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Abstract

High-Performance Computing (HPC) systems conduct extensive log-
ging of resource usage data and system logs, and parsing this data is
an often advocated basis for failure diagnosis. Major page faults are
known to be one of the most common cause of performance prob-
lems in large cluster systems. We conduct an empirical study of major
page faults on two large cluster systems. We set up three regression
algorithms including the LASSO, Ridge and Elastic Net regression tech-
niques. To the best of our knowledge, there is no work that studied
different regression models to diagnose major page faults in a large
cluster system. In this paper, we (a) propose an approach for diagnos-
ing major page faults, and (b) evaluate the LASSO, Ridge and Elastic
Net regression algorithms on real resource use data and system logs.
As part of our contributions, we (a) compare the accuracy of the three
regression algorithms, (b) identify the resource use counters which are
correlated to major page faults and the system events which are cor-
related to page fault events, and (c) provide insights into major page
faults and page fault events. Our work highlights empirical observations
that could facilitate better handling of node failures in cluster systems.

Keywords: Large cluster systems, Major page faults, Regression analysis,
Resource use data, System logs
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1 Introduction

Correlation analysis has been widely applied to diagnose node failures in HPC
systems [1, 2], with its strengths in dealing with many system events with lin-
ear and non-linear patterns, which can result in significant improvements in
diagnostics accuracy. A very recent study empirically evaluated a set of corre-
lation techniques to diagnose node failures in large cluster systems, including
Pearson correlation, Spearman-Rank correlation and Partial correlation, using
system logs obtained on two widely deployed cluster systems [3]. From their
evaluation, they observed that the Partial correlation method outperformed
the Pearson and Spearman-Rank correlation algorithms, identifying memory
data updates and Error Correcting Code memory errors as indirect causes of
node crashes. They highlighted that memory data updates were associated
with the Lustre filesystem I/O activities, and corrupted memory indexes were
associated with segmentation faults that led to node crashes on many dates.

Several important large-scale failure analysis studies have shown that fail-
ures in exascale computing systems are caused by different applications, system
software and hardware [4–12]. M. Snir et al. [4] presented a detailed report on
resilience in exascale computing systems. They defined the problem of provid-
ing resilience for exascale computers, described the sources of hardware and
software errors, and discussed software that can prevent, detect and recover
from those errors. S. Mitra et al. [6] performed in-depth analyses of the usage
patterns of applications and libraries on the Conte community cluster. They
introduced novel analysis techniques that identified hidden trends and diag-
nosed job failures in cluster systems. C. Di Martino et al. [5] provided a detailed
analysis of failures and discussed the impact of those failures on the Blue
Waters supercomputer. They identified the causes of single node failures, ana-
lyzed system-wide outages, and assessed the error resiliency of the memory,
CPU, network and filesystem. S. Gupta et al. [7] presented a detailed study
that analyzed the failure characteristics of several large-scale supercomputers.
They identified 23 different types of failures that include hardware failures
such as node hangs and machine check exceptions, and software failures such
as Lustre filesystem server and operating system kernel panic. R. Kumar et
al. [9] provided a detailed analysis of job and node failures on two large clus-
ter systems. They observed that node and job failures are correlated with the
system resource usage, and they proposed a model that predicted job fail-
ures. Z. Liu et al. [10] performed a detailed correlation analysis of hardware
event logs and task failure logs on the MIRA supercomputer and analyzed job
runs, I/O behaviour and failure characteristics. E. Rojas et al. [11] presented a
detailed reliability analysis of the Titan supercomputer using five years worth
of failure and workload data. They classified failures, modelled the failure rate
and assessed the relationship between failures and workloads to characterize
Titan’s reliability. K.B. Ferreira et al. [12] analyzed memory failure data and
presented a detailed analysis of memory failures on the Astra large cluster sys-
tem. Differently to these works [4, 5, 7, 9–12], we study the impact of major
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page faults on node failures. E. Rojas et al. [8] presented the results of ana-
lyzing five years worth of failure and system workload data from the Titan
supercomputer. They developed a methodology that consists of five phases:
(a) workload data formatting, (b) failure data filtering, (c) failure analysis, (d)
interplay analysis and (e) visualization. Different to the work by E. Rojas et al.
[8], we developed an approach for diagnosing major page faults. Our approach
consists of three phases: (a) data preprocessing, (b) event correlation and (c)
statistical validation. It has been widely reported that major page faults are a
common cause of performance problems in cluster systems [13–15]. Major page
faults incur significant overheads on the cluster system’s performance, which
reduces its ability to effectively utilize its resources and complete executing
running jobs on time.

In the operating system, page fault handling is a mechanism that handles
data or code required by the CPU but they are not in the main memory. It is
a crucial mechanism that increases the amount of memory available to appli-
cations. However, it also puts pressure on the storage system. As such, it is as
important to capture relationships between major page faults and node fail-
ures, as it is to capture relationships between multiple system components.
We defined a node failure as a node crash or an operating system hangup.
The state-of-the-art failure diagnostics frameworks have implemented work-
flows that use Pearson correlation, Spearman-Rank correlation and/or partial
correlation to correlate system errors to node failures [1–3, 16, 17]. Although
these works have shown that Pearson correlation, Spearman-Rank correlation
and partial correlation techniques can identify the cause of node failures, these
correlation algorithms have some limitations that we address in this paper.
Firstly, the Pearson and Spearman-Rank correlation methods can only iden-
tify the relationship of two variables and the partial correlation method can
only identify the relationship of two variables while controlling for the effect
of a third variable. Secondly, the correlation approach can produce many pairs
of correlated variables that must be thoroughly looked at before it is possible
to make a diagnosis, which is not desirable as it is a time consuming process
that incurs a significant delay in diagnosing a node failure. For example, the
diagnostics framework presented in [3] may generate the following diagnosis:
“CPU core 1 and CPU core 2 are waiting for I/O operations to complete which
led to a node crash”. A HPC server typically contains 16 to 68 cores per CPU
socket and multiple I/O operations may be executing in parallel. Thus, it is
important to understand the role of the page fault handling mechanism in rela-
tion to multiple CPUs waiting on I/O operations to complete and a compute
node soft lockup.

As such, we leverage the power of regression algorithms, which are super-
vised statistical learning techniques that learn the regression coefficients of
multiple independent variables to a target or dependent variable. We com-
pare the LASSO, Ridge and Elastic Net regression algorithms, which are three
established and widely used supervised statistical learning techniques. We
apply the LASSO, Ridge and Elastic Net regression algorithms on the resource
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usage data and system logs to determine the regression algorithm’s applica-
bility to identify the resource use counters which are correlated to major page
faults and the system events which are correlated to page fault events.

In this paper, we conduct an empirical analysis of major page faults in large
cluster systems and present several new findings. The correlation of multiple
CPU and Lustre filesystem resource use counters to major page faults, and the
correlation of multiple Lustre error messages and multiple Linux system error
messages to page fault events are new and have not heretofore been reported
in our earlier papers [3, 16, 17]. We validate our diagnostics approach on two
large cluster systems operated by the Texas Advanced Computing Center at
The University of Texas at Austin. The benefits of applying regression models
to diagnose major page faults are given as follows: (a) when multiple CPU and
Lustre filesystem resource use counters are strongly positive correlated to the
major page fault counter, and (b) multiple Lustre error messages and multiple
Linux error messages are strongly correlated to a page fault event, it shows
that the page fault handling mechanism is associated with the generation of
Lustre and Linux error messages. As a result, those correlations can be used
to monitor the state of the operating system’s page fault handling mechanism.
Our main contributions are given as follows:

• We propose an approach to diagnose major page faults using real world
resource usage data and system logs.

• We compare multiple regression algorithms to ascertain their accuracy in
diagnosing major page faults on two large cluster systems.

• We apply a statistical validation step to ensure accurate diagnosis of major
page faults.

