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Abstract
Consider a mobile robot exploring an office building with the aim of observing as much human activity as possible over
several days. It must learn where and when people are to be found, count the observed activities, and revisit popular places at
the right time. In this paper we present a series of Bayesian estimators for the levels of human activity that improve on simple
counting. We then show how these estimators can be used to drive efficient exploration for human activities. The estimators
arise from modelling the human activity counts as a partially observable Poisson process (POPP). This paper presents novel
extensions to POPP for the following cases: (i) the robot’s sensors are correlated, (ii) the robot’s sensor model, itself built
from data, is also unreliable, (iii) both are combined. It also combines the resulting Bayesian estimators with a simple, but
effective solution to the exploration-exploitation trade-off faced by the robot in a real deployment. A series of 15 day robot
deployments show how our approach boosts the number of human activities observed by 70% relative to a baseline and
produces more accurate estimates of the level of human activity in each place and time.

Keywords Bayesian estimators · Poisson processes · Exploration-exploitation · Human robot interaction

1 Introduction

Autonomousmobile robots are being developed to operate in
human populated spaces, such as homes and offices (Hawes
et al., 2016). The biggest benefits of mobile robots operat-
ing in these spaces over any other intelligent system such
as smart houses and assisted living systems are the mobility
and the ease of deployment since there is no need to modify
existing environment structures. Since, the robot is in human-
centered environments, it is useful for these robots to predict
patterns of human activity, so as to learn about those activ-
ities (Coppola et al., 2016; Hogg & Cohn, 2016) or to plan
interactions with humans (Street et al., 2020). This paper is
concernedwith how a robot can correctly estimate howmany
human activities it has encountered, predict how many will
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occur in a particular location at a particular time, and then
use these to optimize the exploration-exploitation trade-off
that occurs during active learning, so as to observe as many
human activities as possible during a deployment.

Consider amobile service robot thatworks in a large office
building. Let us suppose that one of the system designers’
aims is for the robot to observe and thereby learn about the
various activities performed by humans, and for this learn-
ing to have to occur over several days or weeks. To achieve
this goal, the robot must learn where and when people are
to be found, count the observed activities (perhaps grouped
by their categories), and revisit places at times when those
activities can be observed in sufficient number. For example,
to learn about eating activities the robot would benefit from
visiting the canteen at lunchtime, rather than at the start of
the day. If such a robot is to be deployed to a variety of build-
ings, without re-programming of rules by hand, it should
autonomously learn the spatio-temporal distribution of these
activities and exploit that learning to observe a useful variety
and number of activities.

This involves solving two problems. First, the robot must
estimate where it can observe the greatest number of human
activities at each time of the day. Second, as the robot is
learning it should trade-off exploring for new time-place
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Fig. 1 Our mobile robot observes people at an event

combinations where it might discover a high-level of human
activity and re-visiting those time place combinations where
it already knows that a wealth of human activity is to be
found. This second problem involves solving an exploration-
exploitation trade-off.

This paper presents a Bayesian method to solve both these
problems in the casewherewe treat human activities as count
data. TheBayesian frameworkmodels not only the frequency
of human activities and the variation in this, but also the
robot’s uncertainty about the mean rate at which activities
occur. Thus, the Bayesian estimator captures both inherent
process uncertainty (aleatoric uncertainty) and the robot’s
additional uncertainty in what it knows about the process
(epistemic uncertainty). It can also correct for inherent biases
(a tendency to false positives or false negatives in the sensory
system). Because of this it has two advantages over a baseline
frequentist estimator. First, itwill producemore accurate esti-
mates and predictions of human activity levels than a method
that does not model classification errors. Second, because
it captures epistemic uncertainty it can be used to perform
active learning. This active learning problem is fundamen-
tally an exploration-exploitation trade-off. Should the robot
visit a place at a time such that it can exploit what it already
knows about the likely activity level, or should it explore a
place-time combination about which it knows less, but about
which it might learn and so lead to a higher rate of activity
observation in the long run? This active learning problem is
intractable in the strict formulation, since it involves reason-
ing over a tree of possible knowledge states. Despite this,
there are effective, heuristic active-learning rules that are
quick to evaluate (Fig. 1).

We develop a series of Bayesian estimators. Then we
present a method to use these to drive exploration. This uses
both a Fourier transform to capture the periodicity of human
activities and the epistemic uncertainty in the activity rate as
captured by the posterior. Using this estimation, prediction
and exploration technique, we then present the results of sev-

eral long-run deployments of a real robot in a public building.
These long-run deployments (15 days per treatment) are used
to test whether the different Bayesian estimators, together
with the solution to the exploration-exploitation trade-off,
result in the robot observing greater numbers of human activ-
ities than a baseline frequentist method.

This paper builds on our earlier work, which showed
how to count reliably from a single unreliable detector or
from multiple, unreliable, uncorrelated detectors (Jovan et
al., 2018). That work formulated the problem as Bayesian
inference for a partially observable Poisson process (POPP)
and showed an improvement on a baseline model assuming
sensor reliability, termed the fully observable Poisson pro-
cess (FOPP).

