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A new measure to characterize stability of dynamical networks against large perturbation is
suggested, the stability threshold (ST). It quantifies the magnitude of the weakest perturbation
capable to disrupt a network and switch it to an undesired dynamical regime. We introduce a
computational algorithm for calculating the stability threshold for arbitrary dynamical systems.
We demonstrate that this approach is effective and provides important insights.

Complex systems science is strongly based on linear
stability analysis considering small perturbations of dy-
namical systems. In a seminal paper [1] this concept
was extended even to the stability of synchronization in
complex networks leading to the efficient master stability
formalism (MSF). However, for various applications often
the influence of large perturbations is also of crucial im-
portance. Typical examples are climatological systems,
in particular ocean circulations. Well accepted is that the
Atlantic Meridional Overturning Circulation may be sen-
sitive to changes in the freshwater balance of the northern
North Atlantic. When an anomalous freshwater flux is
applied in the subpolar North Atlantic, this circulation
collapses in many ocean-climate models [2]. Another ex-
ample is power grids which are networks of connected
generators and consumers of electrical power. For proper
function of such networks synchronization between all the
nods is essential. Local failures, overloads or lines breaks
may cause desynchronization of nodes and lead to large-
scale blackouts [3, 4].

The study of system’s stability against large perturba-
tions implies treating the following challenging problem:
definition of the class of “safe”, or admissible perturba-
tions after which the system returns back to the initial
regime. In contrast, “unsafe” perturbations switch the
system to another, often unwanted, dynamical regime.
The definition of the class of safe perturbations of a non-
linear system is very complicated and basically different
from the linear stability analysis. The reason is that for
large perturbations linearization is inadequate and the
perturbed dynamics is governed by nonlinear equations
whose analytical study is impossible in general. Some
analytical methods do exist, for example the method of
Lyapunov functions [5]. However, this method has seri-
ous limitations since a Lyapunov function for a particular
dynamical system is often not constructive. Thereby an
important task is to develop numerical methods of defin-
ing and describing the class of safe perturbations.

From the viewpoint of nonlinear dynamics, established
dynamical regimes of the system corresponds to attrac-
tors in the phase space. The class of safe perturbations
is equal to the attractor’s basin, i.e. the set of the points
which converge to the attractor. A perturbation is safe if
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Figure 1. Stability threshold (ST) and its quantification. At-
tractor A, its basin B and ST σ. The trace of the algorithm
converging to the point M is shown by black dots. Other
LOCT points M2 and M3 are also shown. In the the zoomed
part, safe and unsafe perturbations are shown. Dotted lines
are perturbations, solid black lines are trajectories of the per-
turbed system.

it brings the system to a point within the basin. The first
attempt to characterize attraction basins in complex net-
works was undertaken in [7] where the concept of basin
stability (BS) was introduced. The BS equals

SB =

ˆ

Q

χ(x)ρ(x)dx, (1)

where Q is the set of possible perturbed states x, ρ(x)
with

´

Q
ρ(x)dx = 1 is the density of the perturbed states,

and χ(x) equals one if the point x converges to the attrac-
tor and zero otherwise. The value SB ∈ (0; 1] expresses
the likelihood that the perturbed system returns to the
attractor. An important advantage of this measure is
that it can be easily calculated by Monte-Carlo method.

BS is an important characteristic extending the con-
cept of linear stability for the case of large perturbations.
However, many real dynamical systems, especially com-
plex networks, possess highly-dimensional phase space
with complicated structure. This makes it problematic
to characterize a basin of attraction by just a single scalar
value. Moreover, BS depends on the perturbation class
Q which should be chosen a priory.

In this paper we suggest a new measure to charac-
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terize stability against large perturbation, the stability
threshold (ST). We were inspired by the observation
that for real systems it is often important to know the
maximal magnitude of perturbation which the system is
guaranteed to withstand, like the maximal voltage jump
for a stabilizer or the maximal bullet energy for a bul-
letproof vest. In the following we introduce ST in detail
and explain how to calculate it. Then its potential is
demonstrated for two paradigmatic model systems.

We define ST as the minimal magnitude of a perturba-
tion capable to disrupt the established dynamical regime,
i.e. to push the system out of the attraction basin. In
the phase space, ST is the minimal distance between the
attractor A and the border δB of its attraction basin, i.e.

