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ABSTRACT 

Due to uncertainties associated with material properties, structural geometry, 

boundary conditions and connectivity of structural parts as well as inherent 

simplifying assumptions in the development of finite element (FE) models, actual 

behavior of structures often differs from model predictions. FE model updating 

comprises a multitude of techniques that systematically calibrate FE models in order 

to match experimental results. Updating of structural models can be posed as an 

optimization problem where model parameters that minimize the errors between the 

responses of the model and actual structure are sought. However, due to limited 

number of experimental responses and measurement errors the optimization problem 

may have multiple admissible solutions in the search domain. Global optimization 

algorithms (GOAs) are useful and efficient tools in such situations as they try to find 

the globally optimal solution out of many possible local minima, but are not totally 

immune to missing the right minimum in complex problems such as those 

encountered in updating. A methodology based on particle swarm optimization 

(PSO), a GOA, with sequential niche technique (SNT) for FE model updating is 

proposed and explored in this paper. The combination of PSO and SNT enables a 

systematic search for multiple minima and considerably increases the confidence in 

finding the global minimum. The method is applied to FE model updating of a 

pedestrian cable-stayed bridge using modal data from full-scale dynamic testing.  

Keywords: cable-stayed bridge, deceptive problem, global optimization algorithms, inverse 

problem, model updating, multiple minima, particle swarm optimization, sequential niche 

technique, structural optimization  
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1. INTRODUCTION 

Finite element (FE) modeling is nowadays routinely used for determination of responses of 

full-scale structures to a variety of actions, but formation of a model which replicates the 

behavior of the original structure with high accuracy is not easy due to inherent simplifying 

assumptions in model building (Friswell and Mottershead, 1995). Full-scale dynamic testing 

of structures often reveals important and considerable differences between the original 

structure and its FE model. These differences can be attributed to modeling errors associated 

with simplifications of complicated structural systems, inadequate discretization and 

parametric errors in the estimation of materials properties, geometry, and boundary and 

connectivity conditions. 

Dynamic FE model updating is an inverse problem in which uncertain parameters of 

the FE model are calibrated to minimize the errors between the predictions of the FE model 

and experimentally measured dynamic behavior of the actual structure. Model updating can 

be posed as an optimization problem in which an optimal solution is sought by perturbing the 

uncertain parameters of the FE model so that the model prediction errors are minimized. 

The number of model responses, such as natural frequencies and mode shapes, that 

can be determined experimentally with adequate confidence, is always limited. This can be 

attributed to two main reasons, namely, difficulties in identifying higher modes because of 

poorer signal-to-noise ratios, and difficulties arising from coarse mode shape mapping due to 

limited numbers of sensors used. A relatively small number of experimental responses 

compared to the number of uncertain parameters in the FE model may lead to the existence of 

multiple local minima in the solution space for the updating problem (Jaishi and Ren, 2007). 

Adding to that, the assumptions made in the development of FE model and uncertainties 

associated with material properties, boundary conditions and geometry may result in 



4 
 

significant differences in the natural frequencies and mode shapes obtained from the initial 

FE model and their experimental counterparts (Mottershead and Friswell, 1993). The 

algorithm searching for the global minimum of the error or objective function may then be 

lured into those local minima in problems that Goldberg et al. (1992) call ‘deceptive’. This 

undesirable behavior is well known in the context of model updating. For example, the 

widely used sensitivity method (SM), which is essentially an iterative steepest-gradient 

approach sometimes combined with regularization (Titurus and Friswell, 2008), has a 

tendency to converge to a local minimum (Deb, 1998). Accordingly, many previous model 

updating studies report a single solution (Brownjohn et al., 2001; Jaishi and Ren, 2005; 

Zivanovic et al., 2007) but acknowledge there might be other solutions as well. A popular 

countermeasure is to run the updating algorithm for several times and with perturbed initial 

parameter values, however, such an approach is not a systematic search over the solution 

domain. Only limited studies have reported multiple model updating solutions and 

consequently the problem and its remedies have not been sufficiently explored (Zárate and 

Caicedo, 2008). 

Global optimization algorithms (GOAs) are numerical techniques that explore the 

search space systematically and widely in an attempt to increase the chance of discovering 

the global minimum (Pintér, 1996; Price et al., 2005; Storn and Price, 1997). While there has 

been some documented history of their applications to model updating (Levin and Lieven, 

1998; Perera and Ruiz, 2008; Tu and Lu, 2008), such studies still remain relatively limited 

and application of GOAs for detection of multiple minima is an active area of research in 

model updating problems. Coupled local minimizer (CLM) method, applicable to global 

optimization of a function, was proposed by Teughals et al. (2003). A population of local 

minimizers set up a cooperative search mechanism and was linked using synchronization 

constraints. CLM was successfully applied to an FE model updating problem for damage 
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detection in a reinforced concrete beam. Two different minima existed for the damage 

detection problem and CLM was able to successfully detect both of them. Bakir et al. (2008) 

also proposed an improved CLM technique to correctly identify damage in a complex 

structure. The improved CLM method was compared with Levenberg–Marquardt algorithm, 

sequential quadratic programming and Gauss–Newton methods and it was found that it gave 

better results. In another study by Zarate and Caicedo (2008), multiple admissible solutions to 

model updating problem were identified using the modeling-to-generate-alternatives 

technique. A full scale Bill Emerson Memorial bridge was updated and different plausible 

solutions were detected. The authors selected a solution which had a better physical 

justification despite having a higher error function value than the global minimum. A novel 

evolutionary algorithm which is able to identify local and global optimal solutions was also 

proposed by Caicedo and Yun (2011). This was accomplished by introducing two new 

operators in a genetic algorithm. The algorithm was used on a simulated numerical example 

of the American Society of Civil Engineers Structural Health Monitoring Benchmark 

structure. A random white noise was added to the acceleration records which resulted in the 

creation of two minima. It was found that the correct minimum had a higher objective 

function value than the wrong minimum. The two minima were correctly detected by the 

proposed algorithm. However, in these papers only a few parameters were updated in order to 

reduce the dimensionality of the problem and complete exploration of the search domain 

could not be assured. With the increase in the number of updating parameters, the behavior of 

the objective function becomes more complex and difficult to predict. A possible approach to 

such problems, which is investigated in this paper, is to perform sequential search which 

excludes already explored parts of the optimization domain.  