This paper makes the following technical contributions.
First, we extend the POPP model to create the correlated
POPP (C-POPP) model. This supports inference when the
robot has multiple detectors with correlated outputs. Second,
the observation model used to correct counts in the POPP
model is itself constructed from data and so has both epis-
temic and aleatoric uncertainties. The POPP and C-POPP
models only take account of the aleatoric uncertainty in the
observationmodel.We extend the POPPmodel to include the
epistemic uncertainty, resulting in thePOPP-Betamodel. The
third contribution is to combine the benefits of C-POPP and
POPP-Beta. This results in the POPP-Dirichlet model, which
works for correlated sensors and epistemic uncertainty in the
observationmodel.We demonstrate the inferential properties
of POPP and these three extensions in both numerical sim-
ulations. The fourth contribution is that we show how these
models can be used solve the exploration-exploitation prob-
lem by combining Fourier transform that allows us to exploit
the periodicity of human activities with an upper bound esti-
mate derived from the posterior. Finally, the fifth contribution
is an extensive real world evaluation on a long-run robot.
We compare the exploration and estimation performance
of the FOPP, POPP and POPP-Beta models in a series of
three 15-day deployments. Analysis shows that the POPP
and POPP-Beta models are able to explore more efficiently,
encounteringmore people than the baseline FOPPmodel and
that they produce superior estimates of the rate of human
activities.

2 Related work

As requirements to employ theFOPPmodel are unlikely to be
met, some existingworks on statistical models propose away
to work with observation data that are not fully observable.
In some literature, this is termed misclassified counts. Mis-
classification happens when there are false positive counts
or false negative counts (or both). False positive counts, also
called the overcount, occur when the count includes events
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other than those of interest. False negative counts, also called
the undercount, occur when some of the events of interest
are missed. Work on the undercounting problem is common.
Whittemore andGong estimated cervical cancer rates by tak-
ing into account false negative data (Whittemore & Gong,
1991). Winkelmann and Zimmermann introduced a com-
bination of a Poisson regression model with a logit model
for under-counting, yielding the Poisson-Logistic (Pogit)
model (Winkelmann & Zimmermann, 1993). They applied
this to model the number of days employees were absent
from a workplace. Dvorzak and Wagner adapted the Pogit
model to use a small set of validation data, to provide infor-
mation about the true counts (Dvorzak & Wagner, 2016).
They performed a Bayesian analysis of the Poisson-Logistic
model and incorporateBayesian variable selection to identify
regressors with a non-zero effect and also to restrict param-
eters of the Poisson-Logistic model.

There is less prior work on the Poisson model for the
case where the data may either be undercounted or over-
counted (Sposto et al., 1992; Bratcher & Stamey, 2002;
Stamey et al., 2004; Stamey & Young, 2005). Sposto et al.
followed a frequentist approach to estimate both cancer and
non-cancer death rates, assuming false negatives are pos-
sible on both sides of these counts (Sposto et al., 1992).
In (Bratcher & Stamey, 2002), Bratcher and Stamey used
a Bayesian method to estimate Poisson rates in the presence
of both undercounts and overcounts, borrowing the double
sampling technique introduced in (Tenenbein, 1970). They
extended their work to a fully Bayesian method for interval

prediction of the unobservable actual count in future sam-
ples, given a current double sample (Stamey et al., 2004).
Stamey and Young (Stamey & Young, 2005) present closed-
form expressions for maximum likelihood estimators of the
false negative rate, the false positive rate, and the Poisson rate
for the model proposed in (Bratcher & Stamey, 2002). The
estimators are straightforward to calculate and to interpret
in terms of evaluating the effectiveness of using unreliable
counts.

What we propose is similar to that of Bratcher and
Stamey (Bratcher & Stamey, 2002). Both aim to accurately
estimate the arrival rate parameter of a single Poisson pro-
cess. Bratcher and Stamey utilise double sampling to obtain
the true count together with false positive and false negative
counts. They estimate the rate via MCMC since no closed
form is found for λ, and the calculation of the full posterior
is expensive. Double sampling assumes access to two coun-
ters with one always being a perfect counter. Our work goes
beyond this since we consider multiple, potentially corre-
lated, but always unreliable counters. We extend the work of
Jovan et al in (Jovan et al., 2018) by presenting three exten-
sions of our original model.

In Sect. 8 we validate our work by demonstrating how it
can be used to improve mobile robot exploration missions
to observe humans. Existing work in this field is typically
driven by the entropy in the model of a process to maximise
the outcome of interests from an exploration (e.g. the size
of area explored, the number of observed humans). How-
ever, many existing works rely on the assumption that the

Fig. 2 Acycle process from count data collection, Poisson process esti-
mation, through exploration plan generation for one day in an office-like
environment. Count data are collected through perception algorithms
or sensors while the robot patrols. The raw count data from multiple
sensors are correctly filtered and merged via Bayesian inference taking

into account the unreliability and correlation of each sensor to estimate
the underlying Poisson process on each region of interest. Each esti-
mate of the Poisson process is used by the exploration planner to find
the maximum upper-bound of the Poisson process at each time interval
and the corresponding region is chosen as a place to visit
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sensors are fully reliable and data is fully observable; the
collected data is, relatively, free from inherent biases.Molina
et al. (2022) is a prime example of this work with the state
of the art result in robot explorations. Molina et al. (2022)
focuses on robot explorations in learning human motion pat-
terns by (1) exploiting the temporal aspects of humanmotion
through spectral analysis to decide when to visit particular
cells and (2) incorporating entropy calculation in the prob-
abilistic maps to decide which places/cells worth visiting.
Kaplow et al. (2010) employed a variable resolution map in
combination with POMDP formulation to achieve scaling
with a robotic wheelchair navigation and exploration. Task-
level robot control with a decision-theoretic framework was
first tackled by Pineau et al. in (Pineau et al., 2003) using
a POMDP planner to derive a high-level controller for a
mobile robot with a dialogue system by exploiting hierar-
chy to reduce the state space.