Our initial assumption is that when multiple resource use counters or mul-
tiple system events are used to train the regression algorithms, the accuracy for
diagnosing a major page fault or a page fault event will improve. We compared
the LASSO, Ridge and Elastic Net regression models on the two cluster sys-
tems and observed that (a) multiple regression models replicated the observed
values in the resource usage data and system logs with the highest accuracy
on different dates, and (b) there is no difference between the accuracy of the
LASSO and Ridge regression models that were trained only on the strongly
correlated resource use counters and the accuracy of the LASSO and Ridge
regression models that were trained on all the resource use counters, so train-
ing the regression algorithms on the correlated resource use counters produces
regression models that identify major page faults with the highest accuracy.
Furthermore, we observed that (a) the LASSO and Ridge regression models
replicated the observed values in the system logs with the highest accuracy on
different dates, and (b) the LASSO regression algorithm that was trained on
all the system events obtained the highest accuracy compared to the LASSO
regression algorithm that was trained only on the correlated system events, so
training the LASSO regression algorithm on all the system events produces a
regression model that identifies page fault events with the highest accuracy.
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This paper is organized as follows. We analyze the related work in Section
2 and present the system and fault models in Section 3. The sequence of events
that occur when a major page fault occurs and the details of our diagnostics
approach are described in Section 4. We evaluate our diagnostics approach on
two large cluster systems in Section 5, discuss the limitations of our work in
Section 6 and conclude with a summary and future work in Section 7.

2 Related Work

In this section, we review the related works with respect to the following
criteria: (a) failure diagnostics frameworks that were evaluated on large cluster
systems, (b) failure diagnostics frameworks that used different and multiple
types of system logs, and (c) frameworks that diagnosed failures in large cluster
systems.

A. Oliner et al. [1] proposed a novel method called Structure-of-Influence
Graphs (SIGs) for diagnosing problems in large, complex computer systems.
Constructing a SIG consists of four steps. In step 1, two models are developed.
The first model uses message timing information produced by each system
component. The second model uses the message terms contained in the sys-
tem messages. In step 2, the Kullback-Leibler divergence is used to compute
anomaly signals. In step 3, correlations between anomaly signals are obtained
with the Pearson correlation algorithm. In step 4, a SIG is constructed for a
subset of n system components, which addressed the time complexity problem
in constructing a SIG from all the system components.

Z. Zheng et al. [2] presented a novel 3-dimensional root-cause diagnostics
approach for diagnosing cluster system failures. Their approach consists of
four steps: (a) preprocessing the data, (b) integrating information across mul-
tiple types of system logs, (c) identifying the failure layer and (d) identifying
the location and time of the cause of a given failure. In step 1, outliers in
three different types of logs are removed using wavelet transformation. Then,
redundant log-events are removed using temporal-spatial filtering. The Density
Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is
used to group jobs that share similar characteristics. In step 2, enviromental
features which are closely related to the fatal log-events are extracted. In step
3, a job similarity score is computed and used to distinguish hardware, appli-
cation or system software failures. In step 4, the location and time of the cause
of the fatal event is identified using probabilistic causal pruning and dynamic
time window generation techniques.

X. Fu et al. [18] proposed an event correlation mining framework called Log-
Master. It consists of innovative algorithms for filtering the event logs, mining
correlations of events from the event logs and constructing event correlation
graphs (ECGs). Subsequently, X. Fu et al. [19] extended LogMaster and pro-
vided deeper and more accurate diagnosis of failures. Their approach mined
correlation of events and used ECGs to analyze the relationships between fatal
and non-fatal events.
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E. Chuah et al. [16] presented a novel anomaly-correlation approach called
ANCOR that linked resource usage anomalies with node failures. ANCOR con-
sists of four modules: (a) resource use anomaly extractor, (b) system message
types extractor, (c) time-bin correlator and (c) log-events sequence construc-
tor. In the anomaly extractor module, three feature extraction methods were
used to detect anomalous workload patterns. In the system message types
extractor, message types are extracted from the system logs. In the time-bin
correlator module, the Pearson correlation algorithm is used to identify the
strongly positive correlated message types. In the log-events sequence con-
structor module, sequences of the correlated log-events are extracted given
a failure event. Differently to ANCOR, the CRUMEL approach [17] applies
Pearson correlation and Spearman-Rank correlation on the resource use data
and Rationalized message logs. A Rationalized message log is a new type of log
that incorporates a logical structure and job identification [20]. CRUMEL was
evaluated on a large cluster system and it was showed that Spearman-Rank
correlation identified more correlated system error events on more dates. Dif-
ferently to CRUMEL, IFADE [3] uses partial correlation to identify previously
unknown causes of node failures in cluster systems. The IFADE approach con-
sists of three phases: (a) preprocessing the data, (b) extracting the features and
(c) identifying partial correlation of those features. In the data preprocessing
phase, message types and resource use counters are extracted from the system
logs and resource use data, respectively. In the feature extraction phase, four
different types of feature extraction methods are used to identify the impor-
tant resource use counters and message types. In the partial correlation phase,
the partial correlation method is used to identify a pair of message types or a
pair of resource use counters which are strongly positive correlated after con-
trolling for the presence of a third message type or resource use counter. If the
correlation coefficient for two message types or two resource use counters is
greater than or equal to 0.8, those message types or resource use counters are
strongly positive correlated.

To the best of our knowledge, there is no work that applied regression mod-
els in failure diagnosis to diagnose major page faults in large cluster systems.
A summary of the functions of the reviewed failure diagnostics frameworks is
given in Table 1. A. Oliner et al. [1] integrated the Kullback-Leibler divergence
and Pearson correlation algorithm to identify anomaly signals and diagnose
the cause of system failures. Z. Zheng et al. [2] integrated temporal-spatial fil-
tering and the DBSCAN algorithm to identify the location and time of system
failures. X. Fu et al. [18, 19] integrated event correlation mining and correla-
tion graphs to diagnose failures. E. Chuah et al. [3, 16, 17] used the Pearson
correlation algorithm [16], the Pearson and Spearman-Rank correlation algo-
rithms [17] and partial correlation [3] to diagnose node failures. Differently to
[1–3, 16–19], we (a) developed a diagnostics approach that enables comparing
different regression models, (b) evaluate the ability of the regression model to
identify correlations of resource use counters or correlations of system events,
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and (c) identify the nodes which are associated with page fault events and
compute node soft lockups.

Table 1 Functions of the Failure Diagnostics Frameworks

Study Technique Dataset Focus

SIGs [1] KL-divergence, HPC logs, vehicle Failure
Pearson correlation sensor data diagnosis

Z. Zheng et al. [2] Temporal-spatial, BlueGene/L logs, Failure
filtering, DBSCAN Performance data diagnosis

IFADE [3] Feature extraction, Rationalized logs, Failure
Partial correlation Syslogs, Resource diagnosis

use data
ANCOR [16] Feature extraction, Resource use data, Failure

Pearson correlation Rationalized logs diagnosis
LogMaster [18] Events correlation, HPC logs, Hadoop logs, Events

ECGs BlueGene/L logs mining
X. Fu et al. [19] Events correlation, HPC logs, Hadoop logs, Failure

ECGs BlueGene/L logs diagnosis
CRUMEL [17] Pearson correlation, Resource use data, Failure

Spearman-Rank Rationalized logs diagnosis
correlation

This paper LASSO, Ridge & Resource use data, Failure
Elastic Net system logs diagnosis

3 System and Fault Models

In this section, we present the system model to which our diagnostics approach
is applicable in Section 3.1. Then, we define the fault model in Section 3.2.