One of the efficient GAOs, which is used in this study, is particle swarm optimization 

(PSO) (Konstantinos and Vrahatis, 2010). PSO is based on a biologically inspired 
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mathematical metaphor of how a swarm of bees, school of fish or similar animal grouping 

collectively move in search of the most fertile feeding location. Applications of PSO to 

model updating have so far been very limited. The algorithm performed well for model 

updating of simple, numerically simulated structures. Saada et al. (2008) used PSO for model 

updating of a beam structure, whereas a hybrid PSO-Simplex method was proposed for 

model updating of a ten-bar truss and a free-free beam (Begambre and Laier, 2009). Marwala 

(2010) applied several different GOAs to updating of the models of a simple beam and an 

unsymmetrical H-shaped structure and found that PSO gave better results compared to the 

other GOAs considered. PSO was also applied in a multi-objective optimization context to 

damage estimation problems with modeling errors (Perera et al., 2010). Although PSO was 

shown to be an efficient method for the damage estimation problem, its fast convergence 

sometimes led to being trapped in a local minimum. 

Most recent studies which use GOAs for updating are for damage detection in 

laboratory structures (Perera and Torres, 2006; Perera et al., 2009b) and their suitability for 

model updating of full-scale structures has been inadequately explored. For example, several 

studies (Perera et al., 2009a; Perera et al., 2010; Raich and Liszkai, 2007) are related to the 

damage detection problems where the ‘correct answer’ (in the form of damage location) is 

normally known a priori to the analyst for verification of the updated results. In the context of 

dynamic model updating of actual, full-scale undamaged structures, the ‘correct answer’ is 

typically not known to the analyst which leads to considerable challenge in interpreting the 

obtained results. While, as explained earlier, GAOs in their basic form attempt to locate the 

global solution to an optimization problem, they cannot fully guarantee a search will always 

be successful. These shortcomings of GOAs in general and their previous applications to 

model updating motivated the approach proposed and explored in this study which is based 

on a systematic search over the solution domain for multiple minima of the objective function 
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so that the global minimum can be discovered with increased confidence. The sequential 

niche technique (SNT) (Beasley et al., 1993) is combined with PSO to that end. PSO is 

chosen due to its faster convergence speeds relative to other GOAs. SNT is simple and does 

not require modifications in the search algorithm itself. It only modifies the objective 

function after any local (or global) solution has been reached is such a way that subsequent 

searches avoid the vicinity of the previously found minima and are forced to search for new, 

yet undiscovered, ones.  

The outline of the paper is as follows. In the first section, the theory of PSO and SNT 

are explained. Then forced vibration testing of a full-scale, cable-stayed pedestrian bridge and 

modal system identification are described. Next, a detailed study of updating of an FE model 

of the bridge is presented. Firstly, the development of an initial FE model is explained and 

sensitivity and uncertainty study carried out to determine the most suitable parameters for 

updating. PSO alone and then PSO with SNT are applied to the FE model updating problem 

to compare their performance. The main contributions of this study comprise a novel 

approach to model updating that combines PSO and SNT, and a systematic, detailed 

exploration of the new method performance using data from a full-scale structure. 

2. THEORY 

For complex optimizations problems, GOAs try to find the global minimum among many 

possible local minima in the search space. In model updating, the topology of the search 

space can be complex due to the large number of updating parameters and their influence on 

the objective function via numerically evaluated responses. A methodology based on 

combining the stochastic search algorithm PSO with SNT is proposed and investigated in this 

paper to improve the performance of GOA-based model updating in finding the global 

minimum. In the subsequent sections, the theory of PSO and SNT are explained.  
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2.1. Particle swarm optimization 

PSO (Kennedy and Eberhart, 1995) is a population-based stochastic optimization method that 

iteratively tries to improve the solution with respect to a given measure of quality. The 

concept of PSO was developed based on the swarm behavior of fish, bees and other animals. 

In PSO, the members or particles making up the swarm and representing optimization 

parameters move in the search space in pursuit of the most fertile feeding location, or, in 

mathematical terms, the optimal location that minimizes an objective function. Each particle 

in the swarm is influenced by the rest of the swarm but is also able to independently explore 

its own vicinity to increase diversity. Likewise, if a swarm member sees a desirable path for 

the most fertile feeding location, the rest of the swarm will modify their search directions. 

Thus, the movement of each particle is influenced by both group knowledge and individual 

knowledge. It is assumed and expected that this will eventually, over a number of 

generations, move the whole swarm to the global optimal solution. The implementation of 

PSO compared to the other optimization techniques is relatively fast and cheap as there are 

few parameters to adjust and it can be used for a wide range of applications (Knowles et al., 

2008). 

In the PSO algorithm, each particle is assigned a position and velocity vector in a 

multidimensional space, where each position coordinate represents a parameter value. The 

algorithm calculates the fitness of each particle according to the specified objective function. 

The particles have two reasoning capabilities: the memory of their own best positions in the 

past generations referred to as pbesti(t), and knowledge of the overall swarm best position 

referred to as gbest(t). The position ܠ௜ሺݐሻ of each particle is updated in each generation by 

the simple recursive formula (see also Figure 1): 
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ݐ௜ሺܠ ൅ 1ሻ ൌ ሻݐ௜ሺܠ ൅ ݐ௜ሺܞ ൅ 1ሻ (1)

where i is the particle number and t is the generation number. The velocity of each particle 

 ሻ towards its pbesti(t) and gbest(t) locations is adjusted in each generation using theݐ୧ሺܞ

following formula: 

ݐ୧ሺܞ ൅ 1ሻ ൌ γ ൈ ሻݐ୧ሺܞ ൅ ܿଵ ൈ ଵ݀݊ܽݎ ൈ ൫ܜܛ܍܊ܘ୧ሺݐሻ െ  ሻ൯ݐ୧ሺܠ

൅ܿଶ ൈ ଶ݀݊ܽݎ ൈ ൫ܜܛ܍܊܏ሺݐሻ െ  ௜ሺtሻ൯ܠ

(2)

where ܞ௜(t) is the initial velocity, ܞ௜(t+1) is the updated velocity, ߛ is the inertial weight, ܿଵ 

and ܿଶ are the cognition and social coefficient, and rand1 and rand2 are random numbers 

uniformly distributed between 0 and 1, respectively. 

