
Structural connectivity modifications in the brain of

selected patients with tumour after its removal by

surgery (a case study)

Elaheh Sayari1, Evandro G. Seifert1, Fátima E. Cruziniani2, Enrique C.
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Abstract

The brain is a complex organ that plays an important role in the control of
most functions of the body, such as awareness, thoughts, sensations, move-
ments, speech, and memory. A tumour formed in the brain can affect its
ability to accurately and properly perform such functions. In this work,
we use two brains with malignant tumours of different sizes before and af-
ter surgery. To identify the brain structural topology, we analyse different
networks with various configurations and use diagnostic tools to match the
network topologies generated by simulations with those obtained from the
data. Our results show that the Newman-Watts small-world network best re-
produces the topology from the patients with small and large tumours before
surgery. Considering two analysed brains, our outcomes suggest that surgery
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can alter the brain topology from small-world to extended Barabási-Albert
scale-free.

Keywords: Complex system, Brain tumour, Structural connectivity
matrix, Graph theory

1. Introduction

A brain tumour is a mass or growth of abnormal cells that may be non-
cancerous (benign) or cancerous (malignant) [1]. The benign brain tumours
grow slowly and do not spread to the whole brain or central nervous sys-
tem, while the malignant ones grow and spread rapidly and can cause some
serious problems for a patient [2]. The malignant tumours can be sepa-
rated into several groups with variant grades, such as diffuse astrocytic and
oligodendroglial tumours, glioblastomas, other gliomas, ependymal tumours,
melanocytic tumours, lymphomas, germ cell tumours, moreover extrinsic tu-
mours such as meningiomas. They are described by their malignancy ac-
cording to the World Health Organisation (WHO) grading system. With a
ranking that the grade I tumours are least malignant compared to grade III
meningioma or IV glioma tumours that are most malignant [3].

Magnetic resonance imaging (MRI) [4] and functional magnetic resonance
imaging (fMRI) [5] provide the data from which the structural connection
matrix and the functional connectivity matrix, respectively, can be obtained.
These kinds of data have been used to analyse the neural bases of the hu-
man cognition and neurological disorders, such as Alzheimer’s disease, brain
tumours, and autism [6, 7]. The structural connectivity between two regions
in the brain indicates the presence of white matter tracts that physically
interconnect the cerebral areas, while functional connectivity describes the
statistical relationships between the brain signals time series of blood oxy-
genation level-dependent (BOLD) over time [8]. In 1873, Golgi [9] made the
glimpses of the complex branching of nerve cells using blocks of brain tissue
soaked in silver-nitrate solution. It was one of the first experimental mea-
surements of the brain’s structural connectivity. Afterward, Cajal came to
the understanding that neurons do not exist in solitude [1], forming complex
networks of physical links. When the electron microscope in the 1930s was
invented, it provided measurements of the physical links between neurons
in more details [1]. Computerised axial tomography (CAT) introduced in
the 1970s was considered as the most accurate anatomical imaging of the
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human brain [1]. Thereafter, diffusion tensor imaging (DTI) as a remarkable
example of magnetic resonance imagining (MRI) was developed [1]. These
neuroimaging methods, CAT and MRI, capture cross-sectional images of the
brain, while DTI reconstructs the large-scale neural pathways that link sep-
arate brain areas and tracks the diffusion of water molecules through white
matter tracts [1].

Over the past several decades, there has been much investigation using
MRI by scientists who study the physiology of human brain networks to
map the human structural connectome in a wide variety of applications.
According to Hilgetag et al. [1], the structural connectivity matrices of the
cat and macaque show a complex structure, while, in humans, the structural
connection matrix intercedes several complex cognitive functions [1].

To understand brain connectome or connectivity architecture in terms of
the structural organisation, the graph theory-based method plays an impor-
tant role in analysing connectivity patterns in human brain network [1]. A
graph, in discrete systems, is a mathematical representation of a network,
namely a representation of data in an organised manner, describing the rela-
tionship among lines (edges) and points (vertices). The human connectome
has attracted the attention of many researchers in neuroscience, mainly in
studies about network science and graph theory [1, 1], connectome studies in
neuroscience have involved several different modalities [2]. These approaches
have contributed to tackling a large number of practical problems in other
fields, such as transportation systems [2], social networks [2], big data envi-
ronments [2], and biological neural networks [2, 2]. In 1736, Euler [2] solved
the Königsberg bridge problem considered to be the first application of graph
analysis. Since 2009, after launching the Human Connectome Project, the
application of graph theory for analysing the connectivity patterns of an in-
dividual brain has attracted the attention of many researchers [2]. In recent
years, several studies about the relationship between the graph (or struc-
ture) and the behaviour (or function) of dynamical networks have increased
[2, 2]. Graph theory provides concepts and their quantities to describe the
brain structural network topology using various metrics, such as integration,
segregation, centrality and density [2].