σ = inf {dist(a, b) |a ∈ A, b ∈ δB} , (2)

where dist(·, ·) is the Euclidean distance.
To better understand the physical meaning of ST con-

sider the system settled to the attractor A as depicted in
Fig. 1. Let a ∈ A and b ∈ δB be points corresponding
to ST such that dist (a, b) = σ. Consider now a pertur-
bation ∆x of magnitude q = |∆x| applied to the system.
If q < σ, the perturbation can never kick the system out
of the attraction basin (∆x1 in Fig. 1). But if q > σ and
the system is near the point a just before the perturba-
tion, it may be kicked out of the basin if the direction
of the vector ∆x is close to the direction of the vector
D = b − a (∆x2 in Fig. 1). The above reasoning shows
that besides the value of σ, the direction of the corre-
sponding vector D is critical. This vector corresponds to
the most “dangerous” direction of perturbations in which
the distance to the basin border is the shortest.

To quantify ST, we propose a two-stage algorithm de-
scribed in detail in SM, sect. S1. Here we give the basic
principles of the algorithm also illustrated in Fig. 1.

i) First we identify some point K1 on the border of the
attraction basin. For this purpose we choose an arbitrary
pointK0 in the vicinity of the attractor and start to move
from the attractor until it leaves the basin. The point K1

is found then by the bisection method.
ii) Then we move along the basin border. On each

step we draw a tangential hyperplane to the border at
the current point Kn. In the hyperplane we find the
point closest to the attractor A and make a step towards
this point and so obtain the new point Kn+1. Such steps
bring us closer and closer to the attractor and finally
converge to the point M on the border with the minimal
distance to the attractor [8].

This algorithm allows us to determine the local min-
ima of the distance between the attractor and the basin
border, which we call further “local threshold” (LOCT)
points. Starting from different initial points we get
different LOCT points M1,M2, ...,Mm (Fig. 1). Be-
tween them, the one closest to the attractor is the
“global threshold point” corresponding to ST: σ =
min(σ1, ..., σm), where σj = dist (Mj ,A) .
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Figure 2. Stability of the pendulum (3). (a) Phase space for
α = 0.04, P = 0.1. Green area is the basin of the steady state
O, red curve is the limit cycle L. LOCT points are depicted by
red dots, traces of the algorithm by black. (b) Local stability
thresholds σ1 (red), σ2 (blue), and σ3 (black) versus P . (c)
The BS values SB1 (red), SB2 (blue) and SB0 (black) versus
P , mean values and variances.

This brute-force search to obtain all the local minima
does not seem to be a very effective strategy. However,
effectiveness of the method is essentially improved in a
parametric study, i.e. when the system properties are
studied versus its parameters. Note that such tasks are
typical since all realistic systems depend on parameters
and usually one wants to know what happens if they are
varied. Suppose that for a certain parameter value p =
p0 we have found all LOCT points M1(p0), ...,Mm(p0).
In a robust system, the phase space structure changes
continuously when p is changed. Thus, the coordinates
of LOCT points depend continuously on p. So, when p
is changed by a small value ∆p = p− p0 one should start
the algorithm from the points Mj(p0). Since the actual
positions of Mj(p) are close, the algorithm converges to
them quickly. In this manner one can effectively trace
the positions of LOCT points over the parameter value.

Below we show how the ST approach can be applied
to study some paradigmatic dynamical systems. First we
consider a classic pendulum under an external force P :

dθ

dt
= ω,

dω

dt
= −αω + P − sin θ. (3)

Here, θ and ω are the deviation angle and the angu-
lar velocity, and α describes friction. Noteworthy mod-
els similar to (3) are often used to describe dynamics of
nodes of power grids, i.e. generators or consumers [4, 6].
The phase space of the model is a cylinder S1×R1 and in-
cludes two attractors: a stable steady state O(arcsinP, 0)
and a stable limit cycle L (Fig. 2a). In the context of
power grids, the steady state corresponds to the state
when the generator operates in synchrony with the grid,
and the limit cycle corresponds to an undesired asyn-
chronous regime.

Next we use the concept of ST to study the attraction
basin of the steady state O. The identified LOCT points
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are depicted by red dots in Fig. 2a. The most important
ones are M1 corresponding to positive perturbations and
M2 corresponding to negative ones. Because of the com-
plex shape of the attraction basin other LOCT points ex-
ist further from the attractor, e.g. M3. Figure 2b demon-
strates the local thresholds (LOCTs) σj = dist(O,Mj)
associated with these points in dependence on the pa-
rameter P. One can see that for P < P ∗ ≈ 0.15 the point
closest to the attractor is M1, while for P > P ∗ the clos-
est point is M2. Thus, ST equals σ1 for P < P ∗ and σ2
for P > P ∗, i.e. the most dangerous are positive pertur-
bations for small P but negative perturbations for large
P .