In addition to the inertia term that holds the memory of all previous iterations, there 

are two terms in Equation (2): one related to the particle’s local best position which defines 

the exploitative behavior, and the other related to the best global position which defines the 

swarm exploratory behavior (Konstantinos and Vrahatis, 2010). The exploitative behavior is 

related to local search where a given particle tries to get closer and closer to the (possibly 

local) minimum, whereas the exploratory behavior is related to the search of a broader region 

of the parameter domain by the entire swarm. To avoid premature convergence, the cognition 

and social component coefficient, c1 and c2, should be carefully selected. A constraint on the 

maximum velocity of the particle can also be imposed to ensure that the particles remain 

within the maximum and minimum bounds. Both theoretical and empirical studies have been 

undertaken to help in selecting the values of these parameters (Pedersen and Chipperfield, 

2010; Trelea, 2003; Zheng et al., 2003).  
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2.2. Sequential niche technique 

The principle of SNT is to carry over knowledge gained during subsequent iterations of an 

optimization algorithm (Beasley et al., 1993) so that different minima are discovered one by 

one. The basic idea behind SNT is that when a minimum is found in the search domain, the 

surrounding area, referred to as niche, is ‘filled in’ and no longer attracts the particles in 

subsequent iterations. This forces the optimization algorithm to converge to another, yet 

unvisited, niche. The process continues until the criteria such as the maximum number of 

iterations, maximum number of discovered minima and the upper threshold value of the 

objective function at a minimum have been met. 

Initial iterations in search of the first minimum are made with the basic search 

algorithm, PSO in this case, without SNT by using the raw objective function. Once the first 

minimum has been found, the objective function values of the particles in the vicinity of the 

minimum are modified, and the search for the next minimum commences. The modifications 

to the objective function are introduced by multiplying it by a derating function using the 

following recursive formula: 

∏௡ାଵሺܠሻ ൌ ∏௡ሺܠሻ ൈ ,ܠሺܩ ௡ሻ (3)ܛ

where ∏௡ାଵሺܠሻ is the modified objective function to be used for searching for the n+1-th 

minimum, ∏௡ሺܠሻ is the previous objective function used for searching for the n-th minimum, 

,ܠሺܩ   .௡ is the n-th found minimumܛ ௡ሻ is the derating function, andܛ

The following exponential derating function is used in this study (Beasley et al., 

1993): 

,ܠሺܩ ௡ሻܛ ൌ ቐ݁݌ݔ ቆ݈݃݋ ݉ ൈ
ݎ െ ݀ሺܠ, ௡ሻܛ

ݎ
ቇ ݂݅ ݀ሺܠ, ௡ሻܛ ൏ ݎ

1				 																							 ݁ݏ݅ݓݎ݄݁ݐ݋

 
(4)
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where m is the derating value used to control concavity of the derating function, r is the niche 

radius, and ݀ሺܠ,  ௡ሻ defines the distance between the current point x and the previously foundܛ

minimum sn.  

The niche radius r is an important parameter as it is used to define the size of the part 

of the search domain in the neighborhood of a minimum where the objective function is 

modified. Smaller values of niche radii produce more concavity in the derating function and 

limit the spatial extent of its effect but may introduce low value spurious minima, while 

larger niche radii can affect the other true minima in the search space. The niche radius has 

been determined in this study by the method proposed by Deb (1989) who suggested using a 

value calculated as  

ݎ ൌ
√݇

2 ൈ ඥ݌ೖ
 (5)

where k represents the dimension of the problem (the number of parameters) and p is the 

expected number of minima. Each parameter has to be normalized between 0 and 1 for the 

use of SNT. This approach assumes that all minima are fairly equally distributed throughout 

the search domain. However, since the distribution of minima was not known a priori, a value 

equal to 50% of that calculated from Equation (5) was used. 

3. BRIDGE DESCRIPTION 

The full-scale structure under study is a 59,500 mm long cable-stayed footbridge with two 

symmetrical spans supported on abutments, a central A-shaped pylon and six pairs of stays as 

shown in Figure 2. Figure 3 shows the deck cross-section, which comprises a trapezoidal 

steel girder with overhangs of a total width of 2,500 mm and depth of 470 mm, made of 

16 mm thick plates, and a non-composite concrete slab of thickness 130 mm. The concrete 
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slab was assumed in design to provide no contribution to the deck stiffness, although its mass 

and weight were accounted for. Closed steel rectangular pipes having a cross-section of 250× 

150×9 mm also run on both sides of the bridge deck and enclose two 100 mm ducts for 

service pipes with surrounding void spaces filled with grout. Railing was provided on both 

sides of the bridge and it has a total height of 1,400 mm. The sections of railings were 

disconnected from each other at every 8,000 mm. 

The girder is continuous over the entire bridge length. It is supported on two 

elastomeric pad-type bearings of dimensions 90×180×12 mm at the central pylon. At each 

abutment two 150×150×12 mm elastomeric pad-type bearings are also provided, but these 

have a special arrangement that allows for longitudinal sliding while constraining any lateral 

horizontal displacements. The sliding bearings were provided to accommodate creep, 

shrinkage and temperature deformations, and to allow the bridge to move longitudinally in 

the event of a strong seismic excitation. The distance between bearing axes is 450 mm. The 

abutments are supported by two concrete piles, and 10 concrete piles and a pile cap are used 

at the central pylon. 

The six pairs of stay cables are fixed to the deck at distances of about 8,000 mm 

center to center as shown in Figure 4. All the cables have a diameter of 32 mm. Different 

post-tension forces, ranging from 55 kN to 95 kN in each cable, were specified in design. The 

cables were connected to the top of the 22,400 mm high center pylon, which is composed of 

two steel I-sections joined with cross bracing that supports the deck. The size of the pylon I-

sections is 400WC328 (AS/NZS, 1996).  
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4. EXPERIMENTAL PROGRAM AND SYSTEM IDENTIFICATION 

Experimental work has been carried out using uni-axial Honeywell QA 750 accelerometers to 

measure structural response, uni-axial Crossbow CXL series MEMS accelerometers to 

measure shaker input force and a desktop computer fitted with an NI DAQ 9203 data 

acquisition card. Data was collected at a sampling rate of 200 Hz. Three APS ElectroSeis 

Model 400 shakers (APSDynamics, 2012), capable of providing a combined dynamic force 

of up to 1.2 kN, were used in a synchronized mode to impart excitation to the structure.  