3.1 System Model

Our diagnostics approach is based on a generic model for cluster systems [16].
The model is illustrated in Fig. 1. It consists of a set of X number of nodes
N1...NX , a set of Y number of jobs J1...JY , a set of Z number of data collection
time-bins D1...DZ , a set of system components including a filesystem FS, and
a job scheduler JS. The job scheduler JS assigns jobs to nodes. Each node
Ni, 1 ≤ i ≤ X, job Jj , 1 ≤ j ≤ Y , job scheduler JS and filesystem FS may
write resource usage data to containers RUD1...RUDn, and write system logs
to containers SL1...SLm. Data in the filesystem FS may be retrieved by each
node Ni and job Jj .
Data collection: A typical system data collection setup is depicted in Fig. 2. It
consists of three components: (a) system monitor, (b) data store, (c) analysis
console. The system monitor aggregates various statistics from the nodes and
jobs, and the data is transmitted to a data store. The data store receives the
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resource use data and system logs from the system monitor. The resource use
data and system logs are retrieved by the analysis console and the data is
analyzed within the context of an activity, such as detecting page faults.

Job scheduler

router
Network

router
Network

Filesystem nodes

Compute
nodes

Job A
Job B

Job A Job B Job C Job D
Job A

Fig. 1 Cluster system model

Compute nodes Filesystem nodes

router
Network

System
monitor

Analysis
console

Resource use
data, system
logs

Fig. 2 Data collection

3.2 Fault Model

A fault model is an engineering model that represents something that can go
wrong in the development or operation of a particular piece of equipment. A
fault model consists of three terms [21]: (a) fault, (b) error, and (c) failure. A
fault is represented as the hypothesized cause of an error. An error is produced
when a service deviates from its correct state. When an error results in a loss
of the service, a failure has occurred. A typical error propagation process is
depicted in Fig. 3.

error error error error

interface
Service

Component 1

fault
failure

propagate propagatepropa−
gate

Component 2

Fig. 3 An illustration of an error propagating through two system components.

When a fault occurs in one system component, the resulting error can prop-
agate beyond that system component and affect multiple system components.
For example, a corrupted inode (i.e., a fault) may result in an error in access-
ing a directory on the filesystem, and subsequently results in an error in the
page fault handling mechanism if the required data or code is contained in
that file directory. These errors can occur at different times and on multiple
nodes. As such, there is a need to consider various discrete fault models in a
HPC environment.

The system errors associated with a node failure are interleaved between
thousands of other types of system events. Furthermore, the process for
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extracting the sequence of system errors is mostly manual and ad-hoc. There
are also potentially different types of fault models associated with various sys-
tem components, which make the task of determining the cause of a node
failure more difficult.

4 Diagnosing Major Page Faults

A page fault is divided into two types: (a) minor page fault, and (b) major
page fault. A minor page fault occurs when the data is present in the main
memory, but the process has not obtained a logical mapping to the page. In
contrast to a minor page fault, which does not require copying the data from
the harddisk to main memory, a major page fault occurs when the data is not
present in the main memory and the data must be copied from the harddisk
to the main memory. A typical sequence of events when a major page fault
occurs is depicted in Fig. 4 [22].

i

Page table

Operating
system

Hard
drive

Free frame

1
2

3

4

6

5

Load M

Physical memory

reference trap

page is
on disk

missing page
bring intable

page
reset

instruction
restart

Fig. 4 Major page fault sequence of events.

When a program tries to access data that is in its address space, but the

data is not located in the main memory, a major page fault occurs ( 1 ). When
a major page fault is detected, the computer hardware signals to the operating
system (O/S) kernel, saves the program counter on the stack and saves the

current instruction state in the CPU registers ( 2 ). After this information is
saved, the O/S locates the virtual address that caused the page fault. Once the
O/S locates the virtual address, it checks to see if the address is valid and that
access to this address is not protected. If the virtual address is valid, the O/S
checks to determine if a page frame in the physical memory is free. If there
are no free page frames, a page replacement algorithm is executed to remove
page frames. Then, the page is scheduled for transfer to the hard drive and
the page transfer is performed by a separate process. Once the page frame in
the physical memory is cleaned, the O/S locates the disk address where the

needed page is ( 3 ). Then, the O/S schedules a disk operation to bring the
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missing page in ( 4 ). When the page is loaded in the physical memory, a disk
interrupt operation is triggered. The page table is updated with the location

of the page and the frame is marked as being in a normal state ( 5 ). The
registers and other information is reloaded, the program counter is reset, and

program execution continues ( 6 ). This process incurs a high number of CPU
cycles, which can cause a heavy penalty on the cluster system’s performance.

Thus, our objective is to identify which resource use counters are “strongly
correlated” to a major page fault, and which system messages are “strongly
correlated” to a page fault event. By strongly correlated, we mean the resource
use counters or system events which are assigned the largest positive regression
coefficients by the regression model. In this paper, we aim to identify the
resource use counters and system events for diagnosing major page faults. The
research problem we address is presented as follows: Given (a) the resource
usage data and system logs, (b) lists of resource use counters and lists of
message types, and (c) the range of dates:

• Identify the resource use counters which are assigned the largest regression
coefficients by the regression model.

• Identify the system events which are assigned the largest regression coeffi-
cients by the regression model.

• Identify the nodes which are associated with page fault events and compute
node soft lockups.

Thus, the failure diagnostics workflow we propose consists of three phases,
as depicted in Fig. 5. The workflow begins by extracting the raw logs and
organizing them into data structures in the Data preprocessing phase. Once the
data structures are extracted, the next phase of Events correlation identifies
the resource use counters and message types which are strongly correlated
to a given resource use counter and system event, respectively. This phase
corresponds to “diagnosing” a node failure from the system logs. Then, the
regression models are validated in the Statistical validation phase. Next, we
describe the details of each phase of the diagnostics workflow.

4.1 Data Preprocessing

The goal of data preprocessing is to present the raw resource use data and
message logs in a standardized format that is easily processed by data analysis
algorithms [23]. In order to achieve this, we need to resolve three issues: (a) the
format of a system log on multiple cluster systems are different, (b) the resource
use data and system logs are monitored by different types of monitoring tools,
and (c) the resource usage data and system logs are captured at different times.

A system log is generated if the print error function in the code is executed.
In contrast, a resource use log is generated at fixed time intervals. As such, the
time granularity in the system logs and resource use logs are different. The sys-
tem logs and resource use logs contain different types of fields. Furthermore,
the resource use data and system logs are monitored by different monitoring
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Statistical
validation

Resource use

of dates

Data Events

Message logs +

+ list of resource use counters

counters

Resource use data structures

Message types data structures
+ list of message types

preprocessing

RUD−Ext

MT−Ext

Regression models + list
of resource use counters

Regression models + list
of message types

List of regression
coefficients +

List of regression
coefficients +
message types

CORR−RUC

CORR−MT

correlation

data + list

list of dates

Fig. 5 Our failure diagnostics workflow. It consists of three modules: (a) Data preprocess-
ing, (b) Events correlation and (c) Statistical validation.

tools. Therefore, we preprocess the resource use data and system logs sepa-
rately. Then, we apply the regression models on the preprocessed resource use
data and system logs separately.

TACC Stats [24] is an open-source resource usage monitor that is deployed
on many large cluster systems [25]. TACC Stats provides online monitoring of
system resources. It records all values for all resource use counters at a fixed
time interval of 10 minutes. The value for all counters are set to 0 only when
a node is reset. An example of a resource use log is shown below:
312867 Jul 22 12:20:01 i201-307 vm pgmajfault 619298

pgfault 251833816

The resource use log contains eight fields. The first field represents the job-
id (312867). The second and third fields represent the month (Jul) and (date 22)
respectively. The fourth field represents the time stamp (12:20:01). The fifth field
represents the node-id (i201-307). The sixth field represents the virtual mem-
ory subsystem (vm). The seventh field represents the major page fault counter
and its value (pgmajfault 619298). The eighth field represents the minor page
fault counter and its value (pgfault 251833816). The resource use data contains
410 resource use counters which are divided into nine groups. Each group con-
sists of a set of counters that capture resource usage on the network, Lustre
filesystem, Lustre network, virtual memory, hard disk, CPU, main memory,
Linux processes and NUMA (Non-Uniform Memory Architecture). One day’s
worth of resource use data contains an average of 19,452,401 resource use logs.
Therefore, we generate a resource use data matrix to represent the counters
and their values. Next, we describe the process to generate the resource use
data matrix: (a) group the resource use logs based on their time stamp, (b)
extract to remove all repeated counters and store the unique counter in a list
of resource use counters, and (c) for each counter in the list of counters, obtain
the value of the counter at the time stamp. We have implemented the process
in the RUD-Ext module.

