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The notion of a part of phase space containing desired (or allowed) states of a dynamical system is
important in a wide range of complex systems research. It has been called the safe operating space,
the viability kernel or the sunny region. In this paper we define the notion of survivability: Given
a random initial condition, what is the likelihood that the transient behaviour of a deterministic
system leaves the region of desirable states. In three conceptual examples we show that this basic
measure captures notions of fundamental interest for climate models, transient chaos, and synchro-
nisation. This covers applications to linear and non-linear, multistable and monostable systems. We
also derive a semi-analytic lower bound for the survivability of linear systems with polygonal safe
operating space.

We then apply the concept in the case of the second order Kuramoto model, interpreted as a
model of the power grid, where the type of resilience measured by survivability is of great practical
interest. We show that our lower bound is a good predictor for the survivability of the power grid
in realistic operating regimes.

Our numerical and semi-analytic work shows that the type of resilience measured by survivability
is not captured by common measures of stability such as relaxation time, basin stability, the master
stability function and other asymptotic concepts.

Keywords: TODO

I. INTRODUCTION

In almost all dynamical systems applicable to the real
world, the stability of the system’s stationary states is
of key interest. Perturbations are never truly absent,
and initial data is never exactly determined. Neverthe-
less, the asymptotic stability of the system’s attractors
ensures that we can still extract sensible long-term infor-
mation from our dynamical models.

Complementary to the notion of stability, one can an-
alyze whether the system will reach a desirable state.
This becomes important when a model represents a sys-
tem that we have influence on, either because we engineer
its fundamental behavior, or because there are manage-
ment options. We often want to design the dynamics, or
our interventions, such as to more easily keep the system
in such a desired state. Note that desirable states are
typically not stationary states.

For the traditional notion of asymptotic stability
against infinitesimal perturbations, the key mathemati-
cal concept is the analysis of the linearized dynamics, for
instance by means of the Lyapunov exponent or master
stability function [24, 29].
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Multistable systems [12, 30, 34] have more than one
stable attractor [21], and thus potentially exhibit a wide
range of different asymptotic behaviours. The key ques-
tion then becomes from which initial state which attrac-
tor is reached, that is, the basin of attraction of an at-
tractor. Most work so far focused on the geometry of the
basin of attraction of desirable attractors, for example by
finding Lyapunov functions [6, 8, 42].

An idea that has recently been found to be useful is
to study a more elementary property, not which states
go to an attractor, but just how many. This quantity,
the volume of the basin of attraction of a given attrac-
tor (possibly within some finite volume subset of phase
space) can then be interpreted as the resilience of the
system in the face of a random, non-small perturbation
(within the finite volume subset studied). It quantifies
the probability that the strongly non-linear response to
such a perturbation will lead the system to a different,
undesirable attractor. This probability is called the basin
stability of an attractor [20]. Basin stability quantifies
the stability of an attractor taking large deviations into
account. This is important for a number of applications
where relevant system deviations are typically not small,
for example in power grids.

One of the key appealing features of basin stability
is that, by studying just the volume rather than the
shape of the basin of attraction, it becomes numerically
tractable to analyze even very high-dimensional systems.
It was also shown that the information revealed by the
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volume of the basin genuinely complements the infor-
mation provided by the Lyapunov exponents of the lin-
earized system [20].

There are, however, two major drawbacks when esti-
mating basin stability. On the one hand, the measure
relies on correctly identifying the asymptotic behavior of
a system, which might in some cases be difficult to detect,
typically requires prior knowledge about the attractor’s
nature, and is only meaningful in multistable systems.
On the other hand, a basin stability estimation is insen-
sitive to undesired transient behavior of the system, i.e.
if the trajectory visits an undesired part of the phase
space where the system would take damage that is not
modeled intrinsically. This renders basin stability a too
rough measure for some applications.

In this paper we introduce a new stability and re-
silience measure, the survivability S(t) of a dynamical
system. This is the fraction of initial conditions giving
rise to trajectories that stay within a desirable region for
a given time t. The set of these initial conditions will be
called basin of survival.

As opposed to basin stability or a linear(-ized) analysis,
the survivability is concerned not just with the asymp-
totic behavior of the system, but depends strongly on the
transient dynamics. As opposed to basin stability it is ap-
plicable in unstable, monostable, or multistable, linear or
non-linear systems. For example, in the case of transient
chaos [35, 36, 40], we have long, interesting transients
but potentially just a single global attractor. Treating a
small region around the global attractor as undesirable,
the survivability captures the typical lifetime of the in-
teresting transients in the vicinity of chaotic repellers, a
fundamental quantity of high interest.

The application of the survivability concept is es-
pecially appropriate when interventions happen at the
same timescale as the system dynamics, or when enter-
ing an undesirable region is deadly. Further, survivabil-
ity thereby retains and improves the desirable numerical
properties of basin stability. The entire curve S(t) can be
evaluated at a computational complexity not exceeding
that of a basin stability estimation, potentially revealing
much more information. Hence, a survivability analysis
is applicable to very high-dimensional systems as well.

For linear systems with polygonal desirable region,
we derive a closed form lower bound on the infinite-
time survivability as well as a semi-analytic, stronger
bound that becomes exact in the case of a purely imag-
inary spectrum, precisely when the linearized system
no longer reveals anything about asymptotic stability.
These bounds reveal that the survivability of linear sys-
tems depends strongly on the eigenvectors of the linear
dynamics, rather than just the eigenvalues.

To demonstrate the utility of survivability as a sys-
tem property, we apply it to three paradigmatic model
systems:

i) The first is a simple two-dimensional model of car-
bon stock dynamics [2]. This system exhibits both the
property that the undesirable states are deadly and that

in some parameter regimes there is only a single stable
attractor of the asymptotic dynamics.

ii) The second example is a simple system of
integrate-and-fire neurons [11, 22, 39]. These exhibit very
interesting long-term irregular transients, but asymptot-
ically have a global periodic attractor where the neu-
rons are in a state of phase-synchronization. Considering
the synchronized state as undesirable, the integrate-and-
fire neurons are an example of a system in which nei-
ther asymptotic nor basin stability are applicable. The
survivability reveals the length of the transients. It can
be interpreted to measure the resilience of the chaotic
regime, in the sense that it reveals the risk to become
synchronized given a particular interval between exter-
nal stimuli.

iii) The third example is an effective network model
of the power grid [13, 25]. This was one of the first
systems for which basin stability was thoroughly stud-
ied [19]. However, as basin stability is insensitive to
transient behavior, it unrealistically classifies trajecto-
ries that have massive transient frequency deviations, at
which the power grid would long have collapsed, as sta-
ble. Secondly, upon detection of a disturbance, active
management would set in at the same time scale as the
system dynamics. Hence, the power grid is an example
where the undesirable region is deadly and management
options operate at the system dynamics time scale. We
study a conceptual two-dimensional, two-node model of
the power grid, and then apply the concept of survivabil-
ity to study a full 472-dimensional model of the Scan-
dinavian transmission grid. We indeed find that basin
stability and infinite-time survivability of the system are
not correlated with each other in this example. Further
we find that for realistic maximum frequency deviations,
the lower bound on the survivability of the linearized sys-
tem is an excellent predictor for the total survivability.

