/microduplication syndromes, or encompassed a gene associated 195 

with a dominant developmental disorder (e.g., 12p12.1-p11.22 deletion encompassing SOX5; Table 2; 196 

Fig. 2c). 197 

 198 

Likely Pathogenic: Each specific rearrangement effectively represents a private event, or an N-of-1, 199 

which is a major challenge for interpretation in genomic studies. To interpret variants as Likely 200 

Pathogenic when the BCA did not disrupt established developmental loci, we relied on convergent 201 

genomic evidence from large-scale datasets. The premise was that candidate genes associated with 202 

congenital anomalies or early developmental defects would show evidence of reduced reproductive 203 

fitness and intolerance to haploinsufficiency. Thirty-one subjects harbored BCAs that were considered 204 
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as Likely Pathogenic via direct loci disruption (Table 2; Supplementary Tables 8, 10). In 25 subjects, 205 

the rearrangement directly disrupted a gene highly intolerant to dnLoF, and in which dnLoF mutations 206 

had been previously reported in isolated cases (1 or 2 subjects, with an additional subject now 207 

represented by the BCA in our study; e.g. CACNA2D3, ROBO2, NFIB), some of which had strong 208 

biological support for involvement in developmental anomalies (EP400, STXBP5, NRXN3). Among 209 

those proposed candidate genes, several were disrupted in multiple subjects from the cohort (NPAS3(x4), 210 

PTPRZ1(x3), SYNCRIP(x2); Table 2, Supplementary Tables 10-11). Two subjects had BCAs likely 211 

associated with genomic disorders: one BCA involving a 2p21-p13.3 duplication encompassing NRXN1, 212 

one BCA disrupting the imprinted 11p15 region likely associated with Silver-Russel syndrome 213 

(MIM#180860). In the remaining four subjects with Likely Pathogenic BCAs, the rearrangement 214 

truncated genes that were established to be associated with developmental disorders yet in which only 215 

activating or missense mutations had been previously reported (e.g., CACNA1C and GNB1)50,51, 216 

proposing a dosage sensitive model for these loci, comparable to recurrent genomic disorders. Based on 217 

these results, we interpreted that 12.5% (31/248) of subjects harbored a BCA that was likely 218 

contributing to the phenotype through the involvement of potentially novel candidate genes or disease 219 

mechanisms. 220 

 221 

Collectively, these data suggest that 39.1% (97/248) of subjects have a phenotype that can be at least 222 

partially explained by haploinsufficiency or dosage alteration of an individual gene or locus (Fig. 2c; 223 

Supplementary Tables 8-10). Importantly, the overall diagnostic yield was significantly higher in 224 

subsets of the group, such as among those subjects who harbored confirmed de novo or co-segregating 225 

BCAs compared to subjects for whom inheritance was unknown (Fig. 2d), or among subjects who had 226 

not been screened clinically by CMA prior to enrollment (Fig. 2e). Despite these substantial yields, the 227 

marked increase in the frequency of BCAs associated with birth defects compared to the general 228 

population still suggests that alternative mutational mechanisms other than gene disruption may account 229 

for the developmental defects in a fraction of subjects for which the BCAs were interpreted as VUS.  230 

We explored such potential mechanisms in this unique dataset.  231 

 232 

Positional effects via disruption of long-range regulatory interactions 233 

Clusters of BCA breakpoints within intergenic regions may suggest disruption of strong regulatory 234 

elements that contribute to disease manifestation via positional effects. Alternatively, this could reflect 235 

recurrent rearrangements due to fragile sites and/or recombination hotspots. To isolate genomic regions 236 
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in which an unusual number of BCA breakpoints were localized, we partitioned the genome into 1 Mb 237 

bins using a sliding window of 100 kb. Only one genomic segment, consisting of several contiguous 238 

genomic bins, achieved genome-wide significance (P=8×10-9; Fig. 3a). This segment localized to 239 

cytogenetic band 5q14.3 and involved breakpoints from a remarkable eight independent BCAs. Of these 240 

eight BCAs, one directly disrupted MEF2C at 5q14.3 while the other seven BCAs mapped to intergenic 241 

regions proximal and distal to MEF2C. Importantly, among the seven BCAs with intergenic disruption 242 

of 5q14.3, none included a breakpoint disrupting a locus of known significance elsewhere in the 243 

genome, suggesting that an alternative mechanism to direct gene disruption was operating in the 5q14.3 244 

region. 245 

 246 

All BCA breakpoints from the 5q14.3 cluster overlapped with the previously described 5q14.3 247 

microdeletion syndrome for which nearly 100 subjects have been reported, with MEF2C as the proposed 248 

genetic driver of the syndromic phenotypes observed (Fig. 3b)52-58. However, deletions have been 249 

reported in cases located in proximity to MEF2C but not encompassing this gene (Fig. 3b), and the 250 

presence of seven BCAs distal to MEF2C in this study both challenge the hypothesis that direct 251 

disruption of MEF2C is a necessary and sufficient cause of the syndrome. When combining three 252 

previously described subjects with reported BCAs distal to MEF2C with the eight subjects from our 253 

cohort, a total of 11 subjects harbor balanced rearrangement breakpoints localized to the same 1 Mb 254 

region within 5q14.3 (Fig. 3b)52,57,15. Only one BCA directly truncated MEF2C, while all 10 remaining 255 

