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Abstract

Background: Interactions between the diet and intestinal microbiota play a role in health and disease, including obesity and
related metabolic complications. There is great interest to use dietary means to manipulate the microbiota to promote
health. Currently, the impact of dietary change on the microbiota and the host metabolism is poorly predictable and highly
individual. We propose that the responsiveness of the gut microbiota may depend on its composition, and associate with
metabolic changes in the host.

Methodology: Our study involved three independent cohorts of obese adults (n = 78) from Belgium, Finland, and Britain,
participating in different dietary interventions aiming to improve metabolic health. We used a phylogenetic microarray for
comprehensive fecal microbiota analysis at baseline and after the intervention. Blood cholesterol, insulin and inflammation
markers were analyzed as indicators of host response. The data were divided into four training set – test set pairs; each
intervention acted both as a part of a training set and as an independent test set. We used linear models to predict the
responsiveness of the microbiota and the host, and logistic regression to predict responder vs. non-responder status, or
increase vs. decrease of the health parameters.

Principal Findings: Our models, based on the abundance of several, mainly Firmicute species at baseline, predicted the
responsiveness of the microbiota (AUC = 0.77–1; predicted vs. observed correlation = 0.67–0.88). Many of the predictive
taxa showed a non-linear relationship with the responsiveness. The microbiota response associated with the change in
serum cholesterol levels with an AUC of 0.96, highlighting the involvement of the intestinal microbiota in metabolic health.

Conclusion: This proof-of-principle study introduces the first potential microbial biomarkers for dietary responsiveness in
obese individuals with impaired metabolic health, and reveals the potential of microbiota signatures for personalized
nutrition.
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Introduction

The gut microbiota is an important contributor to human

health, and is emerging as a promising target for therapeutic

modulation [1,2]. Obesity-related diseases offer a prime example

where intestinal bacteria have recently been implicated as one

etiological factor [3–5]; hence modifying the gut microbiota

represents a potential strategy for successful treatment [3,6,7].

However, it is currently impossible to make practical guidelines as

to how the microbiota should be modified. Although recent

research has identified compositional and functional properties

that characterize the intestinal microbiota in healthy individuals

[8], we are lacking a definition for a healthy microbiota, mainly

because of the vast inter-individual variation [9]. Furthermore,

individuals’ responses to dietary interventions are highly variable

and poorly predictable – both in terms of host metabolism as well

as the gut microbiota – and sometimes even contrary to what was

expected from in vitro studies [10–13]. Hence, the key challenge for

the therapeutic modulation of the gut microbiota is to identify

individuals who will benefit from a given intervention, with respect

to their microbiota composition, and most importantly, with

regard to clinical health markers. Personalized nutritional and

pharmaceutical therapy, based on information of the individual’s

gut microbiota, have great prospects in the treatment of obesity

and related conditions [10,14].
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We propose that the composition of the gut microbiota may be

informative in predicting the responses of the microbiota and of

the host to a dietary intervention. Community composition

influences the responses of its members to disturbances through

ecological and evolutionary interactions [15]; the baseline

composition of the gut microbiota is likely to influence the

responses of individual bacterial strains, and consequently those of

the bacterial community and the host. We test this hypothesis

using three independent data sets of obese individuals undergoing

different types of dietary interventions, and attempt to predict the

responses of both the host and the microbiota.

Methods

Participants and dietary interventions
We used three previously published cohorts of Finnish, Belgian

and British adults who were obese and/or had metabolic

syndrome (n = 78; 71 were obese (BMI over 30 kg/m2), and 7

were overweight (BMI 26–29) and had diagnosed metabolic

syndrome). All subjects underwent dietary interventions, which

altered the quantity and/or quality of ingested carbohydrates and

by doing so, aimed for improved metabolic health and reduced

risk for type 2 diabetes. The details of the study designs and diets,

inclusion and exclusion criteria as well as the analytical procedures

can be found in the original publications specified below. We used

microbiota and clinical data collected at the beginning and at the

end of each trial.