There are couple of works that do reason about sensing
reliability in an attempt to correct biases in the sensors with
the application on robot explorations. Martinez-Cantin et al.
(2009) give a POMDP formulation of active visual map-
ping, use direct policy search to find a solution, and use
Monte Carlo simulation to generate imaginary observations
and action outcomes during optimization. The main chal-
lenge of decision-theoretic planning in partially observable
environments is intractability. Velez et al. (2012) planned
trajectories in a continuous space to maximize the reliability
of object detection using a learned observation model. The
key contribution is the use of a model of the correlations in
sensor behaviour at nearby locations, thus driving the robot
to gather more informative views. Similar to the work of
Velez et al (Velez et al., 2012) in utilizing sensor behaviours
in driving the robot to gather more information, our work
goes further by utilizing an exploration-exploitation mecha-
nism provided by Bayesian optimization tomaximize human
observations in the areas of interest. In contrast to the work of
Molina et al. (2022), we demonstrate how robot exploration
can be improved by correcting any systematic bias produced
by robot’s sensory system. Our main work contribution can
complement any robot exploration technique by replacing
’Exploration Planner’ module in Fig. 2 with any other explo-
ration technique (e.g. entropy-based exploration).

3 Fully observable Poisson process

A fully observable Poisson process (FOPP) is a counting
process N (t) where a counter tells, without error, the num-
ber of events that occurred during a specified interval [0, t).
N (t) = ci states that in the i-th observation of interval [0, t),
there are ci events. The number of events N (t) in a finite
interval of length t obeys the Poisson distribution

Poi(N (t) = c | λ) = e−λλc

c! (1)

where λ represents the arrival rate in a fixed interval [0, t).
Bayesian estimation for fully observable Poisson processes
is straightforward. Given a Gamma density

Gam(λ | α, β) =
βα

�(α)
λα−1e−βλ (2)

as a prior distribution over the parameter λ, where α, β are
the shape and the rate parameters, the posterior over λ for a
FOPP can be calculated via Bayesian inference with

P(λ | c1, . . . , cn) ∝ Poi(c1, . . . , cn | λ) Gam(λ | α, β)

= Gam

(
λ

∣∣∣ α +
n∑

i=1

ci , β + n

)

(3)

This adds the sample counts
∑n

i=1 ci to the hyper-
parameter α of the gamma prior, and adds the number of
observations n to the hyper-parameter β of the gamma prior.

The FOPP model requires a single reliable sensor. With
an unreliable sensor, FOPP inferences will be incorrect.

4 The partially observable Poisson process

The partially observable Poisson process (POPP) is a count-
ing process N (t) with arrival rate λ where the number of
events appearing over the time interval [0, t) is observed by
one or more unreliable counters. The concept was firstly
introduced in Jovan et al. (2018). The definition brings a
distinction between the true count (or simply count), which
refers to the number of events that actually occurred, and the
sensed count, which refers to the count obtained by a counter
(or sensor). Let ci represent the true count over the interval
[0, t) during the i-th observation.Withm counters unreliably
observing ci , we use s j,i to represent the sensed count given
by sensor j in the i-th observation within the interval [0, t)
with 1 ≤ j ≤ m. Let si = (s1,i , . . . , sm,i ) represent a vector
of sensed counts from m sensors for the i-th observation of
the process.

Figure 3 presents the graphical model derived from the
definition of the POPP. This shows that the true count ci has
become a latent variable which can only be inferred from the
sensed count. The posterior of λ is then inferred from the
posterior of ci after n observations, i = 1 . . . n.

The rate parameter λ of the POPP model can be inferred
by marginalising over all possible true count values ci and
in the distribution of true counts given sensed counts P(ci |
si). Given n observations of the underlying process, let all
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Fig. 3 Graphical representation of the partially observable Poisson pro-
cess. Observable random variables are represented in shaded grey

observed true counts be represented by c = (c1, . . . , cn),
and all sensed counts by s = (s1 . . . sn), for 1 ≤ i ≤ n
(recalling each sn is produced by m sensors). The posterior
of λ is then:

P(λ | s)=
∞∑

cn=0

. . .

∞∑
c1=0

P(λ | c) P(c | s) (4)

where true count probabilities, P(λ | c), can be drawn from
the original FOPP definition:

P(λ | c) = Gam

(
λ

∣∣∣ α +
n∑

i=1

ci , n + β

)
(5)

If we assume that the sensor counts for observation period
i are conditionally independent (i.e. uncorrelated) given the
true count ci , then the probability of a collection of observa-
tions given the true count is defined as follows:

P(si | ci )=
m∏
j=1

P(s j,i | ci ) (6)

Using this, the probability of a particular sequence of n
counts, given a sequence of n observations each fromm sen-
sors, P(c | s), can be defined as:

P(c | s) ∝ P(s1, . . . , sn | c) P(c)

∝
n∏

i=1

P(si | ci ) P(ci | ci−1, . . . , c1)

∝
n∏

i=1

m∏
j=1

P(s j,i | ci ) P(ci | c−1)

(7)

where c−1 = ci−1, . . . , c11 and P(ci | c−1) can be calcu-
lated as:

1 c−1 does not exist whenever i = 1, and
P(ci ) = ∫ ∞

λ=0 P(ci | λ) Gam(λ | α, β) dλ

P(ci | c−1)=
∫ ∞

λ=0
P(ci | λ) P(λ | c−1) dλ (8)

To complete Eq. 7 we must also define P(s j,i | ci ). The
Poisson limit theorem states that the Poisson distribution
may be used as an approximation to the binomial distri-
bution (Papoulis & Pillai, 2002). Using this theorem as the
foundation, an arbitrarily close approximation to the proba-
bility P(s j,i | ci ) is defined by assuming there exists a small
enough finite subinterval of length δ for which the proba-
bility of more than one event occurring is less than some
small value ε and that δ is small enough that ε is negligible.
With this assumption, interval [0, t) is split into l smaller
subintervals I1, . . . , Il of equal size, with the condition that
l > λ. Consequently, the whole interval [0, t) = I1, . . . , Il
becomes a series of Bernoulli trials, where the kth trial cor-
responds to whether (1) an event ek happens with probability
λ/l and (2) a sensor j captures the event ek as the detection
dk at the subinterval Ik .