BCAs were predicted to disrupt a topologically associated domain (TAD) containing MEF2C (Fig. 3b). 256 

TADs are structured chromatin domains of increased interactions that typically define a local regulatory 257 

unit bridging regulatory elements together with their target genes59. Their disruption by genomic 258 

rearrangements can lead to impaired gene regulation and therefore disease pathogenesis60,61. 259 

Correspondingly, in the four subjects that harbored BCA breakpoints up to 860 kb distal to MEF2C for 260 

which RNA from lymphoblastoid cell lines (LCLs) was available, analysis of MEF2C expression 261 

revealed a significant reduction in all four subjects compared to 16 age-matched controls divided equally 262 

by sex (Fig. 3d). These analyses provide compelling evidence that alteration of the TAD architecture in 263 

this genomic disorder region can disrupt normal MEF2C expression. When integrated with existing data, 264 

the converging clinical features suggest multiple distinct mutational mechanisms resulting in 265 

phenocopies of the 5q14.3 microdeletion syndrome: (1) direct disruption of MEF2C via dnLoF 266 

mutations, (2) deletions including MEF2C, and (3) long-range positional effects from deletions and 267 

BCAs not impacting MEF2C via alteration to the physical orientation of the TAD structure (Fig. 3c). 268 
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 269 

Beyond 5q14.3, we also identified three other loci (2q33.1, 6q14.3 and 14q12) suggestive of an 270 

accumulation of BCA breakpoints, although these loci did not reach genome-wide significance (P=1x10-
271 

4). Each segment contained BCA breakpoints from four independent subjects and overlapped with 272 

known microdeletion syndromes (Fig. 3a). At 2q33.1, one BCA disrupted SATB2, associated with Glass 273 

syndrome and recognized as the established driver of the 2q33.1 microdeletion syndrome47,7, while the 274 

remaining three rearrangements were predicted to impact long-range interactions between SATB2 and its 275 

regulatory elements, similar to the effect observed with MEF2C at 5q14.3 (Supplementary Fig. 10). In 276 

the 14q12 cluster, all BCA breakpoints were distal to FOXG1, which has been reported in atypical Rett 277 

syndrome62-65. The phenotypes associated with all four of these subjects were highly correlated based 278 

upon analyses of HPO reported terms (HPO-sim P-value=0.006; see Methods and Supplementary 279 

Table 11)66,67, and were consistent with the multiple previous reports of subjects with dysregulation of 280 

FOXG1 (Supplementary Figure 11)62,68,63-65. At 6q14.3, four BCAs were localized in proximity to 281 

SYNCRIP, a highly constrained gene in which dnLoF had been reported in two subjects with 282 

neurodevelopmental disorders69. In one subject the BCA directly disrupted SYNCRIP, while another 283 

subject harbored a breakpoint distal to SYNCRIP that was part of a cryptic 6q14.3 deletion 284 

encompassing the full gene, though the impact of the other two BCAs was unclear due to their 285 

localization to an adjacent contact domain (Supplementary Fig. 12). Finally, a systematic screen 286 

identified four additional subjects in which a TAD disruption could represent a positional effect on 287 

known syndromic loci associated with a developmental disorder that closely matched the subject's 288 

phenotype (PITX2, SLC2A1, SOX9, SRCAP; Supplementary Fig. 13-15). In two of these regions, LCLs 289 

were available from the corresponding subjects and expression of the proposed driver gene was 290 

significantly reduced when compared to a 16-sample control panel (SLC2A1 and SRCAP, 291 

Supplementary Fig. 13 and 14). 292 

 293 

Collectively, 7.3% of subjects harbored a BCA predicted to alter long-range regulatory interactions 294 

involving an established syndromic locus with comparable phenotype, recurrently involving MEF2C, 295 

SATB2, and FOXG1 while an additional four subjects harbored a BCA that could represent long-range 296 

positional effects (two confirmed by expression studies), though our sample sizes precluded detection of 297 

a significant accumulation of breakpoints in these latter four regions. These data suggest that alterations 298 

to TAD structures likely represent a significant component of the deleterious impact of mutations 299 

associated with genomic rearrangements.   300 
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DISCUSSION 301 

This characterization of BCAs at nucleotide resolution offers new insights into their mechanisms of 302 

formation, the properties connected to their rearrangement in the nucleus, and a substantial yield of 303 

potentially novel genes associated with human development. These results also emphasize that neither 304 

the mere presence of a BCA in a subject with developmental defects nor the number of genes it disrupts 305 

