
Mutual Information Rate and Bounds for It
Murilo S. Baptista1*, Rero M. Rubinger2, Emilson R. Viana3, José C. Sartorelli4, Ulrich Parlitz5,6,
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Abstract

The amount of information exchanged per unit of time between two nodes in a dynamical network or between two data
sets is a powerful concept for analysing complex systems. This quantity, known as the mutual information rate (MIR), is
calculated from the mutual information, which is rigorously defined only for random systems. Moreover, the definition of
mutual information is based on probabilities of significant events. This work offers a simple alternative way to calculate the
MIR in dynamical (deterministic) networks or between two time series (not fully deterministic), and to calculate its upper
and lower bounds without having to calculate probabilities, but rather in terms of well known and well defined quantities in
dynamical systems. As possible applications of our bounds, we study the relationship between synchronisation and the
exchange of information in a system of two coupled maps and in experimental networks of coupled oscillators.
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Introduction

Shannon’s entropy quantifies information [1]. It measures how

much uncertainty an observer has about an event being produced

by a random system. Another important concept in the theory of

information is the mutual information [1]. It measures how much

uncertainty an observer has about an event in a random system X
after observing an event in another random system Y (or vice-

versa).

Mutual information (MI) is an important quantity because it

quantifies not only linear and non-linear interdependencies

between two systems or data sets, but also is a measure of how

much information two systems exchange or two data sets share.

Due to these characteristics, it became a fundamental quantity to

understand the development and function of the brain [2,3], to

characterise [4,5] and model complex systems [6–8] or chaotic

systems, and to quantify the information capacity of a commu-

nication system [9]. When constructing a model of a complex

system, the first step is to understand which are the most relevant

variables to describe its behaviour. Mutual information provides a

way to identify those variables [10].

However, the calculation of mutual information in dynamical

networks or data sets faces three main difficulties[4,11–13].

Mutual information is rigorously defined for random memoryless

processes, only. In addition, its calculation involves probabilities of

significant events and a suitable space where probability is

calculated. The events need to be significant in the sense that

they contain as much information about the system as possible.

But, defining significant events, for example the fact that a variable

has a value within some particular interval, is a difficult task

because the interval that provides significant events is not always

known. Finally, data sets have finite size. Probabilities computed

from finite data sets are subjected to unavoidable sampling errors.

As a consequence, mutual information can often be calculated

with a bias, only [4,11–13].

In this work, we show how to calculate the amount of

information exchanged per unit of time [Eq. (2)], the so called

mutual information rate (MIR), between two arbitrary nodes (or

group of nodes) in a dynamical network or between two data sets.

Each node represents a d-dimensional dynamical system with d

state variables. The trajectory of the network considering all the

nodes in the full phase space is denoted by S and represents the

‘‘attractor’’, which in the following calculations is considered to be

an asymptotic limiting set. Then, we propose an alternative

method, similar to the ones proposed in Refs. [14,15], to calculate

significant upper and lower bounds for the MIR in dynamical

networks or between two data sets, in terms of Lyapunov

exponents, expansion rates, and capacity dimension. These

quantities can be calculated without the use of probabilistic

measures. As possible applications of our bounds calculation, we

describe the relationship between synchronisation and the
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exchange of information in small experimental networks of

coupled Double-Scroll circuits.

In previous works of Refs. [14,15], we have proposed an upper

bound for the MIR in terms of the positive Lyapunov exponents of

the synchronisation manifold. As a consequence, this upper bound

could only be calculated in special complex networks that allow

the existence of complete synchronisation. In the present work, the

proposed upper bound can be calculated to any system (complex

networks and data sets) that admits the calculation of Lyapunov

exponents.

We assume that an observer can measure only one scalar time

series for each one of two chosen nodes. These two time series are

denoted by X and Y and they form a bidimensional set

SV~(X ,Y ), a projection of the ‘‘attractor’’ into a bidimensional

space denoted by V. To calculate the MIR in higher-dimensional

projections V, see Information S1. To estimate the upper bound of

the MIR in terms of Lyapunov exponents obtained from the

reconstructed attractor of a scalar time-series see Information S1.

Assume that the space V is coarse-grained in a square grid of N2

boxes with equal sides E, so N~1=E.
Mutual information is defined in the following way [1]. Given

two discrete random variables, X and Y, each one produces events

i and j with probabilities PX (i) and PY (j), respectively, the joint

probability between these events is represented by PXY (i,j). Then,

mutual information is defined as

IS~HX zHY {HXY : ð1Þ

HX = {
P

i PX (i) log½PX (i)�, HY = {
P

j PY (j) log½PY (j)�,
and HXY ~{

P
i,j PXY (i,j) log½PXY (i,j)�. When using Eq. (1) to

calculate the mutual information between the dynamical variables

X and Y , the probabilities appearing in Eq. (1) are defined such

that PX (i) is the probability of finding points in a column i of the

grid, PY (j) of finding points in the row j of the grid, and PXY (i,j)
the probability of finding points in a box where the column i meets

the row j of the grid.

The MIR was firstly introduced by Shannon [1] as a ‘‘rate of

actual transmission’’ [16] and later more rigorously redefined in

Refs. [17,18]. It represents the mutual information exchanged

between two dynamical variables (correlated) per unit of time. To

calculate the MIR, the two continuous dynamical variables are

transformed into two discrete symbolic sequences X and Y . Then,

the MIR is defined by

MIR~ lim
n??

IS(n)

n
, ð2Þ

where IS(n) represents the usual mutual information between the

two sequences X and Y , calculated by considering words of length

n. If IS(n) is calculated using log2, the MIR in Eq. (2) has units of

bits/symbol. If a discrete system is producing the symbols, the

units of Eq. (2) are bits/iteration.

