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abstract: While extensive population genetic theory predicts con-
ditions favoring evolution of self-fertilization versus outcrossing, there
is no analogous theory that predicts conditions favoring evolution of
inbreeding avoidance or inbreeding preference enacted through mate
choice given obligate biparental reproduction. Multiple interacting
processes complicate the dynamics of alleles underlying such inbreed-
ing strategies, including sexual conflict, distributions of kinship, genetic
drift, purging of mutation load, direct costs, and restricted kin discrim-
ination.We incorporated these processes into an individual-basedmodel
to predict conditions where selection should increase or decrease fre-
quencies of alleles causing inbreeding avoidance or inbreeding prefer-
ence when females or males controlled mating. Selection for inbreeding
avoidance occurred given strong inbreeding depression when either sex
chose mates, while selection for inbreeding preference occurred given
veryweak inbreeding depressionwhen females chose but never occurred
whenmales chose. Selection for both strategies was constrained by direct
costs and restricted kin discrimination. Purging was negligible, but allele
frequencies were strongly affected by drift in small populations, while se-
lection for inbreeding avoidance was weak in larger populations because
inbreeding risk decreased. Therefore, while selection sometimes favored
alleles underlying inbreeding avoidance or preference, evolution of such
strategiesmay bemuchmore restricted and stochastic than is commonly
presumed.

Keywords: inbreeding strategy, mate choice, mating system, repro-
ductive strategy, relatedness, fitness.

Introduction

Inbreeding, defined as reproduction among relatives, can
alter genotype frequencies and substantially affect individ-
ual fitness and, thereby, profoundly affect trait evolution
and population persistence (Fisher 1949; Charlesworth and
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Charlesworth 1987; Keller and Waller 2002; Theodorou
and Couvet 2006; Angeloni et al. 2011; Karron et al. 2012;
Wright et al. 2013). Understanding such evolutionary and
ecological dynamics requires understanding the extent to
which females andmales avoid or prefer inbreeding through
nonrandommate choice and, therefore, of the ways in which
evolving mating systems can themselves create inbreeding.
Suchunderstanding requires theoretical frameworks that pre-
dict the conditions under which active strategies of inbreed-
ing avoidance or preference are themselves expected to evolve
(Lande and Schemske 1985; Goodwillie et al. 2005; Cheptou
and Donohue 2011; Szulkin et al. 2013).
Inbred offspring are typically less fit than outbred off-

spring, termed “inbreeding depression” (Charlesworth and
Charlesworth 1999; Keller and Waller 2002; Charlesworth
andWillis 2009). Consequently, animal ecologists frequently
presume that reproductive strategies that reduce biparental
(i.e., nonself) inbreeding will be adaptive and evolve (Pusey
and Wolf 1996; Tregenza and Wedell 2002; Tregenza et al.
2006; Geffen et al. 2011; Szulkin et al. 2013; Tennenhouse
2014). But this presumption ignores a potential inclusive fit-
ness benefit of inbreeding. In an outbreeding population, a
focal individual that inbreeds increases its inclusive fitness be-
cause inbreeding increases the reproductive success of the fo-
cal individual or its related mate (depending on sex roles;
Parker 1979, 2006). Given sufficiently weak inbreeding de-
pression, a mutant allele that causes inbreeding is, therefore,
expected to increase in frequency (Fisher 1941; Lande and
Schemske 1985; Lloyd 1992; Szulkin et al. 2013). This trans-
mission advantage underpins extensive theory predicting the
evolution of outcrossing versus self-fertilization (Fisher 1941;
Lande and Schemske 1985; Goodwillie et al. 2005; Charles-
worth and Willis 2009). However, perhaps surprisingly, no
equivalent theory explicitly considers the dynamics of alleles
underlying inbreeding avoidance or inbreeding preference
given obligate biparental reproduction or, hence, predicts
the circumstances under which such alleles are likely to in-
crease in frequency.
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Obligate biparental reproduction introduces multiple
complex factors that affect inbreeding and might, conse-
quently, affect allele frequency dynamics (Duthie and Reid
2015). First, selection on inbreeding is widely predicted to
be sex specific (e.g., Parker 1979, 2006; Waser et al. 1986;
Kokko and Ots 2006). The transmission advantage of al-
leles causing inbreeding is smaller in individuals of the
resource-limited sex (typically females) because inbreeding
cannot increase the individual’s own reproductive success,
only that of their related mates (Parker 1979, 2006; Waser
et al. 1986). The advantage is greater in individuals of the
mate-limited sex (typically males) because inbreeding can
increase the individual’s own reproductive success (Parker
1979, 2006; Waser et al. 1986). Sexual conflict over inbreed-
ing is, therefore, predicted (Parker 1979, 2006; Waser et al.
1986; Kokko and Ots 2006; Pizzari and Gardner 2012;
Szulkin et al. 2013). In general, the consequences of such sex-
ual conflict can be diverse (Rowe et al. 1994; Arnqvist and
Rowe 2005; Parker 2006), complicating prediction of under-
lying allele frequency dynamics.

Second, unlike the simple dichotomy of self-fertilization
versus outcrossing, the degree to which obligately biparen-
tal organisms can avoid or prefer inbreeding through mate
choice must depend on the relatedness between each indi-
vidual and its potential mates. The distribution of related-
ness will, in turn, depend on population size and viscosity
(Queller 1994; Pizzari and Gardner 2012; Pizzari et al.
2015) as well as on stochastic and deterministic variation
in fitness among individuals and families, which might it-
self depend partly on the pattern of inbreeding in previous
generations (Puurtinen 2011; Young et al. 2012; Szulkin et al.
2013; Zimmer et al. 2014).

Third, while opportunities to actively avoid or prefer bi-
parental inbreeding might be greatest in small or viscous
populations where both relatives and nonrelatives regularly
interact, these same circumstances might impede evolution
of any adaptive reproductive strategy. Selection is ineffi-
cient in small populations because allele frequency changes
caused by selection can be overwhelmed by stochastic sam-
pling effects (i.e., genetic drift). This same principle also
applies to local selection in viscous populations, where in-
creased drift occurs within demes, or among locally inter-
acting individuals, connected by gene flow (Turner 1982;
Travis and Ezard 2006). This implies that in populations
that are sufficiently small or viscous to create opportunities
for inbreeding avoidance or preference, selection might be
too weak to drive evolution of any such inbreeding strat-
egy. In contrast, when populations are large and panmictic,
drift will be less influential, but selection on inbreeding
strategy might be weak because individuals can rarely in-
breed through either active mate choice or random mating.

Fourth, like self-fertilization, biparental inbreeding in-
creases homozygosity and exposes deleterious recessive al-
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leles to selection (Barrett and Charlesworth 1991; Charles-
worth andWillis 2009). The frequency of deleterious recessive
alleles might, therefore, be decreased by biparental inbreed-
ing (i.e., purging; Barrett and Charlesworth 1991; Hedrick
1994; Crnokrak and Barrett 2002; Benesh et al. 2014). Evolu-
tion of inbreeding preference might, therefore, reduce the
magnitude of inbreeding depression, in turn, reducing selec-
tion against inbreeding, potentially leading to coevolution
between inbreeding depression and inbreeding preference
(Lande and Schemske 1985; Benesh et al. 2014). Conversely,
if purging caused by biparental inbreeding were minimal,
evolution of inbreeding preference might instead increase
expression of mutation load and lead to population extinc-
tion (Hedrick1994;Frankhametal. 2001).While coevolution-
ary feedbacks between mutation load and inbreeding strat-
egy have been emphasized in the context of self-fertilization
versus outcrossing (Lande and Schemske 1985; Charlesworth
et al. 1990; Latta and Ritland 1993; Porcher and Lande 2005,
2013), nomodels have explicitly considered such coevolution
given obligate biparental reproduction (Kokko and Ots 2006;
Puurtinen 2011; Szulkin et al. 2013).
Fifth, evolution of inbreeding avoidance or preference is

likely to be inhibited by multiple components of negative
selection (i.e., costs). One obvious cost that is integral to
all hypotheses that consider evolution of inbreeding is re-
duced fitness of inbred offspring (i.e., inbreeding depres-
sion; Parker 1979, 2006; Lande and Schemske 1985; Waser
et al. 1986; Lloyd 1992; Lehmann and Perrin 2003; Kokko
and Ots 2006). Evolution of inbreeding is further inhibited
by opportunity costs, where inbreeding with a relative re-
duces or precludes an individual’s ability to reproduce with
other relatives or nonrelatives, thereby reducing the transmis-
sion advantage of an underlying allele (Parker 1979, 2006;
Waser et al. 1986; Lloyd 1992; Keller and Arcese 1998; Por-
cher and Lande 2005; Charlesworth 2006). Furthermore, ac-
tive inbreeding avoidance or preference might incur a direct
fitness cost in the form of reduced survival or reproductive
success of individuals that express mate choice rather than
matingrandomly, forexample, reflectingcostsofmatesearch-
ing (e.g., Lehmann and Perrin 2003; Kokko and Ots 2006;
Jamieson et al. 2009) or kin discrimination (e.g., Waser et al.
1986)or costs of dispersing tomate elsewhere (e.g., Bengtsson
1978; Gandon 1999).
Finally, unlike self-fertilization versus outcrossing, bipa-

rental inbreeding avoidance or preference requires individu-
als to discriminate among nonself relatives and nonrelatives
and, thereby, bias their reproductionwith respect to relatively
subtle variation in relatedness. Discrimination can stem from
broad spatial cues, such as when inbreeding avoidance is ac-
complished by sex-specific dispersal (e.g., Pusey 1987; Perrin
andMazalov 2000; Lehmann andPerrin 2003; LawsonHand-
ley and Perrin 2007). However, in less dispersive systems,
direct discrimination among potential mates of different re-
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latedness might be required (e.g., Frommen and Bakker 2006;
Langen et al. 2011; Lemaître et al. 2012; Herfindal andHaanes
2014). While individuals from diverse taxa can discriminate
familiar or close relatives from unfamiliar relatives or non-
relatives (Griffin andWest 2003;Dudley andFile 2007; Strass-
mann et al. 2011), discrimination among distant relatives
might be ineffective (but see Mateo 2002), potentially con-
straining evolution of biparental inbreeding strategy.