Watts and Strogatz [2] reported that a wide variety of social, biological,
and geoscience-based networks have a remarkable structure, called small-
world architecture. The small-world network has a combination of short path
length comparable to a random network and of high clustering as compared
with a regular network. In 2017, Liao et al. [3] showed that the human brain
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network has a small-world architecture. Indeed, the metabolic and wiring
costs of links between anatomically distant brain areas are greater than those
of neighbouring brain areas [3]. From a theoretical point of view, to reduce
the total metabolic cost, brain regions interact more with their neighbouring
regions, while at the same time require a small number of remote connections
to speed up data transfer [3].

Some studies focused on brain development and cognition [3, 3], as well
as mental and neurological disorders [3, 3]. The brain adapts (or changes)
also as a result of other disorders, and graph-theoretical approaches are very
helping us to draw a comprehensive picture of how that happens. Many
studies investigated neurological disorders, such as epilepsy [3], Alzheimer’s
disease (AD) [3], autism spectrum disorder (ASD) [3], multiple sclerosis (MS)
[4], and attention-deficit/hyperactivity disorder (AD HD) [4], as well as men-
tal disorders, such as Parkinson’s disease [4], major depression [4], insomnia
[4], borderline personality disorder (BPD) [4], schizophrenia [4], and obses-
sive compulsive disorder (OCD) [4] using graph theory. Yu et al. [4] has
reported comparable structural network topology in brain tumour patients,
with meningioma and glioma. They showed the increase of the connection
density and the local efficiency, in the tumour group. The enhanced density
in the tumour patients after surgery suggests that surgery may induce re-
organisation in the structural network topology. Therefore, surgery causes
significantly topological alterations in the patients with small and large tu-
mour. Aerts et al. [4] assessed the structural network topology related to
healthy control participants, meningioma and glioma patients with various
graph theory metrics, such as global efficiency and modularity, using the
Brain Connectivity Toolbox. They showed that differences in global effi-
ciency and modularity in glioma patients compared to healthy controls and
meningioma patients were not significant. Furthermore, in [3] it was shown
that after the patients considered in [4] have undergone surgery, no significant
changes occur in the graph metrics considered in [4] before the surgery.

In this work, our main purpose is to analyse the brain modifications in-
duced by the appearance of a tumour as compare to the changes suffered
after post-surgery. To that goal, we build networks from 8 different topo-
logical classes, considering several different parameter configurations. Then,
we proceed to determine which one of the many networks being generated
match best the network topology of the networks obtained from brain data
describing two individuals, in which one has a small tumour and other with
a large tumour, before and after surgery. Overall, we find that the Newman-
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Watts small-world graph best reproduce the network topology from the pa-
tients with small and large tumour before surgery. Surgery radically alters
the topology, once the best match for the network topology is the extended
Barabási-Albert scale-free graph.

This paper is organised as follows: Section 2 describes the materials. Our
results and discussions are explained in Section 3. Finally, our conclusions
are described in Section 4.

2. Materials

2.1. Participants

Between May 2015 and October 2017, patients with a minimum age of 18
years old were recruited from Ghent University Hospital located in Belgium
[4]. They had a supratentorial meningioma (WHO grade I or II) or glioma
(WHO grade II or III) brain tumour and were scanned twice before and after
the surgery. They considered 14 meningioma patients with mean age 60 years
old and 11 glioma patients with mean age 47 years old [3]. After surgery, the
data were collected on average 7.9 months post-operative.

In this work, we select two patients with a grade I meningioma and dif-
ferent size in the meninges [4]. One patient with a small tumour (size equal
to 0.58 cm3) is a female at an age of 49 years and another one is a female (60
years old) with a large tumour equal to 78.44 cm3. Based on the WHO grad-
ing system, grade I meningioma is the least malignant compared to grade II
and III meningioma [5]. Malignancy is related to the speed of disease devel-
opment, the extent of tumour penetration into healthy brain tissue, and the
likelihood of progression or recurrence to higher degrees of malignancy [3].
The characteristics of the patients are described in Table 1.

Table 1: Patients features selected from Refs. [3, 4] for our study. The tumour histology
is the meningioma I.