Following this, P(s j,i | ci ) can be defined using of the
count of true positives given ci subintervals, and the false
positives given the remaining l − ci subintervals. Let the
probability of a true positive detection (TP) for sensor j in a
single subinterval be τ j = Pj (d | e=1), and the probability
of a false positive detection (FP) be ξ j = Pj (d | e=0). Thus
P(s j,i | ci ) is defined as a sumover all possible sensed counts
of the product of two binomial distributions B(r | n, π):

P(s j,i | ci ) =
ci∑
r=0

B
(
r | ci , τ j

)

B
(
(s j,i − r) | (l − ci ), ξ j

)
(9)

where the first binomial provides the probability of get-
ting some proportion of the count from TP detections and
the second binomial provides the probability of getting the
remainder from FP detections.

Equation 4 shows the difficulty of estimation in the POPP
model. Since no conjugate density provides an analytical
solution for the posterior over λ, every sensed count si must
be retained to calculate the posterior of λ. That means ele-
ments representing each value of ci on each observation grow
infinitely. Even with an upper bound l on themaximum value
of ci , the number of elements to retain on each observation
periods grows exponentially.

� estimators

To address this difficulty, in (Jovan et al., 2018) we proposed
three estimators, each ofwhich offers an approximation to the
true posterior P(λ | s). The estimators are: (1) a gammafilter,
which approximates Eq. 4 with a single gamma distribution
minimising the KL-divergence DKL(P(λ | s) || Gam(λ |
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Fig. 4 Average KL-divergence from the gamma and switching filters
to P(λ | s). The horizontal axis shows the true positive rate (top) and
true negative rate (bottom) of one simulated sensor. The figure is taken
from Jovan et al. (2018)

α, β)) by gradient descent. The accuracy of this filter deteri-
orates as sensor reliability degrades. However, computation
time is constant on each observation and Eq. 8 has a closed
form, using the negative binomial distribution

P(ci | c−1)=
∫ ∞

λ=0
P(ci | λ) P(λ | c−1) dλ

=
∫ ∞

λ=0
Poi(ci | λ) Gam(λ | α−1, β−1) dλ

=N B

(
ci

∣∣∣ α +
i−1∑
k=1

ck,
β + (i − 1)

β + i

)
.

(10)

with the hyperparameters α−1 = α+
i−1∑
k=1

ck, β−1 = β +(i−
1) inGam(λ | α−1, β−1) being the updated prior distribution
of λ up to c−1;

(2) a histogram filter, which approximates Eq. 4 with a
discrete distribution Q(λ | s) by quantising λ. The advantage
of this filter over the gamma filter is that it can track the
posterior to an arbitrary fidelity via a finer quantisation with
the cost of computation time. Its disadvantage is an increase
in computation time compared to the gamma filter;

(3) a switching filter, which approximates Eq. 4 either
by a gamma filter or by a histogram filter depending on
whether P(λ | s) resembles a gamma distribution and can
be approximated by the gamma filter via KL-divergence
DKL(P(λ | s) || Gam(λ | α, β)).

In general (and in our experimental work from Sect. 6
onwards) we use the switching filter as the estimator to the
true posterior P(λ | s) because it combines the best of both
the gamma filter (fast calculation) and the histogram filter
(accurate approximation) with minimum loss in similarity to
the true posterior P(λ | s). Figure 4 shows KL-divergence
between the gamma and switching filters to the true posterior
over different sensor reliabilities using simulated data. Note

that the histogram filter was not included because it perfectly
tracked P(λ | s), i.e., DKL(P(λ | s) || Q(λ | s)) ≈ 0.
A more detailed presentation of these estimators is given
in (Jovan et al., 2018).

5 The POPP extensions

In (Jovan et al., 2018) we demonstrated that the POPPmodel
is able to efficiently correctmiscountsmadebymultiple unre-
liable counting devices observing a single Poisson process.
However, the POPP model is limited by two assumptions:

(1) the sensors are conditionally independent given the true
count, and

(2) the degree of the unreliability of a sensor (i.e. τ and ξ ) is
precisely known.

In this paper, we propose three extensions to the POPP
model to tackle these assumptions. The first extension
(POPP-Beta) extends the POPP model with an observation
model which captures uncertainty about the role of the sen-
sor reliability. The second extension (C-POPP) modifies the
POPP model to accommodate correlations between sensors.
The third extension (POPP-Dirichlet) combines these ideas
to jointly address both assumptions.

5.1 POPP-Beta

The POPP model requires the true positive and false positive
rates to be specified for sensor j , i.e. τ j = Pj (d | e=1) and
ξ j = Pj (d | e=0). The POPP model requires these rates
to be accurate in order to generate correct posteriors over λ.
To accurately determine the rates in practice, one needs to
have a large data set of both sensed counts and the ground
truth. Given the ground truth is typically manually created,
this places a large burden on experts who need to label the
data.

Here, we extend the original POPP model to take into
account uncertainty in the true and false positive rates due
to limited training data. To model this uncertainty we use
Bayesian estimation to determine the true positive rate (τ )
and false positive rate (ξ ). We use Beta distributions as
priors for τ and ξ because the Beta distribution act as a
conjugate to the binomial distribution, providing a family
of prior probability distributions for the parameter of a bino-
mial distribution. The Beta-binomial conjugacy leads to an
analytically tractable compound distribution called the Beta-
binomial distribution BB(d | c, ζ, η), where the p parameter
in the binomial distribution B(d | c, p) is drawn from a Beta
distribution Be(p | ζ, η).