Full scale tests can be conducted by output only (no measured force) or input-output 

(measured force) methods. The cable stayed bridge under study has been tested using both of 

these methods. The output only test was conducted using jumping to establish the initial 

estimation of the natural frequencies of the bridge. Two people jumped on the bridge in 

unison to excite the structure and thereafter the bridge was allowed to freely vibrate for two 

minutes. This was done to establish the range of excitation frequencies for subsequent forced 

vibration tests. Following that, a sweep sine excitation ranging from 1 Hz to 15 Hz with a 

total duration of 391 seconds was adopted to excite the structure. The shakers were located 

away from the center line of the deck to excite both the vertical and torsional modes. To 

excite horizontal modes, the shakers were tilted at 90º. Figure 4 shows the locations of the 

shakers and accelerometers on the bridge during testing. Accelerometers were placed on both 

sides of the deck to capture vertical and torsional responses. Figure 5 shows the QA 750 

accelerometers and shakers placed on the bridge deck for horizontal forcing. One of the 

accelerometers was also placed on the bridge abutment to measure its response. Figure 6 

shows the time history of force delivered by a shaker, and Figure 7 shows the time history of 

bridge response recorded by one of the accelerometers during vertical testing. It can be seen 

in Figure 7 how subsequent modes are excited as the shakers sweep through the 
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corresponding modal resonant frequencies. The vertical and horizontal tests were repeated 

twice to ensure good quality data.  

For system identification in the frequency domain, peak picking using frequency 

response function (FRF) is a simple and commonly used method (Ewins, 2000). FRF is a 

measure of system response to the input signal at each frequency and can be calculated from 

the auto-spectrum of excitation and cross-spectrum between response and excitation (Friswell 

and Mottershead, 1995). For calculating the spectra, the Welch averaging method was used 

(Proakis and Manolakis, 1996) with each time history divided into five segments with 50% 

overlap and Hamming windowing. Finally, FRFs from the available experiments were 

averaged. To assess the quality of a FRF and distinguish between real and spurious peaks 

coherence can be used (Ewins, 2000). Coherence can be calculated using the aforementioned 

spectra and the auto-spectrum of response. High coherence values, close to one, indicate that 

response at a given frequency is caused by the measured input rather than other sources of 

excitation or is a false result introduced by noise.  An example of a FRF obtained during a 

vertical shaker test is shown in Figure 8, where FRF modulus or magnitude, phase and 

coherence are shown. It can be noticed that the magnitude has peaks at 1.64 Hz, 1.90 Hz, 

3.66 Hz, 6.32 Hz, 7.42 Hz and 8.33 Hz. All but the last peak at 8.33 Hz, which is a torsional 

mode, correspond to vertical modes. Higher peaks are observed at modes corresponding to 

6.32 Hz and 7.42 Hz, which shows that these modes are responding more strongly than the 

others. Also, the torsional mode peak at 8.33 Hz is less clearly visible possibly due to low 

levels of excitation torque delivered by the shakers. The phase of the FRF shows a change by 

180° close to 1.64 Hz, 1.90 Hz, 3.66 Hz, 6.32 Hz, 7.42 Hz and 8.33 Hz further confirming 

these are modal frequencies. The phase change is again much clearer at 6.32 Hz and 7.42 Hz 

as they are better excited than the other modes. The coherence between excitation and 

response have values of more than 0.8 at 1.64 Hz, 1.90Hz, 3.66 Hz, 6.32 Hz, 7.42 Hz and 
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8.33 Hz, indicating that a reasonably good correlation exists between the force and response 

signals. Much better coherence values, very close to one, were observed at 6.32 Hz and 

7.42 Hz. Some other peaks, e.g. just above 10 Hz, can also be seen but the corresponding 

coherence values are low. Similarly, two resonance frequencies were identified using 

horizontal shaker excitation at 4.85 Hz and 5.36 Hz, respectively.  

The well-known challenges of in-situ testing of full-scale large systems, like bridges, 

must be kept in mind while assessing the quality of the obtained FRFs. These include, but are 

not limited to, poorer signal-to-noise ratios because of limited capacity of exciters, very 

limited control of several ambient sources of excitation and noise (wind, construction works, 

vehicles, occupants, machinery, etc. – some of which are always present), and limited data as, 

unlike in the lab, tests cannot typically be repeated tens or hundreds of times for averaging. 

Given those challenges, it can be concluded that experimental data of sufficient quality have 

successfully been acquired.  

For cross-checking the results of pick peaking and also to identify damping ratios and 

mode shapes the numerical algorithm for subspace state-space system identification (N4SID) 

technique (Van Overschee and De Moor, 1994), operating in time domain and utilizing a 

subspace identification algorithm, was used. The general subspace algorithm (Overschee and 

Moor, 1996) can be applied to both input-only and input-output identification. In these 

approaches, state space system matrices are first obtained from the measurements, and then 

natural frequencies, damping ratios, and mode shapes can then be derived from these system 

matrices. 

The adequate order of the state space model needs to be carefully determined. 

Theoretically, the system order should be twice the number of the degrees of freedom, i.e. 

modes, of interest. However, due to measurement noise a higher model order is normally 
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required to extract the modes of interest with higher confidence and discard spurious, 

artificial results. To that end, stability diagrams are employed. As the system order increases, 

the structural modes identified by the algorithm should remain consistent and stable (Bodeux 

and Golinval, 2001). The model orders selected for this study ranged from 10 to 80 for the 

vertical shaker configuration. Stability thresholds were selected based on previous experience 

and data quality. A threshold of 1% for frequency variation and a value above 0.8 for modal 

assurance criterion (MAC) (Allemang and Brown, 1982) between two subsequent model 

orders were used. MAC for two mode shapes, ∅࢏ and ∅࢐, is defined as 

ܥܣܯ ൌ
ห∅ᇲ೔	∅ೕห

మ

ሺ∅ᇲ೔	∅೔ሻሺ∅ᇲೕ	∅ೕሻ
          (6) 

where the apostrophe denotes vector transposition. MAC takes a value of one for perfectly 

correlated modes and zero for two orthogonal modes. 

The stability diagram for a vertical shaking test is shown in Figure 9. It can be seen 

from the stability diagram that the six previously observed modes, five vertical and one 

torsional, are stable and can be identified from the vertical tests as shown by the black dots in 

the figure. Some spurious modes, that did not meet the stipulated stability criteria, were also 

detected as shown by the white dots in the figure. In a similar way, two modes previously 

seen in the FRFs were identified from the horizontal tests. 