Subjects Sex Age Handedness Tumour Tumour Tumour

(year) lateralisation location size (cm3)

Patient 1 Female 49 Right-handed Right Frontal 0.58

Patient 2 Female 60 Right-handed Right Parietal 78.44
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2.2. Structural connection matrices

For all participants, MRI scans were obtained using a Siemens 3T Mag-
netom Trio MRI scanner with a 32-channel head coil [4]. Aerts et al. [4] pre-
processed T1-weighted anatomical MRI data using FreeSurfer (http:/surfer.
nmr.mgh.harvard.edu). They obtain a subject-specific parcellation of each
subject’s brain into 68 cortical regions, containing 34 per hemisphere. They
considered the default recon-all processing pipeline of FreeSurfer, including
intensity normalisation, skull stripping, removal of non-brain tissue, brain
mask generation, cortical reconstruction, segmentation of subcortical white
matter. They also considered deep gray matter volumetric structures, corti-
cal tessellation of the gray matter/white matter and gray matter/pial bound-
ary, and construction of a probabilistic atlas based on cortical parcellation
into 68 regions according to gyral and sulcal structure [5]. Furthermore, they
constructed the structural connectomes based on the diffusion MRI (dMRI)
data by means of a processing pipeline combining FSL (FMRIB’s Software
Library) and MRtrix3. It was included correction for various artifacts (e.g.,
noise, motion, and eddy currents), registration of subjects’ high-resolution
anatomical images to diffusion space, and segmentation of the anatomical
images into gray matter, white matter and cerebrospinal fluid, as well as
quantitative whole-brain probabilistic tractography. Then, aiming to build
the structural connection matrices, each individual’s FreeSurfer parcellation
scheme was transformed into diffusion MRI data and the number of estimated
streamlines was calculated between each pair of brain regions. Finally, the SC
matrices were thresholded and structural connections were normalised with
the same constant scalar across participants as in the pre-operative analyses.
Ensuring that all weights change between 0 and 1.

The experimentally measured fiber density is translated into a weighted
matrix representing the intensities with which brain regions are intercon-
nected. When the fiber density is not equal to 0, we transform the value
into 1 in the adjacency matrix, otherwise into 0. In a structural connectivity
matrix, we need to know if there is some connection between different brain
regions. Our results remain robust if the real brain network is extracted
with different threshold due to the fact that each element of a structural
connectivity matrix, indicating 0 or 1.

Figure 1 illustrates how nodes in the brain connect to other nodes, where
the colour code represents the weights. Figure 2 provides the names of each
region represented as a node in the brain functional network. This represen-
tation transforms the weighted matrix into a symmetric adjacency matrix,
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where 0 corresponds to no connection between the cortical areas (white re-
gions) and 1 to connected areas (black regions). Figure 3 shows plots where
the axes represent the regions as in Fig. 2, and black filled squares repre-
sent that any two regions are connected, for all the patients considered in
this work, before and after surgery. The binarised connectivity (0 and 1)
reduces the complexity and enhances the visual understanding [2]. Figures
3(a) and 3(b) represent the adjacency matrices for the patient 1 before and
after surgery, respectively, while the adjacency matrices related to patient 2
are shown in Figs. 3(c) and 3(d). The regions from 0 to 33 are related to
the left hemisphere and the regions from 34 to 67 are located at the right
hemisphere.

Figure 1: Connectome in the direction of the cuts: y (coronal), x (sagittal), and z (axial),
respectively. For (a) patient 1 before surgery, (b) patient 1 after surgery, (c) patient
2 before surgery, and (d) patient 2 after surgery. The color bars indicate the amount
of weights described as fiber density for each brain. Only 15% of the connections are
considered, due to the fact that the graphs are very dense [3, 4]. We show the links which
have an amount of connections greater than 85% of the maximum number of edges. L and
R indicate the left and right hemispheres, respectively.

In Appendix, we include a Methods section making an introduction to
Graph theory, the methods to generate different types of graphs, and the
quantities considered to characterise the topology of the graph.
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Figure 2: Circular graph of the 34 cortical regions for each hemisphere. Each region
corresponds to a number from the range [0,67], indicating the number of the cortical
regions.

Figure 3: Adjacency matrices representing the structural connection of the patient’s brains
for (a) patient 1 before surgery, (b) patient 1 after surgery, (c) patient 2 before surgery,
and (d) patient 2 after surgery. One (black colour) and zero (white colour) entries in the
connection matrices mean connected and unconnected regions, respectively [3, 4].
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3. Results and discussions

In our analysis, we consider 4 structural connectivity matrices obtained
from two brain tumour patients before and after surgery according to Table 1.
The structural connectivity matrix of the patient with small tumour before
surgery consists of 68 nodes and 1200 edges, while the number of nodes
equal to 68 and of edges equal to 1401 are for the same patient after surgery.
The patient containing a large tumour has 68 nodes and 1036 edges before
surgery, while after surgery the connection matrix of the same patient has 68
nodes and 1431 edges. We built 8 different networks with topologies similar
to those detected in the human graphs obtained from the brain data. We
consider 68 nodes and adjust the number of edges for each graph to be close
to the individual graphs.

In order to design 8 classes of network topologies, we divide the brain
data graphs into two groups, one for the patients with small and large tumour
before surgery, as well as another for the patients with small and large tumour
after surgery. The number of edges in each group is very similar.

