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ABSTRACT 

Many existing practical sand transport formulae for the coastal marine environment are 

restricted to a limited range of hydrodynamic and sand conditions. This paper presents a new 

practical formula for net sand transport induced by non-breaking waves and currents. The 

formula is especially developed for cross-shore sand transport under wave-dominated 

conditions and is based on the semi-unsteady, half wave-cycle concept, with bed shear stress as 

the main forcing parameter. Unsteady phase-lag effects between velocities and concentrations, 

which are especially important for rippled bed and fine sand sheet-flow conditions, are 

accounted for through parameterisations. Recently-recognized effects on the net transport rate 

related to flow acceleration skewness and progressive surface waves are also included. To 

account for the latter, the formula includes the effects of boundary layer streaming and 

advection effects which occur under real waves, but not in oscillatory tunnel flows. The formula 

is developed using a database of 226 net transport rate measurements from large-scale 

oscillatory flow tunnels and a large wave flume, covering a wide range of full -scale flow 

conditions and uniform and graded sands with median diameter ranging from 0.13mm to 

0.54mm. Good overall agreement is obtained between observed and predicted net transport rates 

with 78% of the predictions falling within a factor 2 of the measurements. For several distinctly 

different conditions, the behaviour of the net transport with increasing flow strength agrees well 

with observations, indicating that the most important transport processes in both the rippled bed 

and sheet flow regime are well captured by the formula. However, for some flow conditions 
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good quantitative agreement could only be obtained by introducing separate calibration 

parameters. The new formula has been validated against independent net transport rate data for 

oscillatory flow conditions and steady flow conditions. 

 

KEYWORDS: sediment transport formula, sheet flow, ripples, bed shear stress, phase lag 

effects, advection effects 

 

1.0 INTRODUCTION 

In recent years a substantial body of field- and laboratory-based research has been devoted to 

measuring sand transport processes induced by waves and currents, and predictive approaches 

for the net, wave-averaged sand transport have been developed. Generally, these approaches can 

be classified as process-based numerical models or parameterised (engineering) formulae. 

Process-based models represent many of the detailed physical processes involved in sand 

transport by waves and currents, and resolve the vertical and sometimes also the horizontal 

structure of the time-dependent, intra-wave velocity and sand concentration fields. Such models 

(see e.g. Hendersen et al., 2004; Holmedal et al., 2009; Hassan and Ribberink, 2010) are often 

restricted to specific flow and sand conditions, require relatively long computation times and are 

therefore generally not implemented in coastal morphodynamic models. Parameterised sand 

transport formulae on the other hand, consist of a set of relatively simple equations often 

covering a wide range of flow and sand conditions, require short computation times and can be 

implemented easily in coastal morphodynamic models. 

 

Practical sand transport formulae for the coastal marine environment are generally semi-

empirical formulae which can be classified as time-averaged, quasi-steady or semi-unsteady. 

Based on approaches used for fluvial sediment transport, time-averaged formulae predict sand 

transport at a timescale that is much longer than the wave period, using wave-averaged values of 

velocity and sand concentration. The Bijker (1971) formula is an example of a widely-used 

time-averaged transport formula, in which waves act as stirring agent for the current-related 
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transport (suspended load and bed load). In time-averaged formulae, the total net transport is 

always in the direction of the mean current and the wave-related transport component is not 

taken into account. 

 

Quasi-steady formulae calculate intra-wave sand transport, with the assumption that the 

instantaneous sand transport relates only to the instantaneous forcing parameter, either the flow 

velocity or bed shear stress. Commonly-used quasi-steady formulae predict non-zero net 

transport resulting from velocity skewness, as occurs under Stokes-type waves (e.g. Bailard, 

1981; Ribberink, 1998; Soulsby and Damgaard, 2005; Wang, 2007), but most do not account 

for transport resulting from acceleration skewness, as occurs under sawtooth-shaped waves 

(Watanabe and Sato, 2004; Van der A et al., 2010). Formulae that do account for both velocity 

and acceleration skewness have mostly been developed for sheet-flow conditions (e.g. Nielsen, 

2006; Gonzalez-Rodriguez and Madsen, 2007; Suntoyo et al., 2008) and do not apply to lower 

energy conditions when the bed is generally covered with ripples.  

 

The assumption of quasi-steadiness only holds for conditions for which the reaction time of 

sand particles is short relative to the wave period. In other words, the pick-up and settling of 

sand particles must take place in a much shorter time than the wave period. This assumption is 

not the case for fine sand sheet-flow conditions (Dohmen-Janssen et al., 2002; OôDonoghue and 

Wright, 2004; Van der A et al., 2009) and rippled bed conditions (Van der Werf et al., 2007), 

where phase lag effects can significantly affect the magnitude and sometimes even the direction 

of the net transport rate. Semi-unsteady formulae have been developed to account for phase lag 

effects in sheet-flow conditions (Dibajnia and Watanabe, 1992; Camenen and Larson, 2007), 

rippled bed conditions (Nielsen, 1988; Van der Werf et al., 2006) and for both sheet-flow and 

ripple conditions (Silva et al., 2006; Van Rijn, 2007a,b,c). 

 

Existing transport formulae are based for the most part on experimental data from oscillatory 

flow tunnels, in which the flow is horizontal and horizontally uniform. However, net transport 
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rate experiments carried out in large wave flumes (Ribberink et al., 2000; Dohmen-Janssen and 

Hanes, 2002; Schretlen et al., 2011) indicate that the added complexities in the hydrodynamics 

of surface waves compared to tunnel flows can be important in determining the net sand 

transport. Kranenburg et al. (in press) use a detailed advection-diffusion boundary layer sand 

transport model and the above mentioned tunnel and flume data to quantify the importance of 

progressive wave, streaming-related, bed shear stress (wave Reynolds stress) and, at least for 

fine sand, of vertical advection of sand by vertical orbital velocities and horizontal advection of 

sand by gradients in the horizontal sediment flux. Existing transport models do not account for 

these real wave effects, although Nielsen (2006) does incorporate a streaming-related bed shear 

stress in his formulation, while Van Rijn (2007a) incorporates streaming by adding a small 

steady current at the edge of the wave boundary layer. Nielsen (2006) has shown that the net 

transport of medium sand is better predicted when a streaming-related mean bed shear stress  is 

added to the instantaneous oscillatory bed shear stress in a óquasi-steadyô Meyer-Peter and 

Müller type sand transport formula. 

 

This paper presents a new semi-unsteady formula for predicting net sand transport under waves 

and currents. Based on an extensive dataset of measurements of net sand transport rates from 

large-scale laboratory experiments, covering a wide range of hydraulic conditions and transport 

regimes, the formula can be applied to rippled bed and sheet-flow conditions, incorporates 

phase lag and flow acceleration effects, and can be applied to both oscillatory flow and surface 

wave conditions. The new sand transport formula is presented in Section 2.0 of the paper. 

Section 3.0 presents a comparison of calculated net transport rates with measured transport rates 

from the large scale-experiments. The general behaviour of predicted net transport rates across a 

range of flow conditions is examined in Section 4.0. Section 5.0 presents the results of 

validation tests against independent data for oscillatory flow and steady flow conditions. A 

discussion of results and conclusions from the paper are presented in Sections 6.0 and 7.0 

respectively. 
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2.0 SAND TRANSPORT FORMULA FOR OSCILLATORY FLOWS AND 

PROGRESSIVE WAVES 

The new transport formula is based on a modified version of the semi-unsteady ñhalf-cycleò 

concept originally proposed by Dibajnia and Watanabe (1992). In this concept the wave-

averaged total net sand transport rate (bedload and suspended load) as taking place in the 

oscillatory boundary layer is essentially described as the difference between the two gross 

amounts of sand transported during the positive ñcrestò half-cycle and during the negative 

ñtroughò half-cycle. Unsteady phase lag effects are taken into account via two contributions to 

the amount of sand transported during each half-cycle: sand entrained and transported during 

the present half-cycle and sand entrained during the previous half-cycle which is transported 

during the present half-cycle; the latter is the phase lag contribution. The present formula differs 

from Dibajnia and Watanabe (1992) in the following ways: (i) bed shear stress rather than near-

bed velocity is used as the main forcing parameter; (ii) the effects of flow unsteadiness (phase 

lag effects) are incorporated in a different way; (iii) the effects of acceleration skewness are 

incorporated; (iv) it covers graded sands and (v) the formula distinguishes between oscillatory 

flows and progressive surface waves. The present formula distinguishes itself from other half-

cycle-type formulae (Dibajnia & Watanabe, 1996, 1998; Watanabe and Sato, 2004; Silva et al., 

2006) through (v), as well as through the calculation of the detailed sub-processes and the extent 

of experimental data used to inform formula development and calibration.  

 

 

In the new formula, the non-dimensional net transport rate is given by the following ñvelocity-

loadò equation: 
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where sq  is the volumetric net transport rate per unit width, s = (ɟs ï ɟ)/ɟ where ɟs and ɟ are the 

densities of sand and water respectively, g is acceleration due to gravity and d50 is the sand 

median diameter; q is the non-dimensional bed shear stress (Shields parameter), with 
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subscripts ñcò and ñtò implying ñcrestò and ñtroughò half cycle respectively; T is wave period; 

Tc is the duration of the crest (positive) half cycle and Tcu is the duration of accelerating flow 

within the crest half cycle (Figure 1); similarly Tt is the duration of the trough (negative) half 

cycle and Ttu the period of accelerating flow within the trough half cycle. 