(if any) provide sufficient prognostic power, but rather that the properties of the specific genes and 306 

regions that are altered are the most informative in predicting resultant phenotypes. These data build 307 

upon recent studies on genome topology and provide further evidence that alterations to chromosome 308 

structure can lead to alternative, yet potentially predictable, pathogenic mechanisms by changing the 309 

long-range regulatory architecture of physical interactions and chromatin looping in the nucleus66,60,61. 310 

The yield of clinically meaningful results in this study, which ranged from 26.6% to 46.4% of the 311 

subjects evaluated, was substantial. Nonetheless, the relative enrichment from cytogenetic studies of 312 

BCAs in subjects with developmental abnormalities compared to controls suggests that there are yet 313 

additional alternative pathogenic mechanisms associated with de novo chromosomal rearrangements that 314 

remain to be discovered4,5. 315 

 316 

These data provide an initial vantage of the potential utility of emerging datasets that characterize the 317 

nuclear organization of the chromosomes. They propose novel pathogenic mechanisms by which BCAs 318 

may operate, which appear to be a consequence of the disruption of long-range interactions between 319 

regulatory elements and their target gene66,60,61. Structural variants can indeed easily scramble DNA 320 

topology and contact domains with potentially dramatic regulatory consequences. TADs cover a 321 

substantial fraction of the genome; therefore, the vast majority of structural variation will perturb one of 322 

those domains and cannot constitute a predictive criterion for pathogenicity per se. These data propose 323 

that the recurrent disruption of a TAD encompassing a high confidence locus beyond what is expected 324 

by chance, concomitant with strong phenotypic overlap between the carrier of the variant and 325 

haploinsufficiency of the locus in independent subjects, may be a first step towards highlighting putative 326 

positional effects, though definitive conclusions will still require functional validation. Expression 327 

studies in peripheral blood cells of individual subjects are a plausible, yet suboptimal, method for 328 

confirming positional effects. There is clearly a need for sensitive and specific tools to predict such 329 

positional effects caused by long-range regulatory perturbations, and to annotate further the morbid 330 

genome with more complete knowledge of these functional interactions. The fraction of BCAs in this 331 



	 17	

study that may be associated with this pathogenic mechanism is therefore just an entrée into their likely 332 

significance as a component of the unexplained genetic contribution to human birth defects. 333 

 334 

In terms of evaluating diagnostic strategies, this study further highlights limitations of current diagnostic 335 

tools such as karyotyping or CMA in interpreting and detecting BCAs11,13-16. While the capability to 336 

visualize the chromosomes and detect de novo BCAs by traditional karyotyping represented a critical 337 

leap in genetic diagnostics, as exemplified by the seminal population cytogenetic studies performed by 338 

our late co-author, Dorothy Warburton10, the detection of gross chromosomal abnormalities provides 339 

limited prognostic capability as to the clinical manifestation that may present in a given case. Our data 340 

demonstrate that karyotyping significantly underestimates complex rearrangements and is almost always 341 

revised by at least a sub-band. Karyotyping is also insensitive to genomic imbalances observed in the 342 

human germline that cannot be directly visualized (~5-10 Mb). By comparison, CMA is generally 343 

recommended as a first-tier diagnostic screen given its sensitivity to detect submicroscopic CNVs, yet it 344 

is blind to copy-neutral events such as those described herein. This study provides critical new insights 345 

into the fraction of BCAs that can be ascertained by CMA analyses. Compared to cytogenetic estimates 346 

suggesting that up to 40% of BCAs resolved as unbalanced rearrangements and could therefore be 347 

ascertained using CMA25, whole-genome sequencing in this cohort suggests that, even at the resolution 348 

of 100 kb, only about 12% of BCAs involved a genomic imbalance. If we consider only the 102 subjects 349 

for whom no CMA was previously performed, this proportion increases to 18.8% at 100 kb resolution 350 

and 17.6% at 500 kb resolution, suggesting that 81.8-82.4% of BCAs in this study would be inaccessible 351 

to the resolution of most CMA platforms routinely used in clinical diagnostics. Notably, there is still 352 

benefit to an initial CMA screen, as is illustrated by the significantly lower yield of pathogenic BCAs 353 

among subjects who had been pre-screened by CMA (19-37%) compared to those who had not (41-354 

64%; Fig. 2e), indicating that a fraction of pathogenic variation in these genomes was captured by the 355 

CMA prescreen either in relation to or independent of the BCA.  356 

 357 

These data strongly argue for the implementation of technologies capable of detecting both balanced and 358 

unbalanced genomic rearrangements. This could be achieved by using a conventional cytogenetic test 359 

followed by a reflex WGS analysis when an abnormality is detected, which we have previously 360 

demonstrated can provide access to all classes of structural variation in the human genome while being 361 

accomplished in a relatively rapid timeframe12,70. Despite its great promise, it is important to recognize 362 

the limitations of massively parallel sequencing in routine cytogenetic practice. This study used large-363 
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insert jumping libraries to maximize physical coverage and minimize cost per base of genome covered. 364 