All our examples have in common that there are exter-
nalities in the system which are not or cannot be mod-
eled. Such as the influence of dramatic climate changes
on society, control mechanisms in the power grid or ex-
ternal stimuli for a network of neurones. A survivability
analysis is a way to deal with the occurrence of such
external influences iff they can be transformed into the
definition of a desirable subset of the phase space.

II. SURVIVABILITY, DEFINITIONS AND
BASIC PROPERTIES.

Imagine the time evolution of a particle in a compli-
cated potential landscape where attractors are given by
local minima, or, alternatively, a penguin, wishing to
ski down a mountain going the fastest route possible in
Fig. 1. The system is multi-stable as the penguin might
end up in the goal or the valley. Starting location A and
starting location B both are in the basin of attraction of
the goal. However, starting in location A leads the pen-
guin to a cliff. Crossing the cliff the fastest route possible
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will almost certainly lead to the penguin sliding the rest
of the way to the goal on its back; not a desirable state.
However, not one that is intrinsically modelled by the
(potential) landscape. Whether a cliff is undesirable or
not, might well depend on a further externality, like the
skill level of our penguin.

Figure 1. Survivability cartoon: (Color online.) A pen-
guin can ski down the mountain starting anywhere on the
slope. Starting at A the penguin will tumble over the cliffs,
reaching an undesirable state. Starting at B the penguin will
reach the goal standing on its feet. Starting even further to
the right, it might end up in the valley, which might or might
not be desirable.

If reaching the valley and being on the back are con-
sidered undesirable states, the basin of survival are those
starting positions beneath the cliff and those on the right
hand side of the dotted line, but left of the divide to the
valley. In this case the basin of attraction of the goal
contains the basin of survival. If reaching the valley is
not objectionable to our penguin, the basin of survival
crosses the boundary of the basin of attraction.

More formally, consider a dynamical system with
states x in a state space X giving rise to trajectories x(t)
under some evolution map σ(t). Now we define a desir-
able region X+ ⊂ X with its complement X− = XrX+,
where the former contains all states x that are stated to
be desirable. In the penguin example X− would contain
the cliff and the valley. In the context of Earth System
science, such a desirable region has variously been called
the safe operating space within planetary boundaries [31]
or the sunny region [14].

We define the survivability S(t) of the dynamical sys-
tem at time t to be the fraction of trajectories starting
in X+ that stay within X+ for the entire duration [0, t].
Put another way, if entering the region X− terminates
the system, S(t) is the fraction of trajectories starting in
X+ still alive after time t. We call the part of X+ from
which trajectories start that stay alive at least for time t

the finite-time or t-time basin of survival XS
t . We then

have

S(t) =
Vol(XS

t )

Vol(X+)
, (1)

where Vol is an inner measure on X determining the
volume of the sets XS

t and X+ in the phase space. By
construction, S(t) takes values on the unit interval.

We define the total survivability S = S∞ as the limit

S∞ = lim
t→∞

S(t) . (2)

Each t-time basin of survival is a subset of the previous
ones XS

t ⊃ XS
t′ (for t′ > t), as trajectories returning

to X+ after leaving it once do not contribute to XS
t′ .

Hence, S(t) is monotonically decreasing and bounded by
0 from below, therefore the limit in Eqn. 2 exists. The
use of an inner measure here avoids subtleties involving
non measurable sets, like fractal [27, 28] or riddled [1, 17]
basins of attraction.

Note however that if X+ is an open set, and the
map σ(t) : X → X is continuous for all t, then the
images of X+ under σ(t)−1 are also open. As XS

t =⋃
0<t′<t σ(t′)−1X+ is a union of open sets it is itself open

and therefore measurable if Vol is a Borel measure. Thus
in this important special case, which covers all applica-
tions we are considering in this paper, no such subtleties
exist.

In some applications the choice for the set X+ might
have an infinite volume, even though XS

t becomes finite
for sufficiently large t. In that case one can still consider
the unnormalised volume Vol(XS

t ) as a relative measure
of the survivability of a system.

A. Conditional survivability

The conditional survivability SC(t) measures the re-
sponse of the system to restricted perturbations. For ex-
ample, we might be interested in the survivability, given
perturbations that are localized at a node in a network.
Given a subset of the state space C ⊂ X, we define the
conditional survivability as the fraction of trajectories
starting in X+ ∩ C that stay in X+. That is

SC(t) =
Vol|C(XS

t ∩ C)

Vol|C(X+ ∩ C)
, (3)

where Vol|C is an inner measure on the smallest sub-
manifold containing C. In the case of a network and
perturbations at a single node, the phase space typically
is the product of phase spaces at the nodes, and the vol-
ume measure likewise factorizes, thus there are natural
choices for C and Vol|C .
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B. Numerically estimating survivability

One advantage shared by survivability and basin sta-
bility [20] is that they can be efficiently estimated by ran-
domly sampling starting conditions. A trajectory either
survives/converges or not, therefore we can regard the
sampling as a Bernoulli process with probability given
by S(t) or the basin stability SB , hence the standard
error of the mean SEM of a trial with N draws is simply

SEM =

√
S(t)(1− S(t))

N
. (4)

As a crucial consequence, the standard error of a surviv-
ability estimation does not depend on the dimensionality
of the system. Further, the condition that a trajectory
has left X+ tends to be easier to evaluate in practise than
whether the trajectory is asymptotically approaching a
fixed point. Furthermore, in numerical simulations, an
integration might be stopped once X+ has been left.

C. Relationship to basin stability

Let us further consider the relationship between basin
stability and survivability. Consider the union of all at-
tractors A in X. Following the terminology of [14], we
split the set A into desirable attractors A+ and undesir-
able attractors A−. Define X+

A and X−A to be the basin
of attraction of A+ and A− respectively. The basin sta-
bility of A+ with respect to some initial region X0 is then
defined as

SB =
Vol(X0 ∩X+

A )

Vol(X0)
. (5)

Note that defining basin stability requires knowledge of
the respective attractor. Efficiently evaluating it numer-
ically requires a criterion to evaluate whether the system
will converge to a certain attractor.