 

 There are four contributions to the net sand transport: 

¶ ɋcc represents the sand load that is entrained during the wave crest period and 

transported during the crest period; 

¶ ɋct represents the sand load that is entrained during the wave crest period and 

transported during the trough period; 

¶ ɋtt represents the sand load that is entrained during the wave trough period and 

transported during the trough period; 

¶ ɋtc represents the sand load that is entrained during the wave trough period and 

transported during the crest period. 

 

The total sand load in each half-cycle is multiplied by
iq (with subscript ñiò either ñcò for crest 

or ñtò for trough), representing the non-dimensional friction velocity, to obtain the non-

dimensional half-cycle transport rate. Both half-cycle transport rates are weighted with their 

duration relative to the wave period (Tc/T and Tt/T, respectively). The multipliers c

cu2

T

T
and t

tu2

T

T

on ɋtc and ɋct respectively account for the effect of acceleration skewness on the travel distance 

of the fraction of sand remaining in suspension after flow reversal, since suspended sand is 

transported further when followed by a steep front half-wave cycle compared to a gradual front 

half-wave cycle (Watanabe and Sato, 2004).  

The sand load entrained in the flow during each half-cycle is related to the Shields parameter as 

follows: 
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where the critical Shields number, ɗcr, is calculated following Soulsby (1997). The 

proportionality constant m and power of the excess Shields parameter n are two of the three 

main calibration coefficients of the transport formula.  

 

Application of Eq. (1) to calculate the net sand transport rate in oscillatory flow or under 

progressive surface waves requires the following three main steps: (i) establish the 

ñrepresentativeò crest half-cycle and trough half-cycle water  particle velocities, as well as the 

representative full -cycle orbital velocity and excursion; (ii) calculate the bed shear stress 

(Shields parameter) for each flow half cycle; (iii) calculate the sediment load entrained during 

each flow half-cycle and determine the sharing of the entrained load between the half-cycles.  

 

 

2.1 Input water particle kinematics  

The formula is designed to predict the net sand transport for given sand characteristics and 

given current and wave-generated oscillatory flow at the top of the wave boundary layer (z = ŭ). 

In general, the bed-parallel velocity due to combined wave and current motion is: 

 w ŭ( ) ( )u t u t u= +  (3) 

where w ( )u t  is the time-varying free-stream orbital velocity vector and ŭu  is the steady current 

velocity vector. For a wave propagating in the x-direction and an obliquely-incident current 

making an angle ű with the wave direction (Figure 2), the velocity in the x- and y-directions are: 

 x w ŭ( ) ( ) cosu t u t u j= +  (4) 

 
y ŭsinu u j=  (5) 

 

respectively. With reference to Figure 1, the velocity vectors at moments of maximum positive 

and maximum negative orbital velocity are: 

 { } { }c cx cy c ŭ ŭ
Ĕ, cos , sinu u u u u uj j= = +  (6) 
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 { } { }t tx ty t ŭ ŭ
Ĕ, cos , sinu u u u u uj j= = - +  (7) 

where c
Ĕu  and t

Ĕu are the peak crest and peak trough orbital velocities as indicated in Figure 2. 

We define the representative orbital velocity amplitude Ĕu  and the representative orbital 

excursion amplitude Ĕa  for the whole flow cycle as follows: 

 
2

w

0

2
Ĕ ( )d

T

u u t t
T

= ñ  (8) 

 
Ĕ

Ĕ
2

uT
a

p
=  (9) 

The representative half-cycle orbital velocity for the wave crest, c,ru , and for the wave trough, 

t,ru , is then: 

 1
c,r c2

Ĕ2u u=  (10) 

 1
t,r t2

Ĕ2u u=  (11) 

(Note that c,ru equates to the root mean square velocity of a sinusoidal flow with amplitude c
Ĕu ; 

t,ru equates to the root-mean square orbital velocity for a sinusoidal flow with amplitude Ĕtu .) 

The representative combined wave-current velocity vectors for each half-cycle are then: 

 { } { }c,r c,rx c,ry c,r ŭ ŭ, cos , sinu u u u u uj j= = +  (12) 

 { } { }t,r t,rx t,ry t,r, cos , sinu u u u u ud dj j= = - +  (13) 

 

The degree of velocity skewness is expressed through the velocity skewness parameter 

c c t
Ĕ Ĕ Ĕ/( )R u u u= + ; similarly, the degree of acceleration skewness is expressed through 

c c t
Ĕ Ĕ Ĕ/( )u u ub= + , where c

Ĕu  and t
Ĕu  are the amplitudes of the horizontal flow acceleration in the 

crest and trough directions respectively. Orbital velocity for a sinusoidal flow is vertically and 

horizontally symmetrical, with R = 0.5 and ɓ = 0.5. A typical shoaling wave close to the breaker 

point (like that schematised in Figure 1), has higher onshore orbital velocity under the wave 
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crest than offshore velocity under the wave trough, leading to R > 0.5, and a forward-leaning 

wave crest with higher acceleration under the crest compared to the trough, resulting in ɓ > 0.5.  

 

In the case of irregular wave conditions we adopt the representative wave approach, in which 

the input water particle kinematics are those for a regular wave with time-series based on 

sig
Ĕ Ĕu u= , T = Tp, R = Rsig and ɓ = ɓsig, where sig

Ĕu is the significant orbital velocity amplitude, Tp is 

peak spectral period, Rsig and ɓsig are the significant values of velocity and accelerations 

skewness parameter respectively.  

 

2.2 Bed shear stress 

The non-dimensional bed shear stress (Shields parameter) vector is: 

 { }x y,i i iq q q=  (14) 

where subscript ñiò is either ñcò for crest or ñtò for trough. The x and y components of the 

Shields parameter are: 
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q q=  (16) 

Rewt is a stress contribution associated  with  progressive surface waves, which is not present in 

the case of tunnel-type oscillatory flows, and is explained further below. The magnitude of the 

Shields parameter is given by: 

 

2
1

wŭ ,r2

50( 1)

i i

i

f u

s gd
q=

-
 (17) 

in which wŭf
 is the wave-current friction factor. While the transport formula applies to 

oscillatory flow and current under any angle following the notations, throughout the remainder 

of this paper the oscillatory flow and current conditions are always collinear, and the presented 

transport rates based on Eq. (1) are always the x-direction transport rates. 
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Following Ribberink (1998), the wave-current friction factor at crest and trough are calculated 

as the linear combination of the wave friction factor (at crest and trough) and the current friction 

factor (see also Madsen and Grant, 1976): 

 ( )wŭ ŭ w1i if f fa a= + -  (18) 

with: 

 ŭ

ŭ
Ĕ

u

u u
a=

+
 (19) 

The current-related friction factor is calculated assuming a logarithmic velocity profile: 
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2

ŭ

sŭ

0.4
2

ln 30
f

kd

è ø
= é ù
é ùê ú

 (20) 

where the current-related roughness sŭk is calculated as detailed in Appendix A. 

 

The wave friction factor, calculated separately for the crest and trough half-cycles, is based on 

Swart (1974), modified to allow for enhanced/reduced bed shear stress in acceleration-skewed 

flow following the approach of Silva et al. (2006): 
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where swk is the wave-related bed roughness and is detailed in Appendix A. Higher flow 

acceleration leads to higher peak bed shear stress; as shown in fixed bed (Suntoyo et al., 2008; 

Van der A et al., 2011) and mobile bed experiments (Ruessink et al., 2011). The term u2 i

i

T

T
in 

Eq. (21) accounts for the effect of acceleration skewness on the bed shear stress. It has the effect 

of increasing wif for the flow half-cycle with higher acceleration ( u2
1i

i

T

T
< ) and decreasing wif
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for the half-cycle with lower acceleration ( u2
1i

i

T

T
> ); the term is equal to unity for sinusoidal or 

pure velocity-skewed flow and Eq. (21) then reduces to the standard Swart equation. 

Optimisation of c1 against the measurements of bed shear stress by Van der A et al. (2011) for a 

range of acceleration-skewed oscillatory flows resulted in c1 = 2.6. Figure 3 shows the 

calculated values of the ratio of maximum crest bed shear stress to maximum through bed shear 

stress using c1 = 2.6 and the corresponding measured values of the same ratio from the Van der 

A et al. experiments.  