A typical system log contains a time stamp, a node number and an error
message. Some system logs such as the Rationalized message logs contain the
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job number [20], but other system logs may not contain the job number. How-
ever, most system logs contain three basic fields. They are the time stamp,
node number and error message. Thus, we define a standard format for the sys-
tem logs and implemented a log-reformator to convert the system logs into the
standard formatted system log. The standard formatted system logs contain
the following fields:
job-id, month, day, hour:minute:second, node-id, program name,

error message

The log-entries contained in the system logs are generated by the O/S,
filesystem and system software. An example of a system log-entry is shown
below:
203884 Jul 22 07:30:54 i128-102 kernel do_page_fault 1247

The system log contains seven fields. The first field represents the job-id
(203884). The second field represents the month (Jul). The third field represents
the date (22). The fourth field represents the time stamp (07:30:54). The fifth
field represents the node-id (i128-102). The sixth field represents the program
name (kernel). The seventh field represents the error message (do_page_fault 1247).
The error message is composed of a sequence of English words and numbers.
In order to extract the Constants from the error message, we parse the error
message and extract the English words only. One months’ worth of system logs
contain an average of 3,701,466 log-entries. As was done with the resource use
logs, we generate a message types data matrix to represent the Constants and
their counts. Next, we describe the process to generate the message types data
matrix: (a) group the system logs into time-bins of 10 minutes, (b) extract to
remove all repeated constants and store the unique constant termed a message
type in a list of message types, and (c) for each message type in the list of
message types, count the number within the time-bin. We have implemented
the process in the MT-Ext module.

4.2 Events Correlation

After the resource use data matrix and message types data matrix are gener-
ated, we need to identify (a) the resource use counters which are assigned the
largest positive regression coefficients, and (b) the message types which are
assigned the largest positive regression coefficients. To achieve this, we use the
LASSO, Ridge and Elastic Net regression algorithms to (a) obtain the regres-
sion models for multiple resource use counters to a target resource use counter,
and (b) obtain the regression models for multiple message types to a target
message type.

The multiple linear regression and polynomial regression models are stan-
dard techniques for modelling complex relationships with multiple variables
[26]. However, they are known to be susceptible to overfitting on the train-
ing data and can produce a biased model. In contrast, the LASSO, Ridge and
Elastic Net regression algorithms use a regularization function that constrains
the coefficient estimates and avoids overfitting the model to the training data.
The regularization function penalizes variables that have a large coefficient
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value and improves the accuracy of the model. A summary of the functions of
the LASSO, Ridge and Elastic Net regression models is given in Table 2. In
the LASSO regression model [27], a regularization function called L1-norm is
used to set the coefficients of some of the variables to zero. In the Ridge regres-
sion model [28], a regularization function called L2-norm is used to shrink all
the coefficients towards zero. In the Elastic Net regression model [29], both
L1-norm and L2-norm are used to shrink the coefficients towards zero and set
some of the coefficients to zero.

Table 2 Functions of the LASSO, Ridge and Elastic Net regression models

Algorithm Penalty Term Function

LASSO L1-norm Variable selection, regularization
Ridge L2-norm Variable selection, regularization

Elastic Net L1-norm and L2-norm Variable selection, regularization

4.2.1 Data scaling

In the LASSO, Ridge and Elastic Net regression algorithms, a complexity
penalty is added to the regression coefficients in the cost function. The com-
plexity penalty penalizes a regression model with large regression coefficients
and prevents overfitting the model to the training data. The size of the regres-
sion coefficient associated with each variable depends on the magnitude of the
value in the variable. As a result, the LASSO, Ridge and Elastic Net regres-
sion algorithms can produce biased models if the values in the input data are
not standardized. For example, if the amount of minor page faults range from
2,000 to 4,000 and the amount of bytes written to the hard disk range from
27,000,000 to 58,000,000 bytes, the regression coefficient for minor page fault
of 1 minor page fault change will be a much larger regression coefficient in
regard to its change in minor page faults compared to a 1 byte change in the
number of bytes written to the disk. If a larger minor page fault coefficient
is obtained, the regularized regression algorithm will penalize that coefficient.
To solve this problem, we standardize the resource use data matrix and mes-
sage types data matrix so that all the values are centered around the mean
with a unit standard deviation. We input the standardized resource use data
matrix and message types data matrix into the LASSO, Ridge and Elastic Net
algorithms. Then, we (a) train the LASSO, Ridge and Elastic Net regression
algorithms on the resource use data matrix to obtain the fitted regression mod-
els, and (b) train the LASSO, Ridge and Elastic Net regression algorithms on
the message types data matrix to obtain the fitted regression models.
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4.3 Statistical Validation

After the LASSO, Ridge and Elastic Net regression models are trained, we
need to assess the accuracy of the regression models. The coefficient-of-
determination (R2) is a standard metric for measuring how well the observed
values are replicated by a regression model. In contrast to R2, the Root Mean
Squared Error (RMSE) is typically implemented by the cost function in the
regression model. It measures the average difference between the predicted val-
ues by the regression model and the observed values. The RMSE value ranges
from 0 to infinity. However, it is difficult to interpret a large RMSE value.
Differently to the RMSE, the R2 value ranges from 0 to 1. If R2 = 0, it indi-
cates that there is no linear relationship between the independent variables and
dependent variable. If R2 = 1, it indicates that there is a strong linear rela-
tionship between the independent variables and dependent variable. Thus, we
obtain the R2 values for the LASSO, Ridge and Elastic Net regression models.

Inflation in the R2 value: The R2 value is at least weakly increasing
when the number of independent variables in the regression model increase
[26]. As such, the R2 value alone cannot be used to determine if the full regres-
sion model or the reduced regression model accurately describes the trend in
the data. To address this issue, we apply a standard test called the F -Test
[30]. The F -Test compares statistical models that are fitted to a dataset and
identifies the model that best fits the data. First, we define two hypotheses
as (a) the null hypothesis is the sum-of-squares error of the full model regres-
sion function (SSE(F )) is close to the sum-of-squares error of the reduced
model regression function (SSE(R)), and (b) the alternate hypothesis is the
SSE(F ) differs greatly to the SSE(R). Then, we compute the general linear

F -statistic [30], F ∗ = (SSE(R)−SSE(F )
dfR−dfF

)÷ SSE(F )
dfF

, where dfR and dfF are the
degrees of freedom associated with the reduced model and full model error
sum-of-squares respectively. When F ∗ ≥ 3.95, we reject the null hypothesis in
favour of the alternate hypothesis.

5 Evaluation on Large Cluster Systems

We carry out studies on two representative large cluster systems. System A
and System B are composed of 3,936 nodes and 1,888 nodes respectively. Both
of these cluster systems provide batch job processing, computation resources
for multiple scientific applications, large data storage and high-speed I/O.
Many data centers also operate large cluster systems. Their cluster systems
also provide user services such as batch job processing, compute resources for
multiple applications, data storage and high-speed I/O.

Most cluster systems monitor the resource usage of jobs [24] and generate
system logs [20]. To validate our diagnostics approach, we obtained 12 months’
worth of resource usage data and system logs on Systems A and B. However,
we do not know the dates when node failures occurred. Thus, we randomly
select a range of dates on Systems A and B. Table 3 gives a summary of the
log-data analyzed.
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Table 3 Summary of log-data analyzed on Systems A and B.