Let us assume that the sunny region cleanly sepa-
rates the set of attractors, that is, there are some at-
tractors that are entirely sunny and others that are en-
tirely shaded, but none that intersect both regions. In
this case, we can establish a quantitative relationship be-
tween basin stability and survivability. We can choose
A+ = A∩X+ (i.e. desirable attractors are contained in-
side the sunny region), and we know that asymptotically
the trajectories converge either to A− or A+ or diverge.
Thus every trajectory that does not contribute to the
basin stability also has to leave the sunny region even-
tually and can not contribute to the survivability either.
Thus if

A+ = A ∩X+

and X0 = X+ ,

then SB ≥ S∞ . (6)

The difference between the two values is exactly the
measure of initial conditions whose trajectories leave the
sunny region intermittently but eventually return to it
and stay. Thus we see that whether basin stability or sur-
vivability is the appropriate measure depends on whether
the forbidden region is merely unpleasant, and we want
our stay there to be finite, or whether the forbidden re-
gion is deadly and we absolutely do not want the system
to enter it at all.

D. Relationship to similar concepts

Survivability has been studied in the context of
stochastic systems, i.e. the concept of the so-called first
hitting time and survival probability [3, 10]. The first
hitting time t measures when a system is expected to
first hit the forbidden region X−. The cumulative of the
probability of first hitting the undesirable region before
t is then 1 − S(t). Our definitions given above can be
seen as deterministic generalizations of these concepts.
The role of stochasticity in the evolution is replaced by
taking the average over all (or some) initial conditions.

In the context of control theory, a similar concept to
the basin of survival is the viability kernel defined by
Aubin et. al. in the context of viability theory [4, 5].
They introduce the notion of an environment K that con-
tains all desirable states. Within the environment, there
is the so-called viability kernel V [7, 18] as the set of all
initial conditions from which the system can stay within
the environment. This basically is a more general version
of our infinite-time basin of survival for non-deterministic
systems or systems with multiple evolution paths and a
management process. Consequently, K r V corresponds
to the set of finite-time surviving states in determinis-
tic systems. The viability kernel’s volume is proposed
as a measure of the degree of viability [5], in the limit
of no control it thus reduces to our total survivability.
However, we are not aware of numerical applications for
deterministic systems in the context of viability theory.

Just as in the case of basin stability, we find that it
is advantageous to restrict our attention to the volume
rather than the geometry of the set of surviving states.
The numerical and analytic simplifications open up the
application of these concepts to many interesting sys-
tems.

III. ANALYTIC RESULTS FOR LINEAR
SYSTEMS

An important special case, which is tractable ana-
lytically, is the total survivability S for the case of
a linear dynamic in X = RN , the Lebesgue measure
Vol(X) =

∫
X

dxN , and a polyhedral sunny region given
by m linear conditions yk · x(t) < 1 for a set of vectors
yk, k = 1 . . .m in RN . In this case we can give a lower
bound on Vol(XS

∞) that is easy to evaluate.
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In this section we briefly give the results we actually
make use of in the applications in Sec. IV C and V. There
we demonstrate that the semi-analytic bound captures
the survivability of the system quite accurately in prac-
tical examples. In appendix B we show detailed deriva-
tions, as well as further analytic results.

Consider a linear system of ordinary differential equa-
tions

ẋ(t) = Lx(t) (7)

with x ∈ X = RN and L ∈ RN×N with all eigenval-
ues having non-positive real parts. In general, L has a
complex spectrum. The eigenvectors vj of the complex
eigenvalues are real or come in complex conjugate pairs,
from which we pick one eigenvector each. We then define
the N×N matrix V by stacking the eigenvectors, or their
real and imaginary parts respectively, against each other
as column vectors:

V = [v1, . . . ,Re (vj′), . . . ,−Im (vj′), . . . ]. (8)

This allows us to translate initial conditions into the
eigenvector basis by setting c′ = V−1x(0), and combining
c′j′ into complex numbers as appropriate cj′ = c′j′ + ic′j′′ .
Then the trajectory describes an exponential decay along
the real eigenvectors and an inward spiral in the Re (vj′),
Im (vj′) plane that is parametrized by cj′ . We can then
obtain an upper bound for the inner product of the tra-
jectory starting at x(0) with a boundary vector yk by
maximizing the contribution of each motion separately.

Now, setting ykj := yk ·vj for vj real, and ykj := |yk ·vj |
for vj complex, this leads to the estimate:

max
t∈[0;∞[

|yk · x(t)| ≤
n0∑
j=1

ykjcj

+

nr∑
j=n0+1

max(0, ykjcj)

+

n∑
j=nr+1

ykj |cj | (9)

where the first sum is over real eigenvectors corre-
sponding to null eigenvalues, the second is over nonzero
real eigenvectors and the last is over the complex eigen-
vectors.

Setting the right hand side of Eqn. 9 smaller than 1
defines a region Vc in RN spanned by the real and imag-
inary parts of the coefficients cj . It then follows that:

Vol(XS
∞) ≥

√
detVVTVol(Vc) . (10)

The inequalities Eqn. 9 together with the matrix V
can be used to efficiently estimate the total survivability
as well as the conditional survivability. Remarkably, for

systems with purely imaginary spectrum, the bounds of
Eqn. 9 and Eqn. 10 hold with equality.

In appendix B we also derive a lower bound for Vol(Vc).
This lower bound demonstrates that for the surviv-

ability of a linear system, the eigenvectors play a crucial
role. In fact, the eigenvalues do not enter the bound at
all, except in terms of classifying the corresponding eigen-
vectors in separate classes. This demonstrates that the
survivability captures substantially different information
about the linear system than eigenvalue based stability
and resilience measures like relaxation time, or the mas-
ter stability function.

IV. THREE PARADIGMATIC MODEL
SYSTEMS

A. A carbon cycle model from climate science

In order to demonstrate the potential of the survivabil-
ity concept, we apply it to a two-dimensional carbon cycle
model from climate science which has been recently in-
troduced [2]. This is a conceptual model with the aim to
reproduce the non-linear dynamics of the carbon cycle in
the Earth system. The boundaries of the survival region
are closely related to the concept of planetary boundaries
[31].

The model equations for the atmospheric (ca), marine
(cm) and terrestrial (ct) carbon stocks are given by

ċm = αm (ca − βcm) (11)

ċt = NEP (ca, ct)− αct
ca = 1− cm − ct

where αm denotes the atmosphere-ocean diffusion coef-
ficient, β the carbon-solubility in sea water factor, α the
human terrestrial carbon offtake rate and NEP (ca, ct)
the net ecosystem production, a complex non-linear rela-
tionship between the atmospheric and terrestrial carbon
stocks (see [2] for further details). Note that the total
amount of carbon is kept constant, leavings us with the
marine (cm) and terrestrial (ct) carbon stocks as inde-
pendent variables.