Yet these analyses failed to reveal breakpoints in 9% of BCAs tested, and our simulations indicate that 365 

at large sample sizes, we would anticipate ~7-8% of breakpoints to be undetectable by short-read 366 

sequencing. At present, this result gives credence to maintaining the parallel visualization of structural 367 

changes in the genome using traditional cytogenetic approaches such as karyotyping for regions that are 368 

recalcitrant to massively parallel sequencing. As sequencing technologies and analytical capabilities 369 

improve, this component of the variant spectrum will become more tractable to genomic approaches, 370 

and the future implementation of long-read sequencing may revolutionize the capacity to survey 371 

currently inaccessible segments of the human genome71,72. 372 

 373 

In conclusion, these data indicate that de novo BCAs represent a highly penetrant mutational class in 374 

human disease, and that their delineation can provide prognostic insights not available at current 375 

cytogenetic resolution. Although encouraging, this yield does not explain all of the developmental 376 

anomalies in this cohort and suggests that additional pathogenic mechanisms await discovery. A 377 

meaningful fraction may be attributable to novel genes or regulatory alterations, but additional 378 

pathogenic mechanisms remain to be explored such as recessive modes of inheritance, gene fusions, 379 

disruption of imprinted regions, enhancer adoption73,66, and more complex oligogenic models. 380 

Evaluation of extremely large cohorts will be required to resolve further such mechanisms, and 381 

characterization of BCAs in control populations would benefit annotation of the morbid human genome 382 

and interpretation of the biological and clinical consequences of its structural rearrangement. 383 

384 
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METHODS 385 

Methods and any associated references are available in the online version of the paper. 386 

 387 
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ONLINE METHODS 423 

Subject Ascertainment 424 

Subjects were enrolled through cytogenetic reference centers including DGAP (the Developmental 425 

Genome Anatomy Project) of Brigham and Women's Hospital and Massachusetts General Hospital, 426 

Boston, MA; Mayo Clinic, Rochester, MN; University Medical Center, Utrecht, NL; Radboud 427 

University, Nijmegen Medical Center, Nijmegen, NL. Enrollment was based on the presence of a 428 

developmental anomaly and concomitant BCA (de novo or that segregated with the abnormal 429 

phenotype) detected by karyotyping, and exclusion of clinically significant genomic copy number 430 

imbalances using chromosomal microarray analyses (SNP array or array-CGH) when possible (171/273 431 

tested subjects; Supplementary Fig. 1). In the majority of cases the BCA was confirmed to have arisen 432 

de novo by karyotyping (184/273) or segregated with a developmental phenotype in the family (14/273). 433 

In a subset of subjects: (1) the BCA was inherited but the phenotype of the transmitting parent was not 434 

available (3/273); (2) one parent was available and did not harbor the BCA (4/273); or (3) neither 435 

parents were available for testing (68/273). An informed consent was obtained from all subjects or their 436 

legal representative for participation in the study. All studies were approved by respective Institutional 437 

Review Boards. 438 

 439 

Whole-genome sequencing using large-insert jumping libraries 440 

Samples were prepared using multiple sequencing methods over several years (Supplementary Table 441 

1). Most samples were sequenced using whole-genome large-insert jumping library preparation 442 

protocols for subsequent Illumina sequencing: 149 using our 2x25-bp EcoP15l protocol11,74, 59 using a 443 

variant of our jumping library protocol in which we randomly shear circularized DNA, which enables 444 

longer reads (paired-end 50 bp, see Supplementary Methods) and 19 using standard Illumina mate-pair 445 

protocols. All large-insert sequencing methods allowed generation of paired-end reads with median 446 

insert size of 2.5-3.5 kb as opposed to 300 bp using conventional methods. A subset of samples were 447 

prepared with standard short-insert paired-end protocols (n=12) or targeted sequencing of the 448 

breakpoints based on previous positional cloning to narrow the breakpoint regions (n=34), as previously 449 

described75,11,7. Of note, 87 BCAs had been initially reported in the literature, though many had not been 450 

mapped to sequence resolution (Supplementary Table 1). 451 

 452 

Digitalization and homogenization of reported phenotypes 453 
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Clinical description was converted for all 273 subjects into standardized terms using Human Phenotype 454 