It is interesting to compare both basin measures: ST
and BS. For this sake SB is plotted versus P in Fig. 2c.
We calculate it for three different classes of perturbations:
positive perturbations (SB1 for Q1 = [−π;π] × [0; 3]),
negative perturbations (SB2 for Q2 = [−π;π] × [−3; 0]),
and perturbations of both signs (SB0 for Q = Q1 ∪Q2).
When P increases, BS for all classes of perturbations
decreases as well as ST. Thus, both measures indicate
that the system becomes less robust. However, BS fails
to detect which perturbations are more dangerous: SB2

is sufficiently larger than SB1 for all values of P .
We also show that the efficiency of our algorithm is es-

sentially improved by tracing LOCT points over the pa-
rameter: the computation time decreases approximately
five times (see SM, sect. S2). For higher-dimensional
systems the improvement should be even much higher.

The second example is a network of coupled one-
dimensional maps. We chose maps for two reasons:
first, because of simpler implementation, and second, to
demonstrate the generality of our approach. The network
on N nodes is governed as follows:

xi(t+1) = axi(t)+bx2i (t)+κ
N∑

j=1

cij (xj(t)− xi(t)) . (4)

Here, 0 < a < 1 is the system parameter, κ stands for
the global coupling coefficient and cij are the elements of
the coupling matrix. Coupling between two nodes i and
j equals κcij . The network has the only attractor, the
stable fixed point O(0, 0, ..., 0). However, after a large
perturbation the system trajectories may go to infinity.

For network (4), a natural way to find LOCT points
is to trace them over the coupling coefficient κ. For
κ = 0, the nodes are uncoupled and each of them
is governed by the map xi(t + 1) = axi(t) + x2i (t),
which has a stable fixed point xi = 0 with the at-
traction basin −1 < xi < 1 − a. The borders
of this interval define two LOCT points in the net-
work phase space: Mi+ (xj = 0 (j 6= i), xi = 1− a) cor-
responds to positive perturbation of the node i, and
Mi− (xj = 0 (j 6= i), xi = −1) to negative ones. We start
from these points for κ = 0, then gradually increase κ
and trace their positions. We also periodically check for
emergence of new LOCT points, but failed to detect any.
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Figure 3. Stability of the network (4). (a) Coordinates of a
typical LOCT point Mi+ (i = 5) for two values of κ - small
(blue) and large (red). (b) LOCTs σi± versus κ. Blue thin
curves for σi+, green thin curves for σi−. Red thick curve is
the ST σ. (c) LOCTs σi± versus nodal coupling strength κi

for various nodes, coupling coefficients and network configu-
rations. Blue dots for σi+, green for σi− (d) The BS versus
κ. The inset shows the same dependency in logarithmic scale.
Red curve for numerical results, blue thin line for the estimate
(5).

We study various networks with 2 ≤ N ≤ 100 and
different types of topology: all-to-all, random [9], small-
world [10], scale-free [11], and cluster networks [12]. In all
the cases, the behavior of LOCT points is quite similar.
When κ increases, the positions of the points change, so
that the coordinates xj (j 6= i) of Mi± are no longer
zeros. However, for weak coupling the coordinates of
LOCT points obey |xi| � xj , i.e. the corresponding
perturbation mainly concerns the node i. For larger κ
the situation changes and LOCT points may have several
coordinates of the same order. Typical LOCT points are
illustrated in Fig. 3a.

Now let us consider LOCTs σi± = dist(O,Mi±) asso-
ciated with LOCT points. A typical dependence of these
thresholds on κ is illustrated in Fig. 3b. For all i, σi+
grows with κ, while σi− decreases. Some of the points
Mi+ may disappear at certain κ as well. A detailed study
shows a remarkable feature of the LOCTs σi±: they turn
out to be strongly correlated with the values of total con-
nections strength to the node κi = κ

∑N
j=1 cij . In Fig. 3c

the LOCTs σi± are plotted versus κi for various nodes,
coupling coefficients, network sizes and configurations.
The correlation is large, especially for small κi. Notice
that for κi . κ∗ ≈ 0.6 positive perturbations have a
lower threshold than negative ones, and this threshold
increases with κi. This finding leads to an easy and in-
tuitively clear rule: the stronger the node is connected
to the network the harder it is to tear it off. However,
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too strong coupling (κi & κ∗) is undesirable, since it in-
creases susceptibility to negative perturbations.