Overall, the complexities stemming from the combined
effects of sexual conflict, distribution of relatedness, popu-
lation size, purging, multiple costs, and kin discrimination
make it unclear whether selection should be expected to
cause an initially rare mutant allele underlying inbreed-
ing avoidance or inbreeding preference to increase in fre-
quency in a population with obligate biparental reproduc-
tion. Accordingly, we built an individual-based model to
explicitly track the dynamics of mutant alleles causing in-
breeding avoidance or preference in populations of differ-
ent sizes that are initially fixed for inbreeding tolerance
(i.e., random mating with respect to relatedness). We con-
sider allele dynamics when females or males control mating
interactions and, given different magnitudes of inbreeding
depression, direct costs of nonrandom mating and restric-
tions on kin discrimination. We thereby determine the con-
ditions under which selection will favor alleles causing active
strategiesof inbreedingavoidanceorpreferencethroughmate
choice given internally consistent feedbacks among related-
ness structure, mutation load, and inbreeding strategy.
Model

We model reproductive interactions among females and
males in a dioecious population with nonoverlapping gen-
erations and no explicit spatial structure. In each simulation,
either females or males are designated as the choosing sex,
and only individuals of the choosing sex can actively choose
mate(s). This allows evolutionary consequences of any sex-
ual conflict that might arise to be controlled by one sex or
the other because selection on inbreeding strategy acts di-
rectly only on choosing sex individuals. A single generation
proceeds withmate choice, reproduction, offspringmortality,
immigration, and density regulation (fig. A1; figs. A1–A3, B1
available online; C code is deposited in the Dryad Digital Re-
pository: http://dx.doi.org/10.5061/dryad.3861f [Duthie and
Reid 2016]).1 We first describe the attributes of individuals
(fig. A2), then describe how individuals interact, and finally
summarize simulation specifications.
1. Code that appears in The American Naturalist is provided as a convenience
to the readers. It has not necessarily been tested as part of the peer review.
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Individual Attributes

Each individual has a diploid genome, comprising 1,002
physically unlinked loci. One locus affects inbreeding strat-
egy and has three possible alleles.Wild-type alleles (S1) cause
inbreeding tolerance (i.e., random mating with respect to
relatedness). Inbreeding-avoidance alleles (SA) decrease the
perceived quality of related potential mates and, hence,
lead to less inbreeding than expected given random mating.
Inbreeding-preference alleles (SP) increase the perceived
quality of related potential mates and, hence, lead to greater
inbreeding than expected given random mating. To isolate
the effects of selection on amutant allele underlying inbreed-
ing avoidance or preference within a single population, S1

can mutate to either SA or SP but not to both. Therefore, in-
breeding avoidance and preference cannot both evolve in the
same population. A second locus has two neutral alleles, one
wild type (N1) and one mutant (N2), that have no effect on
mate choice. Allele frequencies at the N locus are, therefore,
affected by drift and mutation but not directly by selection.
Selection on SA or SP can, therefore, be inferred by comparing
the frequencies of these alleles to the frequency of N2. Fi-
nally, each individual has 1,000 diploid diallelic loci, each of
which can a have wild-type allele (L1) or a deleterious reces-
sive mutant allele (L2). Expression of resulting mutation load
decreases offspring survival probability, thereby causing in-
breeding depression (following Guillaume and Perrin 2009).
Model Overview

At the start of each generation, individuals of the choosing
sex that carry at least one allele underlying an active in-
breeding strategy (SA or SP) incur a direct cost (c), modeled
as a probability of being unable to mate c for heterozygotes
(e.g., S1SA) and 2c for homozygotes (e.g., SASA). Because gen-
erations are nonoverlapping, individuals that are unavail-
able to mate have zero fitness, constituting a direct cost of
alleles underlying nonrandommating (Bengtsson 1978; Po-
miankowski 1987; Pomiankowski et al. 1991).
Individuals of the choosing sex deemed available to mate

are randomly ordered. Sequentially, each individual simulta-
neously examines all available members of the nonchoosing
sex and assigns a perceived quality value to each potential
mate based on S alleles, kinship, and kin discrimination. Kin-
ship between two individuals i and j (kij) is the probability that
randomly sampled homologous alleles will be identical by
descent (Lynch andWalsh 1998), calculated using a standard
iterative algorithm incorporating parent-offspring relation-
ships (Boyce 1983). The quality that a choosing individual
i assigns to a potential mate j is a linear function of kij. If i
has a single SA allele, the perceived quality of j is decreased
by a# kij, where a is the effect size of a mutation affecting
inbreeding strategy (sensu Verzijden et al. 2005; Proulx and
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Servedio 2009; Olofsson et al. 2011). Nonkin are assigned a
default quality of 1, so i is 11 akij times less likely to choose
to mate with j than with an available nonrelative (i.e., j’s per-
ceived quality is 1=(11 akij)). Inbreeding strategy alleles
have additive effects, so if i is homozygous for SA, i is 11
2akij times less likely to choose to mate with j than with
an available nonrelative (i.e., j’s perceived quality is 1=(11
2akij)). Similarly, if i has one or two SP alleles, they are 11
akij and 11 2akij times more likely to choose to mate with
j than with an available nonrelative, respectively. In primary
simulations, the choosing individual i is assumed to have
perfect kin discrimination and, hence, exact knowledge of
kij for all potential mates. For subsequent simulations, kin
discrimination is restricted such that only full and half sib-
lings are recognized as relatives, and all other individuals are
perceived as unrelated andassigned a quality of 1.Mate choice
is realized by sampling from a probability vector whose ele-
ments comprise the perceived qualities of all of an individual’s
availablemates’ qualities divided by the sumof these qualities.

To model stereotypical sex roles, females can mate once,
and males can mate up to Q times (i.e., limited polygyny).
When females choosemates, there is some opportunity cost
of male mating because mating with one female might pre-
vent a male from mating with another female by using a
unit of the male’s quota of Q (Waser et al. 1986). Male op-
portunity cost, therefore, decreases with increasing Q, be-
cause at high Q, a male’s quota is less likely to be filled. In
contrast, when males choose mates, each can choose Q fe-
males, but each female can be chosen only once. This cre-
ates a strong but realistic (see “Discussion”) opportunity cost
when males choose because mating with one female always
prevents a male from mating with another female by using
up a unit of Q (Waser et al. 1986). When males choose, each
randomly ordered male chooses Q females before the next
male starts choosing. Once all females are chosen, remaining
males cannot mate, generating variance in male mating suc-
cess. Each female that mates produces n offspring; females
and males are produced with equal probability.

For all 1,002 loci, one allele from each parent is randomly
inherited by each offspring. Each inherited allele mutates in-
dependently with probability m, with equal likelihood of mu-
tation from wild type to mutant and mutant to wild type.
An offspring’s survival probability (Woff) depends on its total
numbers of L2L2 homozygous (Θoff) and L1L2 heterozygous
(voff) genotypes, on the selection coefficient (s) against L2, and
on L2’s dominance coefficient (h), such that,

Woff p (12 s)Θoff # (12 hs)voff : ð1Þ
Equation (1) assumes that independent loci have multipli-
cative genetic effects on survival probability (Morton et al.
1956; Mills and Smouse 1994). Inbreeding depression arises
because inbreeding increases the probability that deleterious
recessive alleles will be homozygous, increasing Θoff and de-
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creasing Woff (if h is zero or small; table 1). Survival is real-
ized using an independent Bernoulli trial for each offspring.
Within a single simulation, s is uniform over all L loci and
generations (i.e., all deleterious recessive alleles have the
same effect; Roze and Rousset 2005). Therefore, we model
inbreeding depression as hard rather than soft selection (i.e.,
absolute rather than relative). Hard selection allows us to
model the population dynamic consequences of inbreeding
(e.g., extinction) and ensures that the realized impact of s
can be varied consistently over generations and simulations.
If selection was soft, different s valuesmight not translate into
different magnitudes of inbreeding depression given identi-
cal distributions of kinship and SA or SP frequencies.
After offspring mortality, all adults die, and then surviv-

ing offspring immediately become adults. Next, r immigrants
arrive and are added to the population. Immigrants are un-
related to all individuals within the native population and
to other immigrants. Immigration is modeled only to prevent
Table 1: Definitions of model alleles, parameters, and variables
3.148.027 on De
s and Conditions
Description
cember 22, 2016 07:23:14 AM
 (http://www.journals.uchicago.edu/t-and-c).
Default
Allele:

S1
 Inbreeding tolerance
 NA

SA
 Inbreeding avoidance
 NA

SP
 Inbreeding preference
 NA

N1
 Neutral wild type
 NA

N2
 Neutral mutant
 NA

L1
 Load wild type
 NA

L2
 Load deleterious
 NA
Parameter:

s
 Selection coefficient against L2 allele
 0–.02

c
 Direct cost of inbreeding strategy
 0–.01

h
 Dominance coefficient of deleterious

alleles
 0

n
 Offspring produced per female
 5

Q
 Maximum mates per male
 5

r
 Immigrants per generation
 5

Kf
 Female carrying capacity
 100

Km
 Male carrying capacity
 100

m
 Allele mutation rate
 .001

a
 Strength of inbreeding

avoidance/preference
 10

Variable:
k
 Coefficient of kinship between
individuals
 NA
foff
 Offspring coefficient of inbreeding
 NA

Woff
 Offspring survival probability
 NA

Θoff
 Offspring number of homozygous

L2L2 loci
 NA

voff
 Offspring number of heterozygous

L1L2 loci
 NA

Ne
 Effective population size
 NA
Note: NA p not applicable.
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the native population from becoming completely inbred, not
to introduce a further cause of allele frequency change. Im-
migrants are always of the nonchoosing sex, thereby pre-
venting immigration from directly affecting evolution of in-
breeding strategy. If immigrants were of the choosing sex, any
immigrant inbreeding-preference or inbreeding-avoidance al-
leles would not be visible to selection because immigrants are
assumed to have no relatives with which to inbreed. Immi-
grants’ alleles are independently drawn for the S and N loci,
with probabilities equal to the allele frequencies of the native
population at the time of immigration. The frequency of L2

is averaged over all 1,000 loci of all native individuals, and
this frequency is used to draw L2 versus L1 for each L locus
in each immigrant, thereby preventing the expected genetic
load from changing due to immigration. Conceptually, we
thereby model a small native population embedded within
a larger, highly viscous population with demes that are con-
nected by occasional dispersers and where evolution of in-
breeding strategy is assumed to be progressing uniformly
across all demes.

Finally, we set a carrying capacity of females (Kf) and
males (Km), which limits population size (e.g., Guillaume
and Perrin 2009). Following immigration, if the number
of females or males exceeds Kf or Km, respectively, random
mortality reduces female andmale population size toKf and
Km. Because density regulation follows immigration, female
and male population sizes (and, therefore, the number of
available mates in the next generation) never exceed Kf and
Km, regardless of which sex chooses mates. Therefore, the
degree to which outbred versus inbred matings occur does
not inherently depend on which sex chooses. Surviving in-
dividuals enter the mating pool for the next generation of
mate choice and reproduction. Parent and offspring identi-
ties are recorded to allow calculation of internally consistent
pairwise kij resulting from reproduction enacted across con-
secutive generations.
Model Initialization and Primary Simulations

We initialized all simulations with 100 founders of each
sex, and K f p Km p 100 for primary simulations. Simula-
tions start with only wild-type alleles S1, N1, and L1 at all
loci (i.e., no genetic variation); 100 generations pass with
nomutation to burn in a kinship structure prior to evolution.
After 100 generations, the probability that an allele mutates is
m p 0:001 (e.g., Guillaume and Perrin 2009), regardless of
whether the allele is wild type (e.g., L1) or mutant (e.g., L2).
For primary simulations, we set the strength of inbreeding-
avoidance and inbreeding-preference alleles to a p 10, the
maximum number of mates per male to Q p 5, and the
number of immigrants per generation to r p 5 (table 1).
Separate simulations consider kin discrimination that is per-
fect versus restricted to full and half siblings.
This content downloaded from 139.13
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Weranexploratory simulations to examine systemdynam-
ics and identify appropriatemetrics of evolution (fig. B1). Fre-
quencies of SA and SP varied, but we could not assume a priori
that long-term dynamics of SA and SP would necessarily lead
to extinction or fixation (e.g., if selection led to intermediate
frequencies). Thus, rather than estimating allelefixation times
or probabilities, we calculated the frequency of each allele af-
ter a fixed number of generations (hereafter referred to as
end frequency).
Wild-type and mutant alleles are equally likely to mutate,

so the population-wide frequency of forward (e.g., N1→N2)
and back (e.g., N2→N1) mutations depends on how many
wild-type and mutant alleles are in the population. This
causes the long-term extinction and fixation of N2 to be
equally likely after 3,000 generations, resulting in a U-
shaped distribution of N2 end frequencies with a mean of
0.5 across replicate simulations (fig. A3; Mettler et al. 1969).
To test whether long-term dynamics of SA or SP differ from
N2, we therefore compared SA and SP end frequency distribu-
tions after 3,000 generations to those of N2 across replicate
simulations. Where mean end frequencies exceeded those of
N2 (10.5), we inferred selection for SA or SP. Where mean
end frequencies were lower (!0.5), we inferred selection
against SA or SP. Frequencies of L2 alleles varied due to drift,
but mean L2 frequency summed across L loci usually stabi-
lized after 1,000 generations, as did the distribution of kinship
(fig. B1).
We simulated across a range of selection coefficients

s p f0:000, 0:004, :::, 0:016, 0:020g and direct costs c p
f0:0000, 0:0025, 0:0050, 0:0100g. Each combination of s and
c was run for 100 replicate simulations under four sets of
conditions: (1) female mate choice and a mutant SA allele,
(2) male mate choice and amutant SA allele, (3) female mate
choice and a mutant SP allele, and (4) male mate choice and
a mutant SP allele. For each set of 100 replicates, we boot-
strapped 95% confidence intervals around mean end fre-
quencies of SA and SP (Manly 2007, p. 46). These confidence
intervals are intended to help interpret patterns of allele
end frequencies and are not tests of statistical significance
(White et al. 2014).
Effects of Effective Population Size