3.1. First group: before surgery brains

We construct 8 different classes of graphs to compare each of them with
the topology of the graphs from the brain data (before surgery brains) in
terms of 9 topological features of networks, namely assortativity, average
clustering, average shortest path length, density, global and local efficiency,
modularity, radius, and transitivity. In Fig. 4, we build different Newman-
Watts small-world (SW) graphs with the probabilities equal to 0.1, 0.3, 0.5,
0.7, and 0.9, representing as SW 1112, SW 1154, SW 1100, SW 1151 and
SW 1168, respectively. The indexes correspond to the number of edges.
We analyse the performance of them compared to the the networks of the
two patients containing small tumour (Sb 1200) and large tumour (Lb 1036)
before surgery.

To select the best small-world network among them, we calculate a per-
centage error (PE) between the features of each of them and those of the
averaged over the two human subjects, including the two patients before
surgery, due to the fact that these two subjects are very similar according to
the metrics obtained for them in Fig. 4. The percent error is described as
the difference between the measured value of that same topological feature
calculated for the experimental brain data and the true value of a certain fea-
ture of the reproduced brain topology (using some network generator such
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Figure 4: Representation of the 9 topological features for the 8 networks. Sb 1200 and
Lb 1036 indicate the the patient with small tumour before surgery with 1200 edges and
the patient with a large tumour before surgery with 1036 edges, respectively. SW 1112,
SW 1154, SW 1100, SW 1151, and SW 1168 represent the small-world networks with the
probabilities equal to 0.1, 0.3. 0.5, 0.7, and 0.9, respectively.

as small-world network), which is defined by

PE =
| Measured value− True value |

| True value |
100%, (1)

A mean percentage error for each network topology is measured by the
average of all the percent errors calculated for the features of that network.
The average PE for all the small-world networks is illustrated in Fig. 5.
The networks are SW 1112, SW 1154, SW 1100, SW 1151, SW 1168, and in
Fig. 5 they are labeled as SW 0.1, SW 0.3, SW 0.5, SW 0.7, and SW 0.9,
respectively. The results show that the mean percentage error obtained from
the small-world network with 1112 edges and the probability equal to 0.1 is
less than that of the remaining small-world networks. For p < 0.1, the Av.
percentage error value slightly decreases.

After choosing the small-world with p = 0.1 (SW 0.1) as the best one
among the other small-world networks, we construct more 7 networks: regu-
lar (Reg), random (R), Barabási-Albert scale-free (BA), extended Barabási-
Albert scale-free (EBA), stochastic block community (Sto), random geomet-
ric spatial (RG), and Waxman random spatial (Wax) networks. They have
the number of edges close to those of the data-based graph in this group.
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Figure 5: The average percentage error of the 5 small-world networks with different prob-
abilities, describing as SW 0.1, SW 0.3, SW 0.5, SW 0.7 and SW 0.9, according to the
percentage error calculated between the features of these 5 small-world networks and of
the averaged over the two patients with small and large tumours before surgery. The
x-axis labels describe the same Newman-Watts small-world with a different probability
distribution.

The number of edges and the results obtained from the 9 structural features
for each of them are displayed in Fig. 6, where the label means NETWORK
#edges. By comparing the metrics, we find that the assortativity indicates
a huge variation, radius is the same, and the remaining characteristics rep-
resent small alterations for all the graphs. For Reg 1156, the assortativity is
undefined due to the fact that the denominator of the assortativity formula
is zero [5].

We calculate the percentage error between the characteristics of each 8
graphs and of the averaged over the human subjects obtained from the brain
data in this group. In Fig. 7, we verify that the best graph matching the
two patients before surgery is the small-world network with the probability
equal to 0.1. It exhibits an average PE less than 10%. We do not obtain
an average percentage error for the regular network, due to the fact that the
amount of assortativity feature calculated for this network topology is not
defined.

3.2. Second group: after surgery brains

For the second group including the remaining two experimental brain
networks after surgery, one patient with small tumour and another one with

11



-0.5

0

0.5

1

1.5

2

Sb_1200

Lb_1036

Reg_1156

SW_1112

R_1124
BA_1156

EBA_1144

Sto_1127

RG_1050

Wax_1124

Network models

Assortativity
Av. clustering
Av. shortest path

Density
Global efficiency
Local efficiency

Modularity
Radius
Transitivity

Figure 6: Representation of the 9 topological properties for the 11 graphs, describing
the two experimental brains from the first group and the 8 graphs built according to the
graph theory-based method. Reg, SW, R, BA, EBA, Sto, RG, and Wax correspond to the
regular, small-world (with the probability equal to 0.1), random, Barabási-Albert scale-
free, extended Barabási-Albert scale-free, stochastic block community, random geometric
spatial, and Waxman random spatial networks, respectively. The number in the network
name is the number of edges.
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Figure 7: Representation of the average percentage error obtained for each network topol-
ogy. The PE for each feature is calculated by comparing the averaged properties over the
patients with small and large tumour before surgery with the generated networks based
on graph theory. The x-axis labels indicate the different network topologies with variant
features.
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Figure 8: Representation of the 9 topological features for the 7 networks. Sa 1401 and
La 1431 describe the patient with small and large tumour after surgery with 1401 and 1431
edges, respectively. SW 1333, SW 1319, SW 1301, SW 1376 and SW 1419 indicate the
small-world networks with the probabilities equal to 0.1, 0.3. 0.5, 0.7 and 0.9, respectively.