Ontology (HPO; Supplementary Table 2)19. Such digitalization allowed systematic comparison of 455 

phenotypes between subjects carrying BCAs that disrupted the same gene, as well as between subjects 456 

with a disrupted gene to previously described subjects using Phenomizer76. HPO-sim was used to 457 

compute phenotypic similarity scores between subjects sharing the disruption of the same gene or locus 458 

compared to random expectations (Supplementary Table 11)67. 459 

 460 

BCA discovery pipeline and breakpoint inference 461 

All computational analyses have been previously described70,77. In brief, reads were reverse-462 

complemented and aligned using BWA78. Anomalous read-pairs in terms of insert size, mate mapping, 463 

or mate orientation were extracted using Sambamba and clustered using ReadPairCluster, our single-464 

linkage clustering algorithm11,79. Anomalous read-pair clusters meeting our established thresholds of 465 

structural variation were subsequently classified based on their read-pair orientation signature into the 466 

following categories: deletions, insertions, inversions, and translocations77. When no clusters were found 467 

that matched the proposed karyotype, BAM files were agnostically analyzed and manually inspected for 468 

anomalous pairs or split reads. Breakpoints were successfully identified in 248 of 273 cases, leading to 469 

an overall breakpoint fine-mapping yield of 91%. All subsequent counts and yields were computed 470 

relative to mapped cases (n=248). For the remaining 25 unmapped cases, no breakpoints were identified 471 

in proximity to the karyotype interpretation following extensive analyses and visual inspection. For the 472 

majority of these latter unresolved cases, one or more breakpoints were interpreted by the karyotype to 473 

localize near centromeres heterochromatic regions, or within segmental duplications, which are 474 

recognized to be blind spots for short-read alignments. All large genomic imbalances predicted to be 475 

connected to BCA breakpoints following rearrangement reconstruction were confirmed to have aberrant 476 

depth of coverage using a custom R-script (CNView: https://github.com/RCollins13/CNView). 477 

When additional DNA was available, precise breakpoint junctions were delineated at base-pair 478 

resolution by Sanger sequencing and final breakpoints coordinates reported; else the reported 479 

coordinates reflect the minimal breakpoint estimates based on the resolution of the jumping libraries 480 

(Supplementary Table 3). A total of 82.7% (725/876) of the reported breakpoints could be tested by 481 

Sanger sequencing given DNA availability, among which 662 were confirmed yielding a minimum 482 

estimate of 91.3% (662/725) sensitivity for our mapping method. 483 

 484 

Molecular signature of BCA breakpoints 485 
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As previously described23, we processed all Sanger sequences from validated breakpoints with the BWA 486 

Smith-Waterman algorithm (modified parameters z 100 -t 3 -H -T 1) to retrieve precise breakpoint 487 

coordinates as well as infer the associated microhomology, micro-insertions or blunt end signature. This 488 

approach was sufficiently high-throughput to enable the direct comparison of BCA breakpoints with a 489 

large set of deletion breakpoints published by Abyzov et al.27, at the cost of not allowing concomitant 490 

microhomology and base insertions at breakpoints. 491 

 492 

Monte-Carlo randomization tests 493 

A Browser Extensible Data (BED) file containing GRCh37/hg19 genomic coordinates of all 876 494 

breakpoints detected by WGS was used as the input. One simulation consisted of generating random 495 

coordinates based on each pair of input coordinates, conserving the size of the feature as well as the 496 

intra-chromosomal distance when several breakpoints were localized to the same chromosome in a 497 

single individual. N-masked regions were excluded from simulations for consistency as they were 498 

excluded from the initial alignment mapping. Simulations were repeated 100,000 times. The number of 499 

unique intersections between the shuffled file and a BED-file containing features of interest (gene-sets, 500 

regulatory elements, etc.) was retrieved for each simulation, and the final sets of simulations delineated 501 

the expected distribution on intersections under the null hypothesis. The observed value of intersected 502 

features in this study was compared to this expected distribution. Empirical Monte-Carlo P-values were 503 

indicated, and were calculated as follows: P-value = (r + 1)/(n + 1), where r is the number of 504 

observations within the set of simulations that are at least as extreme as the one observed, and n is the 505 

total number of simulations80. References for all functional element datasets and genesets that were used 506 

to test for enrichment at breakpoints in the cohort are detailed in Supplementary Table 12. 507 

 508 

BCA outcome interpretation 509 

To build reference lists of genes associated with dominant developmental disorders we amalgamated 510 

data from multiple large-scale exome sequencing, genome sequencing, or CNV studies investigating 511 

developmental (e.g. DDD consortium) and neurodevelopmental disorders (mostly intellectual disability, 512 

autism, and epilepsy cohorts; see Supplementary Methods and Supplementary Table 6 for detailed 513 

references). We then built our interpretation using standard categories comparable to those established 514 

by ClinVar and the Deciphering Developmental Disorders consortium (DDD)44, as detailed below and in 515 

Supplementary Table 7. 516 
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Pathogenic: Confirmed Loci associated with developmental disorders. Any gene with three or more 517 

de novo LoF mutations (frameshift, nonsense or splice mutation, CNV, or BCA) reported from 518 

independent cases in those amalgamated studies or in OMIM was considered as high confidence for a 519 

particular phenotype, and any BCA impacting one of those loci was therefore considered to be 520 