Our sensor rates, τ j and ξ j , are now estimated from two
Beta distributions: Be(τ | ζτ , ητ ) and Be(ξ | ζξ , ηξ ). ζτ and
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τ1 ξ1 τm ξm

c

s1 sm

λ

Fig. 5 Graphical representation of the POPP-Beta. Instead of having
fixed estimated points for the sensor rates τ and ξ like in the POPP
model, they are represented by Beta distributions in the POPP-Beta

ζξ are the number of true positive and false positive detections
in the ground truth data respectively.ητ andηξ are the number
of true negative and false negative detections in the ground
truth data respectively. Given these parameters, we form the
POPP-Beta model from POPP by replacing Eq. 9 with:

P(s j,i | ci )=
ci∑
r=0

BB
(
r

∣∣∣ ci , ζτ , ητ

)
BB

(
δsr

∣∣∣ δcr , ζξ , ηξ

)

(11)

with δsr = (s j,i − r), and δcr = (l − ci ).
With a sensor model which follows beta densities and is

fully integrated, as a distribution, in the sensed count like-
lihood P(s j,i | ci ) as shown in Equation 11, we obtain a
graphical model with the structure shown in Fig. 5. One
should note that the difference between the POPP and POPP-
Beta model, lies only in the change from Eq. 9 to 11.
However, given little training data for the observation model,
the POPP-Beta model is expected to be more conservative
in estimating the posterior P(λ | s) over λ than the POPP
model.

5.2 Correlated POPP

Recall that Eq. 6 is defined under the assumption that each
sensor count is conditionally independent from all the others
given the true count. This assumption ignores the correlations
between sensors. To introduce correlations between sensors
we must alter Eq. 6 and Eq. 9 from the POPP model.

Recall that the probability of a particular sensed count
given the true count P(si | ci ) was defined from the Poisson
limit theorem as a sequence of Bernoulli trials over l subin-
tervals. With correlated sensors, the observation of an event
ek in the kth trial no longer follows the Bernoulli distribu-
tion. Instead it follows the categorical distribution, where the

kth trial corresponds to whether a particular combination of
binary detections d1,k, . . . , dm,k happens in subinterval Ik .
Therefore, we move our notation from using s j,i represent-
ing sensed counts for particular sensor j independently at
time interval i to a matrix representing m sensor detections
together at time interval i . Formally, we replace Eq. 6 and
Eq. 9 with a probability of a series of detection outcomes
given the true count ci at interval i as the following.

We first define for some interval i , l subintervals, and m
sensors, there is a binary matrix of detectionsDi 2.D ∈ Dm,l

the set of binary matrices of dimensionm× l. Each column k
ofD, we denoteD:k = d = {0, 1}m with k = 1, . . . , l.D:k is
a vector of detections from m different sensors at particular
subinterval k.

We further define ek ∈ {0, 1} as the variable indicating
whether or not an event is hypothesized to have occurred in
sub-interval k. ek = 1 means that an event occurred. We
define P+ as the categorical distribution of d, conditioned
on e = 1, i.e.

P+(d) = P(d | e = 1) ∀d ∈ {0, 1}m (12)

and, by analogy,

P−(d) = P(d | e = 0) ∀d ∈ {0, 1}m (13)

Both P+ and P− have 2m elements3. These two probabil-
ities represent true positive rates and true negative rates as
τ and ξ for the POPP model. Similar to τ and ξ , P+ and
P− are estimated from both detections of each sensor and
the corresponding actual (non-)event as ground truth. How-
ever, unlike τ and ξ which are sensor specific, P+ and P−
consider all combinations of binary detections from sensors
given the true event. This means the number of elements in
P+ and P− grows by a factor of two for each sensor added.
Due to the size of P+ and P−, they may need more than a
few hundred of detections together with their corresponding
events to be estimated.

We can partition the subintervals 1, . . . , l into two sets. e+
is the set of subintervals k where ek = 1, and e− is the set of
subintervals k where ek = 0. We can define a partition of the
subintervals by a pair (e+, e−). The set of possible partitions
such that e+ has a fixed size c, i.e. | e+ |= c, is denoted c,
so that (e+, e−) ∈ c.

We further defineDe+ as anm×c detectionmatrix formed
from all the columns D:k where k ∈ e+, and De− as the
corresponding m × (l − c) detection matrix formed from all
the columns D:k where k ∈ e−.

2 We drop the (i) for all notations in this subsection as we will consider
a single interval
3 d is dropped in the representation unless the context is not clear.
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Fig. 6 Graphical representation
of C-POPP. Unlike the POPP
model, the matrix detection D
represents a joint detection at
particular time interval and is
affected by the value of the true
count c, and the sensor rates
(joint true positive rate P+ and
joint true negative rate P−)

c

D

λ

As there may be duplicate columns in either or both De+
and De− , we define a count vector for each.

g+ = count(De+)

and

g− = count(De−)

such that
2m∑
q=1

g+
q +

2m∑
r=1

g−
r = l where each of g+, g− are of

length 2m , having one element for every possible detection
vector d ∈ {0, 1}m .

In order to define the joint probability of a particular count
being yielded by a particular sequence of detection outcomes,
we must consider all possible combinations of true positives
and false positives that could be generated by that sequence
by exploring all elements of c. We do this in the follow-
ing definition of P(D | c), and define the probability of a
given sequence of detection groups yielding count c using
the multinomial distribution.

P(D | c) =
∑

(e+,e−)∈c

M(g+ | c, P+) M(g− | δl c, P
−)

(14)

with δl c = (l − c).
Equation 14 can be understood by analogy toEq. 9. In both

equations all possible ways pairs of true and false positives
counts which sum to c are considered. In the conditionally
independent case the binomial distribution is used to deter-
mine the probability of each count from the available trials
given the true and false positive rates. However, in the condi-
tionally independent case, Eq. 9 is calculated independently
for each sensor, and the joint probability of those sensors
results in Eq. 6. In the correlated case the multinomial distri-
bution is used to determine the probability of each count from
a possible sequence of joint observations and their probabil-
ity of yielding a count. With that, Eq.14 removes the need
of Eq. 6 in C-POPP model. A graphical representation for
C-POPP can be seen in Fig. 6.