Table 1 summarizes the natural frequencies identified from the peak picking and 

N4SID method. It can be seen from the results that the frequencies identified by both 

methods match very well. The damping ratios identified by the N4SID method are also 

shown in Table 1. It is observed that damping in the bridge is small, ranging between 0.2% 

and 1.4%. 
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Five vertical, two horizontal and one torsional mode shape identified from modal tests 

using the N4SID method are shown in Figure 10. It has been observed from the system 

identification results that the first two vertical modes have nearly identical sinusoidal shapes 

over the length of the bridge. An additional accelerometer was attached to one of the cables 

closest to the abutments during the vertical shaker tests and it has been found that the cable 

vibrates laterally at the frequency of the second mode, i.e. at 1.89 Hz. Thus, the pattern of 

cable vibration differentiates these two modes. 

Only one torsional mode of the system was identified by the forced vibration tests at 

8.32 Hz. Typically, one would expect a torsional mode of a shape similar to a full sinusoid 

where the deck twists in the opposite directions in each span (Ren and Peng, 2005). However, 

in the observed torsional mode the whole deck twists in the same direction. The reason 

behind this is that the main girder is a closed trapezoidal cross-section (Figure 3) thus having 

a large torsional stiffness, which makes it difficult to twist the bridge deck in a full-sine 

pattern. Also, the closed rectangular pipes with service ducts and railing that run near the 

edges throughout the length of the bridge further increase the torsional stiffness of the deck. It 

is thus easier to deform the pylon resulting in the torsional mode shape as indicated in Figure 

10. 

5. BRIDGE FINITE ELEMENT MODEL 

There are many ways to model cable-stayed bridges to obtain a realistic representation of 

their dynamic behavior. The main elements to be modeled are the deck, pylon, cables, and 

connections of cables and deck. A good representation of bridge deck for box girder sections 

can be achieved by using beam elements with rigid links joining the cable elements with the 

deck elements (Chang et al., 2001; Ren and Peng, 2005). In this research, the bridge was 

modeled in SAP2000 (2009) and the FE model is shown in Figure 11. The deck and pylon 
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were modeled using beam type FEs. The deck was discretized into 48 elements, whereas the 

pylon was discretized into 40 elements. These numbers of elements were selected as further 

discretization did not appreciably affect the results of numerical modal analysis of the first 

eight modes and only resulted in an increased computational cost. The cables were modeled 

using catenary elements provided in SAP2000 and were discretized into four elements for 

each cable. As indicated earlier, the first two experimentally identified vertical modes (Figure 

10) have very similar shapes of girder vibrations and an initial FE model with no 

discretization of the cables did not show the second of the two modes. After discretization of 

the cables into four elements all the experimentally observed modes were correctly replicated 

by the FE model. 

The modulus of elasticity for steel was taken as 200 GPa, for cables as 165 GPa and for 

concrete as 28 GPa following available design specifications. The cast is situ concrete slab 

was assumed to be fully composite with the steel girder resulting in a combined cross-

sectional second moment of inertia of 0.06140 m4 for horizontal bending, 0.00439 m4 for 

vertical bending and torsional constant of 0.00810 m4. (Note that this contradicts the 

assumption made in design that there is no contribution from the slab to the stiffness of the 

deck. However, it was anticipated that partial composite action between the steel and 

concrete did exist, as is often the case in real structures, and its actual extent will be 

quantified via model updating later.) An initial non-linear static analysis was performed to 

account for the geometric non-linearity caused by the cable sag and this was followed by a 

linear dynamic analysis to obtain natural frequencies and mode shapes. A linear analysis that 

uses stiffness from the end of non-linear static analysis for cable-stayed structures has been 

demonstrated to provide good results in previous studies (Abdel-Ghaffar and Khalifa, 1991). 

The response of the bridge was also measured with sensors on the bridge abutment 

beneath the deck. The abutment did not show any appreciable response in the vertical or 
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horizontal direction and so both abutments were ignored in the FE model. However, the 

stiffness of the bearings for shear and compression have been considered in the model and 

calculated using the procedure proposed by Gent (2012). The formulas take into account the 

effective load area, thickness of bearing and its shape, and Young’s and shear moduli of the 

elastomer. Furthermore, as explained before the distance between bearing axes is 450 mm 

and the torsional restraint provided by the bearings was also taken into account (Jaishi and 

Ren, 2007). The Young’s and shear moduli were assumed after Gent (2012) as 3.2 GPa and 

0.8 GPa, respectively. The shear, vertical and torsional stiffness for springs modeling the 

pylon bearing were found to be 2.14×106 N/m, 7.70×107 N/m and 3.90×106 Nm/rad, 

respectively. The stiffness for vertical and torsional springs modeling the abutment bearings 

were found to be 1.60×108 N/m and 8.86×108 Nm/rad, respectively. No shear deformations 

were allowed at the abutment. The freedom of the abutment bearings to slide in the 

longitudinal direction was ignored; this was not expected to have any strong effects on the 

model accuracy as neither was the bridge excited in the longitudinal direction during dynamic 

tests, nor were the corresponding modes identified or considered in the analysis. Lateral 

horizontal displacements at the abutments were constrained as previously explained. 

Table 2 summarizes the errors between experimental frequencies and mode shapes 

and those identified by the initial FE model. To compare experimental and numerical mode 

shapes MAC (Equation (6)) was used. It has been found that the frequencies obtained from 

the initial FE model differ from the experimental frequencies by up to 8.64% and MAC 

values are between 0.980 and 0.999. The systematic attempts to improve the agreement 

between the experimental and numerical predictions via PSO and SNT-based model updating 

are discussed in the next section. 

 

 

 



20 
 

6. BRIDGE MODEL UPDATING 

In model updating, dynamic measurements such as natural frequencies and mode shapes are 

correlated with their FE model counterparts to calibrate the FE model. There is a degree of 

uncertainty in the assessment of the actual properties of the materials used in the full-scale 

structure as well as the most realistic representation of the element stiffness, supports and 

connections between structural parts in the initial FE model. The challenge of finding a set of 

suitable parameters having physical justification necessitates the need for use of physically 

significant updating parameters and suitable optimization tools. 