Pathogenic (Supplementary Table 9).  521 

Likely Pathogenic: Novel candidate genes or mechanisms. To evaluate the impact of the remaining 522 

BCAs and the genes they likely impacted, we relied on convergent genomic evidence from other large-523 

scale datasets to prioritize which gene would most likely contribute to the subject’s phenotype. Multiple 524 

BCAs were considered to be Likely Pathogenic, based on various evidences (Supplementary Table 525 

10):  526 

(1) Disruption of a likely risk factor: Disruption of one copy of a gene in which one or two dnLoF 527 

mutations had been previously reported and which demonstrated significant constraint (top 10% of 528 

constrained genes)29,30 529 

(2) Novel mechanisms: Disruption of a gene established as associated with dominant developmental 530 

disorders yet with a distinct mutation type (e.g. activating or missense mutations while we reported LoF) 531 

(3) Disruption of long-range interactions: BCA breakpoints located in the vicinity of a gene associated 532 

with dominant developmental disorders in a subject with a consistent phenotype, and predicted to impact 533 

long-range regulatory interactions. 534 

VUS: All BCAs impacting genes not fitting in any of the above-mentioned categories were considered 535 

as VUS. 536 

 537 

Predicted disruption of contact domains by BCAs 538 

Topological associated domains (TADs) and predicted loops for lymphoblastoid cells were retrieved 539 

from Dixon et al. and Rao et al.59,18, and genes contained within a domain for which at least one of its 540 

insulating boundaries was disrupted by a BCA were assessed. Only genes that had been previously 541 

robustly associated with dominant developmental disorders (i.e., with dnLoF reported in three or more 542 

subjects) were considered for potential positional effects. A detailed comparison of the reported 543 

phenotypes in the corresponding subjects to phenotypes associated with disrupted genes in the literature 544 

was performed. For subjects identified with a BCA of plausible positional effect, the region was 545 

visualized using Juicebox18,81 (Supplementary Fig. 10-15). Heatmaps represent observed 546 

intrachromosomal interactions in GM12878 lymphoblastoid cells in a specific window; previously 547 

reported contact domains (regions of increased contact, not necessarily materializing as loops) and loops 548 
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(sites of increased focal contacts indicating the presence of a loop) were indicated59,18, as well as the 549 

RefSeq genes located in the region. 550 

 551 

Measuring gene expression from lymphoblasts 552 

In subjects for whom the BCA was suspected to result in positional effects and for whom LCLs derived 553 

from blood were available, gene expression was investigated by quantitative RT-PCR. LCLs were not 554 

tested for mycoplasma contamination. Total RNA was extracted from LCLs using TRIzol® (Invitrogen) 555 

followed by RNeasy Mini Kit (Qiagen) column purification. cDNA was synthetized from 750 ng of 556 

extracted RNA using SuperScript® II Reverse Transcriptase (ThermoFisher Scientific with oligo(dT), 557 

random hexamers, and RNase inhibitor. Quantitative RT-PCR was performed for mRNA expression of 558 

genes of interest in the following subjects (MEF2C: DGAP131, DGAP191, DGAP218, DGAP222; 559 

SATB2: DGAP237; SLC2A1: DGAP170; SRCAP: DGAP134) using custom designed primers (see 560 

Supplementary Methods). ACTB, GAPDH and POLR2A were each used as independent endogenous 561 

controls. Custom designed primers (0.75 µM final), cDNA (1:100 final) and nuclease-free water were 562 

added to the LightCycler® 480 SYBR Green I Master Mix (Roche) for a final 10 µL reaction volume. A 563 

LightCycler® 480 (Roche) was used for data acquisition. Values of each individual (subject or control) 564 

were obtained in three technical replicates. Results of technical replicates for each gene of interest were 565 

normalized against the average of the three endogenous controls (ACTB, GAPDH and POLR2A). 566 

Normalized expression levels were set in relation to eight age and sex-matched controls for the genes of 567 

interest SATB2, SLC2A1 and SRCAP, or 16 (eight males, eight females) age-matched controls for the 568 

gene of interest MEF2C, using the ΔΔCt method. Results are expressed as fold-change relative to the 569 

averaged control individuals. The significance of differential gene expression from a subject in 570 

comparison to controls was tested using a two-sided Wilcoxon Mann-Whitney test. All qRT-PCR results 571 

were independently replicated twice in the laboratory. 572 

573 
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TABLES  574 

Table 1. Overview of clinical phenotypes for all 273 subjects 575 

 576 

 Affected 
 subjects 

Frequency 
in cohort 

Gender   
Male 159 58.2% 
Female 114 41.8% 

Co-Segregation   
De novo 184 67.4% 
Unknown 75 27.5% 
Inherited, segregating 14 5.1% 

array-CGH analyses   
Normal 139 50.9% 
VUS 32 11.7% 
Not Performed 102 37.4% 

Abdomen defects 54 19.8% 
Cardiovascular defects 41 15.0% 
Eye defects 54 19.8% 
Hearing defects 52 19/0% 
Genitourinary defects 50 18% 
Growth defects 64 23% 
Head/Neck/Craniofacial 
defects 