System Days Resource use data System logs
Size Quantity Size Quantity

System A 26 122.9 GB 626,670,203 9.2 GB 64,569,329
System B 26 43.1 GB 201,285,323 1.04 GB 11,889,241

Node crashes are widely reported as one of the most common problems for
the cluster system administrator [31]. A soft lockup log-entry is generated in
the system logs when the Linux O/S hangs. To identify the dates of a node
crash, we implemented a function to search the system logs for log-entries
that contain the keywords soft lockup. Once a log-entry containing soft lockup

is found, we extract the date in that log-entry. We identified 4 dates of node
crashes on System A and 6 dates of node crashes on System B.

5.1 Phase 1: Identify the Resource Use Counters
Correlated to Major Page Faults

To ascertain whether our approach can identify the resource use counters which
are strongly correlated to major page faults, first we divide the resource use
data into four blocks, where each block contains one week worth of resource use
data. When a major page fault occurs, TACC Stats [24] increases the pgmajfault

counter. Thus, we set the pgmajfault counter as the dependent variable and set
all the other counters as independent variables. Then, we trained the LASSO,
Ridge and Elastic Net regression algorithms on all the resource use counters,
applied 10-fold cross validation and obtained the fitted regression models.

5.1.1 Compare the LASSO, Ridge and Elastic Net regression
models on System A

The R2 values for the LASSO, Ridge and Elastic Net regression models on
System A are given in Table 4. From Table 4, we observed that (a) the R2

value for the LASSO regression model in weeks 1 to 4 is 0.99, (b) the R2 value
for the Ridge regression model in week 1 is 0.92 and the R2 value for weeks 2
to 4 is 0.99, and (c) the R2 value for the Elastic Net regression model in weeks
1 to 4 is 0.99.

On System A, in weeks 1 to 4 the LASSO and Elastic Net regression
models obtained the highest R2 value of 0.99, indicating that those
regression models replicated the observed values with the highest accu-
racy. Moreover, both the LASSO and Elastic Net regression models
obtained the same R2 value. Thus, the LASSO regression model can
be used as the primary model.
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Table 4 R2 values for the LASSO, Ridge and Elastic Net regression models on System A

Week 1
LASSO Ridge Elastic Net

R2 value 0.99 0.92 0.99

Week 2
LASSO Ridge Elastic Net

R2 value 0.99 0.99 0.99

Week 3
LASSO Ridge Elastic Net

R2 value 0.99 0.99 0.99

Week 4
LASSO Ridge Elastic Net

R2 value 0.99 0.99 0.99

Next, we obtained the resource use counters that were assigned the largest
positive regression coefficients by the LASSO model. A summary of the
resource use counters and their regression coefficients for System A is given in
Table 5. From Table 5, we observed that (a) on week 1 the cpu 14 softirq,
cpu 15 irq, share setattr, cpu 12 iowait and share dirty_pages_hits

counters are correlated to the pgmajfault counter with regression coefficients
that range from 15 to 204264, (b) on week 2 the work alloc_node counter is
correlated to the pgmajfault counter with a regression coefficient of 17918,
(c) on week 3 the cpu 12 softirq, work alloc_node, cpu 14 softirq,
work seek and cpu 11 softirq counters are correlated to the pgmajfault

counter with regression coefficients that range from 436 to 544657, and (d)
on week 4 the work statfs, ps load_15 and ps load_5 counters are corre-
lated to the pgmajfault counter with regression coefficients that range from
63 to 69135. When a hardware signal or a software signal is sent to the
CPU that temporally stops a running program, the cpu irq or cpu softirq

counter is incremented, respectively. When a CPU is waiting on the system to
complete an outstanding hard disk I/O task, the cpu iowait counter is incre-
mented. When the attributes on the Lustre filesystem’s share partition are set,
the share setattr counter is incremented. When cached data in the main
memory is written by the host but not yet committed to the hard disk, the
share dirty_pages_hits counter is incremented. When a node on the work
partition of the Lustre filesystem is allocated, the work alloc_node counter
is incremented. When the Lustre filesystem returns the current read or write
location in a file opened on the work partition, the work seek counter is incre-
mented. When information about the mounted filesystem’s work partition is
returned, the work statfs counter is incremented. When a request for the 5
minutes and 15 minutes average load on the O/S is sent, the ps load_5 and
ps load_15 counters are incremented, respectively.
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Table 5 Regression coefficients for the resource use counters on System A

Week 1
Counter cpu 14 cpu 15 share cpu 12 share di-

softirq irq setattr iowait rty pa-
ges hits

Coeff 204264 7435 1321 15 15

Week 2
Counter work alloc node –
Coeff 17918 –

Week 3
Counter cpu 12 work all- cpu 14 work cpu 11

softirq oc node softirq seek softirq
Coeff 544657 76606 26168 1342 436

Week 4
Counter work statfs ps load 15 ps load 5 –
Coeff 69135 635 63 –

On System A, multiple CPU and Lustre filesystem resource use coun-
ters with large regression coefficients were identified in weeks 1, 3 and
4, and one Lustre filesystem resource use counter with a large regres-
sion coefficient was identified in week 2, indicating that those counters
are strongly correlated to major page faults.

Next, we determine if the resource use counters identified in Table 5 can be
used to identify a major page fault. We used the counters in Table 5 to train
the LASSO regression algorithm, applied 10-fold cross validation and obtained
the reduced regression model. Then, we performed the F -Tests on the full and
reduced regression models and obtained the F ∗ values. A summary of the F -
Tests for the LASSO regression model on System A is given in Table 6. From
Table 6, we observed that for weeks 1 to 4 the F ∗ value range from 0 to 0.022.
Since F ∗ < 3.95, we fail to reject the null hypotheses.

Next, we obtain the residuals in the reduced LASSO regression model. A
residual contains the difference between the value estimated by the regression
model and the observed value in the data. The proportion of residuals in the
reduced LASSO regression model for weeks 1, 2, 3 and 4 is shown in Fig. 6,
Fig. 7, Fig. 8 and Fig. 9. From Fig. 6, we observed that the residual value
ranges from 0.0001 to 0.0025. From Fig. 7, we observed that the residual value
ranges from 0.0005 to 0.002. From Fig. 8, we observed that the residual value
ranges from 0.00002 to 0.0001. From Fig. 9, we observed that the residual value
ranges from 0.00001 to 0.00012. When the residual value is close to 0, it shows
that the value estimated by the regression model is close to the observed value
in the data.



18

Table 6 F -tests for the LASSO regression model on System A

Week 1

SSE Degrees of freedom F ∗ R2

Full model 0.00035 1 0 0.99
Reduced model 0.00035 404 – 0.99

Week 2

SSE Degrees of freedom F ∗ R2

Full model 0.00135 1 0 0.99
Reduced model 0.00035 408 – 0.99

Week 3

SSE Degrees of freedom F ∗ R2

Full model 0.000000078 1 0.00038 0.99
Reduced model 0.00035 404 – 0.99

Week 4

SSE Degrees of freedom F ∗ R2

Full model 0.00000011 1 0.022 0.99
Reduced model 0.00035 406 – 0.99

Fig. 6 Proportion of residuals in the reduced LASSO regression model on week 1.

On System A, in weeks 1 to 4 the F ∗ value range from 0 to 0.022, indi-
cating that there is no difference between the full and reduced regression
models. The residual value in the reduced LASSO regression model
ranges from 0.00001 to 0.002, indicating that the estimated value is
close to the observed value. Furthermore, the R2 value for the full and
reduced regression models is 0.99. When the F ∗ value is less than 3.95,
the R2 values for the full and reduced regression models are the same,
and the residual values in the reduced LASSO regression model is close
to 0, the reduced LASSO regression model can be used as the primary
model for identifying a major page fault.
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Fig. 7 Proportion of residuals in the reduced LASSO regression model on week 2.

Fig. 8 Proportion of residuals in the reduced LASSO regression model on week 3.

Fig. 9 Proportion of residuals in the reduced LASSO regression model on week 4.