 

For progressive surface waves, the vertical orbital water particle motions transfer horizontal 

momentum in and out of the wave boundary layer, leading to a wave-averaged (Reynolds) stress 

uwr-  (Longuet-Higgins, 1953, 1958). The vertical gradient of this stress drives a positive 

mean flow (boundary layer streaming) in the direction of the wave propagation. Following 

Nielsen (2006), we account for the wave Reynolds stress, as present at the edge of the wave 

boundary layer, by adding a wave Reynolds stress Rewt  to the x-component bed shear stress, as 

per Eq. (15). This has the effect of increasing the total Shields stress under the wave crest and 

decreasing the stress under the wave trough. The wave Reynolds stress is estimated as follows 

(Fredsøe and Deigaard, 1992; Nielsen, 2006): 

 3wŭ
w Re w

w

Ĕ
2

f
u

c
t r a=  (22) 

with Ĕu  determined according to Eq. (8), Ŭw = 4/(3ˊ) = 0.424 and cw is the wave speed, 

calculated from cw = L/T, with L obtained from Soulsbyôs (1997, p.71) explicit approximation of 

the dispersion relation. Here wŭf
 is the full -cycle wave-current friction factor, 

( )wŭ ŭ w1f f fa a= + - , with ŭf  calculated as before and wf  is Swartôs friction factor calculated 

as per Appendix A.  
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2.3 Distributing sediment load between half cycles: phase lag parameter 

The sand load entrained during each half-cycle, ɋi, is calculated using Eq. (2). How much of 

that sand is transported within the half-cycle and how much remains in suspension to be 

transported in the following half-cycle is determined by the value of the phase lag parameter for 

the half-cycle, Pi, as follows: 

 

c c
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Thus, when the phase lag parameter Pi exceeds 1, there is an exchange of sand from the present 

half-cycle to the following half-cycle. The phase lag parameter is given by: 
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where Ŭ is a calibration coefficient, ɖ is ripple height (Appendix B), ŭsi is sheet flow layer 

thickness for the half cycle (Appendix C) and siw
 is the sediment settling velocity within the 
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half cycle. The term 
( )2

i

i iu si

r

T T w-
 represents the ratio of a representative sediment stirring 

height (r i = ripple height h or sheet flow layer thicknesssid ) and the sediment settling distance 

within the half cycle. In the ripple regime, the generation and ejection of sediment laden 

vortices on the ripple sides result in unsteady phase lag effects. The relative importance of the 

vortex shedding process depends on the size of the vortices and their entrainment height, which 

scale with the ripple height ɖ (Van der Werf et al., 2006). In the sheet flow regime, where phase 

lag effects occur predominantly for fine sands, the characteristic entrainment height of the sand 

scales with the thickness of the sheet flow layer ŭsi. The above approach for ripple conditions is 

different from previous half-cycle formulae of Dibajnia and Watanabe (1996) and Silva et al. 

(2006) in which the effect of ripples on the phase lag parameter is accounted for through a 

modification of the critical value of Pi for rippled beds.    

 

The sediment settling time is related to the deceleration time within each half cycle, ( )u2 i iT T- , 

thus recognising that with increasing (forward leaning) acceleration skewness the settling time 

during the crest half-cycle increases, leading to a smaller Pc; analogously the settling time 

during the trough half-cycle decreases, leading to a larger Pt. This effect was seen in the fine 

sand sheet flow experiments of Van der A et al. (2009) and in the 1DV model simulations of 

Ruessink et al. (2009), both for acceleration-skewed flows, but the process is also expected to 

play a significant role for rippled bed conditions. In the absence of acceleration skewnesss Tiu  = 

Ti/2 and the settling time reduces to the half-cycle period since 2(Ti ïTiu) = Ti. 

 

Calculation of the sediment settling velocity is based on Soulsby (1997), assuming a suspended 

sediment size ds = 0.8d50 (Van Rijn, 2007c). However, for the case of progressive surface waves 

(not tunnel-type oscillatory flow) we include an allowance for possible vertical advection of 

sediment due to vertical orbital water particle velocities (Kranenburg et al., in press). Although 

wave-induced vertical velocities are small near the bed, they can be of the same order of 



14 

magnitude as the (still-water) sediment settling velocity, especially for fine sand and high 

waves. In the deceleration phase of the crest half cycle, wave-induced vertical water particle 

velocities are increasing and are directed downwards, aiding the sediment settling process; in 

contrast, the settling of sediment during the trough half cycle is reduced due to increasing, 

upwards-directed wave-induced water particle velocities. Sand settling velocities during the 

crest and trough half cycles are accordingly adjusted as follows: 

 sc s min c( )w w w r= -  (29) 

 st s max tmax( ( ),0)w w w r= -  (30) 

where sw
 is the (still-water) settling velocity as determined using Soulsby (1997), min c( )w r

 is the 

peak negative vertical water particle velocity at elevation cr  
and max t( )w r  is the peak positive 

vertical water particle velocity at elevation tr .  Ĕcw and Ĕtw
 
are estimated using Stokes 2nd order 

wave theory and the selected elevation is ir h=
 in the ripple regime and i sir d=

 in the sheet-

flow regime. For tunnel-type oscillatory flow sc st sw w w= = . 

 

The terms c

w

Ĕ
1

u

c

xå õ
-æ ö

ç ÷
 and t

w

Ĕ
1

u

c

xå õ
+æ ö

ç ÷
  in Eq. (27) and (28)  (where wc

 = wave speed, x= 

calibration factor) account for a second effect of progressive waves on the phase lag behaviour: 

that of horizontal sediment advection caused by horizontal non-uniformity in the wave field.  

The wave non-uniformity produces horizontal gradients in the horizontal sediment flux, with the 

result that sediment concentration is no longer controlled by local vertical sediment fluxes alone 

(i.e. pick-up from and deposition to the bed).  Kranenburg et al. (in press) show how this intra-

wave horizontal sediment advection leads to a ñcompressionò of sand (increased concentration) 

under the wave crest and a ñdilutionò (decreased concentration) under the wave trough, causing 

a net transport rate in the direction of wave propagation, even for sinusoidal waves. The 

importance of this transport mechanism for progressive surface waves is shown with a 

numerical boundary layer model (based on advection-diffusion for the sediment) applied to the  
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large wave flume experimental conditions of Schretlen et al. (2011). Kranenburg et al. (in press) 

show that the effect of horizontal sediment advection can be accounted for via correction of the 

phase-lag parameter through the adjustment time scale TA: 

 w

s w

( )
1A

u t
T

w c

xå õD
= -æ ö
ç ÷

 (31) 

where ȹ/ws is the ratio of sediment stirring height and settling velocity, representing the settling 

time of sediment; uw(t) is the free-stream horizontal flow velocity in the transport layer near the 

bed; and ɝ is a coefficient accounting for the shape of the velocity and concentration profile. A 

short description of the analytical background of this time scale is presented in Appendix D (see 

Kranenburg et al., in press for more details). The factor w

w

( )
1

u t

c

xå õ
-æ ö
ç ÷

 represents the influence 

of horizontal sediment advection. It is < 1 under the wave crest and >1 under the wave trough 

and therefore represents a decrease of the adjustment time scale under the wave crest (i.e. a 

quicker reaction of the concentration to changes in the velocity) and an increase of adjustment 

time scale under the wave trough. The factor is significant only when waves are large with 

relatively high orbital flow velocities uw(t) compared to the wave speed cw. Moreover, it can 

only become effective if phase-lag effects are important, or in other words, the adjustment 

timescale TA should not be negligible compared to the wave period T. Based on this result, the 

effect of horizontal sediment advection is incorporated in the sand transport formula through a 

correction of the phase-lag parameters Pi for the wave crest and trough, using a factor 

c

w

Ĕ
1

u

c

xå õ
-æ ö
ç ÷

 for the settling time of the crest load and a factor t

w

Ĕ
1

u

c

xå õ
+æ ö
ç ÷

 for the settling time of 

the trough load as per Eqs. (27) and (28). We use coefficient ɝ as calibration parameter in this 

simplified parameterisation (see below).  

 

2.4 Graded sands  

For graded sand conditions a fractional approach is used to calculate the net sand transport as 

follows: 
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where qs,j is the net transport rate of fraction j with diameter dj, and percentage pj of that fraction 

in the bed material, and M is the number of size fractions in the bed material.  

Van Rijn (2007c) discussed whether the roughness of each fraction should be based on the grain 

diameter of the fraction (ks,j ~ dj), or whether for each fraction the same roughness (and hence 

bed shear stress Ű) based on the median grain diameter of the mixture (ks ~ d50) should apply. 

The first approach assumes segregation of the fractions during the experiment, while in the 

second approach the bed is assumed to remain well-mixed. Using a multi-fraction approach 

(including hiding/exposure effects discussed below), Van Rijn (2007c) compared predicted net 

transport rates from his quasi-steady formulae using both approaches with the medium sand 

results of Hassan (2003). Best results were obtained with ks,j ~ dj, in agreement with the 

observed segregation processes during the majority of Hassanôs (2003) graded sand 

experiments. In the present formula, assuming ks,j ~ dj in the transport rate calculations for each 

fraction also lead to best agreement with the measured net transport rates. In calculating the 

fractional transport rate, the phase lag parameter also depends on the grain size of the fraction, 

therefore: 
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In which the settling velocity is based on the particle settling velocity for each fraction 

individually. The representative entrainment height (either ɖ or ŭsi) is the same for each fraction 

and is based on the overall d50.  
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It is well known that for beds consisting of different size fractions, the finer particles tend to 

ñhideò between the larger particles and therefore have reduced mobility compared to a uniform 

sand of the same diameter. At the same time coarser particles become more exposed to the flow 

and are more easily mobilized. These grain sorting effects can be accounted for by applying a 

correction factor, often as a function of dj/d50, to the critical Shields parameter and/or the 

effective Shields parameter (see e.g Hassan, 2003; Van Rijn, 2007c). Correcting the critical 

Shields parameter only has significant influence on conditions near the threshold of motion. For 

relatively large Shields parameters, such as for the present sheet flow conditions, an adjustment 

to the Shields parameter has a greater impact. We apply the correction Ůeff,j to calculate the 

effective Shields parameter for the fraction with grain size dj as follows: 

 , , , ,i j eff eff j i jq e q=  (35) 

where, as before, i  = c (crest) or t (trough), and ,i jq  is the Shields parameter for fraction j, 

which  feeds into the calculation of the sediment load as follows: 
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with 
cr,jq the critical Shields parameter, according to Soulsby (1997), for fraction j. Following 

Van Rijn (2007c), the correction factor is defined as: 
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This simple correction factor is adapted here in preference to the more commonly used 

correction factor of Day (1980) which requires information on the gradation of the sand 

mixture.  