large tumour, we compare them with the other 8 networks constructed based
on graph theory. Both experimental network topologies are very similar
to each other according to Fig. 8 and the metrics related to them and
the generated networks do not significantly change. We compute the PE
between the averaged features over the patients with small and large tumour
after surgery and the properties of the 5 small-world networks. In Fig. 9,
regarding the average PE calculated, we observe that the small-world graph
with p = 0.1 has the mean percent error less than 10%, consequently, it is
the best one to match with the two experimental networks as the first group.

In Fig. 10, we consider 8 different graphs, including the best small-world
network selected, to compare them with the networks related to the patients
in this group in terms of some structural measures. The results show that
all the features, except the radius, change for each network. Furthermore,
we calculate the PE between the characteristics of the averaged over the
patients with small and large tumour after surgery and the other graphs
shown in Fig. 10. From Fig. 11, we conclude that the best network adapted
with the brain data graphs with the mean percent error less than 5% is the
extended Barabási-Albert network with 1386 edges. Like the first group, we
do not calculate a mean PE for the regular network, due to the fact that the
amount of assortativity feature measured for this topology is not defined.
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Figure 9: The average percentage error measured according to the percent error calculated
between the features of the averaged over the two patients with small and large tumour
after surgery and of the 5 small-world networks with the probabilities equal to 0.1, 0.3, 0.5,
0.7, and 0.9, representing as SW 0.1, SW 0.3, SW 0.5, SW 0.7 and SW 0.9, respectively.
The x-axis labels describe the same Newman-Watts small-world with a different probability
distribution.
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Figure 10: Illustration of the 9 topological properties for the 10 graphs, including the two
experimental brains after surgery and the 8 graphs built according to the graph theory-
based methods. Reg, SW, R, BA, EBA, Sto, RG, and Wax indicate regular, small-world
(with the probability equal to 0.1), random, Barabási-Albert scale-free, extended Barabási-
Albert scale-free, stochastic block community, random geometric spatial and Waxman
random spatial networks, respectively. The number in each network name corresponds to
the number of edges.
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Figure 11: Representation of the average PE obtained for each network topology. The PE
for each feature is calculated by comparing the averaged properties over the patients with
small and large tumour after surgery with the generated networks based on graph theory.

In our numerical simulations, we do not calculate a percentage error for
the modularity feature, due to the fact that it is zero in the networks obtained
from the brain data (two patients).

4. Conclusions

We consider adjacency matrices representing 68 different cortical regions
of the structural connectivity of the brain. The matrices are related to dif-
ferent brains, two for patients with small and large tumour before and after
surgery. We then generate several networks with 8 different network topolo-
gies (small-world, scale-free, etc) and different parameter configurations. We
compare the graphs from the brain data with these generated networks for
several network features considered (radius, modularity, etc) and calculate
the average percentage error (PE) quantifying how similar the generated
graphs are from the graphs representing the structural connectivity of pa-
tients with tumour before and after surgery.

Regarding network topologies properties, our results show no significant
differences in global efficiency and modularity in the brain tumour patients
before and after surgery which corroborate the previous studies [3, 4]. We,
however, find much significantly greater connection density and less shortest
path length in the patients after surgery than in the patients before surgery.
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The enhanced density in the tumour patients after surgery suggests that
surgery may induce reorganisation in the structural network topology, so
that we show that surgery causes significantly topological alterations in the
patients with small and large tumour. Also, the remaining characteristics
represent no significant alterations between the brain data graphs before and
after surgery.

In this work, our focus is on the best fit for the groups. We calculate
9 topological properties to compute the average percentage error for each
network. By means of the average percentage error, we obtain the relative
error between generated networks and matrices selected from cortical regions
of the brain structural connectivity. For the brains with small and large
tumour before surgery, we verify that the best network topology with the
average percentage error less than 10% is the Newman-Watts small-world
with the probability equal to 0.1. For this probability value, the Newman-
Watts and Watts-Strogatz networks have the same small-world properties,
which is high transitivity or clustering with a low average path lengths. For
the two individuals after surgery, one with small tumour and another with
large tumour, the best graph with the average percent error less than 5% is
the extended Barabási-Albert scale-free network topology.