Studies A and B consist of a Finnish 12-week trial with 52

participants (27 females, 25 males, age 40–65, BMI 26–39 kg/m2)

fulfilling the criteria for metabolic syndrome [16]. The participants

were randomized into two intervention groups: one group (n = 28)

ate high-fiber rye bread and whole-grain pasta (hereafter referred

to as study A), and the other group (n = 24) substituted grains in

their habitual diet with low-fiber, refined wheat bread (study B).

The samples were frozen in 270uC until DNA extraction with the

Repeated Bead Beating method [17].

Study C is a Belgian 12-week trial [18] from which we included

the intervention group (n = 13, all females, BMI .30 kg/m2),

which received a daily dose of 8g inulin and 8g oligofructose. The

fecal samples were stored in 220uC until DNA extraction with the

QiAamp Stool DNA Mini Kit (Qiagen, Hilden,Germany). The kit

procedure was modified according to Salonen et al. (2010);

however, the fecal samples were not beat-beaten, but subjected to

mechanical homogenization upon vortex agitation with micro-

beads (VWR, Belgium), and the bacterial lysis was improved by

heating samples at 95uC for 5 min.

Study D is a British 10-week trial [12] in which the participants

(n = 13, all males, age 27–73, BMI 28–51), fulfilling the criteria for

metabolic syndrome, consecutively received 3 different diets after a

run-in diet for one week. The interventions, each for 3 weeks,

included a resistant-starch-enriched diet, a non-starch-polysaccha-

ride-enriched diet, and finally a weight-loss diet, low in carbohy-

drates and fat, and high in protein. We used the data collected

during the run-in diet, and at the end of the weight-loss diet. The

DNA was extracted from fresh fecal samples using the FastDNA

Spin kit for soil (Qbiogene, Carlsbad, CA).

Total blood cholesterol, HOMA (Homeostastic Model Assess-

ment, indicator of insulin sensitivity), and CRP (C-reactive protein,

indicator of systemic inflammation) values, measured before and

after the intervention, were available for all studies, except CRP

for study D, and were used as markers for host responsiveness to

the intervention. Blood sampling and analysis have been described

previously for studies A and B [16], study C [18] and study D [19].

Host blood marker values at baseline, and their relative change

after intervention are presented in Fig. S1.

As a reference for the microbiota composition and temporal

dynamics, we included 15 Finnish healthy normal-weight individ-

uals, not undergoing any intervention, from a previously published

study [20]. As obese controls we used the control group from study

C (n = 15).

Intestinal microbiota analysis
All samples were analyzed with the HITChip microarray, which

is designed for the analysis of the human gut microbiota, relies on

the identification of the V1 and V6 regions on the 16S rRNA

gene, and can detect and quantify the relative abundances of over

1000 species-level (L3) phylotypes. These can be summarized into

130 genus-like groups ($90% sequence similarity in the 16S

rRNA gene; referred to as L2) and further to 23 L1 taxa that

represent 10 phyla, the Firmicutes being further divided into

Clostridium clusters, uncultured Clostridiales and Bacilli [21].

Figure 1. Result of data normalization. Principal co-ordinates plots (with Bray-Curtis distances) show that the microbiota profiles segregate
based on the study before (panel A), but not after (panel B) data normalization.
doi:10.1371/journal.pone.0090702.g001
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Probe signals summarized to the above-mentioned phylogenetic

levels were used as indicators of bacterial abundance. The

microbiota data, generated from fecal samples collected before

and after the interventions, were extracted using min-max

normalization [22] against an in-house data collection of over

5000 microarray experiments [23]. The microarray data are

available from the Dryad Digital Repository: http://doi.org/10.

5061/dryad.bv4k7. To gain normality, the HITChip hybridiza-

tion signals were log transformed. The Pearson correlation

between the baseline and the post-intervention sample, based on

the species-level data, was calculated to define the stability of the

microbiota for each individual. The stability was used as an

indicator of the microbiota responsiveness to dietary intervention

and treated in two ways: as a continuous variable, in which case

we attempted to predict the exact stability values, or as a

categorical variable, including in the responder group those with

Pearson correlation ,0.87 (n = 14, 18% of the individuals), and in

the non-responder group those with Pearson correlation .0.92

(n = 43, 55%). The cut-off values were based on the distribution of

the stability values presented in Fig. S2.