5.1.2 Compare the LASSO, Ridge and Elastic Net regression
models on System B

As was done with System A, we obtained the R2 values for the LASSO, Ridge
and Elastic Net regression models on System B. The R2 values for System B
are given in Table 7. From Table 7, we observed that (a) the R2 values for the
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LASSO regression model in weeks 1, 3 and 4 is 0.99 and its R2 value in week
2 is 0.84, (b) the R2 values for the Ridge regression model in weeks 1 to 4 is
0.99, and (c) the R2 values for the Elastic Net regression model in weeks 1, 3
and 4 is 0.99 and its R2 value in week 2 is 0.98.

Table 7 R2 values for the LASSO, Ridge and Elastic Net regression models on System B

Week 1
LASSO Ridge Elastic Net

R2 value 0.99 0.99 0.99

Week 2
LASSO Ridge Elastic Net

R2 value 0.84 0.99 0.98

Week 3
LASSO Ridge Elastic Net

R2 value 0.99 0.99 0.99

Week 4
LASSO Ridge Elastic Net

R2 value 0.99 0.99 0.99

On System B, in weeks 1 to 4 the Ridge regression model obtained the
highest R2 value of 0.99, indicating that the Ridge regression model
replicated the observed values with the highest accuracy.

Next, we obtain the resource use counters that were assigned large posi-
tive regression coefficients by the Ridge regression model. A summary of the
resource use counters and their regression coefficients for System B is given in
Table 8. From Table 8, we observed that in weeks 1 to 4 the regression coef-
ficients for cpu 2 irq, cpu 3 irq, cpu 4 irq, cpu 5 irq and cpu 14 irq

range from 3.1E+11 to 5.2E+11.

On System B, in weeks 1, 2, 3 and 4, multiple CPU counters with large
regression coefficients were identified, indicating that those counters are
strongly correlated to major page faults.

Next, we determine if the resource use counters identified in Table 8 can be
used to identify a major page fault. We used the counters in Table 8 to train
the Ridge regression algorithm, applied 10-fold cross validation and obtained
the reduced regression model. Then, we performed the F -Tests on the full and
reduced regression models and obtained the F ∗ values. A summary of the F -
Tests for the Ridge regression model on System B is given in Table 9. From
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Table 8 Regression coefficients of resource use counters on System B

Week 1
Counter cpu 2 irq cpu 3 irq cpu 4 irq cpu 5 irq cpu 14 irq
Coeff 5.2E+11 4E+11 3.9E+11 3.9E+11 3.8E+11

Week 2
Counter cpu 2 irq cpu 3 irq cpu 4 irq cpu 5 irq cpu 14 irq
Coeff 3.2E+11 3.2E+11 3.2E+11 3.2E+11 3.1E+11

Week 3
Counter cpu 2 irq cpu 3 irq cpu 4 irq cpu 5 irq cpu 14 irq
Coeff 3.5E+11 3.5E+11 3.5E+11 3.5E+11 3.4E+11

Week 4
Counter cpu 2 irq cpu 3 irq cpu 4 irq cpu 5 irq cpu 14 irq
Coeff 3.4E+11 3.4E+11 3.4E+11 3.4E+11 3.4E+11

Table 9, we observed that the F ∗ value for weeks 1 to 4 range from 0 to 0.0165.
Since F ∗ < 3.95 for weeks 1 to 4, we fail to reject the null hypotheses.

Table 9 F -tests for the Ridge models on System B

Week 1

SSE Degrees of freedom F ∗ R2

Full model 0.00017 1 0.00014 0.99
Reduced model 0.00018 404 – 0.99

Week 2

SSE Degrees of freedom F ∗ R2

Full model 0.0000066 1 0.00037 0.99
Reduced model 0.0000076 404 – 0.99

Week 3

SSE Degrees of freedom F ∗ R2

Full model 0.000012 1 0.0165 0.99
Reduced model 0.000092 404 – 0.99

Week 4

SSE Degrees of freedom F ∗ R2

Full model 0.000079 1 0.00015 0.99
Reduced model 0.000084 404 – 0.99

Next, we obtain the residuals in the reduced Ridge regression model. The
proportion of residuals for weeks 1, 2, 3 and 4 is shown in Fig. 10, Fig. 11,
Fig. 12 and Fig. 13. From Fig. 10, we observed that the residual value ranges
from 0.0002 to 0.0008. From Fig. 11, we observed that the residual value ranges
from 0.0002 to 0.003. From Fig. 12, we observed that the residual value ranges
from 0.0001 to 0.002. From Fig. 13, we observed that the residual value ranges
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Fig. 10 Proportion of residuals in the reduced Ridge regression model on week 1.

Fig. 11 Proportion of residuals in the reduced Ridge regression model on week 2.

Fig. 12 Proportion of residuals in the reduced Ridge regression model on week 3.

from 0.00001 to 0.00012. When the residual value is close to 0, it shows that
the value estimated by the regression model is close to the observed value in
the data.
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Fig. 13 Proportion of residuals in the reduced Ridge regression model on week 4.

On System B, in weeks 1 to 4 the F ∗ values range from 0 to 0.0165,
indicating that there is no difference between the full and reduced
regression models. The residual value in the reduced Ridge regression
model ranges from 0.0001 to 0.002, indicating that the estimated value
is close to the observed value. Furthermore, the R2 value for the full
and reduced regression models is 0.99. When the F ∗ value is less than
3.95, the R2 values for the full and reduced regression models are the
same, and the residual values in the reduced Ridge regression model
is close to 0, the reduced Ridge regression model can be used as the
primary model for identifying a major page fault.

5.1.3 Summary of Findings

On System A, from weeks 1 to 4, an R2 value of 0.99 was obtained for the
reduced LASSO regression model and the residual values range from 0.00001
to 0.002. This result shows that the estimated value from the reduced LASSO
regression model is close to the observed value in the data. Thus, the reduced
LASSO regression model can be used to identify a major page fault.

On System B, from weeks 1 to 4, an R2 value of 0.99 was obtained for
the reduced Ridge regression model and the residual values range from 0.0001
to 0.002. This result shows that the estimated value from the reduced Ridge
regression model is close to the observed value in the data. Thus, the reduced
Ridge regression model can be used to identify a major page fault.

From our evaluation of the LASSO, Ridge and Elastic Net regression mod-
els, we showed that (a) the reduced LASSO regression model identified major
page faults with the highest accuracy on System A, and (b) the reduced Ridge
regression model identified major page faults with the highest accuracy on
System B. Thus, two different regression models are required for identifying
major page faults on two different cluster systems.
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5.2 Phase 2: Identify the System Events Correlated to
Page Fault Events

The first phase of our analysis is characterized by the identification of the
counters that are strongly correlated to major page faults. On System A, we
observed that (a) the LASSO regression model replicated the observed values
in the resource use data with the highest accuracy, and (b) the CPU and Lustre
filesystem counters that were assigned large positive regression coefficients can
be used to train the regression model to identify a major page fault. On System
B, we observed that (a) the Ridge regression model replicated the observed
values in the resource use data with the highest accuracy, and (b) the CPU
interrupt counters that were assigned large positive regression coefficients can
be used to train the regression model to identify a major page fault. Our
next objective is to ascertain whether our approach can identify the system
events which are strongly correlated to a page fault event. To attain this, we
determine the regression coefficients for multiple system events.

Therefore, we obtain the dates of the page fault events in the system logs.
We implemented a function in our diagnostics workflow to search the list of
message types containing the keywords “page fault”. We scanned the lists of
message types for all the 26 days on Systems A and B. On System A, we
identified one message type that contained the keywords do_page_fault for
4 days. On System B, there is no “page fault” message in the list of message
types for all the 26 days. Thus, we focus on the system logs on System A. We
set the do_page_fault message type as the dependent variable and set all the
other message types as independent variables. We trained the LASSO, Ridge
and Elastic Net regression algorithms on all the message types, applied 10-fold
cross validation and obtained the fitted regression models.