One should note that the benefit of C-POPP is that it
exploits correlations among multiple sensors contributing to
detection counts. If there is only one sensor counting events,
then C-POPP collapses to POPP.

5.3 The POPP-Dirichlet

TheC-POPPmodel requires the true positive rate P+ and true
negative rate P− to be specified in advanced in estimating the
parameter λ of a Poisson process. These are an extension of
τ and ξ where the rates provide a probability for a particular
combination of binary detections coming from each sensor
given the true event as shown in Eq. 12 and Eq. 13.

To construct an observation model of P+ and P−, one
needs to have both detections and the corresponding actual
(non-)events as ground truth. Pre-processing involving expert
interventions is typically required before the detections and
their corresponding ground truth can be further used. Sim-
ilarly to the POPP model, the C-POPP model requires the
observation model to be accurate to avoid the posterior over
λ drifting away from the true posterior. If attaining an accu-
rate observation model for the POPP model is a problem,
then this becomes more challenging in the case of C-POPP
model. This is because the training data needed to construct
an observationmodel grows by a factor of two for each sensor
involved.

Analogously to the extension from the POPP model to
the POPP-Beta model, we can expand the C-POPP obser-
vation model. In this case the observation models (P+ and
P−) will follow Dirichlet distributions. The Dirichlet dis-
tribution is an appropriate distribution since P+ and P−
are the probabilities of categorical distributions which set
the probabilities of multinomial distributions in Eq. 14 and
Dirichlet distributions provide a family of conjugate prior
probability distributions for the multinomial distribution.
TheDirichlet-multinomial conjugacy leads to an analytically
tractable compounddistributionwhich is called theDirichlet-
multinomial distribution, where the p = (p1, . . . , pr )
parameter in the multinomial distribution Mult(d | c,p)

is randomly drawn from a Dirichlet distribution Dir(p | ζ ).

P(d | c, ζ ) =
∫

P(d | c,p) P(p | ζ ) dSr

=
∫

Mult(d | c,p) Dir(p | ζ ) dSr

= DM((d1, . . . , dr ) | c, (ζ1, . . . , ζr ))

(15)

with d = (d1, . . . , dr ), ζ = (ζ1, . . . , ζr ), and dSr denotes
integrating p with respect to the (r − 1) simplex4.

4 The support of the Dirichlet distribution is the (r − 1)-dimensional
simplex Sr ; that is, all r dimensional vectors which form a valid prob-
ability distribution
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P+ P−

c

D

λ

Fig. 7 Graphical representation of POPP-Dirichlet. Instead of having
fixed estimated points for the (joint) sensor rates P+ and P−, they are
represented by Dirichlet distributions in the POPP-Dirichlet

Given m sensors, an observation model is now repre-
sented as two Dirichlet distributions: Dir(P+ | ζ+), and
Dir(P− | ζ−) with ζ+ = (ζ+

0 , . . . , ζ+
(m2)−1

) and ζ− =
(ζ−

0 , . . . , ζ−
(m2)−1

). ζ+ and ζ− set the overall shape of the
Dirichlet priors, with each ζq term counting the number of
times that particular combination of sensor detections were
produced given a positive (ζ+, e = 1) or negative (ζ−, e = 0)
detection.

Given a joint sensor model where its elements follow a
Dirichlet density and several Dirichlet-multinomial distribu-
tions, which provide an unconditional distribution of d, we
replace Eq. 14 with:

P(D | c)= ∑
(e+,e−)∈c

DM(g+ | c, ζ+)DM(g− | �, ζ−)

(16)

with � = (l − c), c and D as defined in Sect. 5.2.
The difference between the C-POPPmodel and the POPP-

Dirichlet lies only in Eq. 14 being replaced by 16 which is
depicted by Fig. 7. The difference makes the POPP-Dirichlet
to be more conservative in estimating the posterior P(λ | s)
over λ than the C-POPPmodel given a certain Dirichlet prior,
and limited training data for the sensor model.

6 Evaluation on synthetic data

In this section we evaluate POPP and its extensions on syn-
thetic data to demonstrate the properties of these models
when estimating the arrival rate λ of a Poisson process. With
synthetic data, sensor reliability can be controlled, and the
true λ and the true counts ci can be known for each sample.

In our experiments we initially generate a training set of
n = 12 (true) counts from a Poisson process P(c | λ′ = 3)
with a time interval t = 10 time unit. Along with the training

set count c1, . . . , c12, for each count ci , we also generate
the corresponding event occurrence ek ∈ {0, 1} on each
subinterval k ∈ {1, . . . , t}, a sensed count si, and Di from
two unreliable sensors with 10 subintervals for each sensed
count Di (i.e. m = 2, l = 10,D ∈ D2,10 in our evalu-
ation). To capture a range of possible sensor correlations
and performance characteristics, the sensed counts for the
training set are produced from 12 different sensor configu-
rations (see Table 1). The true and sensed counts are then
used to build (joint where appropriate) sensor models for the
POPP extensions described above. For the POPP-Beta and
the POPP-Dirichlet models, we set the hyperparameters of
the Dirichlet prior and Beta prior to follow uniform distri-
bution, i.e., ζτ = ητ = ζξ = ηξ = 1 for the POPP-Beta,
and ζ+ = ζ− = (1, 1, 1, 1) for the POPP-Dirichlet. Most of
these (hyper) parameters (l, t, ζ, η, ζ+, ζ−), except the num-
ber of sensors m, are reused in our real-world experiment in
the next chapter.