To systematically evaluate the effect of genetic drift on
the end frequency of SA and SP when females and males
chose, we simulated across a range of carrying capacities
(K f p Km p f62, 72, :::, 202, 212g; 100 replicates each) to
generate different effective population sizes (Ne). The fre-
quency of N2 (q) was calculated in the last 1,000 genera-
tions of each simulation and used to calculate the expected
frequency of N2 (E[q]) and the expected change in fre-
quency of N2 in a generation (E[Dq]). For each replicate,
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we then calculated Ne,

N e p
(E[q])(12 E[q])

2(E[Dq])
ð2Þ

(Wright 1931; Caballero 1994). Mean estimates of Ne and
either SA or SP end frequencies were calculated over 100 rep-
licate simulations. For these simulations, we used default
parameter values and set s p 0:012 and c p 0:0025. To de-
termine how Ne varied across other values of s and c, we ad-
ditionally estimated Ne using 10 replicates for all default pa-
rameter value combinations (supplemental PDF, pp. S6–S7).
Nonchoosing Sex Affecting Quality

In our primary simulations, mating is controlled entirely
by the choosing sex because individuals of the nonchoos-
ing sex have no effect on the probability that they will be
chosen as mates. If both sexes influence mate choice, then
frequencies of SA and SP might be intermediate to those ob-
served when either sex has complete control. Alternatively,
more complex interactions in which both sexes affect mat-
ing outcomes might drive the dynamics of allele frequen-
cies in counterintuitive ways. Female versus male control
cannot then be interpreted as representing opposite ex-
tremes. To explore one way that mate choice might be in-
fluenced by both sexes, we allow the inbreeding strategy
alleles of nonchoosing sex individuals to affect how their
quality is perceived by choosing sex individuals. Here al-
leles underlying inbreeding strategy in individuals of both
sexes have combined additive effects on the perceived quality
of potential mates. For example, in simulations with mutant
SP, the quality of a potential mate j for individual i of the
choosing sex is increased by akij for each SP allele in either
individual. If i is SPSP and j is SPS1, then i will be 11 3akij
times more likely to mate with j than an available nonrela-
tive. Similarly, in simulations with SA, an SASA individual i
will be 11 3akij times less likely to mate with an SAS1 indi-
vidual j than an available nonrelative. Simulations in which
nonchoosing sex individuals affected their own perceived
quality were run using default parameter values (table 1).
Inbreeding Depression and Purging

To link s values to inbreeding depression in offspring sur-
vival as might be estimated in wild populations, we re-
gressed the natural logarithm of offspring survival proba-
bility Woff on offspring inbreeding coefficient foff, such that
E[ln(Woff )] p b0 1 b1foff . The coefficient b0 estimates load
that is independent of inbreeding, and b1 estimates load at-
tributable to inbreeding expressed in terms of haploid le-
thal equivalents (Morton et al. 1956). The value of foff for
any offspring of parents i and j equals kij (Lynch and Walsh
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1998). Because inbreeding depression is typically reported
as diploid lethal equivalents (Ralls et al. 1988; O’Grady et al.
2006), we present inbreeding depression measured as 2b1

rather than b1.
To test for purging of deleterious recessive alleles and,

hence, decreasing population-wide load, we recorded mean
end frequency of L2 across all L loci and SA and SP frequen-
cies after 3,000 generations for all simulated magnitudes of
s when c p 0. We regressed the frequency of L2 against the
frequencies of SA and SP among replicates. If populations in
which inbreeding preference is common tend to purge del-
eterious recessive alleles more than populations where in-
breeding preference is rare, end frequencies of L2 should
be negatively correlated with those of SP.
Sensitivity Analysis

For h, n, Q, r, K, m, and a (table 1), we simulated 100
replicates for four nondefault values to determine sensitiv-
ities of end frequencies of SA and SP. We restricted selec-
tion coefficient values to s p f0:000, 0:004, :::, 0:016, 0:020g
and direct costs to c p 0. End frequencies of SA and SP were
not qualitatively affected by h, n, Q, r, or m (supplemental
PDF, pp. S13–S22) but were affected by K and a (see
“Results”).
Results

Inbreeding Avoidance: Females Choosing Sex

Figure 1A summarizes the distributions of end frequencies
of SA when females were the choosing sex. Each box sum-
marizes 100 replicate simulations for different selection
coefficients (rows) and direct costs (columns). Red hori-
zontal lines and shading show the mean end frequencies
and 95% bootstrapped confidence intervals. For compari-
son, blue circles in figure 1A show the distribution of end
frequencies ofN2 for c p 0. MeanN2 end frequency did not
differ from 0.5 for different values of s or c, so mean end SA

frequency can be directly compared with end E[q] p 0:5
(blue horizontal lines). Where distributions of SA end fre-
quencies do not differ from those of N2 and confidence in-
tervals overlap 0.5, selection on SA is inferred to be weak.
Figure 1A shows that the end frequency of SA varied

greatly among replicate simulations when females chose
and that SA was not consistently at or near fixation or ex-
tinction. For many parameter combinations, SA end fre-
quency distributions were similar to N2, implying that the
considerable variation observed in SA end frequency largely
reflected drift. Nevertheless, some patterns of structured var-
iation were also evident. When c p 0 and s 1 0, SA always
reached a higher mean end frequency than N2, and the
mean end frequency increased with s (rows top to bottom).
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At high values of s, populations often went extinct (supple-
mental PDF, p. S3). As c increased, the SA end frequency
decreased (fig. 1A). Selection for inbreeding avoidance, there-
fore, occurred, especially given moderate to strong inbreed-
ing depression and low direct costs, but SA did not always
go to fixation under any simulated conditions.
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Interestingly, when there was no inbreeding depression
or direct cost (fig. 1A; s p 0; c p 0), the SA end frequency
was often 10.5 (one-tailed t-test; P p :08), and mean SA

end frequency increased with increasing a (supplemental
PDF, p. S19). Mean SA end frequency was, therefore, higher
than expected under drift-mutation balance even in the ab-
0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

0.
25

0.
75

A B C D
N- N- N- N-SA, ♀ choice SA, ♂ choice SP, ♀ choice SP, ♂ choice

s 
= 

0.
00

0
s 

= 
0.

00
4

s 
= 

0.
00

8
s 

= 
0.

01
2

s 
= 

0.
01

6
s 

= 
0.

02
0

0.
00

00

0.
00

25

0.
00

50

0.
01

00

0.
00

00

0.
00

00

0.
00

25

0.
00

50

0.
01

00

0.
00

00

0.
00

00

0.
00

25

0.
00

50

0.
01

00

0.
00

00

0.
00

00

0.
00

25

0.
00

50

0.
01

00

0.
00

00

E
nd

 a
lle

le
 fr

eq
ue

nc
y

Cost of mate choice (c)

Figure 1: Distributions of end frequencies of alleles underlying inbreeding avoidance (SA) and inbreeding preference (SP) after 3,000 gener-
ations. The large columns present results with a mutant SA allele when females (A) and males (B) choose mates and of a mutant SP when
females (C) and males (D) choose mates. Within each large column, the four left-hand columns of boxes present results with different direct
costs (c) of mate choice. Rows of boxes present results with different selection coefficients (s) against deleterious recessive alleles. Each box
presents 100 replicate simulations for a unique set of parameter combinations, and circles within boxes show mean end allele frequencies for
a single simulation. Boxes with fewer than 100 circles reflect extinction. Along the Y-axis, circles show end allele frequencies from 0 to 1.
Circles are randomized on the X-axis to facilitate visualization; the X-axis, therefore, does not convey information. Solid horizontal red lines
show mean end allele frequencies, and red shaded regions show the 95% bootstrapped confidence intervals around the means. Solid blue lines
show expected end frequencies under mutation-drift balance (0.5). For comparison, blue circles in the right-hand boxes of A–D show the
distribution of mutant neutral allele (N2) end frequencies across replicates where c p 0:005.
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sence of inbreeding depression given a sufficiently strong
effect of an SA allele. This was caused by runaway evolution
driven by a positive correlation between female inbreeding
avoidance and sons’ reproductive success (see supplemen-
tal PDF p. S20).
Inbreeding Avoidance: Males Choosing Sex

Figure 1B shows distributions of SA end frequencies when
males were the choosing sex. Mean SA end frequency in-
creased with increasing s (rows top to bottom) and de-
creased with increasing c (columns left to right), leading
to mean end frequencies exceeding 0.5 for many parame-
ter combinations. At high s, SA frequencies often ended at
or near fixation.

In general, mean SA end frequencies had similar values
whether females or males chose given identical s and c com-
binations (compare fig. 1A, 1B). But population extinction
was less likely when males chose mates (supplemental PDF,
p. S3). This was because the native population received fe-
male immigrants when males chose, thereby increasing pop-
ulation growth through the production of outbred offspring
of female immigrants.
Inbreeding Preference: Females Choosing Sex

Figure 1C shows distributions of SP end frequencies when
females were the choosing sex. When c p 0 and s p 0,
mean SP end frequency was higher than that of N2. In-
creasing s caused a monotonic decrease in mean SP end fre-
quency. High s resulted in extinction of nearly all popula-
tions, with 97% of replicates going extinct when s p 0:02
(supplemental PDF, p. S3). Overall, although selection for
inbreeding preference sometimes occurred when females
chose mates, the mean end frequency of SP exceeded that
expected due to drift given only very small s and c.
Inbreeding Preference: Males Choosing Sex

Figure 1D shows distributions of SP end frequencies when
males were the choosing sex. Mean SP end frequency never
exceeded that of N2 and, therefore, never exceeded that ex-
pected due to drift. As in simulations with a mutant SA where
males chose, populations rarely went extinct (supplemental
PDF, p. S3).
Effects of Effective Population Size

Values of Ne as estimated from primary simulations were
higher when females rather than males chose mates (sup-
plemental PDF pp., S6–S7). This is because when males
chose, Ne decreased due to increased variance in male re-
productive success. Lower Ne when males chose can also be
This content downloaded from 139.13
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inferred from the higher proportion of extreme N2 end fre-
quencies (indicating increased drift; fig. 1B, 1D) compared
to where females chose (fig. 1A, 1C). Values of Ne also de-
creased slightly with increasing sdue to reduced census pop-
ulation size caused by inbreeding depression, but Ne was
not affected by c (supplemental PDF, pp. S6–S7).
Figure 2 shows how the end frequencies of mutant SA and

SP alleles varied when values of Ne were imposed a priori by
increasing population carrying capacity and, thereby, dis-
entangles selection from drift because Ne defines the mag-
nitude of drift. End frequencies of SA decreased as Ne in-
creased when either females or males chose. This is because
random mating was less likely to result in close inbreeding,
decreasing selection for SA. Conversely, end frequencies of SP

did not change with Ne when females chose (fig. 2A) but in-
creased slightly with increasingNe whenmales chose (fig. 2B).
The latter increase might have been caused by decreased se-
lection against SP with increasing Ne, as males carrying SP be-
came less likely to successfully inbreed and, hence, experience
negative selection. However, population extinction restricted
estimation of allele end frequencies when females chose, and
extinction was relatively common in simulationswithmutant
SP (supplemental PDF, p. S3). Overall, although drift is, by
definition, greater at lower Ne, selection for SA or against SP
was not greatly weakened. Effects of Ne on foff and L2 fre-
quency were negligible (supplemental PDF, pp. S8–S9).
Synthesis of Inbreeding Depression, Kinship, and Purging

Figure 3 synthesizes inbreeding strategy allele end frequen-
cies in relation to 2b1 across choosing sexes and direct costs
(c). The mean end frequency of SA generally increased with
increasing 2b1 when either females or males chose (fig. 3A,
3B), while themean end frequency of SP generally decreased
with increasing 2b1 (fig. 3C, 3D). Mean end frequencies of
SA and SP both decreased with increasing c. As expected,
increasing s increased inbreeding depression in offspring
survival (supplemental PDF, p. S4). However, when males
rather than females chose, Ne was relatively small (supple-
mental PDF, pp. S6–S7), and population-wide mean kin-
ship was, therefore, relatively high (fig. 4; Wright 1931).
This relatively high mean kinship caused increased homo-
zygosity due to identity by descent and, therefore, caused
an increased expression of load attributable to inbreeding
depression (b1). Consequently, simulations with identical s
values produced higher 2b1 values when males rather than
females chose (shown by the greater separation between
points on the X-axis in fig. 3B, 3D vs. 3A, 3C).
Mean kinship between all pairwise combinations of pop-

ulation members decreased slightly with increasing SA fre-
quency.When females chose, mean kinship was highly sen-
sitive to SP; kinship increased with increasing SP frequency
(supplemental PDF, p. S23), causing high among-replicate
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variation in end mean kinship values (fig. 4B). For other pa-
rameter combinations, mean kinship varied little among
replicates (fig. 4A, 4C, 4D).