The MIR is a fundamental quantity in science. Its maximal

value gives the information capacity between any two sources of

information (no need for stationarity, statistical stability, memory-

less) [19]. Therefore, alternative approaches for its calculation or

for the calculation of bounds of it are of vital relevance. Due to the

limit to infinity in Eq. (2) and because it is defined from

probabilities, the MIR is not easy to be calculated especially if

one wants to calculate it from (chaotic) trajectories of a large

complex network or data sets. The difficulties faced to estimate the

MIR from dynamical systems and networks are similar to the ones

faced in the calculation of the Kolmogorov-Sinai entropy, HKS

[20], (Shannon’s entropy per unit of time). Because of these

difficulties, the upper bound for HKS proposed by Ruelle [21] in

terms of the Lyapunov exponents and valid for smooth dynamical

systems (HKSƒ

P
lz

i , where lz
i represent all the i positive

Lyapunov exponents) or Pesin’s equality [22] (HKS~
P

lz
i )

proved in Ref. [23] to be valid for the large class of systems that

possess a SRB measure, became so important in the theory of

dynamical systems. Our upper bound [Eq. (5)] is a result similar to

the work of Ruelle, but instead we relate mutual information rate

with Lyapunov exponents.

Our work is also similar to the work of Wissman-Jones-Binder

[24] who have shown that upper and lower bounds for HKS and

the sum of the Lyapunov exponents can be calculated in terms of

the mutual information, MI, of a trajectory. Their work, like ours,

has shown a link between (conditional and joint) probabilities and

a dynamical quantity, the Lyapunov exponents. We focus our

attention to the relationship between MIR and Lyapunov

exponents, Wissman and co-authors focus their attention in the

relationship between MI and the Lyapunov exponents.

Results

One of the main results of this work (whose derivation can be

seen in Sec. Methods) is to show that, in dynamical networks or

data sets with fast decay of correlation, IS in Eq. (1) represents the

amount of mutual information between X and Y produced within

a special time interval T , where T represents the time for the

dynamical network (or data sets) to lose its memory from the initial

state or the correlation to decay to zero. Correlation in this work is

not the usual linear correlation, but a non-linear correlation

defined in terms of the evolution of probabilities defined by space

integrals, the quantity C(T) in Eq. (9). Therefore, the mutual

information rate (MIR), between the dynamical variables X and Y
(or two data sets) can be estimated by

MIR~
IS

T
ð3Þ

In systems that exhibit sensitivity to initial conditions, e.g.

chaotic systems, predictions are only possible for times smaller

than this time T . This time has other meanings. It is the expected

time necessary for a set of points belonging to an E-square box in V
to spread over SV and it is of the order of the shortest Poincaré

return time for a point to leave a box and return to it [25,26]. It

can be estimated by

T&
1

l1
log

1

E

� �
: ð4Þ

where l1 is the largest positive Lyapunov exponent measured in

SV. Chaotic systems can exhibit the mixing property (see

Methods), and as a consequence the correlation C(t) decays to

zero, surely after an infinitely long time. The correlation of chaotic

systems can also decay to zero for sufficiently large but finite t~T
(see Information S1). T can be interpreted to be the minimum

time required for a system to satisfy the conditions to be

considered as mixing. Some examples of physical systems that

are proved to be mixing and have exponentially fast decay of

correlation are nonequilibrium steady-state [27], Lorentz gases

(models of diffusive transport of light particles in a network of

heavier particles) [28], and billiards [29]. An example of a ‘‘real

world’’ physical complex system that presents exponentially fast

MIR and Bounds for It
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decay of correlation is plasma turbulence [30]. We do not expect

that data coming from a ‘‘real world’’ complex system is rigorously

mixing and has an exponentially fast decay of correlation. But, we

expect that the data has a sufficiently fast decay of correlation (e.g.

stretched exponential decay or polynomially fast decays), implying

that the system has sufficiently high sensitivity to initial conditions

and as a consequence C(t)%0, for a reasonably small and finite

time t~T

The other two main results of our work are presented in Eqs. (5)

and (7), whose derivations are presented in Sec. Methods. An

upper bound for the MIR is given by

IC~l1{l2~l1(2{D), ð5Þ

where l1 and l2 represent the largest and the second largest

Lyapunov exponent measured in SV, if both exponents are

positive. If the i-largest exponent is negative, then we set li~0. If

the set SV represents a periodic orbit, IC~0, and therefore there is

no information being exchanged. The quantity D is defined as

D~{
log (NC(t~T))

log (E)
, ð6Þ

where NC(t~T) is the number of boxes that would be covered by

fictitious points at time T . At time t~0, these fictitious points are

confined in an E-square box. They expand not only exponentially

fast in both directions according to the two positive Lyapunov

exponents, but expand forming a compact set, a set with no

‘‘holes’’. At t~T , they spread over SV.

A lower bound for the MIR is given by

I l
C~l1(2{~DD0), ð7Þ

where ~DD0 represents the capacity dimension of the set SV

~DD0~ lim
E?0

{
log ( ~NNC(E))

log (E)

� �
, ð8Þ

where ~NNC represents the number of boxes in V that are occupied

by points of SV.

D is defined in a way similar to the capacity dimension, though

it is not the capacity dimension. In fact, Dƒ~DD0, because ~DD0

measures the change in the number of occupied boxes in V as the

space resolution varies, whereas D measures the relative number

of boxes with a certain fixed resolution E that would be occupied

by the fictitious points (in V) after being iterated for a time T . As a

consequence, the empty space in V that is not occupied by SV

does not contribute to the calculation of ~DD0, whereas it contributes

to the calculation of the quantity D. In addition, NC§ ~NNC (for any

E), because while the fictitious points form a compact set

expanding with the same ratio as the one for which the real

points expand (ratio provided by the Lyapunov exponents), the

real set of points SV might not occupy many boxes.

Methods

Mixing, Correlation Decay and Invariant Measures
Denote by FT (x) a mixing transformation that represents how a

point x[SV is mapped after a time T into SV, and let r(x) to

represent the probability of finding a point of SV in x (natural

invariant density). Let I
0

1 represent a region in V. Then,

m(I
0

1)~
Ð

r(x)dx, for x[I
0

1 represents the probability measure of

the region I
0

1. Given two square boxes I
0

1[V and I
0

2[V, if FT is a

mixing transformation, then for a sufficiently large T , we have that

the correlation defined as

C(T)~m½F{T (I
0
1)\I

0
2�{m½I 01�m½I

0
2�, ð9Þ

decays to zero, the probability of having a point in I
0
1 that is

mapped to I
0
2 is equal to the probability of being in I

0
1 times the

probability of being in I
0
2. That is typically what happens in

random processes.