140 51% 
Integument defects 50 18.3% 
Limb defects 57 20.9% 
Musculature defects 71 26.0% 
Neurological defects 219 80.2% 

Behavior disorders 51 18.7% 
Developmental delay 159 58.2% 
Epilepsy 51 18.7% 
Hypotonia 41 15.0% 
ASD/autistic features 31 11.4% 
High functioning ASD 4 1.5% 

Respiratory defects 30 11.0% 
Skeletal defects 116 42.4% 
 577 

Clinical description was converted for all 273 subjects into standardized terms using Human Phenotype 578 

Ontology (HPO)19, which allowed systematic association with broad phenotypic categories for each 579 

enrolled subject. 580 

  581 

582 
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Table 2. Genes and loci disrupted by BCAs and likely associated with developmental disorders 583 

 584 

 585 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 

 595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 

Details on BCA interpretation are provided in Methods and Supplementary Table 7. Genes that have 612 

been associated to dominant developmental disorders and encompassed by genomic imbalances at 613 

breakpoints are indicated in brackets; lower-scripts indicate when a gene was disrupted by a BCA in 614 
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multiple subjects; upper-scripts report subjects with a BCA disrupting multiple genes/loci that may each 615 

contribute to their developmental phenotype	 and to distinct clinical features; a: Subject DGAP133; b: 616 

Subject DGAP317, c: subject DGAP002, d: subject DGAP316, e: subject NIJ2, f: subject DGAP168, g: 617 

subject DGAP172, h: DGPA196; i: DGAP246; j: DGAP237. 618 

619 
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FIGURES 620 

Figure 1. Characterization of BCAs detected by karyotyping at nucleotide resolution 621 
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a. Circos plot of all BCA breakpoints identified in the cohort by whole-genome sequencing and their 667 

distribution across all chromosomes82. One color is used per BCA to represent all rearrangement 668 

breakpoints in each individual subject. The scatter plot on the outside ring denotes breakpoint density 669 

per 1-Mb bin across the genome, with a blue arrow displaying the largest clustering of breakpoints at the 670 

5q14.3 cytoband; b. Scatter plot summarizing the overall genomic imbalance associated with all fully 671 

reconstructed BCAs at varying size thresholds. Curves represent the fraction of cases with final genomic 672 

imbalances greater than the corresponding size provided (see details in Supplementary Table 4). Solid 673 

lines denote the final genomic imbalances for all BCAs, and are further delineated by deletions (red) or 674 

duplications (blue) emphasizing that cryptic imbalances connected to breakpoints are predominantly 675 

copy-losses. The final genomic imbalances among fully mapped BCAs is also split between cases that 676 

have been pre-screened by chromosomal microarray (CMA; dashed line) versus cases without CMA 677 

data (dotted line); c. Sequence signatures of BCA breakpoints. Histogram representing nucleotide 678 

signatures at the junction of 662 Sanger-validated breakpoints: inserted nucleotides (blue), blunt ends 679 

(grey), microhomology (orange), or longer stretches of homology (red). 680 

681 
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Figure 2. De novo BCAs associated with congenital anomalies disrupt functionally relevant loci  682 

 683 

 684 

685 
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a. Genes localized to BCA breakpoints in subjects with congenital anomalies were significantly enriched 686 

for constrained genes (1: Petrovski et al.29 [P=0.027], and 2: Samocha et al.30 [P=0.0009]), 687 

embryonically-expressed genes (P=0.001), genes previously associated with autosomal dominant 688 

disorders (P=0.002), developmental disorders (P=0.00002), FMRP-target genes (1: Ascano et al.34, and 689 

[P=0.036], and 2: Darnell et al.33 [P=0.031]), and genes involved in chromatin remodeling (P=0.007). 690 

Each boxplot represents the expected distribution (median, first and third quartiles) based on total 691 

intersections between 100,000 sets of simulated breakpoints and a particular gene-set; red diamonds 692 

indicate the observed intersection values against the expected distribution. Empirical Monte-Carlo P-693 

values are indicated. P-values thresholds were denoted by: * = P≤0.05, ** = P≤0.01, *** = P≤0.001, 694 

**** = P≤0.0001; b. Venn diagram showing the detailed overlap of disrupted genes that had been 695 

previously associated with three neurodevelopmental phenotypes (intellectual disability, ASD, and 696 

epilepsy) in amalgamated exome and CNV studies. In black: high-confidence genes (3 or more de novo 697 