The effect that SA and SP had on mean kinship did not
result in a change in mean end frequencies of L2. Further,
mean L2 frequencies were not affected by the choosing sex
or c but did decrease with increasing s (fig. 4). For all s val-
ues, the frequency of L2 did not strongly increase with the
frequency of SA (regression slopes ranged from 20.001 to
0.003) or decrease with the frequency of SP (slopes ranged
from20.018 to 0.005; see supplemental PDF, p. S5). Purg-
ing, therefore, did not substantially affect L2 frequencies
or, hence, mutation load.
Restricted Kin Discrimination

The dashed lines in figure 3 summarize how mean end fre-
quencies of SA and SP alleles varied in relation to 2b1 when
kin discrimination was restricted to full or half siblings (full
frequency distributions are shown in supplemental PDF,
p. S11). Overall, mean SA end frequency decreased when
kin discrimination was restricted, andmean SA end frequency
never exceeded 0.5 when females chose (fig. 3A).Whenmales
chose, mean SA end frequency was higher than 0.5 only if c p
0 and given sufficiently high 2b1 (fig. 3B). Evolution of in-
breeding avoidance was, therefore, inhibited when choosing
individuals were only able to recognize full and half siblings
relative to otherwise analogous conditions with perfect kin
discrimination.
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In contrast, restricted kin discrimination affected mean
SP end frequency differently depending on the choosing sex.
When females chose, mean SP end frequency was higher for
identical s and c values with restricted discrimination than
with perfect discrimination (fig. 3C). But whenmales chose,
mean SP end frequency was always low irrespective of c and
2b1 (fig. 3D). Evolution of inbreeding preference was, there-
fore, facilitated by restricted kin discrimination when fe-
males chose but inhibited when males chose mates.
Nonchoosing Sex Affecting Quality

The dotted lines in figure 3 summarize how mean end fre-
quencies of SA and SP varied in relation to 2b1 when alleles
carried by nonchoosing sex individuals influenced how
their quality was perceived by individuals of the choosing
sex (full frequency distributions are shown in supplemental
PDF, p. S12). When females chose and males influenced
their own quality, SA always ended at or near extinction
(fig. 3A), and SP always ended at or near fixation (leading
to population extinction when s 1 0:008; fig. 3C).
In contrast, when males chose, mean end frequencies of

SA and SP were not strongly affected by whether females
influenced how their quality was perceived (fig. 3B, 3D).
Wheredifferencesdidoccur,SAandSPendfrequencies tended
to be slightly higher when females influenced their perceived
quality thanwhen theydidnot (dottedvs. solid lines infig. 3B,
3D). Overall, allowing individuals of the nonchoosing sex to
affect how their own quality was perceived, therefore, had a
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Figure 2: End frequencies of mutant alleles underlying inbreeding avoidance (SA) and preference (SP) after 3,000 generations across replicate
simulations of an individual-based model with different mean effective population sizes (Ne). Four lines connecting points illustrate simu-
lations of a mutant SA (solid) or SP (dotted) allele when either females (A) or males (B) choose mates. Each point represents a mean over
100 replicate simulations with identical starting conditions, and error bars show standard errors.
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largeeffectonSAandSPend frequencieswhenfemales,butnot
males, chose mates.
Discussion

Biparental inbreeding often decreases offspring fitness,
creating widespread presumptions that inbreeding avoid-
ance will inevitably evolve (Perrin and Mazalov 1999; Kel-
ler and Waller 2002; Geffen et al. 2011; Szulkin et al. 2013;
Wright et al. 2013; Tennenhouse 2014). However, inbreed-
ing avoidance might impose costs, while inbreeding can in-
crease an individual’s inclusive fitness, potentially driving
evolution of inbreeding preference (Fisher 1941; Parker
1979, 2006; Szulkin et al. 2013; Porcher and Lande 2013).
Indeed, recent studies report diverse evidence of inbreed-
ing avoidance (e.g., Brouwer et al. 2011; Kingma et al. 2013;
Banks and Lindenmayer 2013; Herfindal and Haanes 2014),
preference (e.g., Wang and Lu 2011; Thünken et al. 2013),
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and tolerance (e.g., Olson et al. 2012; Nichols et al. 2014;
Reynolds et al. 2014) in wild populations of biparentally
reproducing species. However, no existing theory examines
the dynamics of alleles underlying inbreeding avoidance or
preference enacted through mate choice given key biologi-
cal constraints affecting obligate biparental reproduction in
small or viscous populations. Accordingly, we tested whether
a mutant allele causing inbreeding avoidance or inbreeding
preference increased in frequency in populations of poten-
tially related females and males initially fixed for alleles caus-
ing inbreeding tolerance when females or males had control
of mating and given explicit costs, kinship structure, muta-
tion load, kin discrimination, and effective population size.
Overall, selection for alleles underlying inbreeding avoidance
occurred given sufficiently high inbreeding depression and
low direct costs when both females andmales chose, while se-
lection for alleles underlying inbreeding preference occurred
only when females chose and given very low inbreeding de-
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Figure 3: Summary of mean end frequencies of an inbreeding-avoidance allele SA when females (A) and males (B) choose mates and of an
inbreeding-preference allele SP when females (C) and males (D) choose mates across 100 replicate simulations for different mean magnitudes
of inbreeding depression (2b1). Lines connect points across different selection coefficients (s) underlying 2b1 for combinations of cost (c), kin
discrimination, and nonchoosing sex effect on mate choice. Points show simulations in which the cost (c) of inbreeding avoidance or pref-
erence is 0.00 (squares) and 0.01 (circles). Solid lines show primary simulations in which kin discrimination is perfect and the nonchoosing
sex does not affect its perceived quality. Dashed lines show simulations in which kin discrimination is restricted and the nonchoosing sex
does not affect its perceived quality. Dotted lines show simulations in which kin discrimination is perfect and the nonchoosing sex does affect
its perceived quality. Error bars show 95% bootstrapped confidence intervals (CIs) around the mean end frequencies; 95% CIs around in-
breeding depression are negligible (always !0.01) and are not shown. Thin dotted horizontal lines demarcate expected end frequencies under
mutation-drift balance. Parameter combinations where 150% of replicate populations went extinct are not shown.
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pression and direct costs. Selection for inbreeding avoidance
weakened as census population size increased because ran-
dom mating was less likely to result in inbreeding, but even
in small populations, fixation of alleles underlying inbreeding
avoidance was not inevitable due to genetic drift. Conditions
favoring adaptive evolution of biparental inbreeding strate-
gies may, therefore, be much more restricted than is often as-
sumed.
Population Size and Genetic Drift

Our model illustrates that adaptive evolution of biparental
inbreeding strategy is most likely in small and viscous pop-
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ulations. It is in these populations that relatives regularly
interact, creating opportunities for selection on inbreeding
avoidance or preference. Yet the effective size of these pop-
ulations is also necessarily small at the local scale where
mate choice occurs, meaning that dynamics of alleles affect-
ing active inbreeding strategies will be strongly affected by
drift (Mettler et al. 1969; Turner 1982; Travis and Ezard
2006), even when inbreeding strategies are adaptive. Never-
theless, studies that report an absence of inbreeding avoid-
ance in wild populations rarely invoke genetic drift as a po-
tential explanation (e.g., Keane et al. 1996; Keller andArcese
1998; Hansson et al. 2006; Jamieson et al. 2009). Conversely,
in large panmictic populations where drift will be weaker,
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A B

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

C

0.
00

0
0.

00
8

0.
01

6

0.
00

0
0.

00
8

0.
01

6

0.
00

0
0.

00
8

0.
01

6

0.
00

0
0.

00
8

0.
01

6
D

0.
00

0
0.

00
8

0.
01

6

0.
00

0
0.

00
8

0.
01

6

0.
00

0
0.

00
8

0.
01

6

0.
00

0
0.

00
8

0.
01

6

0.
0

0.
2

0.
4

0.
6

0.
8

c = 0 c = 0.0025 c = 0.005 c = 0.01 c = 0 c = 0.0025 c = 0.005 c = 0.01

Selection coefficient of deleterious alleles (s)

Fr
eq

ue
nc

y 
of

 d
el

et
er

io
us

 a
lle

le
s 

(
L−

)

M
ea

n 
co

ef
fic

ie
nt

 o
f k

in
sh

ip
 (k

)
Figure 4: Distributions of the frequency of deleterious recessive (L2) alleles (crosses; left side of lanes) and mean kinship (circles; right side of
lanes) across replicate simulations where populations persisted for 3,000 generations, given an inbreeding-avoidance allele (SA) when females
(A) and males (C) choose mates and an inbreeding-preference allele (SP) when females (B) and males (D) choose mates. Each panel shows distri-
butions for four different costs (c) of inbreeding strategy, and vertical lanes delineate different selection coefficients (s) against deleterious alleles.
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the risk of inbreeding given random mating decreases, de-
creasing selection for alleles underlying inbreeding avoid-
ance even given moderate inbreeding depression and pre-
cluding adaptive evolution of such strategies (fig. 2).
Choosing Sex

Evolution of inbreeding avoidance did not depend qualita-
tively on whether females or males were the choosing sex.
The SA allele underlying inbreeding avoidance was always
more likely to reach high frequencies when inbreeding de-
pression was strong and direct costs of mate choice were
low (fig. 3). In contrast, the SP allele underlying inbreeding
preference was expected to reach high frequencies only
when females, but not males, were the choosing sex and
when both inbreeding depression and direct costs were
very weak. This sex dependence arises because the number
of offspring females can produce is limited to n. Conse-
quently, a male cannot increase the reproductive success of
his female relatives by preferentially mating with them. Male
mating should simply be maximized, except when inbreed-
ing depression causes selection for inbreeding avoidance
(Pizzari et al. 2004). Males might prefer to mate with rel-
atives rather than notmating but should never prefer tomate
with relatives rather than nonrelatives (Puurtinen 2011),
constraining selection for SP. In contrast, because variation
exists in male mating success and, hence, reproductive suc-
cess (given Q 1 1), females can increase the reproductive
success of their male relatives by preferentially mating with
them. Hence, selection for inbreeding preference is pre-
dicted only under highly restricted conditions when females
control mating.