 

2.5 Calibration 

The limited applicability of many existing practical formulae is, to some extent, the result of the 

limited range of flow and sand conditions used to develop the formulae. For this reason Van der 
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Werf et al. (2009) brought together a large dataset of existing net transport rate measurements 

from a number of facilities covering a wide range of sand sizes and full-scale flow conditions 

(the ñSANTOSS databaseò). The database has recently been extended to include more recent net 

transport measurements for acceleration-skewed oscillatory flows (Van der A et al., 2010; Silva 

et al., 2011) and for progressive surface waves (Schretlen et al., 2011). The entire dataset 

contains 226 measured net transport rates for a wide range of full-scale (T Ó 4s) conditions in 

both the rippled bed and sheet flow regime, including regular and irregular oscillatory flows 

with velocity skewness or acceleration skewness (or a combination of both), oscillatory flows 

with superimposed collinear currents and non-breaking (shoaling) surface waves. Table 1 

presents an overview of the range of hydraulic conditions covered by the data. In most of the 

oscillatory flow + current experiments (43 out of 50 cases), the current was weak relative to the 

orbital velocity, ŭ Ĕ/ 0.5u u< , so that in general the experimental conditions for which measured 

net transport rates are available are oscillatory flow-dominated, not current-dominated. The 

extended database was used for the calibration of the present practical sand transport formula.  

 

The calibration procedure is an iterative procedure involving three main calibration coefficients: 

(i) the coefficient Ŭ in the phase lag parameter (Eqs. (27) and (28)) for sheet flow and rippled 

bed conditions; (ii) the proportionality constant m in the sediment load formula (Eq. (2)), and 

(iii) the power of the excess Shields parameter n in the sediment load formula. In the calibration 

procedure, Ŭ was tuned to find the highest correlation between the measured and predicted 

transport rates; m was then found from least square fitting a straight line with zero intercept to 

the measured and predicted net transport rates values, repeating for different values of 

coefficient n. Once an initial calibration was completed, several subsets of the data were 

examined and calibration coefficients specific to each subset (p, ɛ and ɕ) were tuned 

individually to obtain best agreement between measured and predicted transport rates for each 

particular subset of data. After this m, n and Ŭ were adjusted again to obtain best overall 
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agreement. The entire procedure was repeated several times, finally resulting in: Ŭ = 8.2, m = 

11.0 and n = 1.2. 

 

 

3.0 CALCULATED AND MEASURED NET TRANSPORT RATES  

In this section we compare calculated net transport rates with measured transport rates for 

particular sub-datasets (see Table 1) in order to highlight i) the different transport mechanisms 

that are captured in the formula, and ii) the performance of the formula for each sub-dataset. 

 

3.1 Velocity-skewed oscillatory sheet flow with d50 Ó 0.20mm 

Figure 4 shows a comparison of the measured and calculated transport rates for the 32 pure 

velocity-skewed sheet flow conditions with d50 Ó 0.20mm contained in the SANTOSS database. 

Nearly all transport rates for velocity-skewed conditions are calculated within a factor 2 of the 

measurements. In addition to the percentage of the data falling within a factor 2, Table 2 lists 

the factor 5 percentage, the Brier skill score, the bias and the squared correlation coefficient r2 

(see caption). All performance criteria indicate the excellent agreement between the 

measurements and prediction for these conditions.  With the exception of one of Ribberink and 

Al -Salemôs (1994) conditions (indicated by the arrow in Figure 4), for all these experiments 

with medium and coarse sand (d50 Ó 0.20mm) Pi Ò 1, which means unsteady phase lag effects do 

no play a role in the predicted transport. 

 

3.2 Acceleration-skewed oscillatory sheet flow with d50 Ó 0.20mm 

Figure 5 shows a comparison between calculated and measured net transport rates for the 32 

pure acceleration-skewed oscillatory flow conditions with d50 Ó 0.20mm. The calculated 

transport rates show good agreement with the measurements, with 84% of the predictions fall 

within a factor 2 of the measurements (also see Table 2 for further details). The formula 

incorrectly calculates the transport direction for one of Watanabe and Satoôs (2004) conditions. 

Due to its forward-leaning acceleration skewness (ɓ = 0.6), a positive net transport rate is 
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calculated, in contrast to their measured negative net transport rate. The discrepancy may be due 

to measurement error: Watanabe and Sato (2004) determine their net transport rate on the 

difference between the masses of sand collected at the ends of the test section, a method that is 

more prone to measurement error than the method based on mass conservation applied to the 

whole test section as used in most other studies. For some of Watanabe and Satoôs (2004) 

conditions (indicated with the grey symbols), the relatively short flow period of T = 5s 

combined with large orbital velocities (uw,max ~ 1.45m/s) results in phase lag effects contributing 

significantly to the net transport rates (i.e. Pi > 1). Watanabe and Satoôs own observations of the 

time-dependent sand concentrations confirm the occurrence of the unsteady behaviour. No 

phase lag effects were observed for the same sand size and orbital velocities for flow periods of 

7 and 10s, which provide longer settling times (Silva et al., 2011). The transport formula is able 

to capture these processes.  

 

3.3 Oscillatory sheet flow for fine sands (d50 < 0.20mm) 

Figure 6 shows the calculated net transport rates for the 29 oscillatory sheet flow conditions 

with d50 < 0.20mm. The conditions include the pure acceleration-skewed flows of Van der A et 

al. (2010), for which the measured net transport rates are all onshore-directed, while the 

remaining conditions are all pure velocity-skewed flows for which the measured net transport 

rates are predominantly negative, or ñoffshoreò-directed. For both flow types, the experimental 

studies have shown that unsteady phase lag effects dominate the transport rate direction, which 

is calculated correctly by the formula for nearly all conditions. Although the magnitudes of the 

net transport rates are somewhat underpredicted, they agree reasonably well with measurements: 

86% of the calculated transport rates are falling within a factor 2 of the measurements, with the 

exception of several of the velocity-skewed oscillatory flows. The scores for the various 

performance criteria listed in Table 2, reinforce these conclusions. Note that not invoking the 

sheet-flow enhancement to the fine sand roughness (i.e. setting ɛ = 1 in Eq. (A.1)) results in 

significant under-estimation of the net transport rate, with only 38% of the calculated transport 

rates falling within a factor 2 of the measurements.   
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3.4 Oscillatory flow over rippled beds  

When the bed is rippled, the bed roughness ksw,r can be expected to scale with the ripple 

dimensions. Common practice is to scale the roughness to the ripple height ksw,r ~ ɖ (Van Rijn, 

2007a; Humbyrd and Madsen, 2010) or to the product of ripple height and ripple steepness as 

follows: 

 
sw,r

k p
h
h
l

=  (38) 

where ɚ is ripple length and p a constant. Values of p reported in the literature cover a wide 

range between 8 ï 28 (e.g. Nielsen, 1983; Raudkivi, 1988; Swart, 1976; Grant and Madsen, 

1982). p has no physical meaning and its variability may be attributed to the choice of friction 

factor formula as suggested by Humbyrd and Madsen (2010). For the present formula p is used 

as a specific calibration factor for the net transport rate prediction over rippled beds. Based on 

comparison of the measured and calculated net transport rates for the rippled bed conditions, an 

optimal value of p = 0.4 was found (see Eq. (A.5)). Note that in calibrating p the measured 

ripple dimensions from the experiment have been used to avoid errors inherent in using an 

empirical ripple predictor.  

 

 

Figure 7 shows the comparison of the measured and calculated net transport rates, using 

measured ripple dimensions as input, with corresponding performance criteria listed in Table 2.  

Despite the scatter in these results, the net transport rates are considered to be reasonably well 

calculated. It should be emphasised here that prediction of net transport rates for rippled beds is 

notoriously difficult, due to the unsteady effects associated with the complex flow structure over 

ripples, and because the net transport rates are low. Van der Werf et al. (2006) compared 

predicted net transport rates from the grab-and-dump model of Nielsen (1998), the semi-

unsteady formula of Dibajnia and Watanabe (1996) and their own semi-unsteady formula with 

the same ripple condition experimental data as used for Figure 7 and found that for the best 

model only 35% of the predictions fell within a factor 2 of the measurements. Similarly, Silva et 

al. (2006) found only 47% of their predictions to fall within a factor 2, while 20% of their 
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predictions failed to determine the correct transport direction. In contrast, 62% of the calculated 

net transport rates from the present formula are within a factor 2 of the measurements and the 

correct direction is calculated for 91% of the conditions. When the predicted ripple dimensions 

based on OôDonoghue et al.ôs (2006) predictor (see Appendix B) are used as input to the 

formula, 40% of the calculated transport rates would fall within a factor 2 of the measurements, 

and the direction is correct for 80% of the conditions. We note that the OôDonoghue et al. 

(2006) ripple predictor applies to equilibrium ripples under waves and oscillatory flows without 

current. For non-equilibrium ripples and flows with current the more recent predictor of Soulsby 

et al. (2012) may be considered; the Soulsby et al. predictor also includes a simple approach to 

account for bio-degradation effects on the ripple height. 