Quantification of methanogenic archaea, not detected by the

HITChip, was carried out with quantitative PCR with previously

described primers and reaction conditions [17].

Data normalization
Unsupervised clustering and principal coordinates analysis of

the baseline microbiota revealed that the data clustered by study

(Fig. 1A). The nature of the observed differences in the microbiota

composition between the studies suggested a technical rather than

a biological basis: the gram-negative bacteria were elevated, and

the gram-positive bacteria reduced in studies C and D compared

to studies A and B (Fig. S3). The effect of PCR bias or different

analytical procedures can be excluded as all samples were

processed similarly for the microarray hybridization. Instead,

such differences can arise from the use of differentially efficient

DNA extraction methods, as the gram-negative organisms become

overrepresented with methods that fail to lyse part of the

dominant, more recalcitrant gram-positive bacteria. Such subop-

timal performance has been reported for the Qiagen kit [24], even

when preceded with short mechanical lysis [17], which was used in

study C. Indeed, the overall diversity, measured by the inverse

Simpson diversity index, was significantly lower in study C

compared to the other studies, suggesting incomplete DNA

extraction. Secondly, the relative amount of Bacteroides spp. is

sensitive to storage conditions; their amount is significantly higher

in fresh than frozen samples [24], potentially explaining the higher

abundance of Bacteroidetes in samples of study D, which were

extracted from fresh samples with mechanical lysis. To eliminate

these presumably technical differences that prevented integrated

analysis of the cohorts, we normalized the datasets: First, we

calculated the total average (log-transformed) signal intensity of

each L1 group over all samples (MT), and average signal intensities

for each L1 group in each study (MA, MB, MC, MD). For each L1

group and study, we then calculated the % difference between the

total average (MT) and the study average as DA = (MA – MT)/

MT, DB = (MB – MT)/MT, DC = (MC – MT)/MT, DD = (MD –

MT)/MT. The normalized L2 and L3 signals were obtained by

multiplying the original values with 1-D for the study and

respective L1 group. After normalization, the studies no longer

separated in PCO (Fig. 1B).

Model selection and validation
From the total (species- and genus-level) microbiota data, we

formed four training-validation data set pairs and performed

model selection and validation separately for each data set pair

following the same procedure (detailed below). Training set 1

included all studies except Study A, which acted as the validation

set; training set 2 included all studies except study B; training set 3

included all but study C; and training set 4 included all but study

D. Therefore, we had essentially four training data sets, with four

independent validation data sets.