Notice that m½F{T (I
0

1)\I
0

2� can be interpreted as a joint

entropy defined by the probability of being at I
0

2 times the

conditional probability (that defines elements in a transition

matrix) of transferring from the set I
0

2 to I
0

1.

If the measure m(SV) is invariant, then m(½F{T (SV)�~m(SV).
Mixing and ergodic systems produce measures that are invariant.

Derivation of the Mutual Information Rate (MIR) in
Dynamical Networks and Data Sets

We consider that the dynamical networks or data sets to be

analysed present either the mixing property or have fast decay of

correlations, and their probability measure is time invariant. If a

system that is mixing for a time interval T is observed (sampled)

once every time interval T , then the probabilities generated by

these snapshot observations behave as if they were independent,

and the system behaves as if it were a random process. This is so

because if a system is mixing for a time interval T , then the

correlation C(T) decays to zero for this time interval. For systems

that have some decay of correlation, surely the correlation decays

to zero after an infinite time interval. But, this time interval can

also be finite, as shown in Information S1.

Consider now that we have experimental points and they are

sampled once every time interval T . If the system is mixing, then

the probability ~PPXY ((i,j),(k,l)) of the sampled trajectory to be in

the box with coordinates (i,j) and then be iterated to the box (k,l)
depends exclusively on the probabilities of being at the box (i,j),

represented by ~PPXY (i,j), and being at the box (k,l), represented by
~PPXY (k,l).

Therefore, for the sampled trajectory, ~PPXY ((i,j),(k,l))~
~PPXY (i,j)~PPXY (k,l). Analogously, the probability ~PPX ((i),(k)) (or
~PPY ((j),(l))) of the sampled trajectory to be in the column i (or row

j) of the grid and then be iterated to the column k (or row l) is

given by ~PPX ((i),(k)) = ~PPX (i)~PPX (k) (or ~PPY ((j),(l)) = ~PPY (j)~PPY (l)).

The MIR of the experimental non-sampled trajectory points

can be calculated from the mutual information of the sampled

trajectory points ~IIS that follow itineraries of length n:

MIR~ lim
n??

~IIS(n)

nT
, ð10Þ

Due to the absence of correlations of the sampled trajectory

points, the mutual information for these points following itineraries

of length n can be written as

~IIS(n)~n½ ~HHX (n~1)z ~HHY (n~1){ ~HHXY (n~1)�, ð11Þ

where ~HHX (n~1) = {
P

i
~PPX (i) log½~PPX (i)�, ~HHY (n~1) =

{
P

j
~PPY (j) log½~PPY (j)�, and ~HHXY (n~1)~{

P
i,j

~PPXY (i,j)

log½~PPXY (i,j)�, and ~PPX (i), ~PPY (j), and ~PPXY (i,j) represent the

MIR and Bounds for It
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probability of the sampled trajectory points to be in the column i

of the grid, in the row j of the grid, and in the box (i,j) of the grid,

respectively.

Due to the time invariance of the set SV assumed to exist, the

probability measure of the non-sampled trajectory is equal to the

probability measure of the sampled trajectory. If a system that has

a time invariant measure is observed (sampled) once every time

interval T , the observed set has the same natural invariant density

and probability measure of the original set. As a consequence, if

SV has a time invariant measure, the probabilities PX (i), PY (j),

and PXY (i,j) (used to calculate IS ) are equal to ~PPX (i), ~PPY (j), and
~PPXY (i,j).

Consequently, ~HHX (n~1)~HX , ~HHY (n~1)~HY , and
~HHXY (n~1)~HXY , and therefore ~IIS(n)~nIS . Substituting into

Eq. (10), we finally arrive to MIR~
IS

T
in Eq. (3), where IS

between two nodes is calculated from Eq. (1).

Therefore, in order to calculate the MIR, we need to estimate

the time T for which the correlation of the system approaches zero

and the probabilities PX (i), PY (j), PXY (i,j) of the experimental

non-sampled experimental points to fall in the column i of the

grid, in the row j of the grid, and in the box (i,j) of the grid,

respectively.

We demonstrate the validity of Eqs. (10) and (11) by showing

that ~IIS(n~2)~2~IIS(n~1), which leads to Eq. (3). For the

following demonstration, (i,j) (or (k,l)) represents a box in the

subspace V placed at coordinates (i,j), meaning a square of sides e
whose lower left corner point is located at ((i{1)E,(j{1)E). Then,

i (or k) represents a column with width E in V whose left side is

located at (i{1)E (or (k{1)E) and j (or l) represents a row with

width E in V whose bottom side is located at (j{1)E (or (l{1)E).
If the system is mixing for a time T , then the probability of

having points in a box (i,j) and going to another box (k,l), i.e.,

PXY (F{T (k,l)\(i,j)) can be calculated by

PXY ½F{T (k,l)\(i,j)�~~PPXY ((i,j),(k,l))~~PPXY (i,j)~PPXY (k,l), ð12Þ

Notice that PXY ½F{T (k,l)\(i,j)� is a joint entropy that is equal

to ~PPXY ((i,j),(k,l)), and could be written as a function of

conditional probabilities: ~PPXY ((i,j),(k,l))~~PPXY (i,j)~PPXY ((i,j)j
(k,l)), where ~PPXY ((i,j)j(k,l)) represents the conditional probability

of being transferred from the box (i,j) to the box (k,l).

The same can be done to calculate the probability of having

points in a column i that are mapped to another column k, i.e.
~PPX ((i),(k)), or of having points in a row j that are mapped to

another row l, i.e. ~PPX ((j),(l)). If the system is mixing for a time T ,

then

PX ½F{T (k)\(i)�~~PPX ((i),(k))~~PPX (i)~PPX (k) ð13Þ

and

PY ½F{T (l)\(j)�~~PPY ((j),(l))~~PPY (j)~PPY (l) ð14Þ

for the rows. Notice that PX (i)~
PN

j~1 PXY (i,j) and

PY (j)~
PN

i~1 PXY (i,j).