Available empirical evidence broadly matches this pre-
diction. For example, female great frigatebirds (Fregata mi-
nor) conduct mate choice (Nelson 1975) and are more closely
related to their mates than expected given random mating
(Cohen andDearborn 2004).While social pairing occurs ran-
domly with respect to relatedness in barn swallows (Hirundo
rustica erythrogaster; Kleven et al. 2005) and ground tits (Pa-
rus humilis; Wang and Lu 2011), females of both species ap-
parently prefer related extra-pairmates. Furthermore, yellow-
bellied marmot (Marmota flaviventris) pairs are more closely
related than expected given random mating (Olson et al.
2012). Marmots form social matrilines, and female repro-
duction is highly resource limited (Armitage 1998, 2003). Fu-
ture empirical studies of inbreeding in such systems could
usefully quantifymate choice behavior and sexual conflict us-
ing both observational and experimental approaches, as pre-
viously achieved in the cichlid fish Pelvicachromis taeniatus.
Experiments showed that males use olfactory cues (Thünken
et al. 2013) to distinguish related and unrelated females and
actively choose related females as mates (Thünken et al. 2007a,
2007b, 2013). Observations of wild populations also suggest
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active inbreeding preference (Langen et al. 2011). Such male-
driven inbreeding preference contradicts our prediction that
inbreeding preference should not arise when males control
mating. However, P. taeniatus might be an interesting case
of sex role reversal. Teleost fishes typically show substantial
paternal care (Smith and Wootton 1995), and male P. tae-
niatus occupy territories while females compete for males
(Thünken et al. 2007a, 2007b). Male preference for related
females might, therefore, be consistent with ourmodel if such
preference increases their female relatives’ reproductive suc-
cess. Additionally, P. taeniatus show little inbreeding depres-
sion (Thünken et al. 2007a), so selection against inbreeding
preference might be weak.
Sex-specific control over mating interactions is often con-

text dependent, for example, depending on traits expressed
by individual females and males (Clutton-Brock and Parker
1995; Arnqvist and Rowe 2005). We relaxed the assumption
that one sex completely controlled mating by allowing indi-
viduals of the nonchoosing sex to affect how their own quality
was perceived. When females chose but males affected their
ownperceivedquality,SP consistentlyfixedandSA consistently
went extinct. This is because males carrying alleles that in-
creased inbreeding (SP against S1 or S1 against SA) also in-
creased their own perceived quality and, therefore, repro-
ductive success. In contrast, when males chose but females
affected their own perceived quality, end allele frequencies
did not differ greatly from when females had no influence.
This is because female reproductive success was not increased
when females increased their own perceived quality. The way
that we relaxed the assumption of complete sex-specific con-
trol over mating might or might not be biologically realistic.
However, it demonstrates that complete sex-specific control
over mate choice does not necessarily reflect extreme ends
of the spectrum of how sexual conflict might affect inbreed-
ing avoidance or preference.
Costs

Evolution of inbreeding strategies was strongly limited by
both inbreeding depression and direct costs. Unsurpris-
ingly, increased inbreeding depression increased the fre-
quency of SA alleles and decreased the frequency of SP alleles.
Even a small direct cost manifested as a probability of mat-
ing failure reduced SA and SP end frequencies. Quantifying
both inbreeding depression and direct costs is, therefore,
fundamental to predicting the evolution of biparental in-
breeding strategies within and across systems but remains
empirically difficult (Pomiankowski 1987; Kokko et al. 2003;
Reid et al. 2015a).
Opportunity costs of male mating are high when mating

with one female inhibits a male’s ability to sire other fe-
males’ offspring (Waser et al. 1986). When females chose,
the probability that mating with a male would prevent him
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from mating with another female decreased with increas-
ing Q, thereby decreasing male opportunity cost. In contrast,
when males chose, the opportunity cost of mating was al-
ways high because mating with any one female necessarily
prevented him from mating with another. This high oppor-
tunity cost is realistic for systems with substantial male pa-
rental care (Parker 1979, 2006; Waser et al. 1986), such as in
species that form pair bonds (Cockburn 2006; Lukas and
Clutton-Brock 2013; Szulkin et al. 2013). It is also reasonable
for polygynous systems (Waser et al. 1986), such as in harem-
forming species where harem size is externally limited (e.g.,
Hurly and Robertson 1985; Ablard et al. 2013) or species
where mating is limited in space (e.g., Carranza et al. 1990;
Arnould and Duck 1997) or time (Yuval 2006; Diabaté et al.
2011). Even with little paternal care, mating is unlikely to be
completely cost free for males. If our assumption of a high
opportunity cost were strongly violated, inbreeding avoid-
ance would be even less likely to evolve. Inbreeding tolerance
might, therefore, be a common outcome when males control
mating.
Purging

While rigorous theory has considered coevolution between
self-fertilization and mutation load (Lande and Schemske
1985; Charlesworth and Willis 2009), no models of bipa-
rental inbreeding have incorporated analogous evolution-
ary feedbacks (Kokko and Ots 2006; Szulkin et al. 2013;
Duthie and Reid 2015). We modeled explicit genetic archi-
tecture to provide a mechanistic basis for inbreeding de-
pression, permitting coevolution of inbreeding strategy and
mutation load. Although mutation load varied over time, it
was not correlated with the frequency of SP or SA (supplemen-
tal PDF, p. S5). There was, therefore, no evidence of coevolu-
tion between inbreeding preference and mutation load and,
hence, no evidence that inbreeding caused substantial purg-
ing that, in turn, facilitated further evolution of inbreeding
preference.

Several factors likely impeded purging, including weak
selection coefficients (s) on deleterious recessive alleles and
small population sizes that lead to frequent population ex-
tinction given high s. Additionally, modeling probabilistic
survival, mate choice, and explicit relatedness structure cre-
ated biologically reasonable stochasticity in the realized
degrees of inbreeding and inbreeding depression. In par-
ticular, individuals carrying SP alleles could not inbreed with
close relatives if no such relatives were available or were not
selected by chance, while individuals carrying wild-type S1

alleles sometimes inbred by chance. Such reasonable sto-
chasticity will reduce purging given biparental inbreeding
compared to that occurring given self-fertilization because
individuals with alleles causing inbreeding preference are
not guaranteed to inbreed.
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In our model, selection coefficients against deleterious
recessives never exceeded s p 0:020, so a single locus never
decreased survival probability by more than 2%. Our con-
clusion that purging was negligible, therefore, concurs with
previous models using similarly small selection coefficients.
For example, Hedrick (1994) found that drift overwhelmed
purging when s ! 0:0624 over 2–32 loci, even with repeated
full sibling inbreeding. Deleterious recessive alleles frequently
became fixed rather than purged, often causing population
extinction. Similarly, our simulations with a mutant SP allele
greatly increased the population-wide degree of inbreeding
and frequently resulted in population extinction. Extinction
was, consequently, more likely given a mutant SP allele than
a mutant SA allele (supplemental PDF, p. S3). A higher prob-
ability of population extinction where inbreeding preference
evolves might, therefore, contribute to the rarity of inbreed-
ing preference in nature if such populations are “evolution-
ary dead-ends,” as suggested for self-fertilizing plants (Wright
et al. 2013).
Similarly, individual-based models that examine purg-

ing when mating is random within populations (e.g., Wang
et al. 1999), or random within demes connected by dispersal
(e.g., Guillaume and Perrin 2006), find that the dynamics of
weakly deleterious mutations are typically dominated by
drift. Since inbreeding depressionmay commonly result from
numerous weakly deleterious recessive alleles (Barrett and
Charlesworth 1991; Charlesworth and Willis 2009), purging
might not strongly affect the evolution of inbreeding strat-
egies in small biparentally reproducing populations. Thus,
modeling explicit mutation load might not be necessary to
predict evolution of biparental inbreeding strategies. How-
ever, Wang et al. (1999) found that large-effect mutations
were purged relatively effectively, implying that coevolution
between biparental inbreeding strategy and mutation load
cannot always be ignored.
Restricted Kin Discrimination

Inbreeding avoidance was always less likely to evolve given
restricted rather than perfect kin discrimination. However,
inbreeding preference was less likely to evolve given re-
stricted kin discrimination when males chose but not when
females chose. The increase in SP with restricted female kin
discrimination arose because the quality of close kin in-
creased relative to that of distant kin as perceived by females
carrying SP alleles. Such females were even more likely to
mate with close rather than distant male relatives that were
also likely to carry the SP allele as well as less likely to avoid
immigrant males because they were indistinguishable from
distant relatives. Because immigrants carried SP alleles with
equal frequency as the native population at arrival, immi-
grants were sometimes more likely to carry SP alleles than
distant relatives. Given perfect kin discrimination, very dis-
3.148.027 on December 22, 2016 07:23:14 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



664 The American Naturalist
tant relatives might be preferred to immigrants but be less
likely to carry SP, but this is no longer the case when im-
migrants and distant relatives cannot be distinguished. Fur-
ther exploratory simulations showed that if the assumption
that immigrants carry equivalent mean allele frequencies is
relaxed—for example, by assuming that immigrants never
carry SP alleles—then restricting kin discrimination no lon-
ger facilitates evolution of inbreeding preference. Both in-
breeding avoidance and inbreeding preference are, therefore,
less likely to evolve when kin discrimination is restricted if
such strategies are, in fact, beneficial.
Conceptual Synthesis of Biparental Inbreeding Strategies

Weused a population genetic approach to examine the con-
ditions under which selection increases the frequency of
initially rare alleles that cause biparental inbreeding avoid-
ance or inbreeding preference. Our focal question funda-
mentally differs from that considered by previous models of
biparental inbreeding enacted though mate choice (Parker
1979, 2006; Waser et al. 1986; Lehmann and Perrin 2003;
Kokko and Ots 2006; Puurtinen 2011; Lehtonen and Kokko
2015), which build from the inclusive fitness approach ini-
tiated by Parker (1979, 2006). Parker (1979, 2006) assumes
that a focal individual encounters a single focal relative
within a large outbred population and must decide whether
to inbreed with them. By comparing the inclusive fitness
consequences of inbreeding versus not, thresholds of in-
breeding depression below which selection favors inbreed-
ing can be derived. Parker (1979, 2006) and subsequent
models show that these thresholds depend on the related-
ness between two focal individuals and on the magnitude
of inbreeding depression (e.g., Waser et al. 1986; Kokko and
Ots 2006; Lehtonen and Kokko 2015). Suchmodels highlight
that biparental inbreeding can increase an individual’s inclu-
sive fitness even if inbreeding depression is strong, but they
do not explicitly simulate allele dynamics or emerging distri-
butions of kinship. Their approach, thereby, focuses on selec-
tion to the exclusion of other evolutionary mechanisms
(Queller 2011; West and Gardner 2013). Such mechanisms
include drift, which can overwhelm selection in small popu-
lations where inbreeding risk and opportunity are highest,
and nonrandom mating, which can affect the distribution
of kinship. By contrast, our model is not a development of
Parker’s (1979, 2006) inclusive fitness framework and does
not consider pairwise encounters between two focal indi-
viduals. Instead, potential mates are encountered simulta-
neously, andmating behavior is defined a priori based on ge-
notype, so no equivalents to Parker’s (1979, 2006) inbreeding
depression thresholds exist. Our approach relaxes several
key assumptions of inclusive fitness models of biparental in-
breeding (Duthie and Reid 2015). By explicitly tracking ped-
igree and allele transmission, our model integrates naturally
This content downloaded from 139.13
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emergent kinship distributions and evolutionary feedbacks
and incorporates drift and mutation.
While the inclusive fitness and population genetic ap-