To select and validate the predictive model for microbiota

responsiveness, we fitted linear models (separately for each training

data set) with the microbiota stability as the response variable and

the abundance of each L2 and L3 bacterial group separately as the

only explanatory variable, allowing for linear and quadratic

relationships. Although linear models assume that the relationship

between the predictor and response variable is linear, non-linear

relationships can be estimated by including a quadratic term in the

model: the relationship between the response variable may be

linearly related to the predictor squared, and thus non-linearly

(quadratically) related to the predictor. From these models we

extracted p-values for the bacterial groups, as indicators of their

potential relevance as predictors of microbiota responsiveness. We

then built full models separately for each training set, which

included all bacterial groups with p-values ,0.02, now allowing

for interactions between the bacterial groups. These models were

then reduced using AIC (Akaike Information Criterion) as the

criterion of inclusion/exclusion of variables. Several different

penalty values (2–8) were used to arrive at a set of different-sized

models. These models were then tested for their ability to predict

the independent validation data set by calculating the correlation

between the model-predicted and the observed stability values for

the validation set. The final best model was chosen as the one,

which emerged from all four training data sets, and was

adequately able to predict all four validation data sets. The same

procedure was conducted with the microbiota responder vs. non-

responder categories, using logistic regression. To assess whether

the model predicted temporal stability in general, or responsive-

Figure 2. Validation of the microbiota responsiveness model.
The model selection and validation were conducted four times, each
time leaving out one study (marked with letters A-D). The resulting
model was used to predict the stability values in the left-out study. The
dashed line represents the ideal situation where observed = predicted.
doi:10.1371/journal.pone.0090702.g002
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Figure 3. Predicting cholesterol responses to dietary intervetions. Panels A, B, C: Three cholesterol response models: cholesterol response
predicted by the microbiota stability (panel A), by the baseline abundance of E. ruminantium and C. felsineum (B), and by the baseline abundance of C.
sphenoides (C). The data were divided randomly into a training set (75% of the data) and test set (the remaining 25%), and the ROC curves represent
the ability of the models, fitted to the training data, to predict the cholesterol response (increase vs. decrease) in the test data. The ROC curve shows
the true positive rate ( = sensitivity) against the false positive rate ( = 1-specificity) for the different possible cut points of a diagnostic test. The perfect
diagnostic test would have a sensitivity = 1 and specificity = 1, and therefore the area under the curve (AUC) would be 1. A random guess would
have a ROC curve following the diagonal; curves above the diagonal indicate that the classifier works better than a random guess. Shaded areas
represent 95% confidence intervals for the ROC curve. Panels D, E, F: Comparison of cholesterol response groups (increase vs. decrease), with respect
to microbiota stability (D), E. ruminantium and C. felsineum abundance (E), and C. sphenoides abundance (F).
doi:10.1371/journal.pone.0090702.g003

Figure 4. Validation of the HOMA (panel A) and CRP (panel B) response models. In each case, one study was left out, while data from the
other studies were fitted to the model, which was then used to predict the HOMA and CRP response for the independent data set (A–D). The dashed
line represents the ideal situation where observed = predicted.
doi:10.1371/journal.pone.0090702.g004
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ness to dietary intervention specifically, we used the model to

predict temporal stabilities in the control samples.

Host responsiveness was treated as categorical (.10% increase

vs. .10% decrease, excluding the cases with ,10% change) and

continuous. Model selection and validation for HOMA and CRP

responses were conducted as detailed above. In the case of the

responses, the different studies were not directly comparable due

to different average responses per study. We corrected for this by

including the study effect in the cholesterol response models as a

fixed term, and performed model selection and validation by

dividing the total data set randomly into a training set (75% of the

data) and a validation set (25%). We present the combined result

of 5 times repeated model validation.

To ensure that the normalization did not confound the analysis,

we tested the models with the non-normalized microbiota data.

The models performed well for studies A, B, and D. The responses

within the study C, which had the most divergent L1 composition,

could only be predicted after data normalization (data not shown).

We compared the diversity, richness, and evenness of the

microbiota, as well as the presence or absence of methanogenic

archaea, and Bacteroides/Prevotella ratio with the microbiota and

host responsiveness using linear models.

Finally, we compared the baseline abundances of the organisms

that were identified as predictive, between our obese cases and

healthy controls using analysis of variance.

All analyses were conducted with R [25]. ROC (Receiver

Operating Characteristic) curves were calculated with the package

pROC [26].

Results

To study the possibility to differentiate and predict highly

individual dietary responses based on the intestinal microbiota, we

searched for associations between its baseline composition and the

degree of responsiveness of the microbiota, and of the host, to

dietary interventions.

Predicting the microbiota response
A linear model with the baseline abundances of members of

Clostridium clusters IV, IX, and XIVa, and Bacilli (Table 1) was

able to predict the overall responsiveness of the gut microbiota to

all tested dietary interventions, as demonstrated by the strong

correlations between the observed and the model-predicted values

of microbiota stability (Fig. 2). The parameter estimates are

presented in Table S1.

When treating the responsiveness as a categorical variable, and

including only the clear responders (stability ,0.87) and clear non-

responders (stability . 0.92; Fig. S2), the model with the baseline

abundances of Eubacterium ruminantium and Clostridium felsineum was

able to predict with great accuracy all independent data sets (Fig.