6.1. Objective function for model updating 

An objective function quantifies the deviation of the analytical predictions of modal 

parameters from those obtained experimentally. The following objective function is used in 

this study: 
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The first term is the total relative difference between the experimental and analytical 

frequencies, where f represents the frequency, subscripts a and e refer to analytical and 

experimental, respectively, and n is the total number of frequencies considered. The second 

term measures the difference in mode shapes in terms of MACs (Möller and Friberg, 1998), 

where m is the total number of modes considered. The third term, r is related to 

regularization and for time being it is given in a general form to be specified later, once the 

sensitivity of frequencies to the proposed updating parameters is examined. Regularization in 

model updating is often introduced for ill posted problems that may not have a unique 

solution (Ahmadian et al., 1998; Friswell and Mottershead, 1995; Hua et al., 2009; 

Mottershead and Foster, 1991; Titurus and Friswell, 2008). Regularization, following the 
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original idea by Tikhonov (1963), augments the objective function with new conditions, that 

dependent on updating parameters rather than the measured responses, in order to steer 

optimisation into the regions of search space where it is assumed or believed their values 

belong. Finally, 1 through 3 are weighting factors allowing for relative promotion and 

demotion of the error terms. 

6.2. Selection of updating parameters 

The selection of parameters in model updating is critical for the success of any such exercise. 

An excessive number of parameters compared to the number of available responses, or 

overparametrization, will lead to a non-unique solution, whereas insufficient number of 

parameters will prevent reaching a good agreement between the experiment and numerical 

model (Titurus and Friswell, 2008). Updating parameters are selected with the aim of 

correcting the uncertainties in the FE model. It is necessary, therefore, to select those 

parameters to which the numerical responses are sensitive and whose values are uncertain in 

the initial model. Otherwise, the parameters may deviate far from the initial FE model and 

take on meaningless values while still resulting in good correlations between numerical and 

experimental results. 

The discrepancies between the different parameters of the initial FE model and the 

full-scale structure can be attributed to many inherent uncertainties and modeling 

assumptions, such as material density, stiffness and boundary and connectivity conditions. 

Parameter selection therefore requires a considerable insight into the structure and its model. 

In this study, only a relatively small number of parameters were selected based on a prior 

knowledge of their potential variability, and a sensitivity analysis was carried out to confirm 

they influence the responses. The various inertia parameters of the structure were not 

included as these are typically less uncertain than stiffness parameters. The bridge was also 
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supported at clearly defined points using specialized bearings that permitted making good 

judgment about the appropriate modeling of boundary conditions, except the numerical 

values of bearing spring stiffness. Thus, candidate parameters considered for calibration in 

this study were cable tensions, cable axial stiffness, bending and torsional stiffness of the 

deck and stiffness of the bearings. 

The likely uncertainty of the parameters characterizing cable stiffness, i.e. cable axial 

stiffness and tension force, can be attributed to many factors such as application of different 

tensioning forces than those specified in design, relaxation of steel stresses with time, and 

slippage in anchorages and between cable strands. Stiffness of the deck depends on Young’s 

modulus of both steel and concrete; especially the latter shows considerable variability. The 

connection between steel girder and concrete slab will typically be designed to allow for 

either composite action or lack thereof. However, real bridges will always exhibit a certain 

degree of composite action (less than full because of connector flexibility, and more than 

none because of, for example, steel-concrete bond and friction) eluding the analyst. 

Furthermore, non-structural elements, such as pavement, railings, services, also make a 

contribution to stiffness that is difficult to quantify and model precisely. Also, stiffness of the 

bearings was assumed from literature as the exact specifications were not known, and is thus 

prone to uncertainty further exacerbated by the inherent variability of elastomer properties. 

There are three pairs of stay cables on each side of the central pylon. The four 

identical cables closest to the abutments are referred to as Cab-1, the four cables in the 

middle as Cab-2, and the four cables nearest to the pylon as Cab-3 (Figure 4). The cables 

were post-tensioned, as per design documentation, with forces TCab-1=55kN for the four 

cables closest to the abutments, TCab-2=95kN for the middle cables, and TCab-3=75kN for the 

cables nearest to the central pylon (Figure 4). The effective axial stiffness of a cable depends 

on its projected length, self-weight, axial stiffness EA (where E is Young’s modulus and A is 
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cross-sectional area) and tension force in the cable (Nazmy and Abdel-Ghaffar, 1990). For 

taut cables with small sag, the influence of axial stiffness EA on the effective stiffness is more 

pronounced than that of the tension force. A simple hand calculations using the Ernst formula 

for cable stiffness (Nazmy and Abdel-Ghaffar, 1990) showed that the effect of tension force 

on stiffness is much more important in cables Cab-1 compared to the remaining cables. This 

was later confirmed by the sensitivity analysis on the FE model, and therefore only tension 

TCab-1 was included in the updating parameters. 

Sensitivity analysis using the FEM model was conducted to confirm the selected 

updating parameters can influence the analytical responses. Relative sensitivity is the ratio of 

the relative change in the response value caused by a relative change in the parameter value. 

In this study, sensitivities were calculated using a finite difference method by changing the 

parameters by 0.1% with respect to their initial values. The selected parameters based on 

sensitivity analysis and engineering insight into their uncertainty were deck flexural stiffness 

for vertical (Ky,deck) and horizontal (Kx,deck) bending, deck torsional stiffness (Kt,deck), axial 

stiffness of all cables (Kcable), cable tension for Cab-1 (TCab-1), and stiffness of bearings 

(Kbearing). The bearing stiffness, Kbearing, is to be understood as a single parameter whose 

changes affect proportionally the stiffness of bearing springs in the horizontal, vertical and 

torsional direction; this was done to keep the number of bearing related updating parameters 

to a minimum. 

The sensitivities of modal frequencies to the updating parameters are shown in Figure 

12. It can be noticed from the figure that, as can be expected, parameters Ky,deck, Kcable and 

TCab-1 influence appreciably, albeit to a varying degrees, the frequencies of vertical Modes 1, 

2, 3, 6 and 7. Additionally, Kcable influences the torsional Mode 8. Parameter Kx,deck influences 

the horizontal Modes 4 and 5. Two of the parameters that influence the torsional Mode 8, 

Kbearing and Kt,deck require careful attention. Ignoring a very small influence Kbearing has on 
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other modes, the two parameters practically only influence Mode 8. It can thus be expected, 

and indeed it was confirmed in preliminary calculations, that without constraining the two 

parameter variations attempts to update Mode 8 will create an ill posed problem with no 

unique solution. To overcome the problem, a regularization constraint was applied to keep 

the ratio of Kt,deck/Kbearing approximately constant during updating. The objective function, 

given in its general form in Equation (7), now becomes as follows: 
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where subscript j in the regularization part denotes current values of parameters and subscript 

0 represents their initial values. The value of the regularization term weighting factor 

3=0.0002 (Equation (6)) was adjusted by trial and error so that the ratio of the two 

parameters did not change more than ±10%. It is acknowledged here that the way the two 

parameters were linked can be considered arbitrary, but it can also be argued to be physically 

plausible. Furthermore, the examination of the potential ill posing of the problem by checking 

the sensitivity plot should in future be performed in a more systematic and rigorous way. 