The R2 values for the LASSO, Ridge and Elastic Net regression models on
System A are given in Table 10. From Table 10, we observed that (a) the R2

value for the LASSO regression model in days 1, 3 and 4 is 0.99 and the R2

value in day 2 is 0.98, (b) the R2 value for the Ridge regression model in days
2 and 4 is 0.99, the R2 value in day 1 is 0.97 and the R2 in day 3 is 0.92, and
(b) the R2 value for the Elastic Net regression model in days 1 and 4 is 0.99,
the R2 value in day 2 is 0.98 and the R2 value in day 3 is 0.86.

On System A, while the LASSO regression model obtained the highest
R2 value of 0.99 in days 1, 3 and 4, the Ridge regression model obtained
the highest R2 value of 0.99 in day 2, indicating that the LASSO and
Ridge regression models replicated the observed values with the highest
accuracy on different dates.

Next, we obtained the message types that were assigned the largest pos-
itive regression coefficients by (a) the LASSO regression model in days 1,
3 and 4, and (b) the Ridge regression model in day 2. A summary of
the message types and their regression coefficients is given in Table 11.
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Table 10 R2 values for the LASSO, Ridge and Elastic Net regression models on System A

Day 1
LASSO Ridge Elastic Net

R2 value 0.99 0.97 0.99

Day 2
LASSO Ridge Elastic Net

R2 value 0.98 0.99 0.98

Day 3
LASSO Ridge Elastic Net

R2 value 0.99 0.92 0.86

Day 4
LASSO Ridge Elastic Net

R2 value 0.99 0.99 0.99

From Table 11, we observed that (a) on day 1 the lustre ll_nopage,
filemap_nopage, cancel RPC and request timed outmessage types are cor-
related to the do_page_fault message type with regression coefficients that
range from 0.003 to 0.99, (b) on day 2 the recalc_sigpending, segfault sus,
sock_aio_write and segfault pgm message types are correlated to the
do_page_fault message type with a regression coefficient of 0.007, (c) on
day 3 the alloc_pages message type is correlated to the do_page_fault

message type with a regression coefficient of 0.09, and (d) on day 4 the
task blocked, down_read, import_delay and find busiest_group message
types are correlated to the do_page_fault message type with regression coef-
ficients that range from 1.2 to 11. When there is no contiguous block of
memory in the memory cache or the buffer cache, a lustre ll_nopage and
a filemap_nopage message are generated. When a request sent from a client
to the Lustre filesystem server takes longer to reach the server than it is pre-
pared to wait, a cancel RPC and a request timed outmessage are generated.
When the O/S returns a set of signals that were delivered to a calling thread,
a recalc_sigpending message is generated. When a message is sent on a
network socket, a sock_aio_write message is generated. When a program
attempts to write or read an invalid memory location, a segfault message is
generated. When the O/S attempted to allocate a block or more pages in the
main memory, an alloc_pages message is generated. When a task is blocked
by the O/S due to high server I/O load, a task blocked message is generated.
The task blocked message contained the word bash, which represents the Linux
bash shell. When a process acquires read-only access to a new mapping in the
virtual address space of the calling process, a down_read message is generated.
When a message sent between two processes is delayed, a import_delay mes-
sage is generated. When an instruction to identify a set of busy CPUs is sent
to the job scheduler, a find busiest_group message is generated.
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Table 11 Regression coefficients for the message types on System A

Day 1
Message lustre ll nopage filemap nopage cancel RPC request timed out
Coeff 0.99 0.003 0.003 0.003

Day 2
Message recalc segfault sus sock aio segfault pgm

sigpending write
Coeff 0.007 0.007 0.007 0.007

Day 3
Message alloc pages –
Coeff 0.09 –

Day 4
Message task blocked bash down read import delay find busiest group
Coeff 11 1.5 1.2 1.2

On System A, in days 1 to 4, multiple system events with regression
coefficients ranging from 0.003 to 11 were identified, indicating that
those system events are correlated to the page fault event.

Next, we determine if the message types identified in Table 11 can be used
to identify a page fault event. We (a) used the message types on days 1, 3 and
4 to train the LASSO regression algorithm, and (b) used the message types
on day 2 to train the Ridge regression algorithm. We applied 10-fold cross
validation and obtained the reduced LASSO and Ridge regression models.
Then, we performed the F -Tests on the full and reduced regression models and
obtained the F ∗ values. A summary of the F -Tests for the LASSO and Ridge
regression models are given in Tables 12 and 13, respectively. From Table 12,
we observed that the F ∗ value for days 1, 3 and 4 range from 0.00017 to 0.43.
Since F ∗ < 3.95 for days 1, 3 and 4, we fail to reject the null hypothesis.
Furthermore, we observed that (a) on days 1 and 3 the R2 value for the full
and reduced regression models is 0.99, and (b) on day 4 the R2 value for the
full and reduced regression models is 0.99 and 0.24, respectively. From Table
13, we observed that the F ∗ value for day 2 is 0.0022. Since F ∗ < 3.95, we fail
to reject the null hypothesis. Furthermore, we observed that the R2 value for
the full and reduced regression models is 0.99.

Next, we obtain the residuals in the reduced regression model. The propor-
tion of residuals for days 1, 2 and 3 is shown in Fig. 14, Fig. 15 and Fig. 16.
From Fig. 14, we observed that the residual value ranges from 0.0001 to 0.003.
From Fig. 15, we observed that the residual value ranges from 0.001 to 0.01.
From Fig. 16, we observed that the residual value ranges from 0.001 to 0.008.
When the residual value is close to 0, it shows that the value estimated by the
regression model is close to the observed value in the data.
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Table 12 F -tests for the LASSO regression model on System A

Day 1

SSE Degrees of freedom F ∗ R2

Full model 0.00003 1 0.00017 0.99
Reduced model 0.000035 955 – 0.99

Day 3

SSE Degrees of freedom F ∗ R2

Full model 0.0114 1 0.0012 0.99
Reduced model 0.0147 233 – 0.99

Day 4

SSE Degrees of freedom F ∗ R2

Full model 0.0027 1 0.43 0.99
Reduced model 0.39 319 – 0.24

Table 13 F -test for the Ridge regression model on System A

Day 2

SSE Degrees of freedom F ∗ R2

Full model 0.003 1 0.0022 0.99
Reduced model 0.005 293 – 0.99

Fig. 14 Proportion of residuals in the reduced LASSO regression model on day 1.

From days 1 to 3, the F ∗ value range from 0.00017 to 0.0022, indicat-
ing that there is no difference between the full and reduced regression
models. The residual value in the reduced regression model ranges from
0.0001 to 0.001, indicating that the estimated value is close to the
observed value. Furthermore, the R2 value for the full and reduced
regression models is 0.99. When the F ∗ value is less than 3.95, the R2

values for the full and reduced regression models are the same, and the
residual values in the reduced regression model is close to 0, the reduced
regression model can be used as the primary model for identifying a
page fault event.
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Fig. 15 Proportion of residuals in the reduced Ridge regression model on day 2.

Fig. 16 Proportion of residuals in the reduced LASSO regression model on day 3.

Next, we obtained the residual values for the full and reduced LASSO
regression model for day 4. The proportion of residual values for the full and
reduced LASSO regression model is shown in Fig. 17 and Fig. 18, respectively.
From Fig. 17, we observed that the residual value ranges from 0.001 to 0.03.
From Fig. 18, we observed that (a) the residual value ranges from 0.01 to 0.25,
and (b) a large proportion of residual values range from 0.1 to 0.25. When the
residual value is not close to 0 and there is a large proportion of those residual
values, it shows that the value estimated by the regression model is not close
to the observed value in the data.