S4): AUC (Area Under the Curve) for study A = 98.15% (95%

confidence interval: 93.02%–100%); study B = 77.78% (47.92%–

100%); study C = 100% (100%–100%); study D = 94.44%

(79.05%–100%). The non-responders were characterized by

average abundances of both species, while the responders had

either very low or very high baseline abundances of E. ruminantium

plus C. felsineum (Fig. S5).

Neither the linear nor the logistic model was able to predict the

microbiota stability of the control cases (study C, obese controls,

data not shown); the model specifically predicted responses to

dietary interventions.

Finally, we were interested in identifying the bacterial groups,

which could predict the change in bifidobacterial abundance, as

many of the diets strongly affected bifidobacteria in some, but not

all individuals. The direction and magnitude of change in

bifidobacteria was correlated only with their own baseline

abundance (Pearson correlation = 20.40, p,0.0001; Fig. S6),

indicating that intestinal bifidobacterial populations are strongly

regulated by negative density dependence.

Predicting the host response
The cholesterol, HOMA, and CRP responses varied widely

(Fig. S1), but were not interrelated. The cholesterol response was

related to the overall microbiota responsiveness, as the individuals

with a responsive microbiota all showed either a decrease (39%) or

no marked change (62%) in cholesterol levels, while only 21% of

the individuals with a non-responsive microbiota showed a

decrease in cholesterol levels, and 23% showed an increase. The

stability of the microbiota predicted the cholesterol response in the

randomly selected validation data set (with different intercepts for

different studies) with an AUC of 96% (95% CI: 89.33%–100%,

Fig. 3A, D). Moreover, the same species, which predicted the

microbiota response (E. ruminantium and C. felsineum), predicted the

cholesterol response with an AUC of 82.67% (65.17%–100%,

Fig. 3B, E). Finally, a model with only the abundance of the

species Clostridium sphenoides and different intercepts for the

different studies, predicted the cholesterol response with an

AUC of 100% (100%–100%). The abundance of C. sphenoides

was significantly (p,0.05) lower in the individuals with an increase

in cholesterol levels, as compared to those with a decrease (Fig. 3C,

F).

The HOMA response was not linked to the microbiota

response, but was predicted by a model including the baseline

abundances of members of Clostridium clusters XVI, and XVIa,

Bacilli, and Proteobacteria (Table 1, Table S1). The correlations

between the predicted and observed HOMA responses were

between 0.56 and 0.79 in the different validation data sets (Fig. 4A).

The CRP response was independent of the microbiota response,

but was predicted by a model including the baseline abundances

members of Clostridium clusters VI, XI, XIVa, and XVIII

(Table 1, Table S1). The correlations between the predicted and

observed CRP responses were between 0.46 and 0.80 in the

different validation data sets (Fig. 4B).

The diversity, richness, or evenness of the microbiota, or the

carriage of methanogenic archaea was not associated with

responsiveness (data not shown), nor was the Bacteroides/Prevotella

ratio (Pearson correlation = 0.06, p = 0.52; Fig. S7).

To confirm that the results were not platform-specific, we

included pyrosequencing data in the analysis. The data were

derived from fecal samples collected from 28 healthy adults (mean

BMI 25) before and after a four-week intervention on brown rice

and whole grain barley [27]. Most of the predictive bacteria

identified with the HITChip as predictors were not detected in this

data set, probably due to their low abundance (Table 1), so we

were unable to test the models with the sequencing data. However,

for those bacteria, which were detected, the relationship with the

microbiota responsiveness were comparable to that found in the

HITChip data (Fig. S8).

Discussion

The prognostic value of the gut microbiota
This is the first study to explicitly address the individual-specific

responses of the human microbiota to interventions, a long-know

phenomenon, which has, to date, been treated largely as random

noise. Our work revealed that rather than being random, the

response of the gut microbiota to dietary interventions can be

predicted with high accuracy based on the initial microbiota
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composition. Previously, the gut microbiota composition has been

used to successfully differentiate individuals with type 2 diabetes

[28,29] and IBD [30] from healthy controls, but this is the first

study to demonstrate the prognostic value of the gut microbiota.