Finally, selecting appropriate bounds on the allowable parameter variations during 

model updating is challenging and is normally done using engineering judgment. Different 

bounds have been used in previous research (Jaishi and Ren, 2005; Zivanovic et al., 2007). 

From the frequency errors in Table 2, it can be concluded that the initial FE model generally 

overestimates the stiffness, therefore the lower bound has been selected as -40% and the 

upper bound was selected as +30% for all the parameters.  

6.3. Assessment of the performance of model updating methodology 

This section applies the proposed method to updating of the pedestrian bridge FE model in 

order to explore the performance of the approach. All the eight experimentally identified 
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modal frequencies and mode shapes were used. A population of 30 particles was used by the 

PSO algorithm, the maximum number of generations was set to 200, and the upper threshold 

of the objective function to 0.001. The selection of parameters in the PSO algorithm is critical 

to its success. On the basis of extensive studies conducted by Clerc and Kennedy (2002), the 

PSO parameters appearing in Equation (2) were set to 0.729= ߛ, ܿଵ=1.5 and ܿଶ= 1.5 (known 

as the default contemporary PSO variant). The maximum velocity has been constrained as 

half of the allowable parameter variation range (-40% - +30%). The niche radius for SNT was 

calculated according to Equation (5) for four minima as 0.97, but to account for possible 

closeness of some of these minima 50% of this value was adopted. The parameter m for 

derating function (Equation (4)) was assumed as 1000. 

Model updating by PSO alone, i.e. without SNT, was attempted first. Ten independent 

runs were tested with different, randomly selected starting points. The purpose of these 

simulations was to see if PSO would be drawn to local minima. The best solution (i.e. the one 

giving the smallest value of the objective function) from the 10 runs is shown in Table 3 in 

the form of the ratios of updated to initial stiffness values. Standard deviations of these 

stiffness ratios from the 10 runs are also listed in Table 3 in parentheses to help in judging 

how many minima were encountered by PSO alone.  It can be seen that the maximum 

standard deviation of the updated parameter ratios is only 0.0058, giving confidence that all 

the solutions correspond to the same point in the search space.  

Although PSO alone convincingly converged to the same minimum during all trials 

with random starting points, it is worthwhile to explore systematically the search space for 

multiple minima and to that end PSO with SNT was applied. PSO with SNT was iterated five 

times with random starting points and the results are shown in Table 4. Again, the best 

solution reached for each minimum is reported but standard deviations for five runs were of a 

similar small order as in the case of PSO alone. It can be seen that the first minimum found is 
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the same minimum as the one found earlier by PSO alone. In further iterations, different 

minima with increased objective function values were found. Also, the updated parameter 

values for those minima were in many cases quite different than for the first minimum. This 

is because SNT forbids the search algorithm to converge again to the same niche. The 

systematic search using PSO with SNT gave an increased confidence in finding the global 

minimum. 

For checking the effect of the niche radius, the raw objective function values were 

compared with the modified function values obtained after the derating function was applied. 

It has been found that the niche radius used in this study has not affected the other minima in 

the search space.  

The initial and updated frequencies, their errors compared to the experimental results, 

and MACs between the updated and experimental mode shapes are shown in Table 5. All 

frequency errors are generally less than 3% after updating. The largest error dropped from 

8.64% to 2.84%, and in fact corresponds to a small error increase for the first vertical mode. 

This indicates that it is possible to improve the FE model considerably via adjusting the 

particular set of updating parameters considered, but some trade-off are inevitable. On the 

other hand, MAC values did not change appreciably, with some small positive and negative 

changes in different mode and the minimum value is 0.987. MAC values, however, were 

already very good in the initial FEM model. 

The updated parameters should be physically meaningful; otherwise it is difficult to 

justify the updating results. The vertical bending stiffness of the bridge deck has decreased to 

84.5%, horizontal stiffness to 83.7% and torsional stiffness to 93.5%, respectively. This could 

be mainly attributed to the fact that the initial model takes the cast in-situ concrete slab as 

fully composite with the steel girder, whereas no concrete contribution to deck stiffness was 
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assumed in design and, consequently, no special shear connectors were provided. (For 

comparison, when one ignores the concrete slab, the deck stiffness is 84.6%, 73.6% and 

60.9% for vertical bending, horizontal bending and torsional stiffness, respectively, compared 

to the fully composite case.) The updated results reveal that there may be some, albeit at best 

only partial, composite action between the slab and the steel girder contributing to the 

stiffness of the whole deck. The consistent decrease in all the parameters related to the deck 

stiffness supports this conclusion. Nevertheless, different than assumed stiffness of concrete 

and steel girder (e.g. due to stiffeners), and non-structural components can also be 

responsible. However, with only the limited number of measured modes available, further 

granularity in girder stiffness modeling cannot be further conclusively explored and has to be 

acknowledged as a limitation of this updating exercise. 

The bearing stiffness has decreased to 93.2%, which is a plausible reduction given 

that the initial value was assumed from literature. Due to the regularization term included in 

Equation (10), the values of the updated bearing stiffness and torsional stiffness of the deck 

change in a similar relative way. The increase in cable tension TCab-1 to 116.0%, shows that 

these post-tension forces are more than the designed value of 55 kN, indicating some possible 

overstressing of the cables. On the other hand, the cable axial stiffness shows a drop to 

92.5%. The latter result can be attributed to many factors. The FEM model uses a rather 

coarse parameterization. As a result, potential localized stiffness changes may be lumped into 

those parameters. For example, the identified drop in the cable axial stiffness may well be 

because of slippage in the cable anchorages, i.e. uncertainty in the modeling of structural 

connectivity. Uncertainties in material properties and slippage between cable strands can be 

influencing factors too. In general, the updated model represents the optimal solution for the 

optimization problem of Equation (8) that is also justified by engineering judgment, but 
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hinges on the validity of the initial model topology, discretization and parameterization. We 

argue that these are adequate. 