Our main conclusion is that the network topologies based on small-world
and scale-free graphs can be useful to respectively describe a brain network
topology considered for the brain tumour patients before surgery and brain
tumour patients after surgery, respectively. The selected patients were di-
agnosed with a meningioma tumour. It is a type of benign brain tumour
that grows slowly and does not spread to the whole brain or central nervous
system. It has been shown that disturbances in network topology could be
seen even for individuals with meningioma tumours [5]. In our outcomes
based on the 9 topological features, we observe a small change between the
brain networks related to the patients before surgery. We identify the best
network topology matching with the brain networks after surgery without
considering the tumour location.

Knowing that a scale-free network can be transformed into a small-world
one by the addition of a small number of random “weak” links (many long-
range) to the scale-free network, makes us to wonder whether the surgery,
or brain adaptations necessary post-surgery, have not effectively reduced the
random weak long-range linkage of the brain, giving to it the scale-free struc-
ture observed in this work. We hope further work can help better elucidate
this hypothesis.
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In our analyses, we choose two adjacency matrices from 14 meningioma
patients. We select the patients according to the tumour size, the smallest
and largest tumours. In our study, we use two patients with different size
of tumour. Neuronal imaging data normally contains large extent of noise
and there is variance among subjects. Due to these facts, it is impossible to
obtain general conclusions and more analysis is required. In future works,
we plan to select more patients to investigate how our results change when
the same study is made.

We believe that there are possible applications of our findings in further
precision treatment of tumours. Similar application in epilepsy surgery was
reported by Wang et al. [5]. They reported strategies of surgical seizure con-
trol to identify and remove fewer anatomical connections that are responsible
for spread of seizures.
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Appendix A. Methods

Appendix A.1. Graph theory analysis

A graph consists of a finite set of nodes (or vertices) connected by links
called edges or arcs [5]. In graph theory, the N × N adjacency matrix with
zero and non-zero elements, also known as connectivity matrix, indicates the
absence and presence of a relationship between the nodes of a network, re-
spectively. Using a graph theory-based method, it is possible to obtain a
topological analysis of the human brain network using different metrics from
its structural connection matrix, due to the fact that the brain can be con-
sidered as a large and complex network. In neuroscience studies, the main
capability of graph theory is usually revealed after constructing a brain net-
work [5]. Then, there are many different graph generators, such as regular,
small-world, random (without structure), scale-free (hub structure), commu-
nity structure, and spatially embedded graphs to describe the topology of
the brain networks.
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Appendix A.1.1. Small-world and regular networks

Watts and Strogatz [2] introduced small-world networks. A small-world
exhibits a high degree of clustering as in the regular networks, where all
nodes have the same number of neighbours. It has a small average distance
between the nodes as in the random networks and has intermediate connec-
tivity attributes [5]. In the small-world networks introduced by Watts and
Strogatz, non-local links are inserted by randomly rewiring some local con-
nections into non-local ones [2], while randomly selected shortcuts are added
in a regular lattice by Newman and Watts [5]. A schematic representation
related to the regular and Newman–Watts small-world graphs are shown in
Figs. 12(a) and 12(b), respectively.

(a) (b)

Figure A.12: Structural representation of (a) a regular graph for 10 nodes that are con-
nected to their 4 nearest neighbours and (b) a Newman-Watts small-world graph for
N = 10.

Appendix A.1.2. Random network

In a random network, the nodes are randomly connected by means of
a pre-determined connection probability [5]. The random graph has low
clustering and short path length. In 1959, Erdös and Rényi [6] introduced
a random graph called Erdös-Rényi model or binomial graph. Figure 13
displays a graph representation of a random network.

Appendix A.1.3. Scale-free network

A scale-free network is a network in which degree distribution, describing
the number of links adjacent to a node, follows a power law, at least asymp-
totically [6]. It means that after the removal of randomly selected nodes, the
graph stays more connected than a random network and has short average
path lengths [6].
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Figure A.13: Schematic representation of an Erdös-Rényi random network for N = 10
nodes and p = 0.4.

In a scale-free graph, there are growth and preferential attachments. In
this regard, the network grows by continuously adding new nodes at every
time step and, regarding preferential attachment, the probability of linking
to a node depends on the node’s degree [6]. Barabási and Albert [6] proposed
an algorithm for generating random scale-free networks using a growth and
preferential attachment mechanism. Figures 14(a) and 14(b) show a rep-
resentation of Barabási-Albert and extended Barabási-Albert networks, re-
spectively.