Obesity is a multifactorial state, where host genes, life style and,

as recently identified, the gut microbiota [4,5] interact in a

complex and largely unknown way. Predicting how an individual

will respond to a dietary intervention is a major challenge with the

potential to revolutionize the management of obesity and

associated pathologies. Previously, adipose gene expression profiles

have been used to predict weight loss response with 80% accuracy

[31]. We have, for the first time, provided evidence that intestinal

bacteria, our microbial metabolic organ [4], can be used to predict

the host’s metabolic response to a dietary intervention. These

results were found to apply to different types of dietary

interventions, ranging from a simple addition of a prebiotic

compound (study C), to a change in the type of grains in the diet

(studies A and B), to a dietary change entailing profoundly altered

macronutrient composition (study D). It remains to be studied

whether the gut microbiota composition can be used to predict the

response to other types of dietary changes, e.g. in fat content.

Microbiota and host responses are interconnected
Our results indicate that some obese individuals gain health

benefits from a very simple and easily managed dietary change,

while others show no or even adverse responses, and may require

more profound treatment approaches. In this cohort, the

cholesterol responses were associated with the responsiveness of

the gut microbiota: a change in the gut microbiota appeared to be

necessary for the cholesterol values to lower. Similarly, Faith et al.

(2013) reported, based on sequencing data of healthy US adults,

that the change in BMI was associated with changing gut

microbiota [32]. Overall, our results confirm the previously found

link between the gut microbiota and host lipid metabolism [33,34],

and suggest that the successful improvement of lipid metabolism is

associated, and possibly dependent on, a change in the gut

microbiota composition.

The responsiveness of the microbiota appears to be a separate

phenomenon from the temporal dynamics in the absence of

intervention, as our models were unable to predict the temporal

stability of the microbiota in control individuals. This suggests that

these two traits are determined by different factors. Responsiveness

to a dietary change may, for example, reflect the primary response

of nutritionally specialized microbes, or indirect effects due to cross

feeding and/or competition. Temporal dynamics in the absence of

any specific stimulator or disturbance, in turn, may reflect e.g.

oscillatory dynamics due to density-dependent feedback (see 4.4)

or other reasons.

Predictive organisms may be bioindicators
Most strikingly, the cholesterol response could be predicted

from the abundance of a single species, Clostridium sphenoides,

measured from the fecal sample before the dietary intervention. A

decrease in cholesterol levels was observed mostly among the

individuals with high C. sphenoides abundance. Furthermore, the

abundance of C. sphenoides was in general decreased in our obese

study subjects as compared to healthy controls (Table 1). Obese

individuals with a ‘‘healthy’’ abundance of C. sphenoides thus appear

to benefit even from simple dietary interventions in terms of lipid

metabolism, while those with abnormally low abundance do not.

The abundance of C. sphenoides was not associated with the

absolute levels of cholesterol (data not shown), and therefore may

not be directly associated with cholesterol metabolism, but may

rather be an indicator of a gut ecosystem which, upon improved

diet, can contribute positively to host lipid metabolism.

Very little is known about the two organisms, which predicted

the responsiveness of the microbiota (C. felsineum and E.

ruminantium). E. ruminantium belongs to the family Lachnospiraceae,

has originally been isolated from bovine rumen, but is also part of

the human intestinal microbiota [35]. It is xylanolytic and

produces mainly formic acid, but also butyrate [36]. C. felsineum

(family Clostridiaceae) is a pectinolytic butyrate-producer [37].

Hence, both bacteria occupy the most common niche in the gut,

degradation and fermentation of indigestible carbohydrates.

The predictive bacteria identified in this study were present at a

very low abundance. Only the relative abundance of Oscillospira

guillermondii-group, which itself was not predictive but modulated

the effects of the predictive organisms (Table S1), was above 1%

(Table 1). While high analytical depth is required to detect such

minorities, their functional relevance should not be overlooked. As

an example, the acetogens, methanogenic archaea, and sulfate-

reducing bacteria, which dispose the colonic hydrogen gas

generated during fermentation, are low in abundance, but critical

for the functioning of the gut ecosystem [38]. It is very likely that

the organisms we found are not per se causative of the

responsiveness (of the host or the microbiota), but may rather be

Table 2. Predictive organisms are mostly clostridia.