 

3.5 Oscillatory flow with superimposed current  

Figure 8 shows the comparison of measured and calculated net transport rates for conditions of 

oscillatory flows with current. The calculated transport rates show reasonable agreement with 

observations: 70% of the 50 conditions fall within a factor 2 of the measurements; more detailed 

metrics are presented in Table 2. Negative net transport rates are generally calculated for 

conditions where a net current opposes the (implied) wave direction (conditions of Dibajnia and 

Watanabe, 1992; Ribberink, 1995; Silva et al., 2011), while most positive calculated and 

measured net transport rates occur when currents follow the (implied) wave direction. The good 

correlation (r2 = 0.89) suggests that the behaviour is well captured, despite a general over-

estimation of the net transport rates indicated by the large positive bias for these conditions 

(bias = 61%).  

It should be noted that for the non-sinusoidal oscillatory flow with current conditions in the 

database, the measured mean velocity, could contain a streaming velocity (generated by the 

asymmetry in turbulence intensity between the two half-cycles), in addition to the superimposed 

current velocity. This type of streaming is present under oscillatory flow with velocity skewness 

(e.g. Ribberink and Al-Salem, 1995) and under oscillatory flows with acceleration skewness 

(Van der A et al., 2011). The transport formula accounts implicitly for this type of streaming, 
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which could mean that the effect of streaming on the predicted net transport rate is accounted 

for twice for some of the non-sinusoidal oscillatory flow with current conditions.  

 

3.6 Oscillatory flow and graded sands  

Figure 9 shows the measured and calculated net transport rates for graded sediment conditions, 

for which the details of the sand mixtures can be found in Table 3. Considering the wide range 

of d50 of the mixtures and that the conditions cover oscillatory flows and oscillatory flows plus 

current, the calculated net transport rates are in good agreement with measurements, with 89% 

within a factor 2 of the measurements (Table 2). The roughness for the sheet flow conditions in 

the model for graded sands is calculated without the fine sand adjustment (ɛ = 1 in Eq. (A.1)), 

which improves results compared to those based on the roughness including the fine sand 

enhancement. 

 

3.7 Progressive surface waves  

The influence of the following three óreal waveô processes is included in the transport formula 

(see Section 2.0): 1) vertical advection of horizontal momentum leading to progressive wave 

boundary layer streaming and a wave-averaged stress; 2) horizontal gradients in horizontal 

sediment flux leading to horizontal sediment advection, and 3) near-bed vertical orbital 

velocities and their effect on grain settling.  

 

Figure 10 shows the calculated and measured net transport rates for the 11 surface wave 

conditions included in the database, consisting of 7 medium sand conditions and 4 fine sand 

conditions in two available dataset (Dohmen-Janssen and Hanes, 2002; Schretlen et al. 2011). 

All conditions are in the sheet flow regime and the near-bed flow is dominated by velocity-

skewness in all cases. For the medium sand cases, there is reasonable agreement between the 

calculated and measured transport rates, although distinct differences exist between the two 

datasets. The differences may be caused by the fact that, although d50 was the same for both 
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datasets (d50 = 0.25mm), d90 was considerably larger for the Schretlen experiments (0.42mm as 

against 0.28mm). For the fine sand conditions, the calculated net transport rates are in the 

positive (onshore) direction, which is in agreement with the wave flume measurements, but 

which is opposite to the negative (offshore) transport measured for fine sand velocity-skewed 

flows in oscillatory flow tunnels (see Section 3.2). Only the fine sand cases are affected by 

phase-lag effects, and best results are obtained with coefficient ɝ = 1.7 in Eqs. (33) and (34). 

Overall, the agreement between the calculated and measured net transport rates for the 11 

experiments is good: 82% of the predictions fall within a factor 2 of the measurements. 

If the óreal waveô effects are switched off, the calculated net transport rates for the medium sand 

would be positive, but slightly lower in magnitude due to the absence of the positive wave 

Reynolds stress (advection processes are negligible for medium sand). For the fine sand 

conditions on the other hand, the net transport would be negative similar to many of the fine 

sand velocity-skewed oscillatory flow conditions.  

In summary, it is shown that under progressive surface waves generally more sand is 

transported in the positive (onshore) direction than in flow tunnels, especially for fine sand. By 

incorporating three different (momentum and sediment) advection processes in the transport 

formula in a parameterized way, a practical method is obtained to predict the enhanced transport 

rates.    

 

 

4.0 NET TRANSPORT BEHAVIOUR WITH urms 

Figure 11 illustrates the behaviour of the calculated non-dimensional net transport rates with 

urms (=Ĕ 2u ) for two idealised oscillatory flow conditions (a-b) and two progressive surface 

wave conditions (c-d). The flow period is constant with T = 6.5s and for all four conditions net 

transport rates are shown for two sand sizes, fine sand with d50 = 0.13mm and medium sand 

with d50 = 0.25mm. For ripple regime conditions, the ripple dimensions are predicted using 

OôDonoghue et al. (2006) (see Section 3.4).  For comparison, measured net transport rates from 
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experimental studies listed in Table 1 are added to Figure 11 where the experimental conditions 

are close to those used for the calculated transport rates in terms of T, R and ɓ, grouped into fine 

(d50 < 0.20mm) or medium sand (0.20mm Ò d50 < 0.30mm). Because the experimental 

conditions do not exactly agree with the conditions used for the calculated transport rates, they 

do not serve for direct quantitative comparison; the purpose in showing the experimental results 

is simply to demonstrate experimental confirmation of the trends predicted by the formula. 

Figure 11a shows the net transport behaviour for velocity-skewed oscillatory flow with R = 

0.62.  For low urms the medium sand net transport rates are negative and dominated by phase-lag 

effects in the rippled bed regime. When urms increases further, the regime shifts from rippled bed 

to sheet flow, where the net transport rates become positive and increase with increasing 

velocity. The fine sand net transport behaviour is negative at low urms when the bed is rippled. It 

becomes positive with increasing urms, before becoming negative again as a result of strong 

phase lag effects in the sheet flow regime. This behaviour is in agreement with the 

measurements.   

Figure 11b shows the net transport rates for an oscillatory flow with a degree of acceleration 

skewness (ɓ = 0.7) but without velocity skewness (R = 0.5). For this flow the medium sand net 

transport rates are positive in the ripple regime, because, in contrast to the velocity-skewed 

flow, phase lag effects related to the timing of the flow maxima augment the positive transport, 

although there is presently no experimental data to confirm this behaviour. When entering the 

sheet flow regime (here at urms å 0.65m/s) the net transport rates initially reduce, in part due to a 

decreased roughness caused by decreasing ripples dimensions, and partly because the phase lag 

effects disappear. Once fully in the sheet flow regime, net transport rates increase in a quasi-

steady manner with increasing urms, which is in agreement with the measurements. Fine sand net 

transport rates are also positive in the ripple regime, and remain positive in the sheet flow 

regime, in strong contrast to the negative sheet flow net transport rates seen for velocity-skewed 

flows.  

Figure 11c shows the net transport rate behaviour for a surface wave with velocity skewness R = 

0.62, similar to the oscillatory flow in Figure 11a. Comparison of both figures shows that the 



26 

surface wave effects nearly always result in positive net transport rates. This is in contrast to the 

observations and predictions for velocity-skewed oscillatory flows. Net transport rates are only 

negative in the ripple regime for the fine sand at low flow velocities. For the fine sand at larger 

velocities, and for the medium sand, the net transport rates are positive in the ripple regime, due 

to the additional positive (onshore) contributions of the surface wave effects. Discontinuities in 

the medium sand curve at urms å 0.5 m/s indicate the switch from the ripple regime to the sheet 

flow regime, causing strong changes in the roughness and the phase lag parameter as discussed 

before. For medium sand in the sheet flow regime (urms >~ 0.6m/s), transport behaviour is 

increasing quasi-steadily with urms, and net transport rates are larger by about 50% compared to 

the equivalent oscillatory flow, due to the surface wave effects. Fine sands show larger transport 

rates than medium sands in the sheet flow regime, a trend which is only qualitatively confirmed 

by the data.    

Finally, although experimental evidence of the trends is not available, Figure 11d shows net 

transport rates for a surface wave with both velocity and acceleration skewness, typical for near-

shore waves close to breaking. The added effects of acceleration skewness lead to an added 

positive contribution to the net transport, both for rippled bed and sheet flow. For fine sands in 

the ripple regime this added component leads to positive net transport rates for all urms, while for 

the remaining conditions it leads to even larger positive net transport rates compared to the 

purely velocity-skewed condition in Figure 11c. Apart from this, the behaviour with increasing 

urms is similar to that shown in Figure 11c.  

 

 

5.0 VALIDATION   

 

5.1 Oscillatory flow 

Development and calibration of the formula has been done against the data contained in the 

SANTOSS database as described in Section 2.0. The database has since then been extended 

with conditions previously not considered, namely the conditions from the Tokyo University 
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oscillatory flow tunnel experiments of Dibajnia and Kioka (2000) and Dibajnia et al. (2001). 

These conditions have been excluded from the calibration and are instead used here to test the 

validity of the new formula to a certain degree. To extend the limited number (8) of conditions 

which satisfy the SANTOSS database criteria of T Ó 4s, we have also included conditions 

falling within the 3.5 < T < 4s range. By extending this lower limit of acceptable flow periods, 

the Tokyo University flow tunnel data of Sato (1987) and Dibajnia and Watanabe (1998) also 

satisfy the selection criteria. Combined, these datasets give 58 different conditions and cover a 

wide range of irregular oscillatory flows, sand sizes and bed conditions, the details of which are 

outlined in Table 4. Note that all of these validation cases involve irregular oscillatory flow. 