The order-2 Mutual information of the sampled points can be

calculated by.

~IIS(n~2)~

XN

i,j~1

XN

k,l~1

~PPXY ((i,j),(k,l)) log
~PPXY ((i,j),(k,l))

~PPX ((i),(k))~PPY ((j),(l))

� �
,
ð15Þ

where
PN

i,j~1 ~
PN

i~1

PN
j~1. ~IIS(n~2) measures the MI of points

that follow an itinerary of one iteration, points that are in a box

and are iterated to another box. Substituting Eq. (12) in Eq. (15)

we arrive at

~IIS(n~2)~
PN

i,j~1

PN
k,l~1

~PPXY (i,j)~PPXY (k,l)

| log½~PPXY (i,j)�z log½~PPXY (k,l)�{
�
log½~PPX ((i),(k))�{ log½~PPY ((j),(l))�

�
:

ð16Þ

Then, substituting (13) and (14) in Eq. (16), and using the fact

that
P

i,j
~PPXY (i,j)~1 and

P
k,l

~PPXY (k,l)~1, we arrive at

~IIS(n~2)~2
PN

i,j~1

~PPXY (i,j) log½~PPXY (i,j)�{

XN

i,j~1

XN

k,l~1

~PPXY (i,j)~PPXY (k,l) log½~PPX (i)�z log½~PPX (k)�z
�

log½~PPY (j)�z log½~PPY (l)�
� ð17Þ

Re-organizing the terms we arrive at

~IIS(n~2)~2
XN

i,j~1

~PPXY (i,j) log½~PPXY (i,j)�

{
XN

k,l~1

~PPXY (k,l)
XN

i~1

log½~PPX (i)�
XN

j~1

~PPXY (i,j)z . . . ,

ð18Þ

where . . . represents other terms that are similar to the term

appearing in the last hand-side part of the previous equation.

Using the fact that
PN

j~1
~PPXY (i,j)~~PPX (i), we arrive at

~IIS(n~2)~

2
XN

i,j~1

~PPXY (i,j) log½~PPXY (i,j)�{
XN

i~1

log½~PPX (i)�~PPX (i)z . . . ,
ð19Þ

which can then be written as

~IIS(n~2)~2
XN

i,j~1

~PPXY (i,j) log½~PPXY (i,j)�

{
XN

i~1

~PPX (i) log½~PPX (i)�{
XN

j~1

~PPY (j) log½~PPY (j)�{

XN

k~1

~PPX (k) log½~PPX (k)�{
XN

l~1

~PPY (l) log½~PPY (l)�: ð20Þ

MIR and Bounds for It
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Since
PN

i~1
~PPX (i) log½~PPX (i)� =

PN
k~1

~PPX (k) log½~PPX (k)� andPN
j~1

~PPY (j) log½~PPY (j)� =
PN

l~1
~PPY (l) log½~PPY (l)�, we finally arrive

at that ~IIS(n~2)~2~IIS(n~1). Similar calculations can be per-

formed to state that ~IIS(n)~n~IIS(n~1). As previously discussed,
~IIS(n~1)~IS , which lead us to Eq. (3).

Derivation of an Upper (IC ) and Lower (I l
C ) Bounds for the

MIR
Consider that our attractor S is generated by a 2d expanding

system with constant Jacobian that possesses two positive

Lyapunov exponents l1 and l2, with l1§l2. S[V. Imagine a

box whose sides are oriented along the orthogonal basis used to

calculate the Lyapunov exponents. Then, points inside the box

spread out after a time interval t to E
ffiffiffi
2
p

expl1t along the direction

from which l1 is calculated. At t~T , E
ffiffiffi
2
p

expl1T ~L, which

provides T in Eq. (4), since L~
ffiffiffi
2
p

. These points spread after a

time interval t to E
ffiffiffi
2
p

expl2t along the direction from which l2 is

calculated. After an interval of time t~T , these points spread out

over the set SV. We require that for tƒT , the distance between

these points only increases: the system is expanding.

Imagine that at t~T , fictitious points initially in a square box

occupy an area of E
ffiffiffi
2
p

expl2T L~2E2 exp(l2zl1)T . Then, the

number of boxes of sides E that contain fictitious points can be

calculated by NC~2E2 exp(l1zl2)T =2E2~ exp(l1zl2)T . From Eq.

(4), N~ expl1T , since N~1=E.
We denote with a lower-case format, the probabilities pX (i),

pY (j), and pXY (i,j) with which fictitious points occupy the grid in

V. If these fictitious points spread uniformly forming a compact set

whose probabilities of finding points in each fictitious box is equal,

then pX (i)~1=N (~
1

NC

NC

N
), pY (j)~1=N, and pXY (i,j)~1=NC .

Let us denote the Shannon entropy of the probabilities pX (i),
pY (j) and pXY (i,j) as hX , hY , and hXY , respectively. The mutual

information of the fictitious trajectories after evolving a time

interval T can be calculated by Iu
S~hX zhY {hXY . Since,

pX (i)~pY (j)~1=N and pXY (i,j)~1=NC , then

Iu
S~2 log (N){ log (NC). At t~T , we have that N~ expl1T

and NC~ exp(l1zl2)T , leading us to Iu
S~(l1{l2)T . Therefore,

defining, IC~Iu
S=T , we arrive at IC~l1{l2.

We define D as

D~{
log (NC(t~T))

log (E)
, ð21Þ

where NC(t~T) being the number of boxes that would be

covered by fictitious points at time T . At time t~0, these fictitious

points are confined in an -square box. They expand not only

exponentially fast in both directions according to the two positive

Lyapunov exponents, but expand forming a compact set, a set

with no ‘‘holes’’. At t~T , they spread over SV.

Using E~ exp{l1T and NC~ exp(l1zl2)T in Eq. (21), we arrive

at D~1z
l2

l1
, and therefore, we can write that

IC~l1{l2~l1(2{D), as in Eq. (5).