The Barabási-Albert model is an undirected scale-free network with a
hub structure (heavy-tailed degree distribution). The graph grows by con-
necting new nodes preferentially to existing high-degree nodes. This way, it
is created a rich club of centralised hubs that connect otherwise distant areas
of the graph. The extended Barabási-Albert graph is a type of undirected
scale-free graphs. It is a random graph built using preferential attachment,
which permits new nodes, new edges or rewiring edges. Considering p as the
probability value for adding an edge between existing nodes and q as the
probability value of rewiring of existing edges (p+ q < 1), the model behaves
just like the Barabási-Albert model when p = q = 0.

Appendix A.1.4. Community structure network

A community structure network has nodes that can be easily classified
into (potentially overlapping) sets of nodes, such that each set of nodes is
densely linked internally [6]. In 1983, Holland et al. [6] introduced a math-
ematical formulation for a stochastic block model, as an useful benchmark
to recover community structure in graph data in the field of social network.
Afterward, researchers have generated networks with a defined community
structure using stochastic block model [6]. In Fig. 15, a stochastic block
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(a) (b)

Figure A.14: Schematic representation of (a) a Barabási-Albert graph for N = 10 and (b)
an extended Barabási-Albert graph.

model has been illustrated.

Figure A.15: Schematic representation of a generative stochastic block model for 2 com-
munities with the size 5 (s = 5) and the probability equal to 0.5 (p = 0.5). The community
1 contains the nodes 0, 1, 2, 3, and 4. The community 2 starts from the node 5 to 9.

Appendix A.1.5. Spatially embedded network

A spatial (geometric) network consists of spatial components that limit
the network structure and provide a framework for network models containing
spatial elements [6]. In the graph, nodes are embedded in the space and a
metric is considered to dictate the conditions for links between nodes [6].
Most models of this graph assume Euclidean distance in 2 or 3-dimensions
for the probability of connection [7]. In 2011, Marc Barthélemy [6] provided
a general overview of spatial network models and of the most important
theoretical evidence used for the spatially embedded networks. An undirected
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and without self-loops random geometric graph, as well as a Waxman random
graph have been exhibited in Figs. 16(a) and 16(b), respectively.

In the random geometric graph, the nodes are randomly distributed in the
same metric space. Two nodes are connected by an edge when their distance
is smaller than a certain range. In the Waxman random model, as the spatial
generalisation of Erdös–Rényi random networks, the nodes are uniformly
distributed in a rectangular domain. Each pair of nodes is connected by an
edge with a probability that depends on a function of the distance between
them. The function is exponential, as proposed by Waxman, and plays an
important role in determining the structure of a Waxman graph.

Figure A.16: Schematic representation of (a) a random geometric graph for N = 10 and
r = 0.5 and (b) a Waxman random graph for N = 10 and p = 0.4.

Appendix A.2. Topological characteristics of graphs

To analyse the structural patterns of the networks, we compute some
measures related to the integration and segregation, such as assortativity,
average clustering, average shortest path length, density, global and local
efficiency, modularity, radius, and transitivity. The integration feature is
associated with the ability of the network to transmit information through
its nodes, while the segregation property is related to the presence of clusters
or modules in a graph [7]. In other words, the segregation and integration
describe the network characteristics [2].

Appendix A.2.1. Assortativity

Assortativity (A) refers to the tendency of the nodes to link with other
similar nodes over dissimilar nodes, while in disassortativity, the nodes tend
to connect to dissimilar nodes over similar nodes. The assortativity measures
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the similarity of connections with respect to the node degree [7]. A is defined
in the interval [−1, 1]. The network is perfect assortative when A = 1,
not assortative when A = 0, and completely disasortative when A = −1.
A positive assortativity coefficient indicates a correlation between nodes of
similar degrees, while a negative one shows a correlation between nodes of
different degrees. In fact, the degree assortativity coefficient is the same as
the Pearson correlation coefficient of degree between pairs of connected nodes
[7].

Appendix A.2.2. Average clustering coefficient

A clustering coefficient measures the degree and indicates the tendency
of the nodes in a graph to cluster together [7]. For a network, the average
clustering coefficient can be calculated using the average of clustering coef-
ficients of all the nodes. When the graph is more complete, the connections
are dense and the average clustering coefficient is high. It is a sign of triadic
closure due to the fact that the more complete the graph is, the more tri-
angles usually arise [7]. The average clustering coefficient (ACC) provides a
measure of modularity of the network. When the average clustering coeffi-
cient is 1, the neighbourhood of the node is fully connected. For ACC close
to 0, there are almost no connections in the neighbourhood.

Appendix A.2.3. Average shortest path length

The average shortest path length (ASPL), also known as average path
length, is described as the average number of edges along the shortest paths
for all possible pairs of nodes in the graph [7]. It measures the efficiency
of information or mass transport on a graph. From one node to another in
the network, the average path length is an average over the shortest distance
between two nodes.