As with any multiple minimum inverse or identification problem which is, for 

practical reasons, solved numerically, no absolute assurance can ever be given that the chosen 

solution is undeniably correct, and so careful engineering judgment is required.  Examining 

the results reported in Table 4, it can be seen that the other minima found not only are 

associated with higher objective function values but also results in less realistic updated 

mechanical parameters. For example, more significant drops of stiffness of the deck and 

bearings (up to 40%) can be seen accompanied by more significant (up to 30%) increases in 

cable–related parameters. These reasons provide sufficient ground to argue that our chosen 

solution is the closest to the true dynamics of the bridge. 

The application of PSO combined with SNT increases the confidence in the obtained 

results as most of the solution space has been searched sequentially. The user, based on 

engineering judgment, can select the best solution from a list of different available solutions. 

The results demonstrate how a multi-dimensional search space can be systematically 

explored and how the applicability of updating techniques can be extended to more 

challenging problems. 

7. CONCLUSIONS 

A combination of PSO and SNT has been proposed in this study to systematically explore the 

search domain in updating problems with multiple minima. SNT works by ‘filling in’ the 

objective function niches, corresponding to the already known minima, and forces PSO to 

expend its region of search, thereby increasing the chance of finding the global minimum. 

The performance of PSO augmented with SNT has been explored using experimental modal 

analysis results from a full-scale cable-stayed pedestrian bridge. The results show that the 
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methodology proposed herein gives the analyst more confidence in the model updating 

results and that it can successfully be applied to more challenging full-scale structures.  The 

paper also emphasized that no updating exercise can rely on numerical results alone and 

careful interpretation and physical justification of the results are indispensable. 
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Figure 1. Pictorial view of particle behavior showing position and velocity update. 
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Figure 2. Full-scale cable-stayed footbridge. 
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Figure 3. Cross-section of bridge deck (all dimensions in mm). 
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Figure 4. Basic bridge dimensions, cable post-tension forces and location of shakers and 
accelerometers in the experiment (all dimensions in mm). 
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Figure 5. Accelerometers (in the center) and shakers (at the back) placed on the bridge. 
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Figure 6. Time history of force applied by a shaker. 
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Figure 7. Time history of bridge response recorded during vertical shaker excitation. 
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Figure 8. FRF measured during vertical shaker test. 
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Figure 9. Stability diagram for a vertical shaker test (black dots indicate stable modes). 
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Mode 1 (1st vertical): Frequency 1.64 Hz Mode 2 (2nd vertical): Frequency 1.89 Hz 

  

Mode 3 (3rd vertical): Frequency 3.69 Hz Mode 4 (1st horizontal): Frequency 4.86 Hz 

  

Mode 5 (1st horizontal): Frequency 5.33 Hz Mode 6 (4th vertical): Frequency 6.31 Hz 

  

Mode 7 (5th vertical): Frequency 7.42 Hz Mode 8 (1st torsional): Frequency 8.32 Hz 

  

 

Figure 10. Normalized vertical, horizontal and torsional mode shapes identified using N4SID 
method. 
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Figure 11. FE model of the bridge. 
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Figure 12. Sensitivity of modal frequencies to selected updating parameters. 
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Table 1. Experimentally identified natural frequencies and damping ratios. 

Mode no. Mode type 

Experimental frequencies (Hz) 
Damping ratios (%)

N4SID  Peak 

picking 

N4SID 

1 1st vertical 1.64 1.64 0.2 
2 2nd vertical 1.90 1.90 0.9 
3 3rd vertical 3.66 3.69 0.5 
4 1st horizontal 4.85 4.86 0.8 
5 2nd horizontal 5.36 5.33 0.6 
6 4th vertical 6.32 6.31 0.5 
7 5th vertical 7.42 7.42 1.0 
8 1st torsional 8.33 8.32 1.4 
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Table 2. Comparison between frequencies and mode shapes (MACs) between initial FE 
model and experiment. 

 

Mode no. 

Frequency 

MAC 

Experiment by N4SID Initial FE model Error 

(Hz) (Hz) (%) 
1 1.64 1.66 1.22 0.999 

2 1.90 1.88 -1.05 0.995 

3 3.69 3.88 5.15 0.999 

4 4.86 5.28 8.64 0.999 

5 5.33 5.45 2.25 0.993 

6 6.31 6.79 7.61 0.990 

7 7.42 7.76 4.58 0.980 

8 8.32 8.66 4.09 0.993 
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Table 3. Ratios of updated to initial stiffness and final objective function values for PSO 
alone. 

 

Ratio of updated to initial stiffness 
(standard deviation) 

Final value 
of 
objective 
function Ky,deck Kx,deck Kt,deck Kcable TCab-1 Kbearing 

0.845 0.837 0.935 0.925 1.160 0.932 0.0021 
(0.0006) (0.0003) (0.0001) (0.0020) (0.0011) (0.0058) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shabbir and Omenzetter 



50 
 

Table 4. Ratios of updated to initial stiffness and final objective function values for PSO with 
SNT. 

 

Minimum 

no. 

Ratio of updated to initial stiffness Final 

value of 

objective 

function 

Ky,deck Kx,deck Kt,deck Kcable TCab-1 Kbearing 

1 0.845 0.837 0.935 0.925 1.160 0.932 0.0021
2 0.662 0.798 0.600 1.300 1.044 0.600 0.0060 
3 0.880 0.801 0.600 0.600 1.300 0.600 0.0049
4 0.600 0.802 0.957 1.300 1.219 0.950 0.0079
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Table 5. Updated and experimental frequencies and MACs using PSO method. 

Mode 
no. 

Experimental 
frequencies 
by N4SID 
  

Updated 
FE model 
frequencies
  

Error in 
frequencies 

MAC (Hz) (Hz) (%) 
1 1.64 1.69 2.84 0.999 
2 1.90 1.86 -2.05 0.996 
3 3.69 3.70 0.22 0.999 
4 4.86 4.97 2.16 0.990 
5 5.33 5.28 -1.03 0.987 
6 6.31 6.39 1.23 1.000 
7 7.42 7.30 -1.61 0.992 
8 8.32 8.41 1.05 0.993 
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