Part of the phase space of the model are states with
virtually no terresstrial carbon, so-called desert states.
While the model can recover from such states and even-
tually reach high terrestrial carbon states again, entering
such a state would lead to the collapse of human civiliza-
tion and thus, tragically, our model would no longer be
valid after entering this regime. Hence, we define the set
of desirable states X+ as the complement of the desert
states plus a safety margin m:

X+ = {(ca, cm, ct) ∈ X : ct > m} . (12)

The finite-time basin of survival is given by

XS
t = {(ca, cm, ct) ∈ X : ∀

0<t′≤t
ct(t
′) > m} . (13)
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The safety margin should at no time, during the tran-
sient or asymptotic behavior, be crossed.

0.0 0.2 0.4 0.6 0.8 1.0
cm
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0.8

1.0

c t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
in

.o
fc

t
Figure 2. Phase space analysis with α = 0.1. (Color
online.) For each initial condition, the color indicates the
minimum terrestrial carbon stock over the whole time evo-
lution. An example trajectory with a long excursion to the
desert state (ct < m) is plotted in blue, the stream plot in-
dicates the vector field of the right-hand-side (cf. Eqn. 11).
The dashed black line indicates the value of the safety margin
m = 0.1.

A phase plane analysis for this model is illustrated in
Fig. 2. Of special importance here are those trajectories
(exemplified by the blue trajectory in Fig. 2) that first
cross the safety margin, i.e. are not desirable due to the
very low terrestrial carbon stocks ct, but eventually will
return to the save operating spaceX+. These trajectories
are counted for the basin stability estimation, since they
eventually approach the attractor, but are disregarded
for the survivability, since they cross the safety margin
during the transient period.

Note that in this case we estimate a finite-time sur-
vivability for the entire simulated time evolution of the
system. Given that the asymptotic behavior sets in ear-
lier than the simulation ends, this is a good estimate for
the infinite-time survivability.

By varying the human carbon offtake α in Eqn. 11,
the system undergoes a bifurcation changing the num-
ber of attractors (around α = 0.35) as illustrated in
Fig. 3. While this bifurcation, which is known to be a
saddle-node bifurcation [2], has a drastic impact on the
basin stability estimation, the survivability only changes
marginally in this interval. On the other hand, the
behaviour in the interval α ∈ [0; 0.35] shows how the
basin stability estimation becomes insensitive to system
changes if the multistability is lost, i.e. if there is only a
single attractor (in this case with non-zero ct). The cru-
cial question whether trajectories stay in a safe regime
is thus not captured by the basin stability measure, but
can be answered with the survivability concept.

In [20] it was argued that basin stability can also serve

0.0 0.1 0.2 0.3 0.4 0.5

human terrestrial carbon offtake

0.0

0.2

0.4

0.6

0.8

1.0

basin stability
survivability

Figure 3. Variation of human carbon offtake: (Color
online.) Basin stability and survivability estimates for differ-
ent values of the terrestrial human carbon offtake α. For the
survivability estimation we assumed a safety margin m = 0.1

as a better early warning indicator of a tipping point
than other measures. Here we see that a survivability
estimation mirrors the trend in the system’s behavior,
i.e. how the set of surviving states depends on system
parameters, while the basin stability remains fixed at its
plateau value. Hence, survivability can serve as a com-
plementary, and in some scenarios better early warning
sign than basin stability.

B. Network of integrate-and-fire Oscillators

Figure 4. Survivability for pulse-coupled neuronal net-
works: (Color online.) Finite-time survivability S(t) for
given survival times t vs. the network parameter p. For each
value of p we average over an ensemble of 100 network real-
izations, each with randomly drawn initial conditions.

As another motivational example we consider a net-
work of N pulse-coupled oscillators [11, 15, 22]. In the
network every oscillator j = 1 . . . N is connected to an-
other oscillator i 6= j by a directed link with probability
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p. A phase variable φj(t) ∈ [0, 1] specifies the state of
each oscillator j at time t. The oscillators interact on
a directed graph by sending and receiving pulses. After
a delay time τ this pulse induces a phase jump in the
receiving oscillator i which depends on its instantaneous
phase φi(t+ τ), the excitatory coupling strength εij ≥ 0,
and on whether the input is sub- or supra-threshold (cf.
appendix A).

We now study the convergence from arbitrary initial
conditions to periodic orbit attractors, in which several
synchronized groups of oscillators (clusters) coexist [41].

The finite-time survivabilities for a directed network
of N = 16 pulse-coupled oscillators in dependence on
the average connectivity p are illustrated in Fig. 4. For
each value of p we create an ensemble of 100 network
realizations. The randomly chosen initial phase vectors
for each realization are distributed uniformly in [0, 1]N .

Here it is not meaningful to apply the concept of basin
stability, since all different network realizations with their
associated initial conditions eventually lead to a fully syn-
chronous state. However, our concept of survivability re-
veals the highly non-linear, non-monotonic dependence
on the network connectivity p. While the survivability of
transient dynamic states is small for networks with low
and high connectivity values p, it becomes very large for
intermediate connectivities, even for only weakly diluted
networks (Fig. 4). The finite-time survivability reveals
a new, collective time scale that is much larger than the
natural period, 1, of an individual oscillator and the delay
time, τ , of the interactions.

These long, irregular transients are the main prop-
erty of interest for the system, motivating their study
in [41]. The dependence of the average lifetime of the
transient chaotic trajectories on p was already studied
ibidem. Survivability basically reveals the same informa-
tion, but in the sense of an intrinsic resilience against
synchronization. If the system is subject to repeated
stimuli/perturbations with time interval ∆t, the prob-
ability to survive without the oscillators synchronizing
in between these stimuli is exactly S(∆t). Survivability
again is a natural and informative measure of resilience
in this system, however, this time not against perturba-
tions, but against getting trapped in an unwanted boring
corner of phase space.

C. The two-node power grid

Power grids are subject to a variety of failures and
perturbations and there are numerous studies concern-
ing asymptotic stability analysis, e.g. [9, 23], and recent
approaches to a non-linear stability assessment [19, 33].
However, contrary to common model assumptions, the
dynamical system does usually not evolve freely after a
perturbation. If the system does not return to a sta-
ble operating state after a typical time span of a few
seconds or if predefined thresholds are exceeded, control
mechanisms that would require independent modelling
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Figure 5. Phase space classification: (Color online.) The
central green area is the infinite-time basin of survival, while
the yellow and red areas contain finite-time surviving states.
The union of the blue, yellow and green regions is the fixed
point’s basin of attraction, while trajectories starting in the
white or red regions approach the limit cycle solution. The
frequency threshold is set to ωcrit. = ±5.
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Figure 6. Simulated maximum frequency deviations:
(Color online.) Field of maximum frequency deviations mea-
sured over the time evolution of the two-node power grid
(Eqn. (14)) for each initial condition. For comparison with
Fig. 5, we give the basin of attraction’s boundaries in red.

are triggered.

The long-term behavior and stability of the system is
thus a question for control theory rather than just dy-
namics. Conversely, the transient dynamics, and the
question whether there is a temporary amplification of
perturbations, is critical to whether the control has to be
activated in the first place, or the system is intrinsically
resilient to such perturbations.

Before we are going to apply the survivability concept
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Figure 7. Approximated maximum frequency devia-
tions: (Color online.) Analytic upper bound for the maxi-
mum frequency deviation (Eqn. (9)) of the linearized system.
For comparison with Fig. 5, we give the basin of attraction’s
boundaries in red.

to a large power grid network, we pick the smallest possi-
ble system, consisting of only one pair of a generator and
a motor, as an illustrative example. The basic dynamics
is given by the two-dimensional system

φ̇ = ω

ω̇ = 2P − αω − 2K sinφ (14)

where φ and ω are the phase and phase velocity differ-
ences between the generator and the motor. Given that
P < K and α ≤ πP/(4

√
K) the system is bistable with

the coexistence of a stable focus (node) and a limit cycle
[16]. Here we choose P = 1, K = 6 and α = 0.1. The
fixed point corresponds to the stationary operating state,
whereas the limit cycle solution (frequency oscillations)
is a state that needs to be prevented in order to avoid the
tripping of generators. Frequency deviations are usually
kept very small in real power grids, with typical thresh-
olds of ±0.2 Hz [37]. Here, we work with ±0.15 Hz which
is safely below that critical threshold and corresponds to
a phase velocity deviation of |ω| ≈ 5 in our units.

The basin of attraction of this system is illustrated
in Fig. 5. Concerning survivability, there is a subdivi-
sion in three different sets. The sunny region contains
infinite- (central green region) and finite-time surviving
states (yellow and red regions in the band). Trajectories
commencing from the remaining states within the basin
of attraction (blue region) eventually reach the attractor
asymptotically. Note that there are also finite-time sur-
viving states outside the basin of attraction (red region).

In contrast, Fig. 6 shows the maximum frequency devi-
ation of a trajectory starting at a particular point. Mea-
suring this bound for a sample of initial conditions can
be used to determine the infinite-time basin of survival.

For comparison, Fig. 7 shows the analytic bound (Eqn. 9)
applied to the linearization of Eqn. 14.

There is good agreement between the upper bound and
the measured maximum frequency deviations within the
basin of attraction, close to the fixed point. The lin-
earized dynamics is, of course, not multistable. Hence
the bound must fail at the basin boundaries, where mul-
tistability becomes the defining feature. Further it can
not take into account the periodicity of the phase space,
we have to limit the linearized phase space to ±π around
the fix point by hand.

If we consider the allowed region to be defined by the
maximum frequency deviation, the level lines of Fig. 6
and Fig. 7 denote the simulated and approximated basin
of survival. We can observe a few initial features here:

• As pointed out above in Sec. II, the basin of at-
traction contains the infinite-time basin of survival,
if the undesired attractor lies entirely outside of
the allowed region X+ defined by the frequency
bounds.

• For realistic small deviations, the upper bound ap-
plied to the linear approximation provides an ex-
cellent picture of the infinite time basin of surviv-
ability. The fact that the behaviour at large phase
perturbations is not captured accurately is irrele-
vant to measuring S in this case.

• Finite-time and infinite-time surviving states can
easily be distinguished in the above case numeri-
cally, as the former are short-lived in comparison
to the simulation time. This feature might not sur-
vive in systems in which very different time scales
are important.

V. APPLICATION: GENERAL POWER GRIDS

We can now turn to the motivating application of the
concept of survivability, realistic power grids as modelled
by a system of coupled swing masses. We will study the
single node basin of survival, that is, the conditional basin
of survival on the product of a fixed point of the dynamics
and the phase space of a single node of the power grid in
the sense of Eqn. 3. We will describe the space that the
survivability is conditioned on further down.

The network of coupled swing masses approach is the
current standard baseline model for the frequency dy-
namics of power grids. It is known as the swing equa-
tion or the second order Kuramoto model, and is used
for short-term frequency stability studies in power grids.
The various ways in which a power grid can be modelled
using the swing equation are discussed in [25]. Limits to
its applicability are discussed, for example, in [38].

All our simulations are performed with at least 300
samples, leading to a SEM of less than 0.03 for S(t) =
0.5 in the worst case (cf. Sec. II B). We evaluate the
survivability up to t = 100, at which point a steady state
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has typically been established, and the asymptotic value
of the survivability is reached.

While basin stability captures the overall ability of the
system to avoid permanent frequency oscillations, it does
not directly capture the resilience of the system against
large perturbations. Instead, as discussed above for the
two node system, it is the ability of the system to keep
perturbations under fixed frequency thresholds which is
crucial. As for the two-node system in the previous sec-
tion, we will study this form of resilience using both nu-
merical simulations and the analytic approximations we
have derived. The former will allow us to compare the
survivability of the system to its basin stability, the latter
to assess the accuracy of our bounds.

A. The Power Grid Model

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0S
Figure 8. Scandinavian power grid: (Color online.) Net-
work topology of the Scandinavian power grid. The nodes’
colouring indicates the respective single-node survivability es-
timate. The frequency threshold is chosen as ωcrit. = ±5 and
initial conditions correspond to perturbations at a single node
of the network sampled from the product set [−π;π]× [−5; 5].
We randomly selected a dispatch scenario, circular nodes are
net generators, squares are net consumers.

The dynamical system is given as

φ̇i = ωi

ω̇i = Pi − αiωi −
N∑
j=1

Kij sin (φi − φj) (15)

with Pi being the net input power/consumption, αi the
electromechanical damping at node i and Kij as the ca-
pacity of the link i – j. Here we choose Pi = 1 for net
generators, Pi = −1 for net consumers, and a uniform
distribution of αi = α = 0.1.

The grid topology is that of the Scandinavian power
grid [19], where we chose the nonzero Kij equal to 6,
corresponding to an average transmission line length of
200 km. The network consists of N = 236 nodes and
320 links, corresponding to a mean degree of k̄ = 2.7.
Hence, the Scandinavian power grid has a sparse network
topology with only a few neighbours per node on average,
which is typical for power grids in general, independent
from the number of nodes [32].

A stable operating state of the power grid is a fixed
point of the dynamics with no frequency deviation,
(φ∗, 0) := (φ∗1, . . . , 0, . . .). The space we use to study the
resilience of a single node n, given the current operating
state of the system, is the space of states given by:

Cn = {(φ∗1, . . . φn, . . . , φ∗N , 0, . . . , ωn, . . . , 0)

|φn ∈ [0, 2π), ωn ∈ R} (16)

The desirable region being defined as ∀i : |ωi| < 5,
which, as explained above, is chosen to mirror realistic
constraints. Concretely, this means that we construct
initial conditions by setting φi and ωi to the value of the
fixed point φ∗i and 0, for all nodes other than the node n
we are studying, and to a random phase in [−π;π] as well
as a random frequency deviation in [−5; 5] for the node n.
Then we simulate the system up to t = 100 and observe if,
and if, when, any of the frequency deviations ωi exceeds
the threshold of the desirable region. In this way we
sample 300 trajectories to estimate Sn(t) := SCn(t).

In Fig. 8 we show the geographically embedded Scandi-
navian grid topology. The color of each node corresponds
to the single-node conditional survivability Sn(t = 100).
As could be expected, different nodes exhibit vastly dif-
ferent resilience to perturbations. We postpone a detailed
study of the impact of the network topology on surviv-
ability for future work. Instead we now turn to the ques-
tion whether the semi-analytic bounds on the dynamics
linearized around the fixed point, can accurately mirror
the single-node survivability Sn(t = 100).

Defining φ := (φ1, . . . , φN )
T

, ω = (ω1, . . . , ωN )
T

and
α := diag(αi), the linearized dynamics is given by the
Jacobian

(
φ̇
ω̇

)
=

(
0 IN
L −α

)(
φ
ω

)
(17)

where the lower left block (∂φ̈i/∂φj) can be identified
with the Laplacian matrix (linearized around the fixed
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point (φ∗, 0)) given by

Lij = δij

N∑
m=1

Kim cos (φ∗i − φ∗m)−

Kij cos
(
φ∗i − φ∗j

)
(18)

The Jacobian has two real eigenvalues, namely λ1 = 0
and λ2 = −α corresponding to the eigenvectors (φ, ω)1 =
(1, . . . , 0, . . .) and (φ, ω)2 = (−1/α, . . . , 1, . . .). The first
is the linearized version of the rotational symmetry of
the system under shifting all elements of φ by the same
amount φs: φi 7→ φi + φs. The second corresponds to
a homogeneous shift of all oscillator’s frequencies, which
does not affect the phase differences, and decays expo-
nentially due to the damping term. The remaining part
of the spectrum consists of N − 1 pairs of complex con-
jugated eigenvalues.

B. Results
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Figure 9. single-node phase space classification: (Color
online.) The central green area resembles the infinite-time
basin of survival, while the yellow and red areas contain finite-
time surviving states. The union of the blue, yellow and green
regions resembles the synchronous state’s basin of attraction,
while trajectories starting in the white or red regions approach
different attractors. The frequency threshold is chosen as
ωcrit. = ±5 and initial conditions correspond to perturba-
tions at a single consumer node of the network.

As in the two-node case, a large part of the single-
node basin of attraction is centred around the fixed point
(φ∗, 0), cf. Fig. 9. Within this region we expect the
linear approximation to provide a lot of information on
the system.

Regarding survivability, Fig. 10 shows that the fre-
quency deviations inside the basin of attraction do in-
deed become large. The shape of the level lines of the
frequency deviations corresponds to the basins of sur-
vival for different frequency constraints. The distorted
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Figure 10. Simulated maximum frequency deviations:
(Color online.) Field of the maximum frequency deviations
along all dimensions, measured over the time evolution of the
system for initial conditions that correspond to perturbations
at a single node of the network. For comparison with Fig. 9,
we give the basin of attraction’s boundaries in red.
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Figure 11. Approximated maximum frequency devia-
tions: (Color online.) Analytic upper bound for the max-
imum frequency deviation (Eqn. 9) for the linear approxi-
mation. For comparison with Fig. 9, we give the basin of
attraction’s boundaries in red.

shape with the flat upper line is due to the fact that the
basin of survival is bounded by in-spiraling trajectories
starting at the edge of the desirable region.

Fig. 11 shows the bound for the frequency deviation of
the linearized dynamics calculated according to Eqn. 9.
This shows a good qualitative agreement with the actu-
ally simulated frequency deviations as long as the bound-
aries are relatively small. Still, the impact of the nonlin-
earity (e.g. multistability is not captured) on the system
becomes apparent, especially further away from the fixed
point.

Indeed Fig. 12 shows that there is a high correlation
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Figure 12. Simulated vs. approximated single-node
survivability: (Color online.) Scatterplot of the simulated
vs. approximated single-node survivability (cf. Eqn. 9) esti-
mated for all nodes in the Scandinavian power grid (ωcrit. is
indicated in the legend). The corresponding distributions are
given besides.

between the lower bound of the survivability of the lin-
ear system calculated according to Eqn. 9 and the actual
survivability at the majority of nodes for realistic val-
ues of frequency deviations. What exactly gives rise to
the outliers far below the diagonal will require further
study. Note that the computational cost of calculating
the bounds on the maximum frequency deviation for a
sample of initial conditions is many orders of magnitude
lower than the numerical estimate of the survivability via
simulations of the actual time evolution. For a realistic
network size of several hundred nodes, the calculations
can be performed on a laptop computer in less than a
minute, whereas the survivability took about a day on
200 nodes of a computing cluster.

Finally Fig. 13 shows the single-node basin stability
SNBS as well as the single-node survivability of nodes
in the Scandinavian power grid. We see that there is no
significant correlation between the two quantities. This
proves the point that the asymptotic behaviour of the
system is not a strong indicator of the transient be-
haviour, at least in the case of power grids. The informa-
tion we obtain from the survivability analysis is genuinely
new information.

VI. CONCLUSIONS

Survivability is a resilience, respectively stability con-
cept, that occupies a conceptually novel space between
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Figure 13. Single-node basin stability vs. single-node
survivability: (Color online.) Scatterplot of the single-node
basin stability vs. single-node survivability (ωcrit. is indicated
in the legend) estimated for all nodes in the Scandinavian
power grid. The corresponding distributions are given be-
sides. Note that we have chosen the initial region X0 for
single-node basin stability with |ω| < 100, the same region as
in [19].

basin stability and other linear methods of asymptotic
stability analysis.

It applies to linear and non-linear systems, in the ab-
sence and presence of multi-stability. It focuses on tran-
sient rather than asymptotic behaviour, and incorporates
exogenous information via setting a desirable region for
the system dynamics. Further, survivability can be esti-
mated numerically at low computational costs, compara-
ble to or even lower than for estimating basin stability.

For linear systems we provide easy to evaluate analytic
and semi-analytic expressions for lower bounds of the sur-
vivability, with a trade-off between quality of the bound
and numerical cost for evaluating the analytic expression.
These eliminate the need to simulate the system, yielding
further dramatic improvements in computational cost.

The bounds we find demonstrates that the survivabil-
ity depends crucially on the eigenvectors of the linear
dynamics, rather than the eigenvalues. It is an effective
measure of the interaction between external constraints
and the geometry of the dynamics in its phase space. The
fact that the bound is tight, exactly when the analysis
of asymptotic stability using the eigenvalues of the lin-
earized system fails, shows that the survivability is gen-
uinely complementary to eigenvalue-based stability con-
cepts.

To explore this measure in practice we analyze three
conceptual examples. Using a two-dimensional carbon
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cycle model we see that survivability accurately shows
the presence of dangerous transient behavior in the
model, something that basin stability can not detect.
Consequently it also allows us to see the trend towards
the dangerous behavior becoming more common much
earlier than basin stability, suggesting that it could im-
prove on basin stability as a complementary early warn-
ing signal for tipping points. Just as for basin stability,
the problem of evaluating the survivability from data re-
mains a challenge for future work.

In the case of neuronal networks, the transients do
not arise from a perturbation around a desirable state.
Rather, the main interest lies on the transients them-
selves. Survivability reveals the same qualitative de-
pendence of the dynamical behaviour on the underlying
network topology as the average length of the transient
studied in [41]. Beyond that considering S(t) at fixed
t as a function of the underlying topological parameters
enables us to look in more detail into the relationship
between function and structure of pulse coupled oscila-
tor networks. In contrast to the average length of the
transients, the survivability also has a direct conceptual
interpretation as the probability of the system remain-
ing in the interesting transient regime. Thus it captures
the approriate notion of resilience of the transient chaos
against the global attractor.

The third conceptual example is a two-node power grid
system. There we can see en detail the interplay between
the semi-analytic bounds, that we developed, and the
fully non-linear system.

This sets the stage for actually applying the surviv-
ability concept to the case of a realistic power grid. We
demonstrate that survivability under realistic constraints
captures information about the system not contained in
the basin stability estimate. We also demonstrate that
the semi-analytic lower bounds, are strongly correlated
with the simulations of the non-linear dynamics. Thus
they contain much of the relevant information about the
system. In strategic power grid development studies, this
fact becomes particularly important as computational
power is often at a premium, due to the need to sim-
ulate a wide range of divergent future scenarios of the
energy transition. Dynamical properties outside of quasi-
stationary calculations, can only be taken into account if
efficient estimators exist, it is not feasible to run simula-
tions. Thus our lower bounds, which eliminate the need
for such simulations, potentially enable a more system-
atic way to investigate the impacts of the energy transi-
tion. In particular, the influence of changing topologies
and different distributions of dynamical parameters on
the dynamics of the power grid become computationally
accessible.

For the application to power grids, there are many
more operational conditions on the system’s behavior
that we do not consider here. While not all of these are
as amenable to analytic considerations as the frequency
deviation, we anticipate that it will still be possible to
find cheap analytic boundaries for them. The reason that

we could calculate the lower bounds so easily is that the
phase space geometry is encoded in an efficient way in
the eigenvectors. This aspect will carry over to many
other, more complicated exogenous boundaries.

The work presented here thus opens up a plethora of
new avenues of research. On the theoretical side, the ex-
istence of a closed form lower bound on the survivability
of a linear system opens the door to study the surviv-
ability as a function of the network topology and system
parameters analytically, especially for the optimisation of
these parameters to increase the system’s resilience. The
lower bounds presented here can certainly be improved
by taking the more detailed geometry of the trajectories
of the linear system into account. It will also be impor-
tant to extend them to the types of bounds we have in
more realistic power grid models.
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Appendix A: Pulse-Coupled Integrate-and-Fire
Oscillators

Firstly, the free dynamics of an oscillator j is given by

φ̇j(t) = 1 . (A1)

When an oscillator j reaches the threshold, φj(t) = 1,
its phase is reset to zero, φj(t

+) = 0, and the oscillator
emits a pulse that is sent to all oscillators i possessing an
in-link from j. After a delay time τ this pulse induces a
phase jump in the receiving oscillator i according to

φi((t+τ)+) := min

(
1,

ebεij − 1

eb − 1
+ ebεijφi(t+ τ)

)
(A2)

The phase dependence is determined by a twice con-
tinuously differentiable function U(φ) that is assumed
to be strictly increasing, U ′(φ) > 0, concave (down),
U ′′(φ) < 0, and normalized such that U(0) = 0 and
U(1) = 1.

This model, originally introduced by Mirollo and Stro-
gatz [22], is equivalent to different well known models of
interacting threshold elements if U(φ) is chosen appro-
priately. Here we take functions of the form

Ub(φ) = b−1 ln(1 + (eb − 1)φ), (A3)

where b > 0 parameterizes the curvature of U , that
determines the strength of the dissipation of individual
oscillators. The function U approaches the linear, non-
leaky case in the limit limb→0 Ub(φ) = φ. Other nonlinear
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choices of U 6= Ub give results similar to those reported
above.

The considered graphs are strongly connected, i.e.
there exists a directed path between any pair of nodes.

We normalize the total input to each node
∑N
j=1 εij = ε

such that the fully synchronous state exists. Further-
more for any node i all its ki incoming links have the
same strength εij = ε/ki.

Appendix B: Derivation of Analytic Bounds

As noted in the main text, the survivability of a linear
system is amenable to analytic study. In this appendix
we will give a detailed derivation of the results used in
the main body of the text as well as some closely related
ones.

1. Definitions:

We consider the case of a linear dynamic in X = RN ,
the standard Lebesgue measure Vol(X) =

∫
X

dxN and
a polyhedral sunny region given by m linear conditions
yk · x(t) < 1 for a set of vectors yk, k = 1 . . .m in RN .

The dynamics is given by a linear system of ordinary
differential equations

ẋ(t) = Lx(t) (B1)

with x ∈ X = RN and L ∈ RN×N . In general, L has
a complex spectrum, and we assume that all eigenvalues
have non-positive real part. We denote the number of real
eigenvalues of L as nr, the number of pairs of complex
conjugate complex eigenvalues nc. Then we have a total
of n = nr + nc independent eigenvalues and nr + 2nc =
N . We denote the eigenvalues as λi and λi, and the
corresponding eigenvectors as vi and vi respectively.

Assuming that the real and imaginary parts of the
eigenvectors of L span the entire space X, the general
solution to the dynamical equations are then given by
the matrix exponential

x(t) = eLtx(0)

=

n∑
j=1

Re
(
cje

λjtvj
)

=

nr∑
j=1

cje
λjtvj +

n∑
j=nr+1

Re
(
cje

λjtvj
)
, (B2)

where the coefficients cj are real for j ≤ nr and com-
plex above. To determine them we introduce a conve-
nience map ι as follows:

ι : Rnr ⊗ Cnc → RN

ι(c)j =


cj if j ≤ nr
Re (cj) if nr < j ≤ nc
−Im

(
c(j−nc)

)
if nc < j .

(B3)

This is a real-linear map. Then we can define the real
matrix V as:

V =[v1, . . . , vnr
,

Re (vnr+1), . . . ,Re (vn),

−Im (vnr+1), . . . ,−Im (vn)]. (B4)

and obtain

x(0) = (V ◦ ι) (c) , (B5)

which can be readily inverted as we assumed V to have
full rank.

2. Upper bound on the deviation of a single
trajectory.

The inner product of x(t) with a boundary vector y ∈
RN is then simply given by:

y · x(t) =

nr∑
j=1

cje
λjty · vj +

nr+nc∑
j=nr+1

Re
(
cje

λjty · vj
)

(B6)

Now, to obtain an upper bound on this for all times we
can maximize each individual contribution. As the eigen-
values have non-positive real part each complex contri-
bution has magnitude of at most |cjy ·vj |. The maximum
of the real contribution depends on the sign of cjy ·vj and
is given by

max(0, cjy · vj) (B7)

unless λj = 0 in which case the contribution is exactly
equal cjy · vj . While this does not happen generically
it occurs due to symmetries in the system, and thus we
will treat it separately. We denote the number of zero
eigenvalues by n0. We have:

max
t∈[0;∞[

|y · x(t)| ≤
n0∑
j=1

cjy · vj

+

nr∑
j=n0+1

max(0, cjy · vj)

+

n∑
j=nr+1

|cjy · vj | . (B8)
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This is the key approximation for our analysis. In the
next section we will use this estimate to give a lower
bound for the total survivability, afterwards we will show
when this bound becomes tight.

3. A lower bound for the total survivability

For a boundary vector yk let us define ykj = yk · vj
for j ≤ nr and ykj = |yk · vj | for nr < j ≤ n. Then the
inequalities

n0∑
j=1

ykjcj +

nr∑
j=n0+1

max(0, ykjcj) +

n∑
j=nr+1

ykj |cj | < 1

(B9)
define a region Vc in Rnr⊗Cnc that is mapped to a subset
of XS

∞ by the linear transformation V◦ι. This is a subset
of XS

∞ as the initial conditions in this region have an
inner product with the boundary vectors yk bounded by
Eqn. B8. Thus, taking the effect of the transformation V
into account, we have the lower bound

Vol(XS
∞) ≥

√
detVVTVol(Vc) . (B10)

This bound can be evaluated numerically quite easy.
All that is needed is to sample X+ and take the fraction
of samples for which the image under the linear map
(V ◦ ι)−1 satisfies Eqn. B9. This also makes it very easy
to numerically estimate the lower bound of conditional
survivability, by sampling from C ∩X+ instead. In that
way, Fig. 7 and Fig. 11 were created.

In order to proceed with the analytic calculations we
have to consider further special cases. First we will show
that the bound Eqn. B10 is actually exact for some cases.

4. The case of vanishing real parts.

Let us now consider the case where the real part of all

λi is zero, and Im(λi)
Im(λj)

is irrational. Thus n0 = nr. In that

case the trajectory with initial conditions x(0) = V ◦ ι ◦ c
is dense on the torus:

T =


nr∑
j=1

cjvj + Re

 n∑
j=nr+1

cje
iφjvj

∣∣∣∣∣∣φj ∈ [0; 2π[

 (B11)

The maximum of the torus along the y direction is
obtained exactly by maximizing each contribution inde-
pendently, which means tuning the φi so that cje

iφj x̂ · vj
are real, thus the real part equals the absolute value:

max
φi∈[0;2π[

|y · T| ≤
nr∑
j=1

cjy · vj +

n∑
j=nr+1

|cjy · vj | (B12)

with equality if Im(λi)
Im(λj)

is irrational. Therefore, in this

case, the general bound Eqn. B8 holds with equality. We
have:

max
t∈[0;∞[

|y · x(t)| =
nr∑
j=1

cj(x0)y · vj +

n∑
j=nr+1

|cj(x0)||y · vj |

(B13)

and therefore also

Vol(XS
∞) =

√
detVVTVol(Vc) . (B14)

5. The purely imaginary case.

For the case nr = n0 = 0 we can give an explicit lower
bound for Vol(Vc). To do so, define ỹj = min

k
ykj . The

volume of the space Ṽc defined by the inequality

n∑
j=1

ỹj |cj | < 1 (B15)

is a lower bound for the volume of Vc. The two spaces
have the same volume if there is one condition that domi-
nates all others, that is, if there is a k′ such that ỹj = yk′j
for all j. This means that any trajectory that leaves
the allowed region also crosses the boundary defined by
x · yk ≤ 1.

We now need to evaluate the 2n = 2nc = N dimen-
sional integral

Vol(Ṽc) =

∫
Ṽc

n∏
j=1

dcrjdc
i
j , (B16)

with cj = cr + icij . We begin by changing dcrjdc
i
j to

polar coordinates rjdrjdφj and rescaling:
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Vol(Ṽc) =

∏
j

ỹ2j

∫∑
j rj<1

n∏
j=1

rjdrjdφj

= (2π)n
∫
∑

j rj<1

n∏
j=1

rjdrj . (B17)

The integral can now be written as

Vol(Ṽc) =

∏
j

ỹ2j

 (2π)n
∫ 1−

∑
j>1 rj

0

r1dr1

∫ 1−
∑

j>2 rj

0

r2dr2

∫ 1−
∑

j>3 rj

0

r3dr3 . . . . (B18)

This can be calculated by beta functions[26]:

Vol(Ṽc) =
(2π)n

(2n+ 1)!

∏
j

ỹ2j . (B19)

This finally means that we obtain the lower bound on
the region of total survivability of a linear system with

no real eigenvalues and all real parts of the eigenvalues
equal to zero of

Vol(XS
∞) ≥ (2π)n

(2n+ 1)!

√
detVVT

∏
j

ỹ2j . (B20)
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