To calculate the maximal possible MIR, of a random

independent process, we assume that the expansion of points is

uniform only along the columns and rows of the grid defined in the

space V, i.e., PX (i)~PY (j)~1=N, (which maximises HX and

HY ), and we allow PXY (i,j) to be not uniform (minimising HXY )

for all i and j, then

IS(E)~{2 log (E)z
X

i,j

PXY (i,j) log½PXY (i,j)�: ð22Þ

Since T(E)~{1=l1 log (E), dividing IS(E) by T(E), taking the

limit of E?0, and reminding that the information dimension of the

set SV in the space V is defined as

~DD1 = limE?0

P
i,j PXY (i,j) log½PXY (i,j)�

log (E)
, we obtain that the MIR

is given by

IS=T~l1(2{~DD1): ð23Þ

Since ~DD1ƒ
~DD0 (for any value of E), then l1(2{~DD1)§l1(2{~DD0),

which means that a lower bound for the maximal MIR [provided

by Eq. (23)] is given by I l
C~l1(2{~DD0), as in Eq. (7). But Dƒ~DD0

(for any value of E), and therefore IC is an upper bound for I l
C .

To show why IC is an upper bound for the maximal possible

MIR, assume that the real points SV occupy the space V

uniformly. If ~NNCwN, there are many boxes being occupied. It is

to be expected that the probability of finding a point in a column

or a row of the grid is PX (i)~PY (j)%1=N, and PXY (i,j)%1= ~NNC .

In such a case, MIR%I l
C , which implies that IC§MIR. If

~NNCvN, there are only few boxes being sparsely occupied. The

probability of finding a point in a column or a row of the grid is

PX (i)~PY (j)%1= ~NNC , and PXY (i,j)%1= ~NNC . There are ~NNC

columns and rows being occupied by points in the grid. In such

a case, IS%2 log ( ~NNC){ log ( ~NNC)% log ( ~NNC). Comparing with

Iu
S~2 log (N){ log (NC), and since ~NNCvN and NC§ ~NNC , then

we conclude that Iu
S§IS , which implies that IC§MIR.

Notice that if PXY (i,j)~pXY (i,j)~1=NC and ~DD1~~DD0, then

IS=T~I l
C~IC .

Expansion Rates
In order to extend our approach for the treatment of data sets

coming from networks whose equations of motion are unknown,

or for higher-dimensional networks and complex systems which

might be neither rigorously chaotic nor fully deterministic, or for

experimental data that contains noise and few sampling points, we

write our bounds in terms of expansion rates defined in this work

by

ek(t)~1= ~NNC

X~NNC

i~1

1

t
log½Li

k(t)�, ð24Þ

where we consider k~1,2. Li
1(t) measures the largest growth rate

of nearby points. In practice, it is calculated by Li
1(t)~

D

d
, with d

representing the largest distance between pairs of points in an E-
square box i and D representing the largest distance between pairs

of the points that were initially in the E-square box but have spread

out for an interval of time t. Li
2(t) measures how an area enclosing

points grows. In practice, it is calculated by Li
2(t)~

A

E2
, with E2

representing the area occupied by points in an E-square box, and A
the area occupied by these points after spreading out for a time

interval t. There are ~NNC boxes occupied by points which are taken

into consideration in the calculation of Li
k(t). An order-k
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expansion rate, ek(t), measures on average how a hypercube of

dimension k exponentially grows after an interval of time t. So, e1

measures the largest growth rate of nearby points, a quantity

closely related to the largest finite-time Lyapunov exponent [31].

And e2 measures how an area enclosing points grows, a quantity

closely related to the sum of the two largest positive Lyapunov

exponents. In terms of expansion rates, Eqs. (4) and (5) read

T~
1

e1
log

1

E

� �
and IC~e1(2{D), respectively, and Eqs. (6) and

(7) read D(t)~
e2(t)

e1(t)
and I l

C~e1(2{~DD0), respectively.

From the way we have defined expansion rates, we expect that

ekƒ
Pk

i~1 li. Because of the finite time interval and the finite size

of the regions of points considered, regions of points that present

large derivatives, contributing largely to the Lyapunov exponents,

contribute less to the expansion rates. If a system has constant

Jacobian, is uniformly hyperbolic, and has a constant natural

measure, then ek~
Pk

i~1 li.

There are many reasons for using expansion rates in the way we

have defined them in order to calculate bounds for the MIR.

Firstly, because they can be easily experimentally estimated

whereas Lyapunov exponents demand more computational

efforts. Secondly, because of the macroscopic nature of the

expansion rates, they might be more appropriate to treat data

coming from complex systems that contain large amounts of noise,

data that have points that are not (arbitrarily) close as formally

required for a proper calculation of the Lyapunov exponents.

Thirdly, expansion rates can be well defined for data sets

containing very few data points: the fewer points a data set

contains, the larger the regions of size E need to be and the shorter

the time T is. Finally, expansion rates are defined in a similar way

to finite-time Lyapunov exponents and thus some algorithms used

to calculate Lyapunov exponents can be used to calculate our

defined expansion rates.

Results and Discussion

MIR and its Bounds in Two Coupled Chaotic Maps
To illustrate the use of our bounds, we consider the following

two bidirectionally coupled maps.

X
(1)
nz1~2X (1)

n zrX (1)2

n zS(X (2)
n {X (1)

n ),mod 1

X
(2)
nz1~2X (2)

n zrX (2)2

n zS(X (1)
n {X (2)

n ),mod 1 ð25Þ

where X (i)
n [½0,1�. If r~0, the map is piecewise-linear and

quadratic, otherwise. We are interested in measuring the exchange

of information between X (1) and X (2). The space V is the unit

square. The Lyapunov exponents measured in the space V are the

Lyapunov exponents of the set SV that is the chaotic attractor

generated by Eqs. (25).

The quantities IS=T , IC , and I l
C are shown in Fig. 1 as we vary

S for r~0 (A) and r~0:1 (B). We calculate IS using in Eq. (1) the

probabilities PXY (i,j) in which points from a trajectory composed

of 2,000,000 samples fall in boxes of sides E= 1/500 and the

probabilities PX (i) and PY (j) that the points visit the intervals

½(i{1)E,iE½ of the variable X (1)
n or ½(j{1)E,jE½ of the variable X (2)

n ,

respectively, for i,j~1, . . . ,N. When computing IS=T , the

quantity T was estimated by Eq. (4). Indeed for most values of

S, IC§IS=T and I l
CƒIS=T .