L1 Phylotypes per L1 group (% of total) Predictive phylotypes (% of all predictors) Odds ratio p

Bacilli 74 (8%) 3 (14%) 1.72 NS

Clostridium cluster IV 175 (19%) 2 (9%) 0.47 NS

Clostridium cluster IX 27 (3%) 2 (9%) 3.25 NS

Clostridium cluster XI 24 (3%) 2 (9%) 3.69 NS

Clostridium cluster XVIII 5 (1%) 1 (5%) 10.11 NS

Clostridium cluster XIVa 221 (24%) 9 (41%) 1.72 NS

Clostridium cluster XVI 10 (1%) 2 (9%) 10.11 ,0.05

CC IX, XI, XVIII, XVIa, XVI 287 (31%) 16 (73%) 2.41 ,0.05

Proteobacteria 98 (11%) 1 (5%) 0.42 NS

Numbers of predictive organisms per each implicated high-level phylogenetic group (L1, see section 2.2. for explanation), compared to the total number of species in
the L1 group. Odds ratio .1 indicates that the group contains more predictive phylotypes than expected based on the total number of phylotypes in the group.
Statistical significance of the odds ratio was estimated with the Fisher’s test.
doi:10.1371/journal.pone.0090702.t002

Gut Microbiota Predicts Dietary Responses

PLOS ONE | www.plosone.org 7 March 2014 | Volume 9 | Issue 3 | e90702



indicator species, particularly sensitive to the environment and

therefore informative of important structural or functional

differences between ecosystems, which lead to the differential

responses. We acknowledge that the accurate identification of

species-level phylotypes with the microarray cannot be ascer-

tained, and hence the true identities of the implicated organisms

need to be validated in further studies.

Clostridial species dominate the list of predictive organisms

(Table 2). Bacteroidetes were notably non-predictive, as was the

Bacteroides/Prevotella ratio. This is somewhat surprising as both of

these genera are, in parallel to above-mentioned Clostridiales, active

degraders of dietary polysaccharides that were essential compo-

nents of all intervention diets. The finding is interesting also in the

light of the discussion about enterotypes, which have been defined

largely by the abundance of the genera Bacteroides and Prevotella

[39]. Our findings suggest that the major determinants of the

inter-individual differences of the gut microbiota may not be the

most relevant for predictive purposes. Microbiota richness has

been positively associated with the microbiota responsiveness to

weight loss diets in obese individuals [40], but in our study, species

richness, or diversity, was not associated with the responsiveness.

However, most of the diets in our study were not weight-loss diets,

which may explain the difference.

The importance of non-linear relationships and density
dependence

Many of the predictive taxa showed non-linear associations with

the host and microbiota responsiveness, which would have been

missed, had we allowed only linear associations. Non-linear

relationships abound in nature. For example, species responses

to environmental gradients are very often unimodal, rather than

linear [41]: there is a certain preferred level, below and above

which the species does poorly. Instead of the low vs. high

abundance of a given bacterium, we found that the important

distinction was often between individuals with average vs. extreme,

either low or high, abundances. It is possible that the extreme

abundances of the identified predictor species indicate a shift in

ecosystem function, and the magnitude of the shift, rather than the

direction, is of prognostic relevance. A disturbance may reduce the

abundances of some species, allowing others to overgrow. The

direction of the shift in competitive balance may be relatively

random between individuals, depending on subtle differences in

the ecosystem structure, and hence, may be less important than

the magnitude.