We then generate a new set of n = 144 true counts and
the corresponding sensed counts for each of the 12 sensor
configurations. These sensing are used as input in a filtering
process to estimate the posterior of λ according to each of
the four models defined above (POPP, POPP-Beta, C-POPP,
and POPP-Dirichlet), plus FOPP. We chose the training set
size n = 12 such that there is insufficient data to build an
accurate sensor model. This allows the POPP-Dirichlet and
the POPP-Beta models to compensate with loose Dirichlet
and beta densities.

The 12 sensor configurations mentioned previously rep-
resent 12 different experimental conditions under which we
can test our proposed models. In six of the configurations we
vary the true joint positive rates (true P+) of the two sen-
sors whilst fixing their true joint negative rates (true P−).
In the other six we fix the true joint positive rates (TJPRs)
whilst varying the true joint negative rates (TJNRs). Both
cases cover variations where the sensors are uncorrelated,
positively correlated and negatively correlated, and in each
case where the overall true (postive or negative) rates are
either high (0.9) or low (0.1). The detailed configurations are
presented in Table 1.

The performance of all POPP models was assessed by
measuring how accurate each model is in estimating the true
λ′. The true λ′ is estimated by applying the FOPP model on
the true counts5. Two options were used to measure the accu-
racy: (1) the RMSE of the expectation (mean) and the MAP
hypothesis (mode) of each model posterior distribution over
λ to the true λ′; and (2) the Jensen-Shannon distance between
the posterior distribution P(λ | si) and the distribution of the
true λ′.

5 This FOPP model is not the one being tested with the POPP model.
This FOPP model is built using the true count data, while the FOPP
model being tested is built using the noisy sensor data.
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Table 1 The sensor
configurations for the evaluation
on synthetic data. “+ corr” and
“- corr” mean a positive
correlation and a negative
correlation between two sensors
respectively

ek 1 0
d1,k , d2,k 0, 0 0, 1 1, 0 1, 1 0, 0 0, 1 1, 0 1, 1

TJPR TJNR

Low + corr Fixed 0.1 0.0 0.0 0.9 1.0 0.0 0.0 0.0

High + corr Fixed 0.9 0.0 0.0 0.1 1.0 0.0 0.0 0.0

Low - corr Fixed 0.0 0.05 0.05 0.9 1.0 0.0 0.0 0.0

High - corr Fixed 0.0 0.45 0.45 0.1 1.0 0.0 0.0 0.0

No correlation Fixed 0.033 0.033 0.033 0.901 1.0 0.0 0.0 0.0

No correlation Fixed 0.3 0.3 0.3 0.1 1.0 0.0 0.0 0.0

Fixed Low + corr 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.1

Fixed High + corr 0.0 0.0 0.0 1.0 0.1 0.0 0.0 0.9

Fixed Low - corr 0.0 0.0 0.0 1.0 0.9 0.05 0.05 0.0

Fixed High - corr 0.0 0.0 0.0 1.0 0.1 0.45 0.45 0.0

Fixed No correlation 0.0 0.0 0.0 1.0 0.9 0.033 0.033 0.033

Fixed No correlation 0.0 0.0 0.0 1.0 0.1 0.3 0.3 0.3

Fig. 8 The RMSE of posterior estimates of λ for the POPP and its
variation models with 12 sample data used to build the (joint) sensor
model with variation in P+. All models are compared to the FOPP
model. Each trial consisted of a stream of s1 . . . s144 samples to update
P(λ | si). Accuracies of MAP estimates are shown in the top panel,
accuracies of expectation of the posterior in the bottom panel. Each
data point is an average of 30 trials. Standard errors are shown

Fig. 9 The Jensen-Shannon distance of posterior estimates of λ for the
POPP and its variation models with 12 sample data used to build the
(joint) sensor model with variation on P+. All models are compared to
the FOPP model. Each trial consisted of a stream of s1 . . . s144 samples
to update PG(λ | si). Each data point is an average of 30 trials. Standard
errors are shown

Fig. 10 The RMSE of posterior estimates of λ for the POPP and its
variation models with 12 sample data used to build the (joint) sensor
model with variation in P−. All models are compared to the FOPP
model. Each trial consisted of a stream of s1 . . . s144 samples to update
P(λ | si). Accuracies of MAP estimates are in the top panel, accuracies
of the expectation of the posterior in the bottom panel. Each data point
is an average of 30 trials. Standard errors are shown

Fig. 11 The Jensen-Shannon distance of posterior estimates of λ for
the POPP and its variation models with 12 sample data used to build the
(joint) sensor model with variation on P−. All models are compared to
the FOPP model. Each trial consisted of a stream of s1 . . . s144 samples
to update PG(λ | si). Each data point is an average of 30 trials. Standard
errors are shown
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Figures 8 and9 show the accuracy of all POPPmodels over
the variations of TJPR (P+), whereas Figs. 10 and 11 show
the accuracy across the variation in TJNR (P−). From these
figures, POPP-Beta and POPP-Dirichlet show a better accu-
racy than POPP and C-POPP. C-POPP and POPP-Dirichlet,
which utilize correlations among sensors to estimate the
arrival rate λ′, tend to be more accurate than the standard
POPP and POPP-Beta. In general, POPP-Dirichlet tends to
be more accurate than any other POPP model thanks to its
ability to model correlation among sensors and how confi-
dent it is in its sensor model. One should note that if the
number of training samples for the (joint) sensor model is
high, then the POPP-Dirichlet and the C-POPP should have
similar posterior distributions. This is because the POPP-
Dirichlet will have tight densities over the sensor models,
and these should be comparable to the point estimates used
in the C-POPP sensor models.