The comparison of measured and calculated net transport rates for these conditions (see Figure 

12), shows good agreement. The transport direction of Satoôs (1987) fine sand rippled-bed 

conditions, which have mostly negative net transport rates related to phase lag effects, are nearly 

all correctly calculated. The positive sheet flow net transport rates are generally calculated 

within a factor 2 of the measurements, although an overestimation for the conditions with flow 

periods in the range 3.5s < T < 4s is apparent. Out of the 58 conditions, 66% are calculated 

within a factor 2 of the measurements, which is a slight improvement compared to the irregular 

flow conditions listed in Table 2. 

 

5.2 Steady flow 

When the wave height is zero and the transport is driven by current only and Ŭ = 1 (Eq. (19)), 

fwŭi = fŭ (Eq. (18)) and ui,r = uŭ, consequently: 
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and the transport formula Eq. (1) reduces to the following formula, resembling the Meyer-Peter 

and Müller bedload transport formula (see also Ribberink, 1998): 

 ( )ŭ ŭ ŭ ŭ cr
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mq q q qF= W = -  (40) 
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Figure 13 illustrates the performance of the formula in predicting the net transport rates for the 

steady flow data of Guy et al. (1966), Van den Berg (1986) and Nnadi and Wilson (1992). 

These data have not been used in the calibration of the present formula. For most of the open 

channel experiments of Guy et al. (1996) the Shields number ɗŭ was < 1 and bedforms were 

present, while for most of the Nnadi and Wilson (1992) duct experiments the Shields number ɗŭ 

was > 1 and the bed was completely flat. Similar to Ribberink (1998), we only use the bed-load 

transport rates of Guy et al. (1996) that were obtained by subtracting the measured suspended 

load from the measured total load, and for Nnadi and Wilson, for which the majority of 

transport took place in the (near-bed) sheet flow layer, we use the reported total transport rates. 

The field data of Van den Berg (1986) involve low Shields numbers (ɗŭ < 0.3), and bed-load 

transport rates obtained from dune migration measurements. Combined the datasets comprise 

137 sheet flow and dune conditions with current velocities ranging 0.32-2.03 m/s and median 

grain sizes 0.19-3.8mm. The results and quantitative performance measures shown in Figure 13 

show that the formula predicts net transport rate for current-only conditions well, with 85% of 

the 137 conditions calculated within a factor 2 of the measurements.  

 

 

6.0 DISCUSSION 

For oscillatory flow or waves with superimposed current the transport formula requires 

information about the magnitude and direction of the mean current velocity at a reference level z 

= ŭ, i.e. at the top of the wave boundary layer. For the calibration and validation results 

presented here, a constant value of ŭ = 0.20m was used, which for all measurements was well 

above the wave boundary layer.  Since the wave boundary layer thickness depends on the 

relative roughness (Ĕa /ksw), it would have been more realistic to estimate ŭ for each condition 

using an appropriate formula for the boundary layer thickness (e.g. Sleath, 1987; Van der A et 

al. 2011). However, the influence of ŭ on the net transport rate is rather small, as shown in 

Figure 14.  
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The formula covers a wide range of flow conditions and sand sizes that occur in typical sandy 

coastal environments. It specifically takes into account the influence of varying wave shape 

(velocity and acceleration skewness) and unsteady phase-lag effects in the wave boundary layer. 

Nevertheless, application of the formula in practice may still be subject to restrictions, due to a 

lack of reliable net transport data for specific regimes. This especially holds for (full-scale) 

surface waves and acceleration-skewed oscillatory flows over rippled beds, for waves with 

strong superimposed currents and waves with currents under an angle.   

In case of waves with or without superimposed currents the transport formula describes the bed 

load and suspended load transport in the wave boundary layer. For non-breaking waves and 

relatively small mean currents, such as those conditions in the database, almost all of the sand 

transport takes place inside the wave boundary layer and so the transport formula describes the 

total transport rate for these conditions. For stronger superimposed currents and large flow 

depths (e.g. tidal flow) or estuarine situations where currents are relatively large compared to 

the waves, sand may go into suspension to levels well above the wave boundary layer, in which 

case a separate suspended transport model should be added to the transport formula to account 

for the current-related suspended load above the wave boundary layer. For current only 

conditions, the formula calculates the transport in the sheet flow layer for sheet-flow conditions 

and the bed-load transport for non sheet-flow conditions, in accordance with the data used in 

Section 5.2. If there is significant sediment in suspension above the sheet flow layer or bed-load 

layer, a separate suspended load model is also needed to calculate the suspended load transport. 

Assuming a morphodynamic model application, our recommended method is to use a 3D or 

quasi-3D advection-diffusion model to describe the mean concentration profile, ( )C z , above a 

prescribed reference level, zref, using a reference concentration and sediment mixing coefficient 

description, as for example given by Van Rijn (1993, 2007b), Soulsby (1997) or Zyserman and 

Fredsøe (1994). Using this in conjunction with the mean-current profile, ( )u z , the suspended 

load transport can be computed by integration from a lower near-bed level, zl, to the mean water 

level zw: 



30 

 , ( ) ( ) d
w

l

z

s susp

z

q C z u z z=ñ  ( 41) 

In wave-current conditions two situations may occur: 

(i) zref < ŭ: This will generally occur in wave-dominated conditions in the ripple or 

sheet flow regime. For example, Van Rijn (1993) selects the reference level at the 

upper edge of the sheet flow layer or at ripple-crest level, which is always inside the 

wave boundary layer. In this situation it is recommended to use zl = ŭ in the 

integration. 

(ii)  zref > ŭ: This situation may occur when large bedforms, e.g. current-induced dunes, 

are treated as bed roughness (not resolved by the computational grid) and the 

reference level is selected at the level of the dune crests (Van Rijn, 1993). In this 

situation it is suggested to use zl = zref as a practical solution. 

The formula is restricted to non-breaking wave conditions.  Net sand transport rates for breaking 

wave conditions are often calculated using a transport formula for horizontal oscillatory flow, 

sometimes extended with additional sediment stirring to account for breaking-induced turbulent 

kinetic energy near the bed (Roelvink and Stive, 1989; Butt et al., 2004). Inclusion of a stirring 

effect is supported by experimental studies showing increased turbulent mixing and increased 

suspended sediment load due to wave breaking (Deigaard et al., 1986; Van Rijn, 2007b). 

However, the transport processes under breaking waves are expected to be further complicated 

by flow non-uniformity and suspended sediment advection, leading to suspended sediment 

transport that is not wholly determined by the local flow conditions (Kobayashi and Jonsson, 

2001). Despite these insights, existing sand transport formulae for breaking waves are still 

speculative due to the lack of measurements of net sand transport rates and of the detailed sand 

transport processes, in particular under full-scale waves.  

The least good agreement with the measurements, in terms of percentage of the predictions 

falling within a factor 2 of the measurements, is found for irregular flows (Table 2). Most of 

these conditions involved velocity-skewed irregular oscillatory flows over rippled beds and 

calculated net transport was based on the ñrepresentative waveò, using the significant velocity 



31 

characteristics and peak flow period, as described in Section 2.1.  The skill score for these 

conditions is rated fair (BSS = 0.54), and only 57% of the conditions fall within a factor 2 of the 

measurements. These rather low scores may be due to effects of flow irregularity that are not 

captured in our representation of the irregular flow time-series by one regular flow cycle. It is 

likely that time-history effects, for example caused by the ñpumping upò of suspended sediment 

in irregular wave sequences (Vincent and Hanes, 2002), make a representative wave approach 

unsuitable, especially in situations with strong phase lag influence. Whether a wave-by-wave 

approach leads to better net transport rate predictions compared to the representative wave 

approach in such situations, or in fact whether a representative wave approach should be based 

on other than significant wave characteristics that we adopted here could not be determined 

from the available dataset, and remains subject of future research.  

The net transport in the wave boundary layer is affected by the slope of the bed through gravity 

effects. This may change the effective critical bed shear stress as well as the magnitude and 

direction of the boundary layer flow and effective bed shear stress, and therefore also the 

magnitude and direction of the net transport. The data used for the development of the present 

formula is limited to horizontal bed conditions only, i.e. the effect of bed slope is presently not 

included the formula. Apsley and Stansby (2008) propose a generalized model for slopes 

smaller than the angle of repose with arbitrary orientation with respect to the wave and current 

direction. Although the method is not validated for oscillatory flows yet, it is suggested to use 

this method in the present formula. 

Due to an absence of reliable net transport data from the field a direct comparison of the 

formula against field conditions is not yet feasible. An indirect test against field conditions can 

be carried out by implementation of the formula within a morphodynamic model, which 

ultimately is its intended application. While ongoing work is aimed at implementing the formula 

in a 3D morphodynamic model in order to compare it with field data, as a first step in this 

process the formula has been implemented in a cross-shore morphodynamic model applied to 

wave flume cases, which showed encouraging results (Van der Werf et al., 2012). This exercise 

did however reveal that good transport rate predictions rely on accurate predictions of the orbital 
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velocity characteristics, especially regarding the velocity and acceleration skewness. In 

morphodynamic models the sand transport formula should therefore be used in conjunction with 

velocity parameterizations that include both velocity and acceleration skewness, and which can 

be linked to local wave and beach parameters (e.g. Ruessink et al., 2012; Malarkey and Davies, 

2012).  