Appendix A.2.4. Density

The density (D) of a graph describes the ratio of the number of edges
with respect to the maximum possible edges [7]. It provides a relationship
between a density of graph and edge connectivity. The graph is dense when
the quantity of edges is close to the maximal number of edges and each pair
of vertices has one edge. When the density is equal to 0, the graph is without
edges. For a density equal to 1, the graph is completely connected.
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Appendix A.2.5. Global efficiency

Efficiency of a pair of nodes in a graph is the multiplicative inverse of the
shortest path distance between the nodes [7]. The average global efficiency
(AGE) of a graph is the average efficiency of all pairs of nodes or the graph.
0 ≤ AGE ≤ 1 is a normalised measure where its maximum value is reached
when a graph is complete. It returns 0 if there is no path between the nodes.

Appendix A.2.6. Local efficiency

Efficiency of a graph, also known communication efficiency, measures the
efficiency of the information exchange [7]. In the network, if the distance
between two nodes is greater, their communication is less efficient. This
measurement can deal with the disconnected graphs, non-scattered graphs
or both [7]. The local efficiency (LE) of a node in the graph is the average
global efficiency of the subgraph induced by the node’s neighbours. This
measurement changes in the interval [0,1]. If there is no path between nodes
in the graph, the average local efficiency of the graph returns 0.

Appendix A.2.7. Modularity

Graphs can be separated into two or more modules. When a graph is
grouped into two modules, one module has one node and another one consists
of all the remaining nodes. Then, the modularity (M) refers to the degree
in which a network is organised into a modular structure or community [8].
Modules are subgraphs that contain sets of nodes which are more strongly
linked to each other than to the rest of the graph [8]. M can be positive
or negative, the positive values indicate the possible existence of community
structure.

Appendix A.2.8. Radius

The eccentricity of a node in a graph is the maximum distance from it
to all other nodes [8]. The radius (R) of a graph is the minimum distance
among all the maximum distances between a node and all other nodes [8].

The radius exists in a graph only if the graph has the diameter as the
maximum eccentricity. This metric is considered for distance measurement
purposes, which is described as

R = Min d(ni, ni 6=j), (A.1)

where d(ni, ni 6=j) is the distance between the node i and the remaining nodes
in the graph. The curve is a circle if the eccentricity is equal to zero, a
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parabola if equal to one, an ellipse if less than one, and a hyperbole if greater
than one. The radius of a graph is the minimum graph eccentricity of some
vertex. A disconnected graph has an infinite radius.

Appendix A.2.9. Transitivity

The transitivity (T ) is described as the fraction of all possible triangles
in a graph. The possible triangles are determined by the number of triads,
describing two edges with a shared node [8]. This measurement is also known
as the amount of clustering between a node and its neighbours. When T = 1,
the network consists of all possible edges.
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[60] P. Erdös, A. Rényi, On Random Graphs, Publ Math 6 (1959) 290.

[61] A. Pachon, L. Sacerdote, S. Yang, Scale-free behavior of networks with
the copresence of preferential and uniform attachment rules, Physica D
371 (2018) 1-12.

[62] O. Sporns, D.R. Chialvo, M. Kaiser, C.C. Hilgetag, Organization, de-
velopment and function of complex brain networks, Trends Cogn Sci 8
(2004) 418-425.

[63] P. Krapivsky, D. Krioukov, Dmitri, Scale-free networks as preasymptotic
regimes of superlinear preferential attachment, Phys Rev E 78 (2008)
026114.

[64] A.L. Barabási, R. Albert, Emergence of scaling in random networks,
Science 286 (1999) 509-512.

[65] M. Girvan, M.E.J. Newman, Community structure in social and biolog-
ical networks, Proc Natl Acad Sci USA. 99 (2002) 7821-7826.

29



[66] P.W. Holland, K.B. Laskey, S. Leinhardt, Stochastic blockmodels: First
steps, Soc Netw 5 (1983) 109-137.

[67] C. Icher, A.Z. Jacobs, A. Clauset, Learning latent block structure in
weighted networks, J Complex Netw 3 (2015) 221-248.

[68] M. Penrose, Random Geometric Graphs, Oxford Studies in Probability
5 (2003).

[69] M. Barthelemy, Spatial Networks, Phys Rep 499 (2011) 1-101.

[70] C. Parkinson, S. Liu, T.A. Wheatley, Common cortical metric for spa-
tial, temporal, and social distance, J. Neurosci. 34 (2014) 1979-1987.

[71] M. Rubinov, O. Sporns, Complex network measures of brain connectiv-
ity: uses and interpretations, Neuroimage 52 (2010) 1059-1069.

[72] M.E.J. Newman, Mixing patterns in networks, Phys Rev E 67 (2003)
026126.

[73] J.G. Foster, D.V. Foster, P. Grassberger, M. Paczuski, Edge direction
and the structure of networks, Proc Natl Acad Sci USA 107 (2010)
10815-10820.
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