LoF mutations reported), in grey: low-confidence genes (two de novo LoF mutations). c-e) Pie charts 698 

illustrating diagnostic yields associated with the overall cohort and multiple subgroups of BCAs. 699 

Clinical interpretation was restricted to Pathogenic, Likely Pathogenic, or Variant of Unknown 700 

Significance (VUS), as described in the text. c. Diagnostic yield associated with 248 mapped BCAs from 701 

subjects with congenital or developmental anomalies; d. The overall diagnostic yield was significantly 702 

higher among BCAs that were confirmed to be de novo or segregated with the developmental phenotype 703 

(n=198, 186 mapped) compared to the yield from BCAs of unknown segregation status (n=75, 62 704 

mapped); e. The overall diagnostic yield associated with BCAs in which large pathogenic CNVs had 705 

been excluded by a CMA pre-screen (n=171, 160 mapped) was lower compared to the yield from BCAs 706 

that had not been previously screened by CMA (n=102, 88 mapped). 707 

 708 

709 
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Figure 3. Recurrent disruption of long-range regulatory interactions at the 5q14.3 locus 710 
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a. Manhattan plot showing the distribution of all BCA breakpoints in the cohort across each 1-Mb bin of 757 

the human genome. P-values were computed by comparing observed to expected cluster sizes after 758 

100,000 Monte Carlo randomizations, and corrected for the total number of windows interrogated. 759 

Corrected P-values associated with each cluster of breakpoints coming from independent BCAs are 760 

indicated. One cluster containing breakpoints from eight independent cases at 5q14.3 achieved genome-761 

wide significance demarcated by the red line (5q14.3 maximum P-value=7.7x10-9), while three other 762 

regions provided nominal evidence of an unusual cluster of breakpoints (P-value = 1x10-4), as 763 

highlighted. b. The 5q14.3 cluster of eight breakpoints overlaps with a region associated with the 764 

5q14.3-q15 microdeletion syndrome. Multiple pathogenic mechanisms appear to converge on a similar 765 

phenotypic consequence: multi-genic deletions that encompass MEF2C along with one or both TAD 766 

boundaries (n=68), MEF2C-intragenic deletions (n=12) or LoF mutations, deletions that do not 767 

encompass MEF2C but overlap one TAD boundary (n=13), and BCA breakpoints distal to or truncating 768 

MEF2C (breakpoints from the eight subjects reported in this study along with three previously reported 769 

subjects)52,57,15. Overlapping Hi-C data from LCLs suggest that the topology of the MEF2C-contact 770 

domain is lost in subjects carrying BCAs18, leading to altered expression of MEF2C. Multiple brain-771 

expressed enhancers are located in the region distal to MEF2C83, and three loops involving MEF2C have 772 

been observed in the region (yellow circles)18. Forward (green) and reverse (red) CTCF binding sites are 773 

shown, several of which overlap with MEF2C-associated loop and domain boundaries; c. A proposed 774 

model of the chromatin folding in the region defining a regulatory unit for MEF2C: a loop is formed 775 

anchored at bidirectional CTCF binding sites resulting in distal enhancers being bridged in close 776 

proximity to MEF2C promoter regulating MEF2C expression; d. Significantly decreased expression was 777 

observed in LCLs from subjects harboring BCAs that disrupt the MEF2C-associated TAD when 778 

compared to age-matched controls, suggesting regulatory changes via a positional effect that disrupts the 779 

MEF2C TAD based on real-time qRT-PCR compared to mean expression value from 16 age-matched 780 

controls using three technical replicates and normalized against the average of three endogenous 781 

controls (ACTB, GAPDH and POLR2A). Differential gene expression was tested using a Wilcoxon 782 

Mann-Whitney test (* P<0.05, ** P<0.01). 783 

784 
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Figure 4. Correlations between phenotypes and genes disrupted in subjects harboring pathogenic BCAs 785 
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 819 

Heatmap summarizing the correlation between disrupted genes at breakpoints of pathogenic BCAs and 820 

phenotypes reported in subjects from this study (Supplementary Table 2). For each gene, the 821 

phenotypes reported in the corresponding subject were digitalized using HPO terms and grouped 822 

together under broad HPO categories19. One tile represents the normalized count of HPO terms 823 

belonging to each broad category reported in the subject(s). The generated matrix of counts of HPO-824 

terms per category for each gene was normalized per gene, and genes were clustered together when 825 

sharing similarly affected organs. Five groups are delineated based on clustering: 1- genes associated 826 

with severe nervous system and craniofacial abnormalities (dark blue); 2- genes connected to severe 827 

neurological phenotypes (red); 3- genes associated with craniofacial abnormalities and moderate 828 

neurological symptoms (black); 4- genes associated with skeletal and limb abnormalities, and with 829 

milder neurological involvement (green); 5- genes without neurological involvement (light blue). 830 
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