The global ST of the network is defined by the lowest
LOCT. Figure 3b illustrates a typical dependence of ST
on κ. It is interesting to compare this with BS for the
same network (Fig. 3d). As the perturbation class Q
we use a hypersphere of radius q = 0.8 with constant
density ρ which means that we consider perturbations
of amplitude q and random direction. [13] One may see
that SB = 1 when ST exceeds q for κ > κq ≈ 0.26. This
confirms that the value of ST indeed characterizes the
weakest perturbation that can disrupt the network.

From Fig. 3d one may acquire the wrong impression
that BS reaches unity much earlier than κ reaches κq.
The reason is that SB approaches unity very quickly
when σ approaches q. This can be seen in the inset of
Fig. 3d which has a logarithmic scale. We estimate that

1− SB ∼ (q − σ)
N−1

2 . (5)

when q is close to σ but exceeds it (see SM, sect. S3).
The corresponding slope is given by the blue line in the
inset of Fig. 3d and agrees with the numerical results.

The scaling law (5) is fair for an arbitrary N -
dimensional system. This suggests that for high-
dimensional systems it is very unlikely that the system
will be disrupted by a random perturbation whose magni-
tude exceeds ST not much. From the other side, a wisely
designed perturbation can disrupt the system even be-
ing just a slightly larger than ST. The estimate (5) also
shows that attempts to estimate ST from BS should be
inefficient since it is very complicated to detect the exact
point where BS reaches unity.

To conclude, we have introduced a novel measure to
describe stability of dynamical systems against external
perturbations. This stability threshold (ST) equals the
magnitude of the weakest perturbation capable to dis-
rupt the established dynamical regime. ST provides im-

portant information, since it guarantees the system to
withstand any perturbation of smaller magnitude. In the
phase space, ST is the minimal distance between the sys-
tem’s attractor and the border of its basin. From this
prospective, ST defines the “thinnest site” of the basin.
And as the saying goes, where something is thin, that is
where it tears: the direction corresponding to ST is the
most dangerous for the system.

For dynamical networks, different directions in the
multidimensional phase space are associated with differ-
ent nodes. To this end, the ST approach allows to deter-
mine the nodes which are mostly susceptible to pertur-
bations. Applying external perturbations to these nodes,
one may disrupt the network comparatively easily. How-
ever, sometimes ST is associated with perturbations in-
volving several nodes. An example of such a situation
is depicted in Fig. 3a. Under such circumstances, it is
easier to disrupt the network by simultaneous perturba-
tion of several nodes rather than by perturbing just one
of them. This situation contradicts to the common rule
that the strength of a chain is defined by the strength of
its weakest link: it turns out easier to break several links
simultaneously than one, even the weakest.

We have also suggested an algorithm to calculate ST
for arbitrary dynamical systems and demonstrated its
effectiveness. Generality of the ST-based approach de-
fines its vast potential for applications. Possible fields
include engineering, neuroscience, power grids, Earth sci-
ence and many others where robustness of complex sys-
tems against large perturbations is important.
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S1. Listing of the algorithm in Matlab

f unc t i on x1=find_stab_thr ( x0 , basfunc , xA, max_step , acc_min , acc_brd )
% Determines a l o c a l th r e sho ld po int
% x0 i s the s t a r t i n g po int
% basfunc (x ) i s the func t i on r e tu rn ing a p o s i t i v e value
% i f the po int converges to the a t t r a c t o r and negat ive otherwi se
% acc_brd i s the accuracy f o r the bas in border
% acc_min i s the accuracy f o r the r e s u l t a n t po int
% max_step i s the maximal l ength o f a s tep along the border
N=length ( x0 ) ;
x1=In f (1 ,N) ;
whi l e norm(x0−x1 )/norm( x0)>acc_min