proaches differ in their aims and assumptions, there is
broad conceptual overlap in predicting the consequences
of selection with respect to inbreeding depression and di-
rect negative selection on mating strategies (costs). Careful
interpretation of Parker (1979, 2006) predicts that selection
will favor inbreeding avoidance given strong inbreeding
depression, while inbreeding preference should be favored
for females but never males when inbreeding depression
is weak (Puurtinen 2011). Accordingly, we found positive
selection for alleles underlying inbreeding avoidance given
sufficiently strong inbreeding depression, while positive se-
lection for alleles underlying inbreeding preference occurred
when inbreeding depression was weak but only when females
also controlledmating decisions. Given female choice, it might
be interesting to compare evolution of inbreeding strategy pre-
dicted from our population genetic approach to the degree
of inbreeding predicted when females are able to mate opti-
mally to maximize their inclusive fitness (Puurtinen 2011).
However, such comparisons will likely require complex ge-
netic architectures in individual-based models to allow for
individual fitness optimization and will require careful con-
sideration of analytical assumptions of optimality. As in in-
clusive fitness models (e.g., Waser et al. 1986; Lehmann and
Perrin 2003), direct costs in our model often outweighed the
benefits of an active inbreeding strategy, causing selection
against inbreeding avoidance or inbreeding preference. Tol-
erance of biparental inbreeding, manifested as random mat-
ing with respect to relatedness, might, therefore, be the most
likely outcome under wide-ranging conditions.
We modeled inbreeding strategy in the context of mate

choice through kin discrimination, not in the context of dis-
persal, as is the focus of other genetically explicit models
(e.g., Perrin and Mazalov 2000; Roze and Rousset 2005,
2009; Guillaume and Perrin 2006, 2009). Such models show
that selection for inbreeding avoidance can contribute to
evolution of dispersal, but optimal dispersal rates are also
predicted to be greatly influenced by their effect on reduc-
ing kin competition (Guillaume and Perrin 2006; Roze and
Rousset 2009). Our results highlight conceptual overlap be-
tween inbreeding avoidance enacted through mate choice
versus dispersal. For example, Roze and Rousset (2009)
found that higher dispersal rates evolved given increasingly
strong inbreeding depression in offspring of philopatric
individuals, but selection for high dispersal rate was also in-
hibited by direct costs. Further, lower dispersal rates evolved
in larger demes due to the decreased risk of inbreeding (Roze
and Rousset 2009). Our results, therefore, suggest that adap-
tive evolutionof inbreeding strategy is likely restricted to small
or viscous populations regardless of the mechanism by which
inbreeding strategy is enacted.
3.148.027 on December 22, 2016 07:23:14 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



Evolution of Biparental Inbreeding 665
Acknowledgments

This work was funded by a European Research Council Con-
solidator Grant and a Royal Society University Research Fel-
lowship to J.M.R.We thank G. Bocedi, L. Keller, H. Kokko, S.
Losdat, andM.Wolak for their helpful comments. Computer
simulations were performed using the Maxwell Computing
Cluster at the University of Aberdeen.
Literature Cited

Ablard, K. M., P. W. Schaefer, and G. Gries. 2013. An alternative re-
productive tactic: a parasitoid wasp gathers and guards a harem by
pheromone-tagging virgins. Behavioural Processes 94:32–40.

Angeloni, F., N. J. Ouborg, and R. Leimu. 1998. Reproductive strategies
of yellow-bellied marmots: energy conservation and differences be-
tween the sexes. Journal of Mammalogy 79:385–393.

———. 2003. Reproductive competition in female yellow-bellied mar-
mots. Pages 133–142 inR. Ramousse, D. Allaine, andM. Le Berre, eds.
Adaptive strategies and diversity inmarmots, Armitage 1986. Interna-
tional Marmot Network, Lyon.

———. 2011. Meta-analysis on the association of population size and
life history with inbreeding depression in plants. Biological Conser-
vation 144:35–43.

Arnould, J., and C. Duck. 1997. The cost and benefits of territorial
tenure, and factors affecting mating success in male Antarctic fur
seals. Journal of Zoology 241:649–664.

Arnqvist, G., and L. Rowe. 2005. Sexual conflict. Princeton University
Press, Princeton, NJ.

Banks, S. C., and D. B. Lindenmayer. 2013. Inbreeding avoidance,
patch isolation and matrix permeability influence dispersal and set-
tlement choices by male agile antechinus in a fragmented land-
scape. Journal of Animal Ecology 83:515–524.

Barrett, S. C. H., and D. Charlesworth. 1991. Effects of a change in
the level of inbreeding on genetic load. Nature 352:522–524.

Benesh, D. P., F. Weinreich, M. Kalbe, and M. Milinski. 2014. Life-
time inbreeding depression, purging, and mating system evolution
in a simultaneous hermaphrodite tapeworm. Evolution 68:1762–
1774.

Bengtsson, B. O. 1978. Avoiding inbreeding: at what cost? Journal of
Theoretical Biology 73:439–444.

Boyce, A. 1983. Computation of inbreeding and kinship coefficients
on extended pedigrees. Journal of Heredity 74:400–404.

Brouwer, L., M. van de Pol, E. Atema, and A. Cockburn. 2011. Stra-
tegic promiscuity helps avoid inbreeding at multiple levels in a co-
operative breeder where both sexes are philopatric. Molecular Ecol-
ogy 20:4796–4807.

Caballero, A. 1994. Developments in the prediction of effective pop-
ulation size. Heredity 73:657–679.

Carranza, J., F. Alvarez, and T. Redondo. 1990. Territoriality as a mat-
ing strategy in red deer. Animal Behaviour 40:79–88.

Charlesworth, B., and D. Charlesworth. 1999. The genetic basis of in-
breeding depression. Genetical Research 74:329–340.

Charlesworth, D. 2006. Evolution of plant breeding systems. Current
Biology 16:R726–R735.

Charlesworth, D., and B. Charlesworth. 1987. Inbreeding depression
and its evolutionary consequences. Annual Review of Ecology and
Systematics 18:237–268.
This content downloaded from 139.13
All use subject to University of Chicago Press Term
Charlesworth, D., M. T. Morgan, and B. Charlesworth. 1990. Inbreed-
ing depression, genetic load, and the evolution of outcrossing rates
in a multilocus system with no linkage. Evolution 44:1469–1489.

Charlesworth, D., and J. H. Willis. 2009. The genetics of inbreeding
depression. Nature Reviews Genetics 10:783–796.

Cheptou, P.-O., and K. Donohue. 2011. Environment-dependent in-
breeding depression: its ecological and evolutionary significance.
New Phytologist 189:395–407.

Clutton-Brock, T., and G. A. Parker. 1995. Sexual coercion in animal
societies. Animal Behaviour 49:1345–1365.

Cockburn, A. 2006. Prevalence of different modes of parental care in
birds. Proceedings of the Royal Society B 273:1375–1383.

Cohen, L. B., and D. C. Dearborn. 2004. Great frigatebirds, Fregata
minor, choose mates that are genetically similar. Animal Behav-
iour 68:1229–1236.

Crnokrak, P., and S. C. H. Barrett. 2002. Perspective: purging the ge-
netic load: a review of the experimental evidence. Evolution 56:2347–
2358.

Diabaté, A., A. S. Yaro, A. Dao, M. Diallo, D. L. Huestis, and T. Leh-
mann. 2011. Spatial distribution and male mating success of Anoph-
eles gambiae swarms. BMC Evolutionary Biology 11:184.

Dudley, S. A., and A. L. File. 2007. Kin recognition in an annual plant.
Biology Letters 3:435–438.

Duthie, A. B., and J. M. Reid. 2015. What happens after inbreeding
avoidance? inbreeding by rejected relatives and the inclusive fitness
benefit of inbreeding avoidance. PLoS ONE 10:e0125140.

———. 2016. Data from: Evolution of inbreeding avoidance and in-
breeding preference throughmate choice among interacting relatives.
American Naturalist, Dryad Digital Repository, http://dx.doi.org/10
.5061/dryad.3861f.

Fisher, R. A. 1941. Average excess and average effect of a gene sub-
stitution. Annals of Eugenics 11:53–63.

———. 1949. The theory of inbreeding. Oliver and Boyd, Edinburgh.
Frankham, R., D. Gilligan, D. Morris, and D. Briscoe. 2001. Inbreed-

ing and extinction: effects of purging. ConservationGenetics 2:279–
285.

Frommen, J. G., and T. C. M. Bakker. 2006. Inbreeding avoidance
through non-random mating in sticklebacks. Biology Letters 2:232–
235.

Gandon, S. 1999. Kin competition, the cost of inbreeding and the evo-
lution of dispersal. Journal of Theoretical Biology 200:345–364.

Geffen, E., M. Kam, R. Hefner, P. Hersteinsson, A. Angerbjörn, L. Dalèn,
E. Fuglei, et al. 2011. Kin encounter rate and inbreeding avoidance in
canids. Molecular Ecology 20:5348–5358.

Goodwillie, C., S. Kalisz, and C. G. Eckert. 2005. The evolutionary
enigma of mixed mating systems in plants: occurrence, theoretical
explanations, and empirical evidence. Annual Review of Ecology,
Evolution, and Systematics 36:47–79.

Griffin, A., and S. West. 2003. Kin discrimination and the benefit of
helping in cooperatively breeding vertebrates. Science 302:634–637.

Guillaume, F., and N. Perrin. 2006. Joint evolution of dispersal and
inbreeding load. Genetics 173:497–509.

———. 2009. Inbreeding load, bet hedging, and the evolution of sex-
biased dispersal. American Naturalist 173:536–541.

Hansson, B., L. Jack, J. K. Christians, J. M. Pemberton, M. Akesson,
H. Westerdahl, S. Bensch, and D. Hasselquist. 2006. No evidence
for inbreeding avoidance in a great reed warbler population. Be-
havioral Ecology 18:157–164.

Hedrick, P. W. 1994. Purging inbreeding depression and the proba-
bility of extinction: full-sib mating. Heredity 73:363–372.
3.148.027 on December 22, 2016 07:23:14 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?pmid=21091479&crossref=10.1111%2Fj.1469-8137.2010.03541.x
http://www.journals.uchicago.edu/action/showLinks?pmid=22008256&crossref=10.1111%2Fj.1365-294X.2011.05325.x
http://www.journals.uchicago.edu/action/showLinks?pmid=22008256&crossref=10.1111%2Fj.1365-294X.2011.05325.x
http://www.journals.uchicago.edu/action/showLinks?pmid=14576431&crossref=10.1126%2Fscience.1089402
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1006%2Fanbe.1995.0166
http://www.journals.uchicago.edu/action/showLinks?pmid=7814264&crossref=10.1038%2Fhdy.1994.174
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.biocon.2010.08.016
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1469-1809.1941.tb02272.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.biocon.2010.08.016
http://www.journals.uchicago.edu/action/showLinks?pmid=16510793&crossref=10.1534%2Fgenetics.105.046847
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1469-7998.1997.tb05739.x
http://www.journals.uchicago.edu/action/showLinks?pmid=16777726&crossref=10.1098%2Frspb.2005.3458
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2FS0003-3472%2805%2980667-0
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F597218
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Fbeheco%2Farl062
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1023%2FA%3A1012299230482
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.anbehav.2003.12.021
http://www.journals.uchicago.edu/action/showLinks?pmid=10689809&crossref=10.1017%2FS0016672399004152
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Fbeheco%2Farl062
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.anbehav.2003.12.021
http://www.journals.uchicago.edu/action/showLinks?pmid=23991826&crossref=10.1111%2F1365-2656.12128
http://www.journals.uchicago.edu/action/showLinks?pmid=7989216&crossref=10.1038%2Fhdy.1994.183
http://www.journals.uchicago.edu/action/showLinks?pmid=17148370&crossref=10.1098%2Frsbl.2005.0432
http://www.journals.uchicago.edu/action/showLinks?pmid=12583575&crossref=10.1111%2Fj.0014-3820.2002.tb00160.x
http://www.journals.uchicago.edu/action/showLinks?pmid=16950099&crossref=10.1016%2Fj.cub.2006.07.068
http://www.journals.uchicago.edu/action/showLinks?pmid=16950099&crossref=10.1016%2Fj.cub.2006.07.068
http://www.journals.uchicago.edu/action/showLinks?pmid=24611487&crossref=10.1111%2Fevo.12388
http://www.journals.uchicago.edu/action/showLinks?pmid=21711542&crossref=10.1186%2F1471-2148-11-184
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1146%2Fannurev.es.18.110187.001321
http://www.journals.uchicago.edu/action/showLinks?pmid=1865906&crossref=10.1038%2F352522a0
http://www.journals.uchicago.edu/action/showLinks?pmid=10525395&crossref=10.1006%2Fjtbi.1999.0994
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1146%2Fannurev.es.18.110187.001321
http://www.journals.uchicago.edu/action/showLinks?pmid=692150&crossref=10.1016%2F0022-5193%2878%2990151-0
http://www.journals.uchicago.edu/action/showLinks?pmid=23246899&crossref=10.1016%2Fj.beproc.2012.11.015
http://www.journals.uchicago.edu/action/showLinks?pmid=692150&crossref=10.1016%2F0022-5193%2878%2990151-0
http://www.journals.uchicago.edu/action/showLinks?pmid=22077191&crossref=10.1111%2Fj.1365-294X.2011.05358.x
http://www.journals.uchicago.edu/action/showLinks?pmid=17567552&crossref=10.1098%2Frsbl.2007.0232
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F2409330
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F1382969
http://www.journals.uchicago.edu/action/showLinks?pmid=19834483&crossref=10.1038%2Fnrg2664
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1146%2Fannurev.ecolsys.36.091704.175539
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1371%2Fjournal.pone.0125140
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1146%2Fannurev.ecolsys.36.091704.175539


666 The American Naturalist
Herfindal, I., and H. Haanes. 2014. Population properties affect in-
breeding avoidance in moose. Biology Letters 10:20140786.