On day 4, the R2 value for the reduced Ridge regression model is 0.24
and a large proportion of the residual values range from 0.1 to 0.25,
indicating that the value estimated by the reduced regression model
is not close to the observed value. However, the R2 value for the full
Ridge regression model is 0.99 and the residual values range from 0.001
to 0.03, indicating that the value estimated by the full Ridge regression
model is close to the observed value. Thus, the full regression model
can be used as the primary model for identifying a page fault event.
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Fig. 17 Proportion of residuals in the full LASSO regression model on day 4.

Fig. 18 Proportion of residuals in the reduced LASSO regression model on day 4.

5.2.1 Summary of Findings

On System A, from days 1 to 3, an R2 value of 0.99 was obtained from the
reduced regression model and the residual values range from 0.0001 to 0.001.
This result shows that the value estimated by the reduced regression model is
close to the observed value in the data. Thus, the reduced regression model
can be used to identify a page fault event. On day 4, an R2 value of 0.99 was
obtained from the full LASSO regression model and the residual values range
from 0.001 to 0.03, but the R2 value of 0.24 was obtained from the reduced
LASSO regression model and a large proportion of the residual values range
from 0.1 to 0.25. This result shows that the value estimated from the full
LASSO regression model is close to the observed value in the data.

From our evaluation of the LASSO, Ridge and Elastic Net regression mod-
els, we showed that (a) the reduced Ridge regression model identified the page
fault events with the highest accuracy on day 2, (b) the reduced LASSO regres-
sion model identified the page fault events with the highest accuracy on days 1
and 3, and (c) the full LASSO regression model identified the page fault events
with the highest accuracy on day 4. Thus, additional system events can be
used to train an accurate LASSO regression model to identify the page fault
events.
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5.3 Phase 3: Identify the Page Fault Events Correlated
to Soft Lockup Events

The second phase of our analysis is characterized by the identification of the
system events that are strongly correlated to the page fault event. On System
A, we observed that (a) the LASSO and Ridge regression models replicated
the observed values with the highest accuracy on different days, and (b) mul-
tiple system events can be used to train the regression models to identify a
page fault event. Our next objective is to ascertain whether our approach
can identify the nodes which are associated with the page fault and soft
lockup events. To achieve this, we (a) correlate the do_page_fault events to
BUG: soft lockup events, and (b) identify the nodes which are associated
with the do_page_fault and BUG: soft lockup events.

First, we obtain the Pearson correlation coefficient between the
do_page_fault and BUG: soft lockup events on days 1 to 4. We imple-
mented two functions in our diagnostics workflow: (a) a function that searches
for log-entries containing the do_page_fault or BUG: soft lockup keywords,
and (b) a function that calculates the Pearson correlation coefficient between
the do_page_fault and BUG: soft lockup events by time-bins. We obtained
the Pearson correlation coefficient r using the formula given as follows [26]:
r = Σn

i=1(xi − x̄)(yi − ȳ)÷
√

Σn
i=1(xi − x̄)2Σn

i=1(yi − ȳ)2 where xi is the value
of the do_page_fault event at time-bin i, x̄ is the mean of the values of the
do_page_fault event, yi is the value of the BUG: soft lockup event at time-
bin i, ȳ is the mean of the values of the BUG: soft lockup event, and n is
the number of time-bins. The Pearson correlation coefficient ranges from -1 to
1, where -1 represents perfect negative correlation, 0 represents no correlation
and 1 represents perfect positive correlation. We are interested in page fault
events which are strongly positive correlated to soft lockup events. To interpret
the strength of the correlation coefficient, we use the following rules of thumb
[26]: (a) strong positive correlation 0.8 to 0.99, (b) moderate positive correla-
tion 0.31 to 0.79, and (c) weak positive correlation 0.1 to 0.3. For days 1 to
3, we obtained the Pearson correlation coefficient of 0.22, 0.47 and 0.62. This
result shows that the do_page_fault and BUG: soft lockup events were (a)
weakly positive correlated on day 1, and (b) moderately positive correlated
on days 2 and 3. For day 4, we obtained the Pearson correlation coefficient
of 0.92. This result shows that the do_page_fault and BUG: soft lockup

events were strongly positive correlated.

5.3.1 Identify the nodes associated with page fault and soft
lockup events

Next, we obtain the node numbers in the system logs that contain those
do_page_fault and BUG: soft lockup messages on day 4. We implemented
a function in our diagnostics workflow to: (a) extract the node number in the
page fault and the soft lockup log-entries, and (b) match the node number in
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the page fault log-entry to the soft lockup log-entry. We identified five com-
pute nodes that contained both page fault and soft lockup messages. The node
numbers are given in Table 14.

Table 14 List of compute nodes on System A on Day 4

Log-entry
do_page_fault soft lockup

Node i114-206, i117-201, i114-206, i117-201,
number i123-112, i136-407, i123-112, i136-407,

i178-105 i178-105

5.3.2 Detailed diagnosis

On System A, in week 4, requests for information about the mounted filesystem
and the average load on the Linux O/S were made. These events were corre-
lated to the do_page_fault events that occurred during the week. For days
1 to 3, the do_page_fault events were not strongly correlated to soft lockup
events. This shows that page fault events did not lead to compute node soft
lockups on days 1 to 3. On day 4, the Linux O/S blocked the bash shell from
executing due to high server I/O load. A process attempted to acquire read-
only access to a virtual memory address space. A message sent by a process to
another process was delayed, and the job scheduler was instructed to identify
the busiest CPUs. These system events were correlated to the do_page_fault
event, and the do_page_fault event was strongly positive correlated to soft
lockup events. Thus, this result shows that page fault events led to compute
node soft lockups on day 4.

6 Threats to Validity

We have identified the following threats to validity (a) internal validity threat,
and (b) external validity threat.

An internal validity threat is concerned with the factors which might influ-
ence the results presented in this paper. Those factors include (a) the selection
of the dates of the resource use data and system logs, and (b) the validation of
the regression models. Regarding the selection of the dates of the system log-
data, we may have missed dates of page fault events and compute node soft
lockups. To resolve this issue, we implemented search functions in our diagnos-
tics workflow and searched the system logs for all the log-entries that contain
the keywords “page fault” or “soft lockup”. Regarding the validation of the
regression models, our analysis is based on the standard statistical validation
approach. We did not consider other regression algorithms because they are
beyond the scope of this paper, nor analyze the source code with the system
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logs as it would require a substantial amount of resources out of the reach of
this paper.

An external validity threat is concerned with applying the conclusions of
this study outside its context. Our results are based on two large cluster sys-
tems and may not apply to all large cluster systems. However, the cluster
systems we used to evaluate our diagnostics workflow are representative for
many large cluster systems. Regardless of the generalizability of our conclu-
sions, we showed that (a) multiple CPU and Lustre filesystem counters and
multiple system events are correlated to major page faults, and (b) page fault
events and compute node soft lockups occurred on multiple nodes.

7 Conclusion and Future Work

An approach based on regression techniques is developed to diagnose major
page faults in large cluster systems. We showed that multiple CPU and Lus-
tre filesystem resource use counters are strongly correlated to major page
faults, multiple system events are correlated to page fault events, and iden-
tified multiple compute nodes that crashed due to a page fault. We applied
the coefficient-of-determination and F -tests and ensured accurate diagnosis of
major page faults and page fault events.

From this study, we learned that (a) the reduced LASSO and Ridge regres-
sion models identified major page faults with the highest accuracy on System
A and System B, respectively, (b) the reduced Ridge regression model iden-
tified the page fault events with the highest accuracy on day 2 on System A,
(c) the reduced LASSO regression model identified the page fault events with
the highest accuracy on days 1 and 3 on System A, and (d) the full LASSO
regression model identified the page fault events with the highest accuracy on
day 4 on System A. As such, while multiple resource use counters and multiple
system events can enhance the accuracy of the regression model in diagnos-
ing major page faults and page fault events, incorporating additional system
events in the regression algorithm can further enhance its accuracy in diagnos-
ing page fault events. In our future work, we plan to apply our approach to
diagnose other types of faults other than page faults in large cluster systems.
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