 

7.0 CONCLUSION 

 
A new practical formula for net sand transport induced by non-breaking waves and non-

breaking waves with collinear currents has been presented. The formula is based on Dibajnia 

and Watanabeôs (1992) semi-unsteady half-cycle concept, which accounts for the transport 

contribution related to unsteady phase lag effects within the wave boundary layer, and has bed 

shear stress as the main forcing parameter. The formula distinguishes itself from other semi-

unsteady half-cycle-type formulae through explicit inclusion of surface wave effects, details in 

the process calculations and the extent of the experimental data used to develop the formula.  

The formula is developed using a database of 226 net transport rate measurements from large-

scale oscillatory flow tunnels and a large wave flume, covering a wide range of full-scale flow 

conditions and uniform and graded sands with median diameter ranging from 0.13mm to 

0.54mm. Good overall agreement is obtained between observed and predicted net transport rates 

with 78% of the predictions falling within a factor 2 of the measurements. The formula has been 

validated against independent net transport rate data for oscillatory flow conditions and bedload-

dominated steady flow conditions. 

The formula performs best for regular oscillatory sheet flow conditions, with and without 

currents, involving uniform fine, coarse and graded sands. Formula performance for other 

conditions - rippled beds, irregular flows, progressive surface waves - is reasonable but less 

good. The difference in performance for different conditions can be partly attributed to the 

unequal number of the various conditions within the database of experimental results (Table 1). 

But poorer performance is also likely to be partly due to insufficient understanding of the 
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detailed sand transport processes, and this remains particularly true for progressive surface wave 

conditions, for which reliable detailed data is difficult to obtain.   

Arguably, the most significant shortcoming in the new formula is that it is based entirely on 

oscillatory flows and non-breaking surface waves. Accordingly, although the model as 

constructed could in principle be applied to breaking waves as long as the hydrodynamics at the 

top of the wave boundary layer can be provided as input, net transport rates for breaking wave 

conditions cannot be calculated with any degree of confidence. A main goal of future research 

therefore is to extend the range of large-scale laboratory experiments to include breaking wave 

conditions and, based on the experimental results, to adapt the formula to account for the 

breaking wave processes. 

 

The SANTOSS database of measured net transport rates for large-scale oscillatory flow and 

surface wave conditions and a MATLAB code for implementation of the new, so-called 

SANTOSS formula are available on request to the authors.  
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APPENDIX A: Current-related and wave-related bed roughness 

Following Ribberink (1998) the current-related bed roughness is given by: 

 2
sŭ 90 50max{3 , [ 6( 1)]} 0.4 /k d d m q h l= + - +  (A.1) 

where: ɖ and ɚ are ripple height and ripple length respectively (Appendix B); the factor 

ɛ varies linearly between ɛ = 1 for sand with d50 Ó 0.2 mm to ɛ = 6 for sand with d50 Ò 

0.15 mm and has the effect of higher bed roughness for fine-sand sheet flow conditions 

caused by large sheet-flow layer thickness:  
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in which d50 is entered in mm, q is the time-averaged absolute Shields stress given by: 
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where fw is the full -cycle wave friction factor based on Swart (1974): 
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The wave-related bed roughness ksw is given by : 

 2
sw 50 50max{ , [ 6( 1)]} 0.4 /k d d m q h l= + - +  (A.5) 

Here a lower grain size related limit of ksw = d50 (instead of 3d90 as per Eq. (A.1)) gave best 

results similar to Ribberink (1998). In the case of sheet flow conditions, the bed roughness 

needs to be solved iteratively because the mean absolute Shields parameter q depends on the 

bed roughness.  
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APPENDIX B: Ripple dimensions 

 
In applications where the ripple dimensions are unknown, the ripple predictor of OôDonoghue et 

al. (2006) is incorporated:  
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Ĕ

m n
a

h h
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where: 
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with 
c t

Ĕ Ĕ Ĕmax( , )y y y=  for regular flow, whereby the maximum mobility number at crest or 

trough is defined as 
2

50
Ĕ Ĕ/( 1)i iu s gdy= - , and for irregular flow 

2

1/10 1/10 50
Ĕ Ĕ Ĕ /( 1)u s gdy y= = - .  

Since information on 1/10
Ĕu  (average of the highest one-tenth orbital velocities) is not available 

for most irregular flow datasets, it is for simplicity assumed that the irregular flows are Rayleigh 

distributed, therefore 1/10
Ĕ Ĕ1.27u u= .   

To avoid strong discontinuities in the predicted net transport rates with increasing flow 

intensities, the factors nɖ and nɚ are introduced to allow for a smooth transition between the 

ripple regime and the flat bed sheet flow regime: 
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APPENDIX C: Sheet-flow layer thickness 

The sheet flow layer thickness ŭsi is calculated following Dohmen-Janssen (1999):    
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where Ĕiq is Shields parameter based on the crest/trough velocity amplitude Ĕ
iu  as follows: 
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with fwŭi the wave-current friction factor according Eq. (18) and wave and current related  

roughness as detailed in Appendix A. For fine sand (d50 Ò 0.15mm) Eq. (C.1) differs slightly 

from Dohmen-Janssenôs (1999) original equation since the constant is recalibrated (here 25 

instead of 35 in the original) as a result of the increase in the wave related roughness for fine 

sands (see Section 3.3).  

 

APPENDIX D: Adjustment time scale of sediment concentration under progressive surface 

waves 

 

For the adjustment time scale TA for the concentration of sediment under progressive surface 

waves, we follow the parameterization recently proposed by Kranenburg et al. (in press). An 

expression for TA has been derived from the (turbulence-averaged) advection-diffusion equation 

for sediment concentration:  

 

 
( )sw w CC uC C

t x z z z
e

µ -µ µ µ µå õ
+ = +æ ö

µ µ µ µ µç ÷
 (D.1) 

 

where C is the sand volume concentration, Ů is the turbulent mixing coefficient. The equation 

describes how horizontal and vertical advection (including settling of sediment) and vertical 

turbulent diffusion lead to temporal concentration adjustment. This includes the time-dependent 

entrainment and deposition of sediment from and to the bed and the lagging of sand 
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concentration in the wave boundary layer behind the time-dependent bed shear stress (phase-lag 

effects).  

 

For horizontal oscillatory flow (w = 0, uniform flow: Ö../Öx = 0) this equation reduces to: 

 sw CC C

t z z z
e

µµ µ µå õ
= + æ ö

µ µ µ µç ÷
 (D.2) 

This advection-diffusion model was recently applied successfully for tunnel flows for various 

grain sizes and a range of sheet flow conditions (Ruessink et al., 2009; Hassan and Ribberink, 

2010). For uniform surface waves propagating over a horizontal bed, the non-uniformity in x 

can be transformed to a time-dependency using 
.. 1 ..

wx c t

µ µ
=-

µ µ
.  Eq. (D.1) can now be rewritten 

as:  
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Herein the factor (1-u/cw) represents the influence of horizontal sediment advection. The right 

hand side of Eq. (D.3) represents (the vertical gradient of) the vertical sediment flux vertf  due to 

vertical advection and turbulent diffusion.  

Following the method of Galappatti and Vreugdenhil (1985) for shallow, gradually varying 

flows, we approximate the advection-diffusion Eq. (D.3) by a relaxation equation for the depth-

averaged sediment concentration C . The depth-averaging is carried out over the maximum 

thickness ȹ of the sediment flux layer in the wave boundary layer: 

 
( )eq

A

C CC

t T

g -µ
=

µ
 (D.4) 

In this relaxation equation TA is the adjustment time of the actual sediment concentration, which 

lags behind its equilibrium value eqC , as imposed by the instantaneous bed shear stress (the 

phase-lag effect). The adjustment time is different for oscillatory flows and for progressive 

surface waves:  
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      progressive surface waves (D.5) 

                                     
A

s

T
w

D
=                         oscillatory tunnel flows (D.6) 

Herein (1-uw /cw) expresses the influence of horizontal advection, in which the velocity uw is the 

time-dependent free stream orbital velocity. The coefficient ɔ and ɝ are shape coefficients 

related to the shape of the velocity and concentration profiles. Here we relate ȹ to the 

representative sediment stirring height, which in the sheet flow regime is the sheet flow layer 

thickness or the ripple height in case of rippled beds.  
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Table 1.  Overview of dataset used for development and calibration of the formula. The number of conditions is divided per flow (regular, irregular) and per 

transport regime (sheet flow, rippled bed). Here d50 is the median grain diameter, T(p) the (peak) flow period, uw,max the maximum orbital velocity, uŭ the net 

current velocity (negative indicates a current direction opposite that of the implied wave direction) at level z = ŭ computed from the measured or imposed 

current velocity by assuming a logarithmic velocity profile with ŭ = 0.2m, Ɋmax is the mobility number based on uw,max, and ɓ and R represent the degree of 

velocity and acceleration skewness, respectively (see Section 2.1). The subscript (sig) applies to the irregular flow conditions for which significant (i.e. 

average of the highest one-third) values are listed. 