In this paper, we remove computation time per sample
analysis between POPP and its extensions because the com-
putation relies heavily on the filters chosen. The time to
calculate the distribution of sensed count given the actual
count between POPP, POPP-Beta, C-POPP and the POPP-
Dirichlet on each sample can be considered constant and,
therefore, is negligible to the total computation time. Our
prior work provided a detailed comparison in computational
efficiency between different filters (Jovan et al., 2018).

7 Evaluation on aggregate human
occupancy behaviour dataset

We now investigate the performance of the POPP model and
its extensions on a real world dataset6. The dataset was gath-
ered from an office building in which a mobile robot (Hawes
et al., 2016) counted the number of people in different regions
whilst patrolling (see Fig. 12 for themap of the building). The
dataset contains time series counts from three different auto-
mated person detectors (Dondrup et al., 2015). These use
laser, depth camera and RGB information. We refer to these
detectors respectively as the leg detector (LD), upper body
detector (UBD), and change (or scenery) detector (CD). Each
of these detectors acts as one sensor. Each returns a sensed
count of the number of people it detected in each 10 minute
interval during the day. To unify different frequency of detec-
tions of each sensor, we used the lowest frequency detection
from the change detector and limited to maximum one detec-
tion perminute. These detectors are unreliable, as can be seen
from Fig. 13, which shows examples of correct and incorrect
detections.

6 Thedataset canbe downloaded fromhttps://github.com/ferdianjovan/
spectral_popp.

Fig. 12 The office building in which the robot gathered data. Areas are
bounded by imaginary lines. The figure is taken from Jovan et al. (2018)

Fig. 13 Correct and incorrect detections, and non-detections, from dif-
ferent regions in the environment for each sensor. Top row: change
detector. Middle row: upper body detector. Bottom row: leg detector.
The figure is taken from Jovan et al. (2018)

By comparing the ground truth with the detections made
by sensors, we compute a sensor model for each region. An
average of the sensor models across all regions can be seen
in Table 2. Although the robot operated for 24 hours day, the
sensor models were built using only the data collected from
10am to 8pm, since there were few detections outside these
times. From a 69 day trial of themobile robot, we obtained 48
days of usable observations. We specified a time interval for
each Poisson distribution of 10 minutes, and recorded both
the true counts and the detectionsmade by each sensor in each
interval. We assumed the underlying process in each region
to be a periodic Poisson process in which there is a one-day
periodicity, i.e. λ(t) = λ(t+�)with� = 24∗60 (minutes).
This means that the expected number of people each day at
a particular time is expected to be the same across the 48
days of observations. We estimated the true parameter λ′(t)
of the Poisson distribution at t by running a FOPP model
on the true counts within each interval. We use this estimate
of λ′(t) from the true counts as the target which the POPP
models must estimate from the sensed counts.

The different POPP approaches rely on sensormodels that
must be calculated from a confusion matrix relating true
counts to the sensed counts from the different sensors. To
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Table 2 Averaged sensor models across all areas trained from 48 days
of data

Sensor True positive True negative

Leg detector 0.387 0.951

Upper body detector 0.356 0.882

Change detector 0.731 0.900

separate the training and testing data we performed four fold
cross-validation with data splits being on whole days, i.e.,
we used 12 days of data as a training set for a sensor model
and then used the remaining 36 days of data as a test set on
which to test the inferences made by each model from the
sensor counts.

For the 36 days of test data, the differentmodels eachmade
predictions of the λ(t) parameter of the Poisson. Given this,
we recorded (1) the RMSE between the MAP hypothesis of
each model posterior distribution over λ(t) and the true λ′(t)
and (2) the Jensen-Shannon distance between the posterior
distribution P(λ(t) | si) and the distribution of the true λ′(t).
Using these metrics, we compared the performance of all
POPP models (estimated using the switching filter described
in Sect. 4) to the Bayes’ filter arising from the FOPP model.
The FOPP model is a single sensor model and was estimated
from the change detector counts since this was the most reli-
able detector among the three available (as shown in Table 2).

Figures 14 and 15 show the accuracy comparison between
all POPP models and the standard FOPP model over time.
It can be seen that all models become more accurate as
the days pass. All POPP models show more accuracy over
the standard FOPP model. The λ(t) estimate produced by
the POPP-Dirichlet model is more accurate than the ones
produced by the standard POPP model and the POPP-Beta
model. However, the POPP-Dirichlet estimate is not always
more accurate than the one produced by the C-POPP model.

As the POPP-Dirichlet model is more conservative in
estimating the parameter λ(t) than the C-POPP model, the
estimate moves more slowly towards the true λ′(t). This is
seen in Fig. 15. By the third day, the POPP-Dirichlet model
outperformed the POPP, POPP-Beta, and C-POPPmodels in
terms of accuracy. However, the accuracy gap between the C-
POPPmodel and the POPP-Dirichletmodel becomes smaller
over time. By the 36th day the C-POPP model outperforms
the POPP-Dirichlet by a small margin. It should be noted
that Figs. 14 and 15 are averaged RMSE and the Jensen-
Shannon distance from 10 different regions over time. The
more regions with high volume of data available, the more
accurate the joint sensor model, especially for C-POPP, will
be and, in turn, the more accurate the C-POPP filter becomes
in estimating the parameter λ(t).

Figures 16 and 17 show the RMSE and Jensen-Shannon
comparison between all POPP models and the FOPP across

Fig. 14 TheRMSE evolution of periodic Poisson processes with POPP,
POPP-Beta, C-POPP, POPP-Dirichlet and FOPP filters from day 3 to
day 36, averaged across all regions. Standard error is shown

Fig. 15 The Jensen-Shannon distance evolution of the FOPP, the POPP,
the POPP-Beta, the C-POPP, and the POPP-Dirichlet filters in periodic
Poisