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SUPERTROPICAL QUADRATIC FORMS II

ZUR IZHAKIAN, MANFRED KNEBUSCH, AND LOUIS ROWEN

Abstract. This article is a sequel of [4], where we introduced quadratic forms on a mod-
ule V over a supertropical semiring R and analysed the set of bilinear companions of a
quadratic form q : V → R in case that the module V is free, with fairly complete results
if R is a supersemifield. Given such a companion b we now classify the pairs of vectors in V

in terms of (q, b). This amounts to a kind of tropical trigonometry with a sharp distinction
between the cases that a sort of Cauchy-Schwarz inequality holds or fails. We apply this to
study the supertropicalizations (cf. [4]) of a quadratic form on a free module X over a field
in the simplest cases of interest where rk(X) = 2.

In the last part of the paper we start exploiting the fact that the free module V as above
has a unique base up to permutations and multiplication by units of R, and moreover V

carries a so called minimal (partial) ordering. Under mild restriction on R we determine all
q-minimal vectors in V , i.e., the vectors x ∈ V for which q(x′) < q(x) whenever x′ < x.
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Introduction

Let R be a semiring, here always assumed to be commutative and with 1. A quadratic

form on an R-module V is a function q : V → R with

q(ax) = a2q(x) (0.1)

for any a ∈ R, x ∈ V, such that there exists a symmetric bilinear form b : V × V → R (not
necessarily uniquely determined by q) with

q(x+ y) = q(x) + q(y) + b(x, y) (0.2)
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2 Z. IZHAKIAN, M. KNEBUSCH, AND L. ROWEN

for any x, y ∈ V. Every such bilinear form b is called a companion of q, and the pair (q, b)
is called a quadratic pair on V.
The present paper is devoted to a study of quadratic forms and pairs on R-modules with R

a “supertropical” semiring, often more specifically a “supersemifield”. It is a sequel to the
paper [4] by the same authors.
We recall ([4, Definition 0.3] and [1, §3]), that a semiring R is called supertropical if

e := 1R + 1R is an idempotent (i.e., 2 × 1 = 4 × 1), and the following axioms hold for
all x, y ∈ R :

If ex 6= ey, then x+ y ∈ {x, y}, (0.3)

If ex = ey, then x+ y = ey. (0.4)

Then the ideal eR of R is a semiring with unit element e, which is bipotent, i.e., for any
u, v ∈ eR the sum u+v is either u or v. It follows that eR carries a total ordering, compatible
with addition and multiplication, which is given by

u ≤ v ⇔ u+ v = v. (0.5)

The addition in a supertropical semiring is determined by the map x 7→ ex and the total
ordering on eR as follows: If x, y ∈ R, then

x+ y =











y if ex < ey,

x if ex > ey,

ey if ex = ey.

(0.6)

In particular (taking y = 0 in (0.6) or in (0.4))

ex = 0 ⇒ x = 0. (0.7)

For the convenience of the reader, we give more terminology. In a supertropical semiring R,
the elements of the set T (R) := R\ (eR) are called tangible, while those of the set G(R) :=
(eR) \ {0} are called ghost elements. The zero of R is regarded both as tangible and ghost.
The semiring R itself is called tangible if R is generated by T (R) as a semiring. Clearly,
this happens iff eT (R) = G(R). If T (R) 6= ∅, then the set

R′ := T (R) ∪ eT (R) ∪ {0}

is the largest subsemiring of R which is tangible supertropical. {We have discarded the
“superfluous” ghost elements.}
In the paper [4], the main thrust is the study of the set of all companions of a given

quadratic form q on a free module V over a supertropical semiring R. After fixing a base
(εi | i ∈ I) of V , this set can be described by use of a “companion matrix” (Ci,j(q)), cf. [4, §6].
For R a tangible semifield, complete results can be found in [4, §7]. Explicitly, these hard
results are needed in the present paper only in the proof of the initial key Theorem 1.5,
which for a first reading may be taken on faith.
The quadratic form q is called rigid, if q has only one companion. This happens iff

q(εi) = 0 for all vectors εi of the fixed base (εi | i ∈ I), cf. [4, Theorem 3.5]. q is called
quasilinear if the bilinear form b = 0 is a companion of q, i.e., q(x + y) = q(x) + q(y) for
all x, y ∈ V. These are the “diagonal” forms on V,

q

(

∑

i

xiεi

)

=
∑

i

q(εi)x
2
i , (0.8)

due to the fact that (λ+ µ)2 = λ2 + µ2 for all λ, µ ∈ R, cf. [4, Proposition 0.5].
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Any quadratic form q on a free R-module can be written as a sum

q = qQL + ρ, (0.9)

where qQL is a quasilinear (and uniquely determined by q) and ρ is rigid (but not unique),
cf. [4, §4]. We call qQL the quasilinear part of q and ρ a rigid complement of qQL in q.

The present paper is divided as follows. The first three sections are devoted to a study of
pairs of non-zero vectors (x, y) in anR-module V equipped with a quadratic pair (q, b),mostly
for R a tangible semifield. Sometimes we only assume that eR is a (bipotent) semifield. We
face an all important dichotomy. Either (x, y) is excessive (cf. Definition 1.6 below) or the
restriction q|Rx+ Ry of q is quasilinear. In the latter case, we also say that the pair (x, y)
quasilinear (with respect to q).
An intriguing point here is that this dichotomy does not depend on the choice of the

companion b of q, although b is used in the definition of excessiveness (cf. Corollary 1.7).
In Section 2, we delve into a kind of “tropical trigonometry”. If x and y are anisotropic,

i.e., q(x) 6= 0, q(y) 6= 0, we define a CS-ratio1

CS(x, y) :=
eb(x, y)2

eq(x)q(y)
∈ eR, (0.10)

which makes sense since eR is a semifield. When the set eR is densely ordered, then (x, y) is
excessive iff CS(x, y) > e. When eR is discrete, the pair (x, y) is excessive if CS(x, y) > c0,
with c0 the smallest element of eR bigger than e. But if CS(x, y) = c0, the pair (x, y) is
excessive if q(x) or q(y) is tangible, while (x, y) is quasilinear if both q(x) and q(y) are ghost
(cf. Theorems 1.5 and 1.12). It seems to us that this still somewhat mysterious fact bears
relevance for problems of an arithmetical nature in quadratic form theory, even over fields.
For any anisotropic vector w, the function x 7→ CS(x, w) is subadditive, cf. Theorem 2.6.

This fact has turned out to be of central importance in a (still incomplete) sequel [5] of the
present paper.
In §3, we compile tables of the function (λ, µ) 7→ q(λx + µy) on (R \ {0})2 for given

x, y ∈ V \ {0}, and then study in detail the CS-ratios CS(x′, y′) of pairs of vectors (x′, y′) in
Rx + Ry. This completes our account of tropical trigonometry in the present paper. First
applications show up in the later sections, but a more adequate language of “rays”,2 to use
this trigonometry conveniently, has to wait for the paper [5] due to lack of space here.
Sections §4–§7 of the paper are based on the following two facts for R-modules, valid over

any supertropical semiring R :

1) The Unique Base Theorem, cf. [4, Theorem 0.9]: Given a base (εi | i ∈ I) of a free
R-module V, we obtain any other base of V by permuting the εi and multiplying
them by units of R.

2) Existence of minimal orderings, cf. §5 below. Every R-module V carries a partial
ordering, called the minimal ordering on V, which is defined as follows:

x ≤ y ⇔ ∃z ∈ V : x+ z = y.

In particular, R itself has a minimal ordering. The minimal ordering on V is com-
patible with addition and scalar multiplication. Basics about the minimal ordering
on R and then on a free R-module are provided in §5.

1“CS” is an acronym of “Cauchy-Schwarz”.
2The ray of a vector x ∈ V \ {0} is the set of all y ∈ V with λx = µy for some λ, µ ∈ R \ {0}.
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The Unique Base Theorem is the source of our motivation for introducing supertropical-
izations of a quadratic form q : V → R on a free module V over a ring R by a so-called
supervaluation ϕ : R → U with values in a supertropical semiring U in [4, §9]. Given a
base L = (εi | i ∈ I) of V , we obtained a quadratic form q̃ : U (I) → U on the standard
free U -module U (I) by this process [loc. cit.], which in some sense measures L in terms of q
and ϕ. In §4 of the present paper, we study how q̃ varies with a change of the base L in the
simplest cases of interest, where I = {1, 2}.
Given a quadratic form q : V → R on a module V over a supertropical semiring R, we

call a vector x ∈ V q-minimal, if q(x′) < q(x) for every vector x′ < x (with respect to the
minimal ordering of V and R).3

In the last sections §6 and §7, we obtain a detailed description of all minimal vectors
and certain relations between them in the case that V is free and R is tangible supertrop-
ical with G(R) a cancellative monoid under multiplication (in particular, if R is a tangible
supersemifield).
Every q-minimal vector x ∈ V is trapped in a smallest submodule VJ =

∑

i∈J Rvi of V
with |J | ≤ 4, and thus it suffices to study q-minimal vectors in a given free module of rank
at most 4. In §6 we easily find all q-minimal vectors for |J | ≤ 2 (vectors of “small support”).
Then in §7 we prove that for |J | = 3 or |J | = 4 a q-minimal vector x is the maximum
y ∨ z of a pair of q-minimals y and z of small support which is uniquely determined by x,
except in one case, where y and z can be freely chosen in a triplet y1, y2, y3 of q-minimals of
small support, uniquely determined by x. Conversely, we find out which maxima y ∨ z of
q-minimals y, z with small support are again q-minimal.
The arguments in §6 and §7 may look massy due to the many case distinctions needed,

but the give a good illustration of the, as we feel, beautiful combinatorics at hands in any
supertropical quadratic space.

Notation 0.1. Let N = {1, 2, 3, . . .}, N0 = N∪{0}. If R is a semiring, then R∗ denotes the
group of units of R.
If R is a supertropical semiring, then

• T (R) := R \ eR = set of tangible elements 6= 0.

• G(R) := eR \ {0} = set of ghost elements 6= 0.

• νR denotes the ghost map → eR, a 7→ ea.

When there is no ambiguity, we write T , G, ν instead of T (R), G(R), νR.
For a ∈ R we also write ea = ν(a) = aν . a ≤ν b means that ea ≤ eb, a ∼=ν b (“ν-equivalent”)
means that ea = eb, while a <ν b means that ea < eb.

1. Pairs of vectors in a supertropical quadratic space

Definition 1.1.

a) A quadratic module over a semiring R is a pair (V, q) consisting of an R-module V
and a (functional) quadratic form q on V. Later we often will write a single letter V
instead of (V, q).

b) A supertropical quadratic space is a quadratic module over a tangible supersemi-
field.

3As usual, x′ < x means x′ ≤ x and x′ 6= x.
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We intend to study pairs of vectors in a supertropical quadratic space. Preparing for this
we slightly extend the notion of “partial” rigidity developed in [4, §3] (cf. [4, Definition 3.1]).
This makes sense over any supertropical semiring R.

Definition 1.2. Let (V, q) be a quadratic module over a supertropical semiring R. We say
that q is ν-rigid at a point (x, y) of V × V if

eb1(x, y) = eb2(x, y) (1.1)

for any two companions b1, b2 of q, and we say that q is ν-rigid on a set T ⊂ V × V or
on a set S ⊂ V, if this happens for all (x, y) in T or in S × S, respectively.

If the R-module V is free with base (εi | i ∈ I), then ν-rigidity of q at (εi, εj) means that
all β ∈ Ci,j(q) have the same ghost value, i.e., the set e ·Ci,j(q) is a singleton. We have seen
the phenomenon of ν-rigidity (beyond rigidity) already in equation (6.5) of [4, Theorem 6.9].

Assume as before that R is a supertropical semiring R, and that (V, q) is a quadratic
module over R. Given a pair of vectors (x, y) ∈ V × V , we have a unique R-linear map

χ := χx,y : Rε1 +Rε2 → V (1.2)

from the free R-module Rε1+Rε2 with base ε1, ε2 to V such that χ(ε1) = x, χ(ε2) = y. This
map χ composes with q : V → R to a quadratic form

q̃ := q ◦ χ : Rε1 +Rε2 → R. (1.3)

Proposition 1.3.

i) If b : V ×V → R is a companion of q, then the symmetric bilinear form b̃ on Rε1+Rε2
defined by

b̃(v1, v2) := b(χ(v1), χ(v2)) (v1, v2 ∈ V ) (1.4)

is a companion of q̃.

ii) If q̃ is rigid at (ε1, ε2), then q is rigid at (x, y).

iii) If q̃ is ν-rigid at (ε1, ε2), then q is ν-rigid at (x, y).

Proof. Claim i) follows directly from the definition of a companion in [4, §1] ([4, Defini-
tion 1.14]).
Claims ii) and iii) are immediate consequences of i). �

Concerning quasilinearity, we have a stronger statement.

Proposition 1.4. Given (x, y) ∈ V × V , the following are equivalent.

(i) q is quasilinear on Rx×Ry.

(ii) q is quasilinear on Rx+Ry.

(iii) q̃ is quasilinear on Rε1 × Rε2.

(iv) q̃ is quasilinear.

Proof. Condition (iii) means that 0 ∈ C1,2(q̃). Since 0 ∈ Ci,i(q̃) holds for i = 1, 2, it is clear
from [4, §5] that (iii) ⇔ (iv).

(ii) means that q is additive on Rx + Ry, while (iv) means that q̃ is additive. Thus
the equivalence (ii) ⇔ (iv) follows from the additivity and surjectivity of χ as a map from
Rε1 +Rε2 to Rx+Ry.
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(i) means that q(λx+ µy) = q(λx) + q(µy), and (iii) means that

q̃(λε1 + µε2) = q̃(λε1) + q̃(µε2)

for all λ, µ ∈ R (cf. [4, Definition 2.3]). Thus clearly (i) ⇔ (iii).
We conclude that all four conditions (i) – (iv) are equivalent. �

We are ready for a key theorem of the paper, emanating from [4, §7].

Theorem 1.5. Assume that R is a nontrivial tangible supersemifield and (q, b) is a quadratic
pair on an R-module V. Let (x, y) be a pair of vectors in V. We adhere to [4, Terminology 7.7].

a) Assume that R is dense. Then q is quasilinear on Rx+Ry iff

b(x, y)2 ≤ν q(x)q(y). (1.5)

Otherwise q is rigid at (x, y).

b) Assume that R is discrete with π a prime element of R.
Now q is quasilinear on Rx+Ry if either

b(x, y)2 <ν π−1q(x)q(y) (1.6)

or both values q(x), q(y) are ghost and

b(x, y)2 ∼=ν π−1q(x)q(y). (1.7)

Otherwise q is ν-rigid at (x, y). If

b(x, y)2 >ν π−1q(x)q(y) (1.8)

then q is rigid at (x, y).

Proof. By Propositions 1.3 and 1.4 above it suffices to prove these claims in the special case
that V is free with base ε1, ε2 and x = ε1, y = ε2. Now the results can be read off from [4,
Proposition 7.9] and [4, Theorems 7.11 and 7.12]. �

In order to obtain a better grasp on the contents of this theorem, we introduce more
terminology. As before R is a nontrivial tangible supersemifield.

Definition 1.6. Assume that (q, b) is a quadratic pair on an R-module V. We say that a
pair of vectors (x, y) ∈ V × V is excessive (w.r.t. (q, b)), if the following holds:

a) If R is dense, then

b(x, y)2 >ν q(x)q(y).

b) If R is discrete, then either

b(x, y)2 >ν π−1q(x)q(y),

or

b(x, y)2 ∼=ν π−1q(x)q(y)

and q(x) ∈ T or q(y) ∈ T .

Theorem 1.5, up to the rigidity statements there, can be reformulated as follows.

Corollary 1.7. A pair (x, y) ∈ V ×V is excessive with respect to (q, b) iff q is not quasilinear
on Rx+Ry.
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An intriguing point here is that the property “excessive” depends only on x, y, q.The choice
of the companion b has no influence, but, of course, is relevant for deciding by computation
whether (x, y) is excessive or not.
We state an easy consequence of Corollary 1.7.

Proposition 1.8. Let (x, y) and (x′, y′) be pairs of vectors in a quadratic space (V, q) over
a tangible supersemifield. Assume that (x′, y′) is excessive and Rx′ +Ry′ ⊂ Rx+Ry. Then
(x, y) is excessive.

Proof. Otherwise q would be quasilinear on Rx+ Ry. But this implies that q is quasilinear
on Rx′ +Ry′, a contradiction. �

We now relax the assumption that R is a tangible supersemifield and demonstrate that
several results obtained so far in the section remain valid in greater generality.

Convention 1.9. We only assume that R is a supertropical semiring and eR is a semifield,
i.e., every element of G = eR \ {0} is invertible in eR; hence G is a totaly ordered group.
Moreover we assume that eR is “nontrivial”, i.e., G 6= {e}. We do not assume anything
about T := R \ eR. (T may even be empty.) We call G discrete, if G contains a smallest
element c > e, which we denote by c0. (If R is a tangible supersemifield then c0 = eπ−1 in
the setting [4, Terminology 7.7].) Otherwise we call G dense.

Assume in the following that (q, b) is a quadratic pair on the R-module V. For the sake of
brevity we call a pair x, y of vectors in V \ {0} quasilinear if q is quasilinear on Rx× Ry,
equivalently if the restriction q|Rx× Ry of q is quasilinear.

Definition 1.10. We say that a pair of vectors x, y in V \{0} is CS (acronym for “Cauchy-
Schwarz”), if

b(x, y)2 <ν q(x)q(y). (1.9)

We call (x, y) weakly CS, if
b(x, y)2 ≤ν q(x)q(y) (1.10)

(a condition already appearing in (1.5)), and we call (x, y) almost CS, if

b(x, y)2 ≤ν cq(x)q(y) (1.11)

for all c > e in G. 4

Remark 1.11. Assume that (x, y) is almost CS. If G is dense, then (x, y) is weakly CS,
whereas if G is discrete, either (x, y) is weakly CS, or b(x, y)2 ∼=ν c0q(x)q(y).

We save a relevant part of Theorem 1.5 in the present more general situation.

Theorem 1.12. If either (x, y) is weakly CS, or (x, y) is almost CS and both q(x) and q(y)
are ghost, then (x, y) is quasilinear.

Proof. If (x, y) satisfies the assumptions of the theorem then so does (λx, µy) for all λ, µ ∈
R \ {0}. Thus in view of Proposition 1.4 it suffices to prove that

q(x+ y) = q(x) + q(y). (∗)

In general we have
q(x+ y) = q(x) + q(y) + b(x, y). (∗∗)

4In [3, §5] the terms “CS” and “weakly CS” have been used in a similar way for pairs of vectors with
respect to a (not necessarily symmetric) bilinear form.
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If b(x, y)2 <ν q(x)q(y), then either b(x, y) <ν q(x) or b(x, y) <ν q(y), and the summand
b(x, y) in (∗∗) can be omitted, giving (∗).

Assume now that b(x, y)2 ∼=ν q(x)q(y). If q(x), q(y) are not ν-equivalent, say q(x) <ν q(y),
then b(x, y)2 <ν q(y)2, hence b(x, y) <ν q(y), and again the term b(x, y) can be omitted
in (∗∗). If q(x) ∼=ν q(y) then we have b(x, y)2 ∼=ν q(x)2, hence b(x, y) ∼=ν q(x) ∼=ν q(y), and
the right hand side of (∗∗) equals eq(x) = q(x) + q(y). Thus (∗) holds again.

There remains the case that G is discrete and b(x, y)2 ∼=ν c0q(x)q(y). Now q(x)q(y) is not a
ν-square. We may assume that q(x) <ν q(y). Now c0q(x) ≤ν q(y). Hence b(x, y)2 ≤ν q(y)2,
and hence b(x, y) ≤ν q(y). If b(x, y) <ν q(y) we obtain (∗) from (∗∗) as before. Otherwise
b(x, y) ∼=ν q(y), and hence q(x + y) = eq(y) = q(x) + eq(y). Thus, if q(y) ∈ eR, then
q(x+ y) = q(x) + q(y). �

Remark 1.13. The bad case is that R is discrete, with c0q(x) ∼=ν q(y) ∼=ν b(x, y), perhaps
after interchanging x and y, and q(y) is tangible. Then q(x) + q(y) = q(y), while q(x+ y) =
q(y) + b(x, y) = eq(y).

Remark 1.14. Let P be any of the properties in Definition 1.10 (CS, . . . ) or – if R is a
tangible supersemifield – one of the conditions in Theorem 1.5. Assume that λ, µ ∈ T .
Then it is obvious that a pair (x, y) ∈ V × V has property P iff (λx, µy) has property P.
Except for the properties discussed in Theorem 1.5.b involving (1.7), this even remains true
if λ, µ ∈ R \ {0}.

2. CS-ratios: Definition and subadditivity

If R is any semiring and q : V → R is a quadratic form on an R-module V , we call a
vector x ∈ V \ {0} isotropic if q(x) = 0 and anisotropic if q(x) 6= 0. The zero vector in V
is regarded both as isotropic and anisotropic. If the semiring R is supertropical, it follows
directly from the definition of a quadratic from (cf. [4, Eq. (0.1) and Eq. (0.2)]) that the
set of anisotropic vectors

Van := {x ∈ V | q(x) 6= 0} ∪ {0}, (2.1)

is an R-submodule of V , and moreover

V + Van = Van. (2.2)

We now always assume in this section that R is supertropical, that eR is a nontrivial

bipotent semifield (cf. Convention 1.9), and that (q, b) is a fixed quadratic pair on V.
We develop the concept of “CS-ratios” for pairs of vectors in Van. To a large extent this may
be viewed as a kind of “trigonometry” in supertropical quadratic spaces.

We start with a definition where the quadratic pair is not yet needed.

Definition 2.1. Given λ ∈ R and µ ∈ R \ {0} the ν-ratio
[

λ
µ

]

ν
is the fraction eλ

eµ
in the

semifield eR = G ∪ {0}. Thus for any γ ∈ R
[

λ

µ

]

ν

∼=ν γ ⇔ γµ ∼=ν λ. (2.3)

This slightly funny notation reflects the desire in supertropical algebra to work as much
as possible with tangible elements. Indeed, if R happens to be a tangible supersemifield (the
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most important case for us), we can write all ν-ratios 6= 0 as
[

λ
µ

]

ν
with λ, µ ∈ T . Then the

ν-ratio
[

λ
µ

]

ν
is characterized by

∀γ ∈ T :

[

λ

µ

]

ν

∼=ν γ ⇔ λ ∼=ν γµ. (2.4)

Definition 2.2. Let x, y ∈ Van \ {0}. We call

CS(x, y) :=

[

b(x, y)2

q(x)q(y)

]

ν

the CS-ratio of the pair of vectors (x, y) (with respect to (q, b)).

Remark 2.3. In case of anisotropic vectors x, y, we can reformulate Definition 1.10 as
follows: The pair (x, y) is CS iff CS(x, y) < e; weakly CS iff CS(x, y) ≤ e; and almost CS iff
CS(x, y) < c for any c > e in G.

Remark 2.4. Clearly, CS(x, y) = CS(y, x). Notice also that

CS(λx, µy) = CS(x, y) (2.5)

for any λ, µ ∈ R \ {0}.

Given vectors x, y, w ∈ Van, we look for constraints on the CS-ratio CS(x+ y, w) in terms
of CS(x, w) and CS(y, w). We need a lemma from [6], (in fact a weak version of it), reproved
here for the convenience of the reader.

Lemma 2.5 (cf. [6, Lemma 3.16.ii].). Assume as before that eR is a semifield.
Let a, b, c, d ∈ R.

i) If bc ∼=ν ad, then
ac+ bd = (a+ b)(c+ d). (2.6)

ii) If a ∼=ν b, or c ∼=ν d, then still

ac+ bd ∼=ν (a+ b)(c + d). (2.7)

Proof. i): We assume without loss of generality that a ≥ν b.

1. Case: a ∼=ν b 6= 0. Now c ∼=ν d. Both sides of (2.6) equal eac.
2. Case: a >ν b. Now bc ∼=ν ad implies that c >ν d or c = d = 0. If c = d = 0, both

sides of (2.6) are zero. Otherwise ac >ν bd, and both sides of (2.6) equal ac.
3. Case: a = b = 0. Both sides of (2.6) are zero.

ii): This is evident. �

We now are ready for a theorem, which states subadditivity of the function x 7→ CS(x, w)
from Van \ {0} to G for a fixed w, together with refinements of this fact.

Theorem 2.6. Let x, y, w be anisotropic vectors in V.

a) Then
CS(x+ y, w) ≤ CS(x, w) + CS(y, w). (2.8)

b) If q(x+ y) is not ν-equivalent to q(x) + q(y) and also CS(x, w) +CS(y, w) 6= 0, then

CS(x+ y, w) < CS(x, w) + CS(y, w). (2.9)

c) Assume that q(x+ y) ∼=ν q(x) + q(y), and that either

c1) q(x) CS(y, w) = q(y) CS(x, w)
or
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c2) CS(x, w) = CS(y, w)
or

c3) q(x) ∼=ν q(y).

Then

CS(x+ y, w) = CS(x, w) + CS(y, w). (2.10)

Proof. Let c := CS(x, w), d := CS(y, w). Thus

b(x, w)2 ∼=ν cq(x)q(w),

b(y, w)2 ∼=ν dq(y)q(w).

Adding these two relations and using that (λ+ µ)2 = λ2 + µ2 for λ, µ ∈ R, we obtain

b(x+ y, w)2 ∼=ν [cq(x) + dq(y)]q(w). (2.11)

Putting a := q(x), b := q(y), we trivially have

ac+ bd ≤ν (a+ b)(c + d),

and further

a + b ≤ν q(x) + q(y) + b(x, y) = q(x+ y).

We conclude that

b(x+ y, w)2 ≤ν (a+ b)(c + d)q(w) ≤ν (c + d)q(x+ y)q(w).

This tells us that CS(x + y, w) ≤ c + d, which is claim a) of the theorem. Moreover, if
a+ b <ν q(x+ y) and c+ d 6= 0, then

b(x+ y, w)2 <ν (c+ d)q(x+ y)q(w),

which is claim b) of the theorem.
Henceforth we assume that q(x + y) ∼=ν a + b and now have to prove equation (2.10).

By (2.11) above the equation means that

ac+ bd ∼=ν (a+ b)(c + d).

We know by Lemma 2.5 that this holds if ad ∼=ν bc, and also if a ∼=ν c or b ∼=ν d. {We only
need the statement (2.7) in the lemma, leaving the more interesting assertion (2.6) for later
use.} This proves part c) of the theorem. �

3. A table of q-values, and CS-ratios of pairs of vectors

Throughout this section V is a module over a tangible supersemifield R, and (q, b) is a
quadratic pair on V . We fix a pair of vectors (x, y) ∈ V × V and use the abbreviations

α1 := q(x), α2 := q(y), α := b(x, y). (3.1)

Our first goal is to compile a table of values of the function R×R → R, (λ, µ) 7→ q(λx+µy),
using the parameters α1, α2, α. We then will use the table (Propositions 3.4 and 3.7) for
various purposes here and in the sequels of this paper.
For establishing the table we may replace V by the free module Rε1+Rε2 with base ε1, ε2,

the vector pair (x, y) by (ε1, ε2), and the quadratic pair (q, b) by the quadratic pair (q̃, b̃) on
Rε1 +Rε2, obtained by composing (q, b) with the bilinear map

χ : Rε1 +Rε2 → V
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with χ(ε1) = x, χ(ε2) = y, as described in (1.2)–(1.4). Thus we may assume that V is free
with base x, y and

q =

[

α1 α
α2

]

,

whenever we feel that this is convenient.
We do not assume this now, but we extend [4, Convention 7.10] for the parameters α1, α2, α

to the present situation in case that α1 6= 0 and α2 6= 0. Thus we have an element ξ ∈ T 1/2

with α1ξ ∼=ν α2, and ξ ∈ T if α1α2 is a ν-square. In the case that R is discrete and α1α2 is
not a ν-square, we furthermore have elements σ, τ in T , such that eτ < eσ and eτ, eσ are
the elements of G nearest to eξ in the totally ordered set G1/2, i.e. τ <ν ξ <ν σ and τ ∼=ν πσ.
We enrich the setting of [4, Convention 7.10] as follows.

Notation 3.1. Assume that α1 6= 0, α2 6= 0, α 6= 0. We choose ζ, η ∈ T with

α ∼=ν ζα1, α2
∼=ν ηα, (3.2)

and then have

ηζ ∼=ν ξ2. (3.3)

In the important special case that all three parameters α1, α2, α are tangible, we take ζ =
αα−1

1 , η = αα−1
2 and have

α = ζα1, α2 = ηα, (3.2′)

We then further arrange that

ηζ = ξ2. (3.3′)

Remark 3.2. Clearly α2 ∼=ν ζη−1α1α2. Thus

α1α2 <ν α2 ⇐⇒ η <ν ζ, (3.4)

and then η <ν ξ <ν ζ.
If in addition R is discrete and ξ /∈ T , then α1α2 <ν α2 implies that

η ≤ν τ <ν ξ <ν σ ≤ν ζ, (3.5)

since eτ , eσ are now the elements of G nearest to eξ ∈ G1/2. If even α2 >ν π−1α1α2, then

η <ν τ <ν ξ <ν σ <ν ζ. (3.6)

Convention 3.3. Assuming again that α1 6= 0, α2 6= 0, α 6= 0, we distinguish the following
subcases of Cases I-III appearing in [4, Convention 7.10].

Case I: α1α2 is a ν-square (i.e. ξ ∈ T ).
IA: α2 >ν α1α2, i.e., α >ν ξα1.
IB: α2 ≤ν α1α2.

Case II: R is dense, and α1α2 is not a ν-square (hence ξ /∈ T ).
IIA: α2 >ν α1α2, i.e., α >ν ξα1.
IIB: α2 <ν α1α2.

Case III: R is discrete, and α1α2 is not a ν-square (hence ξ /∈ T ).
IIIA: α2 >ν π−1α1α2, i.e., η <ν τ <ν σ <ν ζ.
IIIB: α2 ∼=ν π−1α1α2, i.e., η ∼=ν τ, σ ∼=ν ζ.
IIIC: α2 <ν α1α2.

Proposition 3.4. Assume that α1, α2, α are nonzero. Let λ, µ ∈ R, not both zero.
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(i) In Cases IA, IIA, IIIA

q(λx+ µy) =



























λ2α1 λ >ν ζµ,

eλ2α1 = eλµα λ ∼=ν ζµ,

λµα ηµ <ν λ <ν ζµ,

eµ2α2 = eλµα λ ∼=ν ηµ,

µ2α2 λ <ν ηµ.

(3.7)

(ii) In Case IIIB (now ζ ∼=ν σ, η ∼=ν τ)

q(λx+ µy) =



















λ2α1 λ >ν σµ,

eλ2α1 = eλµα λ ∼=ν σµ,

eµ2α2 = eλµα λ ∼=ν τµ,

µ2α2 λ <ν τµ.

(3.8)

(iii) In Case IB (hence ξ ∈ T )

q(λx+ µy) =







λ2α1 λ >ν ξµ,

eλ2α1 = eµ2α2 λ ∼=ν ξµ,

µ2α2 λ <ν ξµ.

(3.9)

(iv) In Cases IIB, IIIC (hence ξ /∈ T )

q(λx+ µy) =

{

λ2α1 λ >ν ξµ,

µ2α2 λ <ν ξµ.
(3.10)

Proof. In Cases IB, IIB, IIIC the form q is quasilinear anRx+Ry, as observed in Theorem 1.5,
and hence

q(λx+ µy) = λ2α1 + µ2α2,

and the claims in (3.9), (3.10) are immediate. In the other cases we have α2 >ν α1α2,
α ∼=ν ζα1, and

q(λx+ µy) = λ2α1 + λµα + µ2α2.

Now an easy inspection, which of the three terms on the right are ν-dominant, gives us (3.7)
and (3.8). �

It remains to handle the degenerate situation where at least one of the parameters α1, α2,
and α is zero.

Convention 3.5. We distinguish the following cases, also for later use.

Case IV: α1 6= 0, α2 = 0, α 6= 0.

Case V: α1 = α2 = 0, α 6= 0.

Case VI: α1 6= 0, α2 6= 0, α = 0.

Case VII: α1 = α2 = α = 0.

Notations 3.6. In Case IV we choose ζ ∈ T with α ∼=ν ζα1. In the subcase that both α1, α
are tangible we take ζ = αα−1

1 and then have α = ζα1.
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Notice that the pair (x, y) is excessive in Cases IV, V, while q is quasilinear on Rx+ Ry
in the other two cases.
Now the following is obvious.

Proposition 3.7. Let λ, µ ∈ R, not both zero.

(i) In Case IV

q(λx+ µy) =







λ2α1 if λ >ν ζµ,

eλ2α1 = eλµα if λ ∼=ν ζµ,

λµα if λ <ν ζµ.

(3.11)

(ii) In Case V

q(λx+ µy) = λµα. (3.12)

(iii) In Case VI (3.9) holds if ξ ∈ T , and (3.10) holds if ξ /∈ T (as in Cases IB resp. IIB,
IIIC).

(iv) In Case VII q(λx+ µy) = 0.

Remark 3.8. The tables in Proposition 3.4 and 3.7 reveal that (for fixed x, y) the ν-value
of q(λx + µy) only depends on the ν-values of λ and µ. This is conceptually evident from
the equation

eq(λx+ µy) = q((eλ)x+ (eµ)y).

We now use these tables to compute the CS-ratios of pairs of vectors in Rx + Ry in the
case that the pair (x, y) is free and excessive.

Convention 3.9. Assume that the submodule Rx+Ry of V is free with base x, y, and that
the pair (x, y) is excessive. Let x′, y′ ∈ Rx + Ry be given with x′ 6= 0, y′ 6= 0, x′ 6= y′. We
write

x′ = λ1x+ µ1y, y′ = λ2x+ µ2y, (3.13)

with λi, µi ∈ R. We exclude the (trivial) case that Gx′ = Gy′ and assume without loss of
generality that

λ1µ2 >ν λ2µ1, (3.14)

which for µ1 6= 0 means that
[

λ1

µ1

]

ν
>

[

λ2

µ2

]

ν
. (Recall Definition 2.1.) Since the pair (x, y) is

free and excessive, the symmetric bilinear form b on Rx+Ry with

b(x, x) = b(y, y) = 0, b(x, y) = α, (3.15)

is a companion of q|Rx+Ry.

Problem 3.10.

a) Compute the CS-ratio CS(x′, y′) with respect to (q, b) in terms of α1, α2, α and the
λi, µj, if both x′, y′ are anisotropic.

b) Decide which pairs (x′, y′) are again excessive.

We know by Corollary 1.7 that in case that (x′, y′) is not excessive, the quadratic form q
is quasilinear on Rx′ +Ry′. We then say in brief that the pair (x′, y′) is quasilinear.
In the following we write ∼= instead of ∼=ν and

[

λ
µ

]

instead of
[

λ
µ

]

ν
, for short.

As a consequence of (3.14) and (3.15) we have

b(x′, y′) = λ1µ2α. (3.16)
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Since (x′, y′) is excessive, we are in one of the Cases IA, IIA, IIIA, IIIB, IV, V, and in
Case IIIB if at least one of the elements α1, α2 is tangible (cf. Definition 1.6).
We postpone the degenerate Cases IV and V, and thus assume now that α1 6= 0, α2 6= 0,

and α2 <ν α1α2. We constantly use the table in Proposition 3.4, based on Notation 3.1, and
rely heavily on Theorem 1.5.
Before entering systematic computations, we warm up with some observations. We have

CS(x, y) =

[

α2

α1α2

]

=

[

ζ2α2
1

ζηα2
1

]

=

[

ζ

η

]

. (3.17)

The vectors
z := ζx+ y, w := ηx+ y (3.18)

will play a prominent role. We have

q(z) = eζ2α1, q(w) = eα2, b(z, w) = ζα = ζ2α1;

hence

CS(z, w) =

[

ζ4α2
1

ζ2α1α2

]

=

[

ζ2α2
1

ζηα2
1

]

=

[

ζ

η

]

>ν 1. (3.19)

We conclude that the pair (z, w) is excessive, except in Case IIIB. Then (z, w) is quasilin-
ear, since both q(z), q(w) are ghost. On the other hand

CS(x, z) =

[

α2

α1 · ζ2α1

]

∼=ν 1, (3.20)

CS(w, y) =

[

η2α2

α1 · α2

]

∼=ν 1. (3.21)

Thus both pairs (x, z), (w, y) are quasilinear.
The CS-values (3.17) and (3.19)–(3.21) make it plausible that

CS(x′, y′) ≤

[

ζ

η

]

= CS(x, y) (3.22)

for all pairs (x′, y′) in (Rx+Ry) \ {0}. This is indeed true, as we will verify below.

We are ready to compute CS(x′, y′) in all cases.

a) Assume that λ2 ≥ν ζµ2. Now q(x′) ∼= λ2
1α1, q(y

′) ∼= λ2
2α, and hence

CS(x′, y′) =

[

λ2
1µ

2
2α

2

λ2
1α1λ2

2α

]

=

[

µ2
2ζ

2

λ2
2

]

≤ν 1. (3.23)

N.B. This is smaller than 1ν if λ2 >ν ζµ2.

b) Assume that λ1 ≤ν ηµ1. We obtain

CS(x′, y′) =

[

λ2
1µ

2
2α

2

µ2
1α1µ2

2α2

]

=

[

λ2
1α

2

µ2
1α

2
2

]

=

[

λ2
1

µ2
1η

2

]

≤ν 1. (3.24)

This can also be deduced from a) by interchanging x, y and x′, y′.

c) Assume that λ1 ≤ν ζµ1, λ2 ≥ν ηµ2.
5 Now q(x′) ∼= λ1µ1α, q(y

′) ∼= λ2µ2α, and hence

CS(x′, y′) =

[

λ2
1µ

2
2α

2

λ1λ2µ1µ2α2

]

=

[

λ1µ2

µ1λ2

]

>ν 1. (3.25)

5Perhaps the most interesting case!
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Thus (x′, y′) is excessive except in Case IIIB. Then there exist no ν-values in R
strictly between ζ and η. Hence CS(x′, y′) = CS(z, w), and we know from the above
that (x′, y′) is quasilinear.

d) λ1 ≥ν ζµ1, ζµ2 ≥ν λ2 ≥ν ηµ2. We obtain in the same way

CS(x′, y′) =

[

ζµ2

λ2

]

= CS(z, y′). (3.26)

e) ζµ1 ≥ν λ1 ≥ν ηµ1, λ2 ≤ν ηµ2. We obtain

CS(x′, y′) =

[

λ1

µ1η

]

= CS(x′, w). (3.27)

Again we can also deduce e) from d) by interchanging x, y and x′, y′.

f) The degenerate Case IV, where α1 6= 0, α2 = 0, and only one parameter ζ is present.
We obtain

CS(x′, y′) =















[µ2

2
ζ2

λ2

2

]

≤ν 1 if λ2 ≥ν ζµ2;
[

µ2ζ
λ2

]

>ν 1 if λ1 ≥ν ζµ1 and λ2 <ν ζµ2;
[

λ1µ2

λ2µ1

]

>ν 1 if λ1 ≤ν ζµ1.

(3.28)

g) α1 = α2 = 0, α 6= 0 (Case V). Now

CS(x′, y′) =

[

λ2
1µ

2
2α

2

λ1µ1α · λ2µ2α

]

=

[

λ1µ2

µ1λ2

]

>ν 1. (3.29)

Thus every pair (x′, y′) is excessive.

Equations (3.28) and (3.29) may be viewed as resulting from (3.23)–(3.27) by putting
η = 0 and η = 0, ζ = ∞, respectively.

The solution just obtained for Problem 3.10.b remains valid if the pair (x, y) is not neces-
sarily free, since we can choose a linear map χ : Rε1+Rε2 → V with χ(ε1) = z, χ(ε2) = y as

in (1.2), define q̃, b̃ on the free module Rε1 +Rε2 as in (1.3), where now b is any companion
of q and then apply Proposition 1.4. {Notice that the value α = b(x, y) does not depend on
the choice of b, since (x, y) is excessive.} We thus arrive at the following theorem.

Theorem 3.11. Continuing with Notations 3.1 and 3.6, we assume that the pair (x, y) is
excessive, and without loss of generality, that either α1 6= 0 or α1 = α2 = 0. Let x′ =
λ1x + µ1y, y′ = λ2x + µ2y with λi, µi ∈ R and λ1µ2 >ν λ2µ1. Then q is quasilinear on
Rx′ +Ry′ precisely in the following three cases.

1) α1 6= 0, λ2 ≥ν ζµ2;

2) α1 6= 0, α2 6= 0, λ1 ≤ν ηµ1;

3) α1 6= 0, α2 6= 0, R discrete, λ1
∼=ν ζµ1, λ2

∼=ν ηµ2.

Otherwise (x′, y′) is excessive.

4. Supertropicalization: Two examples

We illustrate the dependence of the stropicalization qϕ of a quadratic form q : V → R on
the choice of a base of the free module V by two examples, which may be regarded as the
simplest cases of interest.
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We assume that R is a field and ϕ : R → U is a supervaluation [1, §4]. Let v : R →
M := eU denote the valuation covered by ϕ. Leaving aside a less interesting case, we assume
that v 6= eϕ, i.e., e 6= 1U . Then ϕ is “tangible”, i.e., all values ϕ(a), a ∈ R, are tangible
[1, Proposition 8.13]. Making U smaller we may assume, without loss of generality, that
ϕ(R∗) = T , v(R∗) = G, with T := T (U), G = G(U). Now U is a tangible supersemifield.
We further assume that the supervaluation ϕ is “tangibly additive” [1, Definition 9.6].6

Since R is a ring, even a field, this implies that ϕ is “very strong” [1, §10], i.e., for all a, b ∈ R,

v(a) < v(b) ⇒ ϕ(a + b) = ϕ(b). (4.1)

We briefly recall the process of stropicalization when dimV = 2. Let

q = (q, v1, v2) =

[

α1 α
α2

]

denote the presentation of the given (functional) quadratic form q : V → R after choice of a
base v1, v2 of the vector space V. Then

qϕ := (q, v1, v2)
ϕ =

[

ϕ(α1) ϕ(α)
ϕ(α2)

]

(4.2)

is the stropicalization of q with respect to (v1, v2), and

bϕ = (b, v1, v2)
ϕ =

(

ϕ(2)ϕ(α1) ϕ(α)
ϕ(α) ϕ(2)ϕ(α2)

)

(4.3)

is the stropicalization of the unique companion b : V × V → R of q with respect to (v1, v2),
cf. [4, Eq. (9.14) and Eq. (9.15)]. Here the presentations (4.2), (4.3) refer to the standard
base ε1, ε2 of U2.

Example A.

(q, v1, v2) =

[

0 1
0

]

. We take a new base of V

v′1 = a11v1 + a12v2, v′2 = a21v1 + a22v2,

and then have

(q, v′1, v
′

2) =

[

a11a12 a11a22 + a12a21
a21a22

]

.

We abbreviate

q̃ := (q, v′1, v
′

2)
ϕ, b̃ := (b, v′1, v

′

2)
ϕ.

Thus

q̃ =

[

ϕ(a11a12) ϕ(a11a22 + a12a21)
ϕ(a21a22)

]

. (4.4)

Case I: ϕ(a11a22) >ν ϕ(a12a21).
Using (4.1) we obtain from (4.4)

q̃ =

[

ϕ(a11a12) ϕ(a11a22)
ϕ(a21a22)

]

.

6In general, the tangibly additive supervaluations seem to be the most suitable ones for applications, cf.
[1, §9-§11].



SUPERTROPICAL QUADRATIC FORMS II 17

This implies (cf. (4.2), (4.3))

b̃ =

(

ϕ(2a11a12) ϕ(a11a22)
ϕ(a11a22) ϕ(2a21a22)

)

.

Thus we have

q̃ = c

[

b1 1
b2

]

, b̃ = c

(

ϕ(2)b1 1
1 ϕ(2)b2

)

,

with

c := ϕ(a11a22) ∈ T ,

b1 :=
ϕ(a12)

ϕ(a22)
∈ T ∪ {0},

b2 :=
ϕ(a21)

ϕ(a11)
∈ T ∪ {0},

and 0 < ϕ(2) ≤ e if charR 6= 2, while ϕ(2) = 0 if charR = 2. The value ϕ(2) will
not matter in what follows.

Notice that b1b2 <ν 1. Thus the pair (ε1, ε2) is excessive (cf. Definition 1.6). If
b1b2 6= 0, we have the CS-ratio

CS(ε1, ε2) ∼=ν
1

b1b2

with respect to (q̃, b̃).

Case II: ϕ(a11a22) <ν ϕ(a12a21).
Now

q̃ =

[

ϕ(a11a12) ϕ(a12a21)
ϕ(a21a22)

]

,

and we obtain

q̃ = c

[

b1 1
b2

]

, b̃ = c

(

ϕ(2)b1 1
1 ϕ(2)b2,

)

with c, b1, b2 as above (Case I). Again b1b2 <ν 1, whence (ε1, ε2) is excessive and, if
b1b2 6= 0,

CS(ε1, ε2) ∼=ν
1

b1b2
.

Case III: ϕ(a11a22) ∼=ν ϕ(a12a21) 6= 0.
Using the general rule

v(x+ y) ≤ v(x) + v(y) [= max{v(x), v(y)}]

(cf. [1, Definition 2.1]) for m-valuations, we obtain from (4.4)

q̃ =

[

ϕ(a11a12) γ
ϕ(a21a22)

]

with γ ≤ν ϕ(a11a12), and then

q̃ = c

[

b1 δ
b2

]

, b̃ = c

(

ϕ(2)b1 δ
δ ϕ(2)b2

)
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with

c = ϕ(a11a22) ∈ T , δ ≤ν 1,

b1 =
ϕ(a12)

ϕ(a22)
∈ T , b2 =

ϕ(a21)

ϕ(a11)
∈ T .

Now δ2 ≤ν 1 = b1b2. Thus the pair (ε1, ε2) is quasilinear,
7 whence

q̃ = [b1, b2] :=

[

b1 0
b2

]

.

More precisely, (ε1, ε2) is weakly CS with respect to (q̃, b̃) (cf. Definition 1.10).

These three cases exhaust all possibilities, since we cannot have a11a22 = a12a21 = 0, because
a11a22 − a12a21 6= 0.

Example B.

(q, v1, v2) = [α, β] :=

[

α 0
β

]

with α 6= 0, β 6= 0.

We choose a new base

v′1 = a11v1 + a12v2, v′2 = a21v1 + a22v2

of V. Then

(q, v′1, v
′

2) =

[

a211α + a212β a11a21α + a12a22β
a221α + a222β

]

. (4.5)

We use again the abbreviations

q̃ := (q, v′1, v
′

2)
ϕ, b̃ := (b, v′1, v

′

2)
ϕ.

Case I: v(a211α) > v(a212β), v(a221α) > v(a222β).
It follows that a11 6= 0, a21 6= 0, and

v(a11a21α) > v(a12a22β).

Thus

q̃ =

[

ϕ(a211α) ϕ(a11a21α)
ϕ(a221α)

]

.

We conclude that CS(ε1, ε2) = e, and hence the pair (ε1, ε2) is quasilinear (more
precisely, weakly CS), whence

q̃ = [ϕ(a211α), ϕ(a
2
21α)] = [ϕ(α), ϕ(α)]. (4.6)

Case II: v(a211α) = v(a212β), v(a221α) > v(a222β).
We have a11 6= 0, a12 6= 0, since otherwise a11 = a12 = 0, which contradicts

a11a22 − a12a21 6= 0. It follows that

v(a11a21α) > v(a12a22β),

and we obtain from (4.5)

q̃ =

[

ϕ(a211α + a212β) ϕ(a11a12α)
ϕ(a221α)

]

.

7By this we mean that q̃ is quasilinear on Uε1 × Uε2, hence on Uε1 + Uε2, cf. §1.
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Case III: v(a211α) = v(a212β), v(a221α) = v(a222β).
From a11a22− a21a21 6= 0 we conclude that all entries aij 6= 0. We cannot say more

in this generality.

Note: In Cases II and III the nature of the pair (ε1, ε2) (excessive, quasilinear, weakly
CS, . . . ) remains undetermined by the values v(aij). This may change if we have
specified information about the value v and α and β. For example, if v is compatible
with a total ordering ≤ of the field R, cf. [8], and α > 0, β > 0, then

v(a211α + a212β) = max{v(a211α), v(a
2
12β)}

and we can say more. It may well happen that q̃ is not quasilinear. (We do not go
into details.)

Notice that Cases II and III can only occur if v(α), v(β) are square equivalent (cf.
[4, Definition 7.1]).

Case IV: v(a211α) > v(a212β), v(a221α) < v(a222β).
Now we read off from (4.5) that

q̃ =

[

ϕ(a211α) ϕ(a11a21α + a12a22β)
ϕ(a222β)

]

.

We have a11 6= 0, a22 6= 0. Thus the CS-ratio CS(ε1, ε2) exists and

CS(ε1, ε2) =
v(a11a21α + a12a22β)

2

v(a211a
2
22αβ)

≤
v(a211a

2
21α

2)

v(a211a
2
22αβ)

+
v(a212a

2
22β

2)

v(a211a
2
22αβ)

=
v(a221α)

v(a222β)
+

v(a212β)

v(a211α)
< e.

Thus the pair (ε1, ε2) is CS (cf. Definition 1.10) and

q̃ = [ϕ(a211α), ϕ(a
2
22β)] = [ϕ(α), ϕ(β)].

More Cases: If

v(a211α) ≤ v(a212β), v(a221α) > v(a222β),

then interchanging v1, v2 we come back to Cases I, II.

If

v(a211α) < v(a212β), v(α2
21α) ≤ v(a222β),

then interchanging also v′1, v
′

2 we come again back to Cases I,II.

Finally, if

v(a211α) < v(a212β), v(a221α) > v(a222β),

then interchanging v1, v2 we come back to Case IV.

Thus Cases I–IV exhaust all possibilities up to interchanging v1, v2 and/or v′1, v
′

2.
This completes Example B.

If the values v(α), v(β) are not square equivalent, then Case IV in Example B does not
occur, as observed above. Thus we may state
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Proposition 4.1. Assume that R is a field, and that ϕ : R → U is a tangibly additive su-
pervaluation which is not ghost, and hence is very strong. Let q = [α, β] be a binary diagonal
form over R with v(α), v(β) not square equivalent (v := eϕ). Then all stropicalizations of q
by ϕ are quasilinear.

Remark 4.2. This proposition does not contradict Example A. Assume that charR 6= 2. If
q = [ 0 1

0 ] and q′ = [α, β] are forms over R with α 6= 0, β 6= 0, and q ∼= q′, then β = −λ2α for
some λ ∈ R∗, and hence v(α) and v(β) are square equivalent.

5. The minimal ordering on a free R-module

In this section R is a supertropical semiring. If V is any module over R, we define on V
a binary relation ≤V as follows:
For any x, y ∈ U ,

x ≤V y ⇋ ∃z ∈ V : x+ z = y. (5.1)

This relation is clearly reflexive (x ≤ x) and transitive (x ≤ y, y ≤ z ⇒ x ≤ z). It is also
antisymmetric, hence is a partial ordering on the set V. Indeed, assume that x+ z = y and
y + w = x. This implies x+ z + w = x, y + z + w = y, and then

x+ e(z + w) = x, y + e(z + w) = y.

Adding z at both sides of the first equation, and using that z + ez = ez, we obtain

y = x+ e(z + w) = x,

as desired.
Clearly, our partial ordering ≤V satisfies the rules (x, y, z ∈ V )

0 ≤ z, (5.2)

x ≤ y ⇒ x+ z ≤ y + z. (5.3)

(Thus, x ≤ y, x′ ≤ y′ ⇒ x + x′ ≤ y + y′.) It is now obvious that any partial ordering ≤′

on V with the properties (5.2), (5.3), is a refinement of ≤V : If x ≤V y, then x ≤′ y.

Definition 5.1. We call ≤V the minimal ordering on the R-module V. 8

Notation 5.2. As long as no other orderings of V come into play, we usually write x ≤ y
instead of x ≤V y. But notice that if W is a submodule of V, it may happen for x, y ∈ W
that x ≤V y but not x ≤W y.
As usual, x < y means that x ≤ y and x 6= y.

In particular, R itself carries the minimal ordering ≤R . It already showed up in [1,
Proposition 11.8] and [4, §5]. Again, we usually write λ ≤ µ instead of λ ≤R µ.
Scalar multiplication is compatible with these orderings on R and V :

λ ≤ µ, x ≤ y ⇒ λx ≤ µy (5.4)

for all λ, µ ∈ R, x, y ∈ V.
Before moving on to details about minimal orderings, we hasten to point out that these

orderings are relevant for the geometry in a supertropical quadratic space. This is apparent
already from the definition of quadratic forms [4, Definition 0.1].

8In the special case V = R the minimal ordering has been discussed already in [4, §5], including an
explanation of the term “minimal”.
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Remark 5.3. As before, let V be a module over a supertropical semiring R. If (q, b) is a
quadratic pair on V, then for all x, y, z, w ∈ V the following hold:

x ≤V z ⇒ q(x) ≤R q(z), (5.5)

x ≤V z, y ≤V w ⇒ b(x, y) ≤R b(z, w), (5.6)

b(x, y) ≤R q(x+ y). (5.7)

The minimal ordering of R has the following detailed description in terms of the ν-
dominance relation and the sets eR and T = R \ (eR).

Proposition 5.4.

a) Assume that x ∈ eR. Then x is comparable (in the minimal ordering) to every y ∈ R.
More precisely, using the ν-notation,

x < y ⇔ x <ν y, (5.8)

y < x ⇔ either y <ν x , or y ∈ T and y ∼=ν x. (5.9)

b) Assume that x ∈ T , y ∈ R. Then

x < y ⇔ either x <ν y , or x ∼=ν y and y ∈ eR, (5.10)

y < x ⇔ y <ν x. (5.11)

Thus x and y are incomparable iff y ∈ T and x 6= y, but x ∼=ν y.

Proof. All this can be read off from the description (0.6) of the sum x + y of x, y ∈ R in
terms of the ν-dominance relation, recalled from [6, §2].9 �

From Proposition 5.4 we read of that for any two elements x, y of R the maximum x∨y :=
maxR{x, y} exists, namely

x ∨ y =







x if ex < ey;
y if ex > ey;
ex if ex = ey.

(5.12)

Note that
e(x ∨ y) = (ex) ∨ (ey) = ex+ ey, (5.13)

while for arbitrary λ ∈ R in general only λ(x ∨ y) ≤ (λx) ∨ (λy), but here we have equality
if R is a supersemifield.
Assume now that V is a free R-module with base (εi | i ∈ I). If x, y are vectors in V with

coordinates (xi | i ∈ I), (yi | i ∈ I), i.e.,

x =
∑

i∈I

xiεi y =
∑

i∈I

yiεi,

where xi 6= 0 or yi 6= 0 only for finitely many i ∈ I, then clearly

x ≤V y ⇔ ∀i ∈ I xi ≤R yi. (5.14)

Moreover, the maximum x ∨ y = maxV {x, y}, exists, and

x ∨ y =
∑

i∈I

(xi ∨ yi)εi. (5.15)

9The general assumption in [6], that the monoid (eR, · ) is cancellative, is not needed here. It is only
relevant if products xy are involved.



22 Z. IZHAKIAN, M. KNEBUSCH, AND L. ROWEN

It will be helpful below to argue by use of the support of an element x =
∑

i∈I xiεi of the
free module V defined as follows

supp(x) := {i ∈ I | xi 6= 0}. (5.16)

As consequence of (5.15) we have

supp(x ∨ y) = supp(x) ∪ supp(y). (5.17)

Notice that supp(x) is essentially independent of the choice of the base (εi | i ∈ I),
since up to permutation every other base of V arises by multiplying the εi by units of R
[4, Theorem 0.9]. Notice also that supp(x) is empty iff x = 0, and that y ≤ x implies
supp(y) ⊆ supp(x).

6. q-minimal vectors with small support

In this section R is again a supertropical semiring. In all R-modules we work with their
minimal orderings.

Definition 6.1.

a) We call a map φ : V → W between R-modules V,W monotonic if for any x, y ∈ V

y ≤ x ⇒ φ(y) ≤ φ(x).

b) Given a monotonic map φ : V → W , we call a vector x ∈ V φ-minimal, if there
does not exist a vector x′ < x in V with φ(x′) = φ(x).

Examples 6.2.

i) For any n ∈ N and c ∈ R, the map R → R, x 7→ cxn, is additive, and hence
monotonic. More generally, every monomial map Rn → R,

(x1, . . . , xn) 7→ cxα1

1 · · ·xαn

n , (αi ∈ N0),

is monotonic, and hence every polynomial map f : Rn → R is monotonic.

ii) Every quadratic form q : V → R on an R-module V is monotonic, cf. Remark 5.3.
We note the trivial fact that an isotropic vector x ∈ V \{0} is never q-minimal, since
0 < x, but q(x) = q(0) = 0.

Given a quadratic form q : V → R, we turn to the problem of determining the q-minimal
vectors in V in the case that the R-module V is free, and, if possible, at later stages also
in more general situations. The following distinction of the vectors in V will be useful here
and elsewhere.

Definition 6.3. We call a vector x ∈ V \ {0} g-isotropic, if q(x) ∈ eR, and we call x g-
anisotropic, if q(x) ∈ T .10 The zero vector is regarded as both g-isotropic and g-anisotropic.

Proposition 6.4. Assume that V is free with base (εi | i ∈ I). Let x ∈ V \{0} be q-minimal.
Then | supp(x)| ≤ 2 if q(x) ∈ T , and | supp(x)| ≤ 4 if q(x) ∈ G.

Proof. We have a finite non-empty subset J = supp(x) of I, such that x =
∑

i∈J

xiεi, all xi 6= 0.

We choose a companion b of q. Then

q(x) =
∑

i∈J

x2
i q(εi) +

∑

i<j
i,j∈J

xixjb(εi, εj). (∗)

10The letter “g” alludes to “ghost”.
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and q(x) 6= 0.
If q(x) ∈ T , the sum on the right of (∗) contains a unique ν-dominant term. If this term is

x2
kq(εk), then xkεk ≤ x and q(xkεk) = q(x); hence x = xkεk and J = {k}. If the ν-dominant

term is xkxℓb(εk, εℓ), then xkεk + xℓεℓ ≤ x and again both vectors have the same q-values,
and hence x = xkεk + xℓεk, and J = {k, ℓ}. Indeed, then

q(x) = xkxℓb(εk, εℓ) ≤ q(xkεk + xℓεℓ) ≤ q(x).

If q(x) ∈ G, then on the right of (∗) there exists either a ν-dominant term, which is ghost,
or there exist two ν-dominant terms which are tangible. In the first case, we see as above
that |J | ≤ 2, and in the second that |J | ≤ 4. �

Corollary 6.5. Assume in Proposition 6.4 also that q is quasilinear. Then | supp(x)| = 1
if q(x) ∈ T , and | supp(x)| ≤ 2 if q(x) ∈ G.

Proof. We choose the companion b = 0. Now, in the above arguments no ν-dominant terms
xkxℓb(εk, εℓ) show up. �

Recall from the last lines of §5 that for vectors x′, x in V with x′ ≤ x the support of x′ is
contained in the support of x. Thus in searching for q-minimal vectors in V it is not loss of
generality to assume that |I| ≤ 4. If q is quasilinear we may even assume that |I| ≤ 2.
We now deal with the case that |I| ≤ 2, postponing the cases |I| = 3 and |I| = 4 to the

next section.

Proposition 6.6.

a) Assume that V is free with a single base vector ε1. When q(ε1) ∈ T , all vectors in V
are q-minimal. If q(ε1) ∈ G, a vector λε1 is q-minimal iff λ ∈ T .

b) Assume that V is free with base (ε1, ε2), and that q is quasilinear. Let α1 := q(ε1),
α2 := q(ε2). A vector x = λε1 + µε2 with λ, µ 6= 0 is q-minimal iff λ, µ, α1, α2 ∈ T
and λ2α1

∼=ν µ
2α2. (Thus every q-minimal vector with | supp(x)| = 2 is g-isotropic.)

Proof. a): Let α1 := q(ε1) and x := λε1 ∈ V. We have q(x) = λ2α1. Assume first that
α1 ∈ T . If x′ = λ′ε1 is a second vector, then x′ < x iff λ′ < λ iff λ′2α1 < λ2α1. Thus x
is q-minimal. Assume now that α1 ∈ G. If λ ∈ G, there exists λ′ ∈ T with λ′ ∼=ν λ, and
then λ′ < λ. For x′ = λ′ε1 we have x′ < x, but q(x′) = λ′2α1 = λ2α1 = q(x). Thus x is not
q-minimal. If λ ∈ T and λ′ < λ then λ′ <ν λ (cf. (5.11)); hence

q(x′) = λ′2α1 <ν λ2α1 = q(x),

and a fortiori q(x′) < q(x). Thus x is q-minimal.

b): We have q(x) = λ2α1+µ2α2. If q(x) = 0, then x is not q-minimal (cf. Example 6.2.ii).
Assume now that q(x) 6= 0. If λ2α1 <ν µ2α2 then q(x) = µ2α2 = q(µε2), and x is not

q-minimal, ditto if λ2α1 >ν µ2α2. Assume henceforth that λ2α1
∼=ν µ2α2. Then q(x) ∈ G and

α1 6= 0, α2 6= 0. If λ2α1 or µ
2α2 is ghost, then q(x) = q(λε1), resp. q(x) = q(µε2), and thus x

is not q-minimal. We are left with the case that both λ2α1, µ
2α2 are tangible. This means

that λ, µ, α1, α2 ∈ T .
If x′ < x, then either x′ ≤ λ′ε1 + µε2 or x′ ≤ λε1 + µ′ε2 with λ′ < λ, resp. µ′ < µ. In the

first case, λ′ <ν λ (cf. (5.11)), hence λ′2α1 <ν λ
2α1

∼=ν µ2α2, and

q(x′) ≤ q(λ′ε1 + µε2) = µ2α2 < eµ2α2 = q(x).

In the second case, q(x′) < q(x) for the same reason. Thus x is q-minimal. �
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We now assume that G is a cancellative monoid under multiplication and G = eT , fur-
thermore that (q, b) is a quadratic pair on the free binary module V := Rε1+Rε2. We search
for all q-minimal vectors in V with full support.
Let α1 := q(ε1), α2 := q(ε2), β := b(ε1, ε2), and x = x1ε1+x2ε2 with x1 6= 0, x2 6= 0. Then

q(x) = α1x
2
1 + βx1x2 + α2x

2
2. (∗∗)

Looking at the ν-dominant terms in the sum (∗∗) we will run through several cases and will
easily find out when x is q-minimal.

0) Assume that α1x
2
1 (or α2x

2
2) is the only ν-dominant term. Then q(x) = q(x1ε1) or

q(x) = q(x2ε2). Clearly x is not q-minimal.

1) Assume that both α1x
2
1 and α2x

2
2 are ν-dominant. If, say, α1x

2
1 is ghost, then q(x) =

q(x1ε1) again, and x is not q-minimal. If both α1x
2
1 and α2x

2
2 are tangible, then for

a vector x′ = x′

1ε1 + x′

2ε2 < x either x′

1 < x1 or x′

2 < x2, which implies x′

1 <ν x1 or
x′

2 <ν x2, since both x′

1, x
′

2 are tangible. We conclude that q(x′) < q(x). Thus x is
q-minimal iff α1, α2, x1, x2 are all tangible.

2) Assume that α1x
2
1
∼=ν βx1x2 > α2x

2
2. Then q(x) = eα1x

2
1 = eβx1x2 ∈ G. If α1x

2
1 ∈ G,

then choosing x′

1 ∈ T with ex′

1 = x1 we obtain a vector x′ = x′

1ε1 + x2ε2 < x with
q(x′) = α′

1x
2
1 + βx′

1x2 = q(x), and so x is not q-minimal.
Assume now that α1x

2
1 ∈ T . If x′ = x′

1ε1 + x′

2ε2 < x, then either x′

1 < x1,
x′

2 ≤ x2, or x′

1 = x1, x
′

2 < x2. If x′

1 < x1, then x′

1 <ν x1, whence α1x
′2
1 <ν α1x

2
1

βx′

1x2 <ν βx1x2, and we see that q(x′) < q(x). But if x′

1 = x1, x
′

2 < x2, ex
′

2 = x2,
and β ∈ G, then q(x′) = q(x), while if β ∈ T this cannot happen. We conclude that
x is q-minimal iff α1, β, x1 are all tangible.

3) Analogously, if α2x
2
2
∼=ν βx1x2 > α1x

2
1, then x is q-minimal iff α2, β, x2 are all tangi-

ble.

4) Assume that α1x
2
1 <ν βx1x2, α2x

2
2 <ν βx1x2. Now q(x) = βx1x2. Arguing similarly

as in Case 3), we see that, when β ∈ G then x is q-minimal iff x1 ∈ T and x2 ∈ T ,
while when β ∈ T , then x is q-minimal iff x1 ∈ T or x2 ∈ T . Thus all together x is
q-minimal iff at most one of the elements β, x1, x2 is ghost.

Summarizing we obtain

Theorem 6.7. Assume that V is free with base ε1, ε2 and x = x1ε1 + x2ε2 with x1 6= 0,
x2 6= 0. Let q =

[

α1 β
α2

]

. Then x is q-minimal exactly in the following cases:

1) α1x
2
1
∼=ν α2x

2
2 ≥ν βx1x2 and α1, α2, x1, x2 ∈ T ;

2) α1x
2
1
∼=ν βx1x2 >ν α2x

2
2 and α1, β, x1 ∈ T ;

3) α2x
2
2
∼=ν βx1x2 >ν α1x

2
1 and α2, β, x2 ∈ T ;

4) βx1x2 >ν α1x
2
1 + α2x

2
2 and at most one of the elements β, x1, x2 is ghost.

Comment 6.8. In order to clarify the situation observe that in Cases 2)-4) we have α1x
2
1 ·

α2x
2
2 <ν (βx1x2)

2, whence α1α2 <ν β2, while in Case 1) we have β2 <ν α1α2. Thus (ε1, ε2)
is excessive w.r. to q in Cases 2)-4), but quasilinear in Case 1).

Concerning g-anisotropic vectors we note the following immediate consequence of Theo-
rem 6.7.

Corollary 6.9. Assume again that x = x1ε1 + x2ε2 and q =
[

α1 β
α2

]

. Then x is q-minimal
and g-anisotropic iff β, x1, x2 are tangible and α2

1x
2
1 + α2

2x
2
2 <ν βx1x2.
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Returning to the tables of q-values in §3 it is of interest to ask which of the vectors λε1+µε2
there are q-minimal. We only consider the case that α2 >ν α1α2 in the notations used there,
since otherwise q is quasilinear and the matter is settled by Proposition 6.6.b.

Theorem 6.10. Assume that R is a nontrivial tangible supersemifield, and q is a quadratic
form on the free binary R-module V = Rε1 + Rε2. Let b be a companion of q, and assume
that α1α2 <ν α2 with α1 := q(ε1), α2 := q(ε2), α := b(ε1, ε2). We use Notations 3.1 and 3.6.
Let x = λε1 + µε2 with λ, µ 6= 0.

i) If α1 6= 0, α2 6= 0, then x is q-minimal iff either λ ∼=ν ζµ and α1, λ ∈ T , or λ ∼=ν ηµ
and α2, µ ∈ T , or ηµ <ν λ <ν ζµ and at most one of the three elements α, λ, µ is
ghost

ii) If α1 6= 0, α2 = 0, then x is q-minimal iff either λ ∼=ν ζµ and α1, λ ∈ T , or λ <ν ζµ
and at most one of the elements α, λ is ghost.

iii) If α1 = α2 = 0, then x is q-minimal iff at most one of the elements α, λ, µ is ghost.

Proof. Browse through tables (3.7), (3.8), (3.11), (3.12) and apply Theorem 6.7, reading
λ, µ, α for x1, x2, β. �

7. q-minimal vectors with big support

Again we assume that R is a tangible supertropical semiring, G is a cancellative monoid,
V is a free R-module with base (εi | i ∈ I), and q : V → R is a quadratic form. For later
use, we adopt the following notation.

Notation 7.1. Let x =
∑

i∈I

xiεi ∈ V and J a subset of I. We put

x(J) :=
∑

i∈J

xiεi.

If J = {i} or J = {i, j}, i 6= j, we write for short x(i) or x(i, j) instead of x({i}), x({i, j}).

Assume now that I = {1, . . . , n} with n = 3 or n = 4, and that x ∈ V is a vector of full
support,

x =
n

∑

i=1

xiεi, all xi 6= 0.

We choose a companion b of q, and then have a presentation

q(x) =

n
∑

i=1

αix
2
i +

∑

i<j

βijxixj . (7.1)

We ask, under which conditions is x q-minimal, and then search for possibilities to write x as
the supremum y ∨ z of two q-minimal vectors y, z ∈ V of small support, i.e., | supp(y)| ≤ 2,
| supp(z)| ≤ 2.
As in §6, we look for the ν-dominant terms in the sum (7.1). If there is only one dominant

term, αix
2
i or βijxixj , then q(x) = q(x(i)) or q(x) = q(x(i, j)), and so x is not q-minimal.

Henceforth, we assume always that there are at least two dominant terms, and so q(x) ∈
G. Furthermore, we assume that all ν-dominant terms are tangible, since otherwise again
q(x) = q(x(J)) for some J & I.
We first study the case n = 3 and run through several subcases, as follows:
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A) Assume that in (7.1) there occurs a ν-dominant term αix
2
i . Then, if x is q-minimal

there is exactly one further dominant terms βjkxjxk and (i, j, k) is a permutation of
(1, 2, 3), since otherwise again q(x) = q(x(J)) for some J & I. We have

x = x(i) ∨ x(j, k),

and q(x(i)) = αix
2
i ∈ T ,

q(x(j, k)) = αjx
2
j + βikxjxk + αkx

2
k ∈ T .

It follows that
αjx

2
j + αkx

2
k <ν βjkxjxk,

and we read off from Theorem 6.7 that x(j, k) is q-minimal. By Proposition 6.6.a
also x(i) is q-minimal.

Note furthermore that

b(x(i), x(j, k)) <ν q(x(i)) ∼=ν q(x).

Assume now that all ν-dominant terms in the sum (7.1) are of the form βijxixj . We
distinguish two subcases.

B) Exactly two of the terms βijxixj are ν-dominant.

C) All three such terms are ν-dominant.

In Case B there is a permutation (i, j, k) of (1, 2, 3) such that

q(x) ∼=ν βijxixj
∼=ν βikxixk >ν βjkxjxk, (7.2)

while in Case C we have

q(x) ∼=ν β12x1x2
∼=ν β13x1x3

∼=ν β23x2xj . (7.3)

In both cases q(x) >γ αix
2
i for all i ∈ I. It follows by Corollary 6.9 that in Case B both

vectors x(i, j) and x(i, k) are g-anisotropic and q-minimal, while in Case C all three vectors
x(1, 2), x(1, 3), x(2, 3) have these properties. Due to our knowledge of all ν-dominant terms
in the sum (7.1), we see that in Case B

b(x(j), x(k)) <ν q(x(i, j)) ∼=ν q(x(i, k)) ∼=ν q(x),

while in Case C for every 2-element subset {r, s} of I we have b(x(r), x(s)) ∈ T and

b(x(r), x(s)) ∼=ν q(x(r, s)) ∼=ν q(x).

{Observe that b(εi, εi) ≤ν αi, cf. [4, Ineq. (1.9)].}

D) We turn to the case n = 4, which is easier. Assume that x is q-minimal. Then we have
exactly two ν-dominant terms in the sum (7.1), βijxixj , βiℓxkxℓ, with {i, j} disjoint
from {k, ℓ}, since otherwise there would exist a set S & I with q(x(S)) = q(x).
Moreover, these terms are tangible.

Arguing as above we conclude easily that there is a partition I = J∪̇K with
|J | = |K| = 2, such that x(J) and x(K) are g-anisotropic and q-minimal with

q(x(J)) ∼=ν q(x(K)) ∼=ν q(x),

while q(x(S)) <ν q(x) for all other subsets S of I with |S| ≤ 2. Also for any two
different subsets S, T of I with |S| ≤ 2, |T | ≤ 2, including S = J, T = K, we have

b(x(S), x(T )) <ν q(x).

Summarizing the essentials of this study, we obtain
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Theorem 7.2. Assume that x is q-minimal and supp(x) = I = {1, . . . , n} with n ≥ 3.
Then x is g-isotropic and exactly one of the following four cases holds:

A) n = 3. There is a unique partition I = J∪̇K with |J | = 1, |K| = 2, both x(J), x(K)
g-anisotropic and q-minimal, and q(x(J)) ∼=ν q(x(K)) ∼=ν q(x).

B) n = 3. There are exactly two 2-element subsets J and K of I with x(J), x(K) g-
anisotropic and q-minimal and q(x(J)) ∼=ν q(x(K)) ∼=ν q(x).

C) n = 3. For any 2-element subset J of I, the vector x(J) is q-minimal and g-
anisotropic and q(x(J)) ∼=ν q(x). Thus the properties listed in B) hold for any two
2-element subsets J,K of I.

D) n = 4. There are exactly two 2-element subsets J and K of I such that x(J), x(K)
are g-anisotropic, q-minimal and

q(x(J)) ∼=ν q(x(K)) ∼=ν q(x).

J and K are disjoint.

In all four cases, we have I = J ∪ K, whence x = x(J) ∨ x(K) for the sets J,K from
above. Moreover, in Cases A and D,

b(x(J), x(K)) <ν q(x). (7.4)

In Case B,

b(x(J), x(K)) = q(x), (7.5)

whereas

b(x(J \K), x(K \ J)) ∼=ν q(x). (7.6)

In Case C, (7.5) holds for any two different 2-element subsets J,K of I, and moreover

b(x(J \K), x(K \ J)) ∼=ν q(x), b(x(J \K), x(K \ J) ∈ T . (7.7)

As before we assume that V is free with base (εi | i ∈ I), I = {1, . . . , n}, n = 3 or 4. Given
two g-anisotropic q-minimal vectors y, z ∈ V of small support, we now ask for conditions
under which the vector x := y∨z is q-minimal and has full support I. In view of Theorem 7.2,
we will be content to assume from the beginning that

b(y, z) ≤ν q(y) ∼=ν q(z). (7.8)

A satisfactory converse to Theorem 7.2 in the cases A) and B) runs as follows.

Theorem 7.3. Assume that y, z ∈ V are g-anisotropic and q-minimal, and furthermore that
y ∨ z has full support I, and

b(y, z) <ν q(y) ∼=ν q(z). (7.9)

Assume finally that n = 3, | supp(y)| = 1, | supp(z)| = 2, or n = 4, and | supp(y)| =
| supp(z)| = 2. Then x := y ∨ z is q-minimal.

Proof. We have supp(y) ∪ supp(z) = I, which forces supp(y) ∩ supp(z) = ∅.

a) Assume first that n = 3. After a permutation of the εi, we may assume

y = y1ε1, z = z2ε2 + z3ε3,

and then have x =
3
∑

1

xiεi with

x1 = y1, x2 = z2, x3 = z3.
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It follows from Proposition 6.6.a and Corollary 6.9 that α1x
2
1 = q(y) ∈ T and

α2x
2
2 + α3x

2
3 <ν β23x2x3 = q(z) ∈ T . (7.10)

Thus x1, x2, x3, α1, β23 are all tangible. Further by assumption (7.9)

β11x
2
1 + β12x1x2 + β13x1x3 <ν α1x

2
1
∼=ν β23x2x3. (7.11)

Here β11 = b(ε1, ε1) ≤ν α (cf. [4, Ineq. (1.9)]). It follows that

q(x) = α1x
2
1 + β23x2x3 = eq(y) = eq(z).

Given x′ =
3
∑

1

x′

iεi < x, we want to prove that q(x′) < q(x). It suffices to consider the case

x′

1 < x1, x
′

2 = x2, x
′

3 = x3 and x′

1 = x1, x
′

2 < x2, x
′

3 = x3. Notice that x′

i < x1 implies
x′

i <ν xi since all xi are tangible.
In the first case β23x

′

2x
′

3 = β23x2x3, and we learn from (7.10) and (7.11) that in the sum

3
∑

1

αix
′

i
2 +

∑

i<j

βijx
′

ix
′

j = q(x′)

there is only one ν-dominant term β23x2x3, which is tangible. Thus

q(x′) = β23x2x3 ∈ T , and q(x′) ∼=ν q(x).

Since q(x) is ghost, this implies q(x′) < q(x). In the second case where x′

2 < x2, we can argue
in the same way, now obtaining q(x′) = α1x

2
2 ∈ T and then q(x′) < q(x). Thus x is indeed

q-minimal.

b) Now let n = 4. We may assume that supp(y) = {1, 2} and supp(z) = {3, 4}, whence

y = y1ε1 + y2ε2, z = z3ε3 + z4ε4,

and x =
4
∑

1

xiεi with

x1 = y1, x2 = y1, x3 = z3, x4 = z4.

Trivially y = x(1, 2), z = x(3, 4). We infer from Corollary 6.9 that

α1x
2
1 + α2x

2
2 <ν β12x1x2 = q(y) ∈ T , (7.12)

α3x
2
3 + α4x

2
4 <ν β34x3x4 = q(z) ∈ T , (7.13)

and further from Condition (7.7) that

β13x1x3 + β14x1x4 + β23x2x3 + β24x2x4 <ν q(y) ∼=ν q(z).

Let x′ < x, and assume w.l.o.g. that exactly one coordinate x′

i < xi, say x′

1 < x1, which
implies x′

1 <ν x1. If q(x
′) = q(x) would hold, then

q(x′) = β12x
′

1x2 + β34x3x4 = β34x3x4.

But q(x′) is tangible, while q(x) is ghost. This contraction proves that q(x′) < q(x), and we
conclude that x is q-minimal. �

If n = 3 and | supp(y)| = | supp(z)| = z, then a crude converse to Theorem 7.2, analogous
to Theorem 7.3 with only condition (7.9) replaced by (7.8), does not hold, as the following
example shows.
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Example 7.4. Let y = y1ε1 + y2ε2 and z = z1ε1 + z3ε3 with y1, y2, z1, z3 ∈ T and ey1 = ez1,
ey2 = ez3, but y1 6= z1. Then

x := y ∨ z = x1ε1 + x2ε2 + x3ε3

with
x1 = ey1, x2 = y2, x3 = z3.

Assume further that

1) β12, β13 ∈ T ,

2) α1y
2
1 + α2y

2
2 <ν β12y1y2 ∈ T ,

3) α1z
2
1 + α3z

2
3 <ν β13z1z3.

Both y and z are q-minimal and g-anisotropic by Corollary 6.9, and

q(y) = β12y1y2 ∼=ν β13z1z3 = q(z).

Since β11 := b(ε1, ε1) ≤ν α1 and ey1 = ez1, we have

b(y1ε1, z1ε1) ≤ν α1y
2
1
∼=ν α1z

2
1

and conclude that

b(y, z) = β11y1z1 + β12z1y2 + β13y1z3 = eq(y) = eq(z).

Thus Condition (7.8) is valid. We have x = y + z, whence

q(x) = q(y) + q(z) + b(y, z) = eq(y).

Let now x′ := y1ε1 + y2ε2 + z3ε3. Then x′ < x, but

q(x′) ≥ β12y1y2 + β13y1z3 = eq(y).

Thus q(x′) = q(x). This proves that x is not q-minimal.

The vector x = y ∨ z in Theorem 7.3 obviously satisfies y = x(J), z = x(K) with
J := supp(y), K := supp(z), while for the vector y ∨ z in Example 7.4 this does not hold.
If we insist on the property y = x(J), z = x(K), then we obtain a converse of Theorem 7.2
also in the cases B) and D) as follows.

Theorem 7.5. Let n = 3. Assume that y, z ∈ V are g-anisotropic and q-minimal with
respective support J,K such that |J | = 2, |K| = 2, J ∪K = I, whence J ∩K is a singleton.
Assume that y(J ∩K) = z(J ∩K) and furthermore that either

b(y(J \K), z(K \ J)) <ν q(y) ∼=ν q(z); (7.14)

or
b(y(J \K), z(K \ J)) ∈ T , b(y(J \K), z(K \ J)) ∼=ν q(y) ∼=ν q(z). (7.15)

Then x := y ∨ z is q-minimal and, of course, x(J) = y, x(K) = z.

Proof. We may assume that J = {1, 2}, K = {1, 3}, and then have

y = y1ε1 + y2ε2, z = z1ε1 + z3ε3

with y1 = z1. Then x =
3
∑

1

xiεi with

x1 = y1 = z1, x2 = y2, x3 = z3.

It follows from Corollary 6.9 that

(1) α1x
2
1 + α2x

2
2 <ν β12x1x2 = q(y) ∈ T ,
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(2) α1x
2
1 + α3x

2
3 <ν β13x1x3 = q(z) ∈ T .

Assume that x′ =
3
∑

1

x′

iεi is given with either

x′

1 < x1, x′

2 = x2, x′

3 = x3 or

x′

1 = x1, x′

2 < x2, x′

3 = x3.

We will prove that q(x′) < q(x), and then will be done.
Taking into account that

b(y(J \K), z(K \ J)) = b(y2ε2, z3ε3) = β23x2x3,

we see that

(3) β23x2x3 <ν β12x1x2
∼=ν β13x1x3,

while (7.15) says that

(4) β23x2x3 ∈ T , β23x2x3
∼=ν β12x1x2

∼=ν β13x1x3.

Assume that (3) holds. If x′

1 < x1, then x′

1 <ν x1, and thus

β12x
′

1x2 <ν β12x1x2, β13x
′

1x3 <ν β13x1x3.

It follows from (1), (2), (3) that q(x′) <ν q(x), whence q(x′) < q(x). If x′

2 < x2, then x′

2 <ν x2,
and thus

β12x1x2 <ν β12x1x2, β23x
′

2x3 <ν β23x2x3.

Now we conclude from (1), (2), (3) that

q(x′) = β13x1x3
∼=ν q(x).

But q(x′) ∈ T , q(x) ∈ G, and so q(x′) < q(x) again.
Assume finally that (4) holds. If x′

1 < x1, we see by the same reasoning that

q(x′) = β23x2x3
∼=ν q(x),

while if x′

2 < x2 then

q(x′) = β13x1x3
∼=ν q(x).

In both cases q(x′) ∈ T , q(x) ∈ G, and so q(x′) < q(x). This completes the proof that x is
q-minimal. �

We complement Theorems 7.2, 7.3, 7.5 by an observation on certain pairs of q-minimal
vectors.

Theorem 7.6. Assume that x, y ∈ V are q-minimal vectors with y < x and q(y) ∼=ν q(x).
Let J := supp(y). Then q(y) ∈ T , q(x) ∈ G, and one of the following cases holds:

1) | supp(y)| = | supp(x)| = 1, x = ey.

2) | supp(y)| = | supp(x)| = 2, y < x < ey.

3) | supp(y)| = 1, | supp(x)| ≥ 2, y = x(J).

4) | supp(y)| = 2, | supp(x)| ≥ 3, y = x(J).

Proof. a) We may assume that supp(x) = {1, . . . , n}. We have q(y) < q(x) because x is
q-minimal. This forces q(y) ∈ T , q(x) ∈ G.

b) Assume n = 1. Now y = y1ε1, x = x1ε1, and α2
1y1 ∈ T , eα2

1y1 = α2
1y1 ∈ T , eα2

1y1 = α2
1x1.

This implies x1 = ey1, whence x = ey.
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c) Suppose that |J | = 1, n ≥ 2. We may assume that J = {1}. Now y = y1ε1, α1y
2
1 ∈ T

and y1 ≤ x1, whence α1y
2
1 ≤ α1x

2
1. Since q(y) ∼=ν q(x), the terms α1x

2
1 is ν-dominant in the

sum
n

∑

1

αix
2
i +

∑

i<j

βijxixj = q(x) (7.16)

Since x is q-minimal, this forces α1x
2
1 ∈ T and then α1y

2
1 = α1x

2
1. We conclude that y1 = x1,

i.e., y = x(1).

d) Suppose that |J | = 2, n ≥ 2. We may assume that J = {1, 2}. By Corollary 6.9,

α1y
2
1 + α2y

2
2 < β12y1y2 = q(y) ∈ T .

It follows from q(y) ∼=ν q(x) and y1 ≤ x1, y2 ≤ x2 that β12x1x2 is a ν-dominant term in the
sum (7.16) and β12x1x2

∼=ν β12y1y2, β12x1x2 ≥ β12y1y2.
If n > 2, then the q-minimality of x forces β12x1x2 ∈ T , and we conclude from y1 ≤ x1,

y2 ≤ x2 that y1 = x1, y2 = x2, i.e., y = x(1, 2).
If n = 2, we conclude from q(y) < q(x) that eβ12y1y2 = β12x1x2, and then that y1 ∼=ν x1,

y2 ∼=ν x2, whence ex = ey. But x 6= ey, since the vector ey is not q-minimal. Thus either
x1 = ey1, x2 = y2, or x1 = y1, x2 = ey2. We conclude that y < x < ey. �
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