% To f i nd a po int on the bas in border :
x0=find_border_point ( x0 , basfunc , max_step , acc_brd ) ;
% To cons t ruc t a t ang en t i a l hyperplane :
xmatr=ze ro s (N) ;
% To f i nd N−1 other po in t s on the border near x0 :
f o r j =1:N−1
x1=x0+ep s i l o n ∗(2∗ rand (1 ,N)−1);

x1=find_border_point ( x1 , basfunc , max_step , acc_brd ) ;
xmatr ( j , : )= x1 ;

end ;
xmatr (N, : )= x0 ;
% To f i nd the po int from the hyperplane c l o s e s t to xA :
x1=f ind_c lo se s t_po int ( xmatr , xA ) ;
% To come back to the bas in border :
x1=find_border_point ( x1 , basfunc , max_step , acc_brd ) ;
% To stop i f converged :
i f norm(x1−x0)>max_step

x1=x0+(x1−x0 )∗max_step/norm(x1−x0 ) ;
end ;

end ;

func t i on x1=find_border_point ( x0 , basfunc , max_step , acc_brd )
% Finds a po int on the border o f the a t t r a c t i o n bas in
% x0 i s the s t a r t i n g po int
% To f i nd a po int out o f the bas in :
whi l e basfunc ( x0)>0

x0=x0∗(1+max_step/norm( x0 ) ) ;
end ;
xout=x0 ;
% To f i nd a po int i n s i d e tha bas in
whi l e basfunc ( x0)<0
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i f norm( x0)>2∗max_step
x0=x0∗(1−max_step/norm( x0 ) ) ;

e l s e
x0=x0 /2 ;

end ;
end ;
xin=x0 ;
% Bi s e c t i on method :
whi l e norm( xin−xout)>acc_brd

x1=(xin+xout ) / 2 ;
i f bas func ( x1)<0

xout=x1 ;
e l s e

xin=x1 ;
end ;

end ;
x1=(xin+xout ) / 2 ;

f unc t i on x1=f ind_c lose s t_po int ( xmatr , xA)
% Draws a hyperplane through N po in t s L_1 , . . . , L_N
% and f i n d s a po int in i t which i s c l o s e s t to the po int xA
% xmatr i s a matrix conta in ing the coo rd ina t e s o f the po in t s L_j
[N,N]= s i z e ( xmatr ) ;
f o r j =1:N

xmatr ( j , : )= xmatr ( j , : )−xA;
end ;
A=ze ro s (N−1);
B=ze ro s (1 ,N−1);
f o r j =1:N−1

f o r k=1:N−1
A( j , k)=(xmatr ( j , : )− xmatr (N, : ) ) ∗ ( xmatr (k , : )− xmatr (N, : ) ) ’ ;

end ;
end ;
f o r j =1:N−1

B( j )=xmatr (N, : ) ∗ ( xmatr ( j , : )− xmatr (N, : ) ) ’ ;
end ;
a=−B/A;
x1=xmatr (N , : ) ;
f o r j =1:N−1

x1=x1+a ( j )∗ ( xmatr ( j , : )− xmatr (N , : ) ) ;
end ;
x1=x1+xA;

2



S2. Computation time with and without tracing
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This figure depicts the computation time per datapoint necessary to identify positions of the local threshold points
(mind the logarithmic scale of the vertical axis). The results are given for three different setups: parameter step
∆P = 0.02 (16 datapoints), without tracing (blue); the same parameter step, with tracing (green); smaller step
∆P = 0.01 (31 datapoints), with tracing (red). Without tracing, the search started each time from the same point.
With tracing, the search for the new parameter value started from the position found for the previous parameter value.
The total computation time Tc equals 9×10−3(a.u.) for the first setup, 19×10−4 for the second setup, and 24×10−4

for the third setup. Note that Tc in the third setup increases by less than 30% with respect to the second setup,
although the number of datapoints is twice larger. The reason is that with a smaller parameter step the positions of
the local threshold points change less and they are found faster.
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S3. Estimate for the basin stabitity
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Consider a dynamical system in the N -dimensional phase space settled into the attractor A with the stability
threshold σ. Consider the perturbation class Q consisting of perturbations with the amplitude q. For q < σ, the set
Q resides inside the attraction basin B, therefore SB = 1. For σ = q, the set Q contacts the border of the basin δB.
For q > σ some part of the set Q gets out of the basin B and SB becomes small than one. The probability of the
perturbed state to be out of the basin is proportional to the surface area s of the protrusive part (gray in the figure),
so 1− SB ∼ s. To estimate the surface area, one can approximate both surfaces Q and δB as two hyperspheres near
the site of their intersection. Then, the transverse size of the protrusive part can be estimated as d ∼ √q − σ, and
the surface area s ∼ dN−1. This leads to the estimate

1− SB ∼ (q − σ)(N−1)/2.
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