For S~0 there is no coupling, and therefore the two maps are

independent from each other. There is no information being

exchanged. In fact, IC~0 and I l
C%0 in both figures, since

D~~DD0~2, meaning that the attractor SV fully occupies the space

V. This is a remarkable property of our bounds: to identify that

there is no information being exchanged when the two maps are

independent. Complete synchronisation is achieved and IC is

maximal, for Sw0:5 (A) and for S§0:55 (B). A consequence of

the fact that D~~DD0~1, and therefore, IC~I l
C~l1. The reason is

because for this situation this coupled system is simply the shift

map, a map with constant natural measure; therefore

PX (i)~PY (j) and PXY (i,j) are constant for all i and j. As usually

happens when one estimates the mutual information by partition-

ing the phase space with a grid having a finite resolution and data

sets possessing a finite number of points, IS is typically larger than

zero, even when there is no information being exchanged (S~0).

Even when there is complete synchronisation, we find non-zero

off-diagonal terms in the matrix for the joint probabilities causing

IS to be smaller than it should be. Due to numerical errors,

X (1)%X (2), and points that should be occupying boxes with two

corners exactly along a diagonal line in the subspace V end up

occupying boxes located off-diagonal and that have at least three

corners off-diagonal. Due to such problems, IS=T is underesti-

mated by an amount of l1
3

N
�& 0:18l1, resulting in a value of

approximately IS=T~0:82l1, close to the value of IS=T shown in

Fig. 1(A), for S~0:5. The estimation of the lower bound I l
C in (B)

suffers from the same problems.

Our upper bound IC is calculated assuming that there is a

fictitious dynamics expanding points (and producing probabilities)

not only exponentially fast but also uniformly. The ‘‘experimental’’

numerical points from Eqs. (25) expand exponentially fast, but not

uniformly. Most of the time the trajectory remains in 4 points:

(0,0), (1,1), (1,0), (0,1). That is the main reason of why IC is much

larger than the estimated real value of the MIR, for some coupling

strengths. If two nodes in a dynamical network behave in the same

Figure 1. Results for two coupled maps. IS=T [Eq. (3)] as (green
online) filled circles, IC [Eq. (5)] as the (red online) thick line,
and I l

C [Eq. (7)] as the (blue online) crosses. In (A) r~0 and in

(B) r~0:1. The units of IS=T , IC , and I l
C are [bits/iteration].

doi:10.1371/journal.pone.0046745.g001
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way the fictitious dynamics does, these nodes would be able to

exchange the largest possible amount of information.

We would like to point out that one of the main advantages of

calculating upper bounds for the MIR (IS=T ) using Eq. (5) instead

of actually calculating IS=T is that we can reproduce the curves for

IC using much less number of points (1000 points) than the ones

(2,000,000) used to calculate the curve for IS=T . If r~0,

IC~{ ln (1{S) can be calculated since l1~ ln (2) and

l2~ ln (2{2S).

MIR and its Bounds in Experimental Networks of Double-
Scroll Circuits

We illustrate our approach for the treatment of data sets using a

network formed by an inductorless version of the Double-Scroll

circuit [32]. We consider four networks of bidirectionally

diffusively coupled circuits (see Fig. 2). Topology I in (A) represents

two bidirectionally coupled circuits, Topology II in (B), three

circuits coupled in an open-ended array, Topology III in (C), four

circuits coupled in an open-ended array, and Topology IV in (D),

coupled in an closed array. We choose two circuits in the different

networks (one connection apart) and collect from each circuit a

time-series of 79980 points, with a sampling rate of d~80:000
samples/s. The measured variable is the voltage across one of the

circuit capacitors, which is normalised in order to make the space

V to be a square of sides 1. Such normalisation does not alter the

quantities that we calculate. The following results provide the

exchange of information between these two chosen circuits. The

values of E and t used to course-grain the space V and to calculate

e2 in Eq. (24) are the ones that minimise jNC(T ,e2){ ~NNC(E)j and

at the same time satisfy NC(T ,e2)§ ~NNC(E), where

NC(T ,e2)~ expTe2(t) represents the number of fictitious boxes

covering the set SV in a compact fashion, when t~T . This

optimisation excludes some non-significant points that make the

expansion rate of fictitious points to be much larger than it should

be. In other words, we require that e2 describes well the way most

of the points spread. We consider that t used to calculate ek in Eq.

(24) is the time points initially in an E-side box to become at most

apart by 0.8L. That guarantees that nearby points in SV are

expanding in both directions within the time interval ½0,T �.
Assuming that t~T is calculated by measuring the time points

initially in an E-side box to be at most apart by [0.4L, 0.8L]

produces already similar results. If t~T is calculated by measuring

the time points become at least apart by 0:8L, the set SV might not

be only expanding. T might be overestimated.

IS has been estimated by the method in Ref. [33]. Since we

assume that the space V where mutual information is being

measured is 2D, we will compare our results by considering in the

method of Ref. [33] a 2D space formed by the two collected scalar

signals. In the method of Ref. [33] the phase space is partitioned in

regions that contain 30 points of the continuous trajectory. Since

that these regions do not have equal areas (as it is the case for IC

and I l
C ), in order to estimate T we need to imagine a box of sides

Ek, such that its area E2
k contains in average 30 points. The area

occupied by the set SV is approximately given by E2 ~NNC , where ~NNC

is the number of occupied boxes. Assuming that the 79980

experimental data points occupy the space V uniformly, then on

average 30 points would occupy an area of
30

79980
E2 ~NNC . The

square root of this area is the side of the imaginary box that would

occupy 30 points. So, Ek~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30

79980
~NNC

r
E. Then, in the following,

the ‘‘exact’’ value of the MIR will be considered to be given by

IS=Tk, where Tk is estimated by Tk~{
1

e1
log (Ek).

The three main characteristics of the curves for the quantities

IS=Tk, IC , and I l
C (appearing in Fig. 3) with respect to the coupling

strength are that (i) as the coupling resistance becomes smaller, the

coupling strength connecting the circuits becomes larger, and the

level of synchronisation increases leading to an increase in IS=Tk,

IC , and I l
C , (ii) all curves are close, (iii) and as expected, for most of

the resistance values, ICwIS=Tk and I l
CƒIS=Tk. The two main

synchronous phenomena appearing in these networks are almost

synchronisation (AS) [34], when the circuits are almost completely

synchronous, and phase synchronisation (PS) [35]. For the circuits

considered in Fig. 3, AS appears for the interval R[½0,3� and PS

appears for the interval R[½3,3:5�. Within this region of resistance

values the exchange of information between the circuits becomes

large. PS was detected by using the technique from Refs. [36,37].

MIR and its Upper Bound in Stochastic Systems
To analytically demonstrate that the quantities IC and IS=T can

be well calculated in stochastic systems, we consider the following

stochastic dynamical toy model illustrated in Fig. 4. In it points

within a small box of sides E (represented by the filled square in

Fig. 4(A)) located in the centre of the subspace V are mapped after

one iteration (n~1, n[N) of the dynamics to 12 other neighbour-

ing boxes. Some points remain in the initial box. The points that

leave the initial box go to 4 boxes along the diagonal line and 8

boxes off-diagonal along the transverse direction. Boxes along the

diagonal are represented by the filled squares in Fig. 4(B) and off-

diagonal boxes by filled circles. At the second iteration (n~2), the

points occupy other neighbouring boxes, as illustrated in Fig. 4(C),

and at a time T (T[R) the points occupy the attractor S and do

not spread any longer. For iterations n larger than T , the points

are somehow reinjected inside the region of the attractor. We

consider that this system is completely stochastic, in the sense that

no one can precisely determine the location of where an initial

condition will be mapped. The only information is that points

inside a smaller region are mapped to a larger region.

At the iteration n, there will be Nd~21znz1 boxes occupied

along the diagonal (filled squares in Fig. 4) and Nt~2nNd{C(~nn)
(filled circles in Fig. 4) boxes occupied off-diagonal (along the

transverse direction), where C(~nn)~0 for ~nn = 0, and C(~nn)w0 for

Figure 2. Black filled circles represent a Chua’s circuit and the
numbers identify each circuit in the networks. Coupling is
diffusive. We consider 4 topologies: 2 coupled Chua’s circuit (A), an
array of 3 coupled circuits, an array of 4 coupled circuits, and a ring
formed by 4 coupled circuits.
doi:10.1371/journal.pone.0046745.g002
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~nn§1 and ~nn~n{T{a. a is a small number of iterations

representing the time difference between the time T for the points

in the diagonal to reach the boundary of the space V and the time

for the points in the off-diagonal to reach this boundary. The

border effect can be ignored when the expansion along the

diagonal direction is much faster than along the transverse

direction.

At the iteration n, there will be NC~21znz1z

(21znz1)2n{C(~nn) boxes occupied by points. In the following

calculations we consider that NC%21zn(1z2n). We assume that

the subspace V is a square whose sides have length 1, and that

S[V, so L~
ffiffiffi
2
p

. For nwT , the attractor does not grow any longer

along the off-diagonal direction.

The largest Lyapunov exponent or the order-1 expansion rate

of this stochastic toy model can be calculated by

Nd (n) expl1 ~Nd (nz1), which takes us to

l1~ log (2): ð26Þ

Therefore, the time T , for the points to spread over the attractor

S, can be calculated by the time it takes for points to visit all the

boxes along the diagonal. It can be calculated by

E
ffiffiffi
2
p

expl1T ~
ffiffiffi
2
p

, which take us to

T~{
log (E)

l1
~{

log (E)
log (2)

: ð27Þ

The quantity D can be calculated by D~
log (NC)

log (N)
, with n~T .

Neglecting C(~nn) and the 1 appearing in NC due to the initial box,

we have that NC%21zT ½1z2T �. Substituting in the definition of

D, we obtain D~
(1zT) log (2)z log (1z2T )

{ log (E)
. Using T from Eq.

(27), we arrive at

D~1zr, ð28Þ

where

r~{
log (2)

log (E)
{

log (1z2T )

log (E)
ð29Þ

Placing D and l1 in IC~l1(2{D), gives us

IC~ log (2)(1{r): ð30Þ

Let us now calculate IS=T . Ignoring the border effect, and

assuming that the expansion of points is uniform, then

PXY (i,j)~1=NC and PX (i)~PY (j)~1=N~E. At the iteration

n~T , we have that IS~{2 log (E){ log (NC). Since

NC%21zT ½1z2T �, we can write that IS~{2 log (E){
(1zT) log (2){ log (1z2T ). Placing T from Eq. (27) into IS

takes us to IS~{ log (2){ log (E){ log (1z2T ). Finally, dividing

IS by T , we arrive that

Figure 3. Results for experimental networks of Double-Scroll
circuits. On the left-side upper corner pictograms represent how the
circuits (filled circles) are bidirectionally coupled. IS=Tk as (green
online) filled circles, IC as the (red online) thick line, and I l

C as the (blue
online) squares, for a varying coupling resistance R. The unit of these
quantities shown in these figures is (kbits/s). (A) Topology I, (B)

Topology II, (C) Topology III, and (D) Topology IV. In all figures, ~DD0

increases smoothly from 1.25 to 1.95 as R varies from 0.1kV to 5kV. The
line on the top of the figure represents the interval of resistance values
responsible to induce almost synchronisation (AS) and phase synchro-
nisation (PS).
doi:10.1371/journal.pone.0046745.g003

Figure 4. This picture is a hand-made illustration. Squares are
filled as to create an image of a stochastic process whose points spread
according to the given Lyapunov exponents. (A) A small box
representing a set of initial conditions. After one iteration of the
system, the points that leave the initial box in (A) go to 4 boxes along
the diagonal line [filled squares in (B)] and 8 boxes off-diagonal (along
the transverse direction) [filled circles in (B)]. At the second iteration, the
points occupy other neighbouring boxes as illustrated in (C) and after
an interval of time n~T the points do not spread any longer (D).
doi:10.1371/journal.pone.0046745.g004
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IS

T
~ log (2) 1z

log (2)

log (E)
z

log (1z2T )

log (E)

� �

~ log (2)(1{r): ð31Þ

As expected from the way we have constructed this model, Eq.