Hurly, T. A., and R. J. Robertson. 1985. Do female red-winged blackbirds
limit harem size? I. A removal experiment. Auk 102:205–209.

Jamieson, I. G., S. S. Taylor, L. N. Tracy, H. Kokko, and D. P. Arm-
strong. 2009. Why some species of birds do not avoid inbreeding:
insights fromNew Zealand robins and saddlebacks. Behavioral Ecol-
ogy 20:575–584.

Karron, J. D., C. T. Ivey, R. J. Mitchell, M. R. Whitehead, R. Peakall,
and A. L. Case. 2012. New perspectives on the evolution of plant
mating systems. Annals of Botany 109:493–503.

Keane, B., S. R. Creel, and P. M. Waser. 1996. No evidence of inbreed-
ing avoidance or inbreeding depression in a social carnivore. Be-
havioral Ecology 7:480–489.

Keller, L. F., and P. Arcese. 1998. No evidence for inbreeding avoid-
ance in a natural population of song sparrows (Melospiza melodia).
American Naturalist 152:380–392.

Keller, L. F., and D. M. Waller. 2002. Inbreeding effects in wild pop-
ulations. Trends in Ecology and Evolution 17:19–23.

Kingma, S. A., M. L. Hall, and A. Peters. 2013. Breeding synchroni-
zation facilitates extrapair mating for inbreeding avoidance. Be-
havioral Ecology 24:1390–1397.

Kleven, O., F. Jacobsen, R. J. Robertson, and J. T. Lifjeld. 2005. Extrapair
mating between relatives in the barn swallow: a role for kin selection?
Biology Letters 1:389–392.

Kokko, H., R. Brooks, M. D. Jennions, and J. Morley. 2003. The evo-
lution of mate choice and mating biases. Proceedings of the Royal
Society B 270:653–664.

Kokko, H., and I. Ots. 2006. When not to avoid inbreeding. Evolu-
tion 60:467–475.

Lande, R., and D. W. Schemske. 1985. The evolution of self-fertilization
and inbreeding depression in plants. I. Genetic models. Evolution 39:
24–40.

Langen, K., J. Schwarzer, H. Kullmann, T. C. M. Bakker, and T. Thün-
ken. 2011.Microsatellite support for active inbreeding in a cichlid fish.
PLoS ONE 6:e24689.

Latta, R., and K. Ritland. 1993. Models for the evolution of selfing un-
der alternative modes of inheritance. Heredity 71:1–10.

Lawson Handley, L. J., and N. Perrin. 2007. Advances in our under-
standing of mammalian sex-biased dispersal. Molecular Ecology
16:1559–1578.

Lehmann, L., and N. Perrin. 2003. Inbreeding avoidance through kin
recognition: choosy females boost male dispersal. American Nat-
uralist 162:638–652.

Lehtonen, J., and H. Kokko. 2015. Why inclusive fitness can make it
adaptive to produce less fit extra-pair offspring. Proceedings of the
Royal Society B 282:20142716.

Lemâıtre, J.-F., S. A. Ramm, J. L. Hurst, and P. Stockley. 2012. In-
breeding avoidance behaviour of male bank voles in relation to so-
cial status. Animal Behaviour 83:453–457.

Lloyd, D. 1992. Self-and cross-fertilization in plants. II. The selection of
self-fertilization. International Journal of Plant Sciences 153:370–380.

Lukas, D., and T. H. Clutton-Brock. 2013. The evolution of social
monogamy in mammals. Science 341:526–530.

Lynch, M., and B. Walsh. 1998. Genetics and analysis of quantitative
traits. Sinauer, Sunderland, MA.

Manly, B. F. J. 2007. Randomization, bootstrap and Monte Carlo
methods in biology. 3rd ed. Chapman and Hall, Boca Raton, FL.

Mateo, J. M. 2002. Kin-recognition abilities and nepotism as a func-
tion of sociality. Proceedings of the Royal Society B 269:721–727.
This content downloaded from 139.13
All use subject to University of Chicago Press Term
Mettler, L. E., and T. G. Gregg. 1969. Population genetics and evo-
lution. Prentice Hall, Eaglewood Cliffs, NJ.

Mills, L. S., and P. E. Smouse. 1994. Demographic consequences of
inbreeding in remnant populations. American Naturalist 144:412–
431.

Morton, N. E., J. F. Crow, and H. J. Muller. 1956. An estimate of the
mutational damage in man from data on consanguineous marriages.
Proceedings of the National Academy of Sciences of the USA 42:855–
863.

Nelson, J. B. 1975. The breeding biology of frigatebirds: a compara-
tive review. Living Bird 14:113–155.

Nichols, H. J., M. A. Cant, J. I. Hoffman, and J. L. Sanderson. 2014.
Evidence for frequent incest in a cooperatively breeding mammal.
Biology Letters 10:20140898.

O’Grady, J. J., B. W. Brook, D. H. Reed, J. D. Ballou, D. W. Tonkyn,
and R. Frankham. 2006. Realistic levels of inbreeding depression
strongly affect extinction risk in wild populations. Biological Con-
servation 133:42–51.

Olofsson, H., A. M. Frame, and M. R. Servedio. 2011. Can reinforce-
ment occur with a learned trait? Evolution 65:1992–2003.

Olson, L. E., D. T. Blumstein, J. R. Pollinger, and R. K. Wayne. 2012.
No evidence of inbreeding avoidance despite demonstrated sur-
vival costs in a polygynous rodent. Molecular Ecology 21:562–571.

Parker, G. A. 1979. Sexual selection and sexual conflict. Pages 123–166
in M. S. Blum and N. A. Blum, eds. Sexual selection and reproduc-
tive competition in insects. Academic Press, New York.

———. 2006. Sexual conflict over mating and fertilization: an over-
view. Philosophical Transactions of the Royal Society B 361:235–
259.

Perrin, N., and V.Mazalov. 1999. Dispersal and inbreeding avoidance.
American Naturalist 154:282–292.

———. 2000. Local competition, inbreeding, and the evolution of
sex-biased dispersal. American Naturalist 155:116–127.

Pizzari, T., J. M. Biernaskie, and P. Carazo. 2015. Inclusive fitness
and sexual conflict: how population structure canmodulate the bat-
tle of the sexes. BioEssays 37:155–166.

Pizzari, T., and A. Gardner. 2012. The sociobiology of sex: inclusive fit-
ness consequences of inter-sexual interactions. Philosophical Trans-
actions of the Royal Society B 367:2314–2323.

Pizzari, T., H. Løvlie, and C. K. Cornwallis. 2004. Sex-specific, coun-
teracting responses to inbreeding in a bird. Proceedings of the Royal
Society B 271:2115–2121.

Pomiankowski, A. 1987. The costs of choice in sexual selection. Jour-
nal of Theoretical Biology 128:195–218.

Pomiankowski, A., Y. Iwasa, and S. Nee. 1991. The evolution of costly
mate preferences I. Fisher and biased mutation. Evolution 45:1422–
1430.

Porcher, E., and R. Lande. 2005. The evolution of self-fertilization and
inbreeding depression under pollen discounting and pollen limita-
tion. Journal of Evolutionary Biology 18:497–508.

———. 2013. Evaluating a simple approximation to modeling the
joint evolution of self-fertilization and inbreeding depression. Evo-
lution 67:3628–3635.

Proulx, S. R., and M. R. Servedio. 2009. Dissecting selection on fe-
male mating preferences during secondary contact. Evolution 63:
2031–2046.

Pusey, A., and M. Wolf. 1996. Inbreeding avoidance in animals. Trends
in Ecology and Evolution 5347:298–301.

Pusey, A. E. 1987. Sex-biased dispersal and inbreeding avoidance in
birds and mammals. Trends in Ecology and Evolution 2:295–299.
3.148.027 on December 22, 2016 07:23:14 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?pmid=19473397&crossref=10.1111%2Fj.1558-5646.2009.00710.x
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F303296
http://www.journals.uchicago.edu/action/showLinks?pmid=23896459&crossref=10.1126%2Fscience.1238677
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F2408514
http://www.journals.uchicago.edu/action/showLinks?pmid=22210849&crossref=10.1093%2Faob%2Fmcr319
http://www.journals.uchicago.edu/action/showLinks?pmid=25389109&crossref=10.1002%2Fbies.201400130
http://www.journals.uchicago.edu/action/showLinks?pmid=25540153&crossref=10.1098%2Frsbl.2014.0898
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.biocon.2006.05.016
http://www.journals.uchicago.edu/action/showLinks?pmid=21980351&crossref=10.1371%2Fjournal.pone.0024689
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Fbeheco%2F7.4.480
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.biocon.2006.05.016
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Fbeheco%2F7.4.480
http://www.journals.uchicago.edu/action/showLinks?pmid=22777019&crossref=10.1098%2Frstb.2011.0281
http://www.journals.uchicago.edu/action/showLinks?pmid=21227869&crossref=10.1016%2F0169-5347%2887%2990081-4
http://www.journals.uchicago.edu/action/showLinks?pmid=22777019&crossref=10.1098%2Frstb.2011.0281
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1038%2Fhdy.1993.101
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F286176
http://www.journals.uchicago.edu/action/showLinks?pmid=21729054&crossref=10.1111%2Fj.1558-5646.2011.01286.x
http://www.journals.uchicago.edu/action/showLinks?pmid=15475330&crossref=10.1098%2Frspb.2004.2843
http://www.journals.uchicago.edu/action/showLinks?pmid=15475330&crossref=10.1098%2Frspb.2004.2843
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2FS0169-5347%2802%2902489-8
http://www.journals.uchicago.edu/action/showLinks?pmid=3431135&crossref=10.1016%2FS0022-5193%2887%2980169-8
http://www.journals.uchicago.edu/action/showLinks?pmid=22145620&crossref=10.1111%2Fj.1365-294X.2011.05389.x
http://www.journals.uchicago.edu/action/showLinks?pmid=11934364&crossref=10.1098%2Frspb.2001.1947
http://www.journals.uchicago.edu/action/showLinks?pmid=17402974&crossref=10.1111%2Fj.1365-294X.2006.03152.x
http://www.journals.uchicago.edu/action/showLinks?pmid=3431135&crossref=10.1016%2FS0022-5193%2887%2980169-8
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F2409889
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F378823
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Fbeheco%2Fart078
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F378823
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Fbeheco%2Fart078
http://www.journals.uchicago.edu/action/showLinks?pmid=17148214&crossref=10.1098%2Frsbl.2005.0376
http://www.journals.uchicago.edu/action/showLinks?pmid=25540152&crossref=10.1098%2Frsbl.2014.0786
http://www.journals.uchicago.edu/action/showLinks?pmid=15842479&crossref=10.1111%2Fj.1420-9101.2005.00905.x
http://www.journals.uchicago.edu/action/showLinks?pmid=16612884&crossref=10.1098%2Frstb.2005.1785
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F285684
http://www.journals.uchicago.edu/action/showLinks?pmid=25589605&crossref=10.1098%2Frspb.2014.2716
http://www.journals.uchicago.edu/action/showLinks?pmid=25589605&crossref=10.1098%2Frspb.2014.2716
http://www.journals.uchicago.edu/action/showLinks?pmid=12769467&crossref=10.1098%2Frspb.2002.2235
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F4086850
http://www.journals.uchicago.edu/action/showLinks?pmid=12769467&crossref=10.1098%2Frspb.2002.2235
http://www.journals.uchicago.edu/action/showLinks?pmid=16589958&crossref=10.1073%2Fpnas.42.11.855
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.anbehav.2011.11.017
http://www.journals.uchicago.edu/action/showLinks?pmid=24299413&crossref=10.1111%2Fevo.12216
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F303236
http://www.journals.uchicago.edu/action/showLinks?pmid=24299413&crossref=10.1111%2Fevo.12216
http://www.journals.uchicago.edu/action/showLinks?pmid=16637492&crossref=10.1111%2Fj.0014-3820.2006.tb01128.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Fbeheco%2Farp034
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F297041
http://www.journals.uchicago.edu/action/showLinks?pmid=16637492&crossref=10.1111%2Fj.0014-3820.2006.tb01128.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Fbeheco%2Farp034