Moreover, we present evidence of negative density dependence

regulating the bacterial populations in the human intestine: The

lower the baseline abundance of Bifidobacterium spp., the more they

increased during the interventions, and vice versa (Fig. S6). This is

a long-known phenomenon observed in prebiotic interventions

aiming for specific increase of bifidobacteria [42–44]. These results

indicate that ecological interactions within the microbiota, such as

intra-specific competition or phage density, act in parallel to the

intervention effects, or even override them. Yet, the importance of

baseline abundances have so far been ignored in the community-

wide microbiota analyses following dietary interventions. Negative

density dependence was evident in all bacterial groups, not only in

bifidobacteria (data not shown), which explain more generally why

certain intestinal bacteria respond to dietary changes in some, but

not all individuals, as noted in numerous studies (e.g. [16,18,45]).

Hence, when assessing the effect of an intervention on a given

bacterial group, we recommend including the baseline abundance

in the analysis to control for the impact of density dependence.

Data normalization
From the methodological perspective, our study is the first to

demonstrate how the knowledge of sample processing effects can be

utilized retrospectively, enabling meta-analysis or comparison of

samples that have been treated differently in the pre-analytical

phase. In this study, all samples were analyzed with the same

microarray platform with identical primers and workflow. There-

fore, the observed differences in the relative share of gram-negative

and gram-positive bacteria are likely to originate from differences in

DNA extraction and storage procedures. As true biological

differences cannot be excluded, the validity of our normalization

approach should be confirmed experimentally e.g. in the context of

the International Human Microbiome Standards-project (http://

www.microbiome-standards.org/). Especially in the absence of

standardized procedures, validated data normalization represents

an attractive strategy to facilitate efficient and reliable use of the

accumulating wealth of human microbiome data sets.

Concluding remarks
In summary, we present evidence that it is possible to identify

obese individuals who will benefit most from a simple dietary

intervention based on the gut microbiota composition before the

intervention. Clostridial species, in particular, were indicative of

the amenability of the gut microbiota to dietary modification,

which in turn was associated with the host’s lipid metabolism. This

concept opens potential new avenues for understanding and

treating many disorders. Moreover, it is highly likely that the same

approach can be used to identify microbial signatures, which

potentially predict the response to other perturbations, such as

antibiotics. It should be noted that our analysis represents a proof-

of-principle study. Hence, these findings do not yet support any

clinical application, but are the first step towards it.

Supporting Information

Figure S1 Histograms of the cholesterol (A), CRP (B),
and HOMA (C) values of all participants.

(TIFF)

Figure S2 Distribution of the microbiota stability
values, measured for each individual by calculating the
Pearson correlation for the microbiota profiles collected
before and after the dietary intervention. Cut-offs used to

classify responders (stability ,0.87) and non-responders (stability

.0.92) are marked with vertical lines.

(TIFF)

Figure S3 Relative abundances of the dominant phyla in
the different studies (A–D) before data normalization.

(TIFF)

Figure S4 Model validation for the classification of
individuals into microbiota responders and non-re-
sponders based on baseline microbiota. The model was

fitted to four training data sets and used to predict four validation

data sets A–D, shown in the different panels. The ROC curves

present the model performance in each training-validation data set

pair (shaded areas represent the 95% confidence intervals).

(TIFF)

Figure S5 The summed abundance of two clostridial
species differentiates microbiota-responders from non-
responders; responders have either very low or very
high abundances, while non-responders have average
abundances of these organisms.

(TIFF)
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Figure S6 The change in the abundance of bifidobac-
teria is associated with the baseline abundance of
bifidobacteria.
(TIFF)

Figure S7 The baseline Bacteroides/Prevotella ratio is
not associated with the microbiota response to dietary
interventions.
(TIFF)

Figure S8 Relationship between the abundance of
uncultured bacterium K375 and Dialister spp., with
microbiota stability, measured with the HITChip in
European studies and by 454 sequencing in an American
study. The average abundances and stabilities were not

comparable between platforms and were therefore scaled to

mean = 0, and sd = 1.

(TIFF)

Table S1 Parameter estimates of the models for
microbiota and host responses. The larger the estimate,

the stronger the effect; negative values indicate a negative

relationship and vice versa. The intercept is the estimated value of

the response variable when all predictors are 0.
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