(31) and (30) are equal and IC~
IS

T
.

Had we included the border effect in the calculation of IC ,

denote the value by Ib
C , we would have obtained that Ib

C§IC , since

l2 calculated considering a finite space V would be either smaller

or equal than the value obtained by neglecting the border effect.

Had we included the border effect in the calculation of IS=T ,

denote the value by Ib
S=T , typically we would expect that the

probabilities PXY (i,j) would not be constant. That is because the

points that leave the subspace V would be randomly reinjected

back to V. We would conclude that Ib
S=TƒIS=T . Therefore, had

we included the border effect, we would have obtained that

Ib
C§Ib

S=T .

The way we have constructed this stochastic toy model results in

D%1. This is because the spreading of points along the diagonal

direction is much faster than the spreading of points along the off-

diagonal transverse direction. In other words, the second largest

Lyapunov exponent, l2, is close to zero. For stochastic toy models

which produce larger l2, one could consider that the spreading

along the transverse direction is given by Nt~Nd2an{C(~nn), with

a[½0,1�.

Expansion Rates for Noisy Data with Few Sampling Points
In terms of the order-1 expansion rate, e1, our quantities read

IC~e1(2{D), T~
1

e1
log

1

E

� �
, and I l

C~e1(2{~DD0). In order to

show that our expansion rate can be used to calculate these

quantities, we consider that the experimental system is being

observed in a one-dimensional projection and points in this

projection have a constant probability measure. Additive noise is

assumed to be bounded with maximal amplitude g, and having

constant density.

Our order-1 expansion rate is defined as

e1(t)~1= ~NNC

X~NNC

i~1

1

t
log½Li

1(t)�: ð32Þ

where Li
1(t) measures the largest growth rate of nearby points.

Since all it matters is the largest distance between points, it can be

estimated even when the experimental data set has very few data

points. Since, in this example, we consider that the experimental

noisy points have constant uniform probability distribution, e1(t)
can be calculated by

e1(t)~
1

t
log

Dz2g

dz2g

� �
: ð33Þ

where dz2g represents the largest distance between pair of

experimental noisy points in an E-square box and Dz2g
represents the largest distance between pair of the points that

were initially in the E-square box but have spread out for an

interval of time t. The experimental system (without noise) is

responsible to make points that are at most d apart from each

other to spread to at most to D apart from each other. These

points spread out exponentially fast according to the largest

positive Lyapunov exponent l1 by

D~d expl1t : ð34Þ

Substituting Eq. (34) in (33), and expanding log to first order, we

obtain that e1~l1, and therefore, our expansion rate can be used

to estimate Lyapunov exponents.

Conclusions
We have shown a procedure to calculate mutual information

rate (MIR) between two nodes (or groups of nodes) in dynamical

networks and data sets that are either mixing, or exhibit fast decay

of correlations, or have sensitivity to initial conditions, and we

have proposed significant upper (IC ) and lower (I l
C ) bounds for it,

in terms of the Lyapunov exponents, the expansion rates, and the

capacity dimension.

Since our upper bound is calculated from Lyapunov exponents

or expansion rates, it can be used to estimate the MIR between

data sets that have different sampling rates or experimental

resolution or between systems possessing a different number of

events. For example, suppose one wants to understand how much

information is exchanged between two time-series, the heart beat

and the level of CO2 in the body. The heart is monitored by an

EEG that collects data with a high-frequency, whereas the

monitoring of the CO2 level happens in a much lower frequency.

For every m points collected from an EEG one could collect

nvvm points in the monitoring of the CO2 level. Assuming that

the higher-frequency variable (the heart beat) is the one that

contributes mostly for the sensibility to the initial conditions, then

the larger expansion rate (or Lyapunov exponent) can be well

estimated only using this variable. The second largest expansion

rate (or Lyapunov exponent) can be estimated by the composed

subspace formed by these two measurements, but only the

measurements taken simultaneously would be considered. There-

fore, the estimation of the second largest expansion rate would

have to be done using less points than the estimation used to

obtain the largest. In the calculation of the second largest

expansion rate, it is necessary to know the largest exponent. If

the largest is correctly estimated, then the chances we make a good

estimation of the second largest increases, even when only a few

points are considered. With the two largest expansion rates, one

can estimate IC , the upper bound for the MIR.

Additionally, Lyapunov exponents can be accurately calculated

even when data sets are corrupted by noise of large amplitude

(observational additive noise) [38,39] or when the system

generating the data suffers from parameter alterations (‘‘experi-

mental drift’’) [40]. Our bounds link information (the MIR) and

the dynamical behaviour of the system being observed with

synchronisation, since the more synchronous two nodes are, the

smaller l2 and D0 will be. This link can be of great help in

establishing whether two nodes in a dynamical network or in a

complex system not only exchange information but also have

linear or non-linear interdependences, since the approaches to

measure the level of synchronisation between two systems are

reasonably well known and are been widely used. If variables are

synchronous in a time-lag fashion [35], it was shown in Ref. [16]

that the MIR is independent of the delay between the two

processes. The upper bound for the MIR could be calculated by

measuring the Lyapunov exponents of the network (see Informa-

tion S1), which are also invariant to time-delays between the

variables.
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If the MIR and its upper bounds are calculated from an

‘‘attractor’’ that is not an asymptotic limiting set but rather a

transient trajectory, these values should typically differ from the

values obtained when the "attractor" is an asymptotic limiting set.

The dynamical quantities calculated, e.g., the Lyapunov expo-

nents, expansion rates, and the fractal dimension should be

interpreted as finite time quantities.

In our calculations, we have considered that the correlation of

the system decays to approximately zero after a finite time T . If

after this time interval the correlation does not decay to zero, we

expect that IS will be overestimated, leading to an overestimated

value for the MIR. That is so because the probabilities used to

calculate IS will be considered to have been generated by a

random system with uncorrelated variables, which is not true.

However, by construction, the upper bound IC is larger than the

overestimated MIR.
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