Evolution of Biparental Inbreeding 667
Puurtinen, M. 2011. Mate choice for optimal (k)inbreeding. Evolu-
tion 65:1501–1505.

Queller, D. C. 1994. Genetic relatedness in viscous populations. Evo-
lutionary Ecology 7653:70–73.

———. 2011. Expanded social fitness and Hamilton’s rule for kin,
kith, and kind. Proceedings of the National Academy of Sciences
of the USA 108:10792–10799.

Ralls, K., J. D. Ballou, and A. Templeton. 1988. Estimates of lethal
equivalents and the cost of inbreeding in mammals. Conservation
Biology 2:185–193.

Reid, J. M., P. Arcese, L. F. Keller, R. R. Germain, A. B. Duthie, S.
Losdat, M. E. Wolak, and P. Nietlisbach. 2015. Quantifying in-
breeding avoidance through extra-pair reproduction. Evolution 69:
59–74.

Reynolds, S. M., J. A. C. Uy, G. L. Patricelli, S. W. Coleman, M. J.
Braun, and G. Borgia. 2014. Tests of the kin selection model of mate
choice and inbreeding avoidance in satin bowerbirds. Behavioral
Ecology 25:1005–1014.

Rowe, L., G. Arnqvist, A. Sih, and J. J. Krupa. 1994. Sexual conflict
and the evolutionary ecology of mating patterns: water striders as
a model system. Trends in Ecology and Evolution 9:289–293.

Roze, D., and F. Rousset. 2005. Inbreeding depression and the evo-
lution of dispersal rates: a multilocus model. American Naturalist
166:708–721.

———. 2009. Strong effects of heterosis on the evolution of dispersal
rates. Journal of Evolutionary Biology 22:1221–1233.

Smith, C., and R. J.Wootton. 1995. The costs of parental care in teleost
fishes. Reviews in Fish Biology and Fisheries 22:7–22.

Strassmann, J. E., O. M. Gilbert, and D. C. Queller. 2011. Kin discrim-
ination and cooperation in microbes. Annual Review of Microbiol-
ogy 65:349–367.

Szulkin, M., K. V. Stopher, J. M. Pemberton, and J. M. Reid. 2013.
Inbreeding avoidance, tolerance, or preference in animals? Trends
in Ecology and Evolution 28:205–211.

Tennenhouse, E. M. 2014. Inbreeding avoidance in male primates: a
response to female mate choice? Ethology 120:111–119.

Theodorou, K., and D. Couvet. 2006. On the expected relationship
between inbreeding, fitness, and extinction. Genetics Selection Evo-
lution 38:371–387.

Thünken, T., T. C. M. Bakker, and S. A. Baldauf. 2013. “Armpit ef-
fect” in an African cichlid fish: self-referent kin recognition in mat-
ing decisions of male Pelvicachromis taeniatus. Behavioral Ecology
and Sociobiology 68:99–104.

Thünken, T., T. C. M. Bakker, S. A. Baldauf, and H. Kullmann. 2007a.
Active inbreeding in a cichlid fish and its adaptive significance. Cur-
rent Biology 17:225–229.
This content downloaded from 139.13
All use subject to University of Chicago Press Term
———. 2007b. Direct familiarity does not alter mating preference
for sisters in male Pelvicachromis taeniatus (Cichlidae). Ethology
113:1107–1112.

Travis, J. M. J., and T. H. G. Ezard. 2006. Habitat geometry, popu-
lation viscosity and the rate of genetic drift. Ecological Informatics
1:153–161.

Tregenza, T., and N. Wedell. 2002. Polyandrous females avoid costs
of inbreeding. Nature 415:71–73.

Tregenza, T., N. Wedell, and T. Chapman. 2006. Introduction. Sexual
conflict: a new paradigm? Philosophical Transactions of the Royal
Society B 361:229–234.

Turner, M. 1982. Homozygosity and patch structure in plant popu-
lations as a result of nearest-neighbor pollination. Proceedings of
the National Academy of Sciences of the USA 79:203–207.

Verzijden, M. N., R. F. Lachlan, and M. R. Servedio. 2005. Female mate-
choice behavior and sympatric speciation. Evolution 59:2097–2108.

Wang, C., and X. Lu. 2011. Female ground tits prefer relatives as extra-
pair partners: driven by kin-selection? Molecular Ecology 20:2851–
2863.

Wang, J., W. G. Hill, D. Charlesworth, and B. Charlesworth. 1999.
Dynamics of inbreeding depression due to deleterious mutations in
small populations: mutation parameters and inbreeding rate. Geneti-
cal Research 74:165–178.

Waser, P. M., S. N. Austad, and B. Keane. 1986. When should animals
tolerate inbreeding? American Naturalist 128:529–537.

West, S. A., and A. Gardner. 2013. Adaptation and inclusive fitness.
Current Biology 23:R577–R584.

White, J. W., A. Rassweiler, J. F. Samhouri, A. C. Stier, and C. White.
2014. Ecologists should not use statistical significance tests to in-
terpret simulation model results. Oikos 123:385–388.

Wright,S.1931.EvolutioninMendelianpopulations.Genetics16:97–159.
Wright, S. I., S. Kalisz, and T. Slotte. 2013. Evolutionary consequences

of self-fertilization in plants. Proceedings of the Royal Society B 280:
20130133.

Young, A. G., L. M. Broadhurst, and P. H. Thrall. 2012. Non-additive
effects of pollen limitation and self-incompatibility reduce plant re-
productive success and population viability. Annals of Botany 109:
643–653.

Yuval, B. 2006. Mating systems of blood-feeding flies. Annual Review
of Entomology 51:413–40.

Zimmer, S.M., H. Krehenwinkel, and J.M. Schneider. 2014. Rapid range
expansion is not restricted by inbreeding in a sexually cannibalistic
spider. PLoS ONE 9:e95963.

Associate Editor: G. Sander van Doorn
Editor: Yannis Michalakis
3.148.027 on December 22, 2016 07:23:14 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F284585
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1439-0310.2007.01422.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Fbeheco%2Faru065
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Fbeheco%2Faru065
http://www.journals.uchicago.edu/action/showLinks?pmid=24759976&crossref=10.1371%2Fjournal.pone.0095963
http://www.journals.uchicago.edu/action/showLinks?pmid=23845249&crossref=10.1016%2Fj.cub.2013.05.031
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.ecoinf.2006.03.003
http://www.journals.uchicago.edu/action/showLinks?pmid=21236857&crossref=10.1016%2F0169-5347%2894%2990032-9
http://www.journals.uchicago.edu/action/showLinks?pmid=11780118&crossref=10.1038%2F415071a
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F497543
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1600-0706.2013.01073.x
http://www.journals.uchicago.edu/action/showLinks?pmid=16612883&crossref=10.1098%2Frstb.2005.1796
http://www.journals.uchicago.edu/action/showLinks?pmid=19344383&crossref=10.1111%2Fj.1420-9101.2009.01735.x
http://www.journals.uchicago.edu/action/showLinks?pmid=21521199&crossref=10.1111%2Fj.1558-5646.2010.01217.x
http://www.journals.uchicago.edu/action/showLinks?pmid=16612883&crossref=10.1098%2Frstb.2005.1796
http://www.journals.uchicago.edu/action/showLinks?pmid=21521199&crossref=10.1111%2Fj.1558-5646.2010.01217.x
http://www.journals.uchicago.edu/action/showLinks?pmid=16593140&crossref=10.1073%2Fpnas.79.1.203
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2FBF01103363
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2FBF01237667
http://www.journals.uchicago.edu/action/showLinks?pmid=16593140&crossref=10.1073%2Fpnas.79.1.203
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2FBF01237667
http://www.journals.uchicago.edu/action/showLinks?pmid=16790228&crossref=10.1186%2F1297-9686-38-4-371
http://www.journals.uchicago.edu/action/showLinks?pmid=16790228&crossref=10.1186%2F1297-9686-38-4-371
http://www.journals.uchicago.edu/action/showLinks?pmid=23595268&crossref=10.1098%2Frspb.2013.0133
http://www.journals.uchicago.edu/action/showLinks?pmid=16405155&crossref=10.1554%2F04-567.1
http://www.journals.uchicago.edu/action/showLinks?pmid=21682642&crossref=10.1146%2Fannurev.micro.112408.134109
http://www.journals.uchicago.edu/action/showLinks?pmid=21690389&crossref=10.1073%2Fpnas.1100298108
http://www.journals.uchicago.edu/action/showLinks?pmid=21682642&crossref=10.1146%2Fannurev.micro.112408.134109
http://www.journals.uchicago.edu/action/showLinks?pmid=21690389&crossref=10.1073%2Fpnas.1100298108
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1523-1739.1988.tb00169.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1523-1739.1988.tb00169.x
http://www.journals.uchicago.edu/action/showLinks?pmid=22184620&crossref=10.1093%2Faob%2Fmcr290
http://www.journals.uchicago.edu/action/showLinks?pmid=21438933&crossref=10.1111%2Fj.1365-294X.2011.05070.x
http://www.journals.uchicago.edu/action/showLinks?pmid=23182684&crossref=10.1016%2Fj.tree.2012.10.016
http://www.journals.uchicago.edu/action/showLinks?pmid=23182684&crossref=10.1016%2Fj.tree.2012.10.016
http://www.journals.uchicago.edu/action/showLinks?pmid=10584559&crossref=10.1017%2FS0016672399003900
http://www.journals.uchicago.edu/action/showLinks?pmid=17276915&crossref=10.1016%2Fj.cub.2006.11.053
http://www.journals.uchicago.edu/action/showLinks?pmid=25346331&crossref=10.1111%2Fevo.12557
http://www.journals.uchicago.edu/action/showLinks?pmid=10584559&crossref=10.1017%2FS0016672399003900
http://www.journals.uchicago.edu/action/showLinks?pmid=17276915&crossref=10.1016%2Fj.cub.2006.11.053
http://www.journals.uchicago.edu/action/showLinks?pmid=16332218&crossref=10.1146%2Fannurev.ento.51.110104.151058
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Feth.12187
http://www.journals.uchicago.edu/action/showLinks?pmid=16332218&crossref=10.1146%2Fannurev.ento.51.110104.151058