Flow condition d50 T(p) uw,max(sig) uŭ   Ɋmax(sig) ɓ(sig) R(sig) Number of conditions Reference(s) 

(mm) (s) (m/s) (m/s) (-) (-) (-) reg. irreg. s.f. rip. total 

sinusoidal osc. flows 0.22 10.2 0.63 ï 79 0.5 0.5 ï 1 ï 1 1 Van der Werf et al. (2006) 

velocity-skewed osc. 

flows 

0.13ï

0.46 

4ï

12.5 

0.16ï

1.72 

ï 9ï1427 0.5 0.52ï0.70 70 22 40 52 92 Sato (1987); Dibajnia and Watanabe 

(1992); Ribberink and Chen (1993);  

Ribberink and Al-Salem (1994);  

Ribberink and Al-Salem (1995); 

Clubb (2001); Wright and 

OôDonoghue (2002); Hassan 

(2003); OôDonoghue and Wright 

(2004);  Van der Werf et al. (2006); 

Van der Werf et al. (2007); Silva et 

al. (2011) 

acceleration-skewed osc. 

flows 

0.15ï

0.46 

5ï10 0.83ï

1.45 

ï 225ï702 0.56ï

0.8 

0.5 ï ï 47 ï 47 Watanabe and Sato (2004); Van der 

A et al. (2010); Silva et al. (2011) 

acceleration + velocity 

skewed osc. flows 

0.15; 

0.20 

7ï10 0.94ï

1.61 

ï 364ï793 0.60ï

0.72 

0.53ï0.60 6 ï 6 ï 6 Van der A et al. (2010); Silva et al. 

(2011) 

oscillatory flows with 

current 

0.13ï

0.32 

4ï12 0.94ï

1.69 

-0.50 ï 

0.50 

269ï841 0.5ï0.7 0.5ï0.70 50 ï 50 ï 50 Dibajnia and Watanabe (1992); 

Katapodi et al. (1994); Ramadan 

(1994); Dohmen-Janssen (1999); 

Silva et al. (2011) 

graded sands 0.15ï

0.54 

5ï12 0.72ï

1.63 

0.24; 0.45  0.50 0.5ï0.68 19 ï 19 ï 19 Iniu et al. (1995); Hamm et al. 

(1998); Hassan (2003); 

OôDonoghue and Wright (2004) 

progressive surface 

waves 

0.14ï

0.25 

5ï9.1 1.02ï

1.66 

ï 270ï1079 0.46ï

0.56 

0.55ï0.67 11 ï 11 ï 11 Dohmen-Janssen and Hanes (2002); 

Schretlen et al. (2011) 

Total  
0.13ï

0.54 

4 ï 

12.5 

0.16ï

1.72 

-0.50ï

0.50 
9ï1427 

0.46ï

0.8 
0.5ï0.70 203 23 173 53 226 
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Data (sub)set N BSS bias (%) r2 fac2 (%) fac5 (%) 

Velocity-skewed sheet flow d50 Ó 0.20mm 32 0.91 -8 0.78 97 100 

Acceleration-skewed sheet flow d50 Ó 0.20mm 32 0.92 2 0.87 84 97 

Oscillatory sheet flow d50 < 0.20mm 29 0.73 -8 0.80 86 93 

Oscillatory flow over rippled beds 53 0.72 4 0.65 62 89 

Oscillatory flow with collinear current 50 0.72 61 0.84 70 86 

Graded sands 19 0.83 45 0.91 89 100 

Progressive surface waves 11 0.57 27 -1.05 82 100 

Regular flows 203 0.76 18 0.76 81 94 

Irregular flows 23 0.54 18 0.95 57 87 

Sheet flow  173 0.76 22 0.73 83 94 

Ripples 53 0.72 4 0.65 62 89 

Fine sand (d50 < 0.20mm) 64 0.70 -16 0.72 77 89 

Coarse sand (d50 Ó 0.20mm) 162 0.79 31 0.85 79 94 

All  226 0.76 18 0.77 78 93 

All with ripple predictor 226 0.76 10 0.76 69 86 

 

Table 2. Performance criteria for the various data subsets. N indicates the number of data 

points contained in the subset, BSS is the Brier Skill Score (Van Rijn et al., 2003; Van der A 

et al., 2010), here BSS = 
2

2

s,pred s,meas s,meas1 /q q q- -  which gives a measure of the formula 

accuracy (BSS = 1 means perfect agreement, BSS < 0 means that the transport rate error is 

greater than when zero transport is predicted for each condition, i.e. the ñdo-nothingò 

scenario),  bias is the normalized mean bias defined as bias = ( )s,pred s,meas s,meas/q q q-  and 

indicates the tendency of the formula to over- (positive bias) or underestimate (negative bias) 

the measurements, r2 is the squared coefficient of correlation, and the last two columns 

indicate the percentage of the predictions within a factor 2 and 5 of the measurements. Van 

Rijn et al. (2003) proposed the following skill qualification: excellent: BSS = 1.0ï0.8; good: 

0.8ï0.6; fair: 0.6ï0.3; poor: 0.3ï0; bad: < 0.  
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  mixture fractions 

Reference N 

d10 

(mm) 

d50 

(mm) 

d90 

(mm) 

d1 

(mm) 

p1 

(%) 

d2 

(mm) 

p2 

(%) 

d3 

(mm) 

p3 

(%) 

Inui et al. (1995) 1 n/a 0.535 n/a 0.200 50 0.870 50 - - 

Hamm et al. (1998) 2 0.097 0.194 0.406 0.128 50 0.317 50 - - 

Hassan (2003) 3 0.160 0.240 0.990 0.210 70 0.970 30 - - 

5 0.110 0.150 1.080 0.130 60 0.340 20 0.970 20 

OôDonoghue and 

Wright (2004) 

2 0.100 0.150 0.400 0.150 60 0.280 30 0.510 10 

2 0.120 0.270 0.470 0.150 20 0.280 60 0.510 20 

2 0.100 0.260 0.530 0.150 50 0.510 50 - - 

 

Table 3. Sand size characteristics for the graded sand conditions. The d10, d50 and d90 grain 

diameters represent the characteristics of the overall mixture. dj and pj indicate the diameter 

and fraction of the individual uniform sands of which the mixture was composed of. 
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Reference 

d50 T(sig) uŭ Ɋmax(sig) ɓ(sig) R(sig) Number of Conditions 

(mm) (s) (m/s) (-) (-) (-) reg. irreg. s.f. rip. total 

Sato (1987) 0.18 
3.68-

3.99 
- 6-96 0.5 0.52-0.68 - 17 - 17 17 

Dibajnia and 

Watanabe 

(1998) 

0.20 
3.6-

3.9 

+0.06

-

+0.16 

116-374 
0.55-

0.61 
0.59-0.67 - 17 17 - 17 

Dibajnia and 

Kioka 

(2000) 

0.20 
3.6-

4.0 
- 319-469 

0.57-

0.63 
0.64-0.67 - 12 12 - 12 

Dibajnia et 

al. (2001) 

0.55, 

0.80 

3.6-

4.2 
- 181-283 

0.54-

0.58 
0.57-0.64 - 12 12 - 12 

 

Table 4. Overview of oscillatory flow conditions used for model validation. 
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FIGURES 
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Figure 1. Definition sketch of near-bed velocity time-series in wave direction. The parameters 

Tc and Tc are the positive (crest) and negative (trough) flow durations. Similarly, Tcu and Ttu 

are the durations of flow acceleration in positive and negative x-direction. 
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Figure 2. Wave and current velocity vectors w ( )u t  and ŭu under an angle ű. The vector cu

illustrates the resultant velocity vector at maximum positive orbital velocity.  
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Figure 3. Onshore/offshore bed shear stress ratio as function of ɓ: closed circles: fixed bed 

measurements of Van der A et al. (2011); open circles: prediction based on Eq. (21) with c1 = 

2.6. Bed shear stress is calculated as |Űi| = 0.5ɟfwi|ui,r|
2. 
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Figure 4. Comparison between measured and calculated net transport rates for velocity-

skewed oscillatory sheet flows with d50 Ó 0.20mm. The solid diagonal indicates perfect 

agreement, the dashed lines a factor 2 difference.  
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Figure 5. Comparison between measured and calculated net transport rates for acceleration-

skewed oscillatory sheet flows with d50 Ó 0.20mm. The grey diamonds indicate conditions of 

Watanabe and Sato (2004) for which phase lag effects are active. Note that in Figure 5 

toFigure 10, data from the preceding figure is included to aid comparison (and is indicated by 

the small light grey dots).  
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Figure 6. Comparison between measured and calculated net transport rates for oscillatory 

sheet flows with d50 < 0.20mm. 
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Figure 7. Comparison between measured and predicted net transport rates for oscillatory 

flows over rippled beds (note the difference in scale between Figure 7. and Figure 6. ). 
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Figure 8. Comparison between measured and predicted net transport rates for oscillatory 

flows with collinear currents.  
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Figure 9. Comparison between measured and predicted net transport rates for graded sand 

conditions. The value of d50 in the legend relates to the overall sand mixture, the 

characteristics of the individual fractions are listed in Table 3.  
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Figure 10. Measured and predicted net transport rates for progressive surface wave 

conditions. 
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Figure 11. Calculated non-dimensional transport rates against urms for a fine (d50 = 0.13mm) 

and medium sand (d50 = 0.25mm). For all calculated conditions T = 6.5s and for the surface 

wave conditions (c-d) the water depth is constant with h = 3.5m. The various symbols are 

experimental results selected from the studies in Table 1 with values of T, R, and ɓ close to 

the values used for the calculations and sand size d50 < 0.20mm for fine sand and medium 

sand in the range 0.2 Ò  d50 < 0.30. 
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Figure 12. Comparison between measured and calculated net transport rate for oscillatory 

flows conditions listed in Table 4; grey markers indicate conditions with T > 4s.  
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Figure 13. Performance of the formula for steady flow sheet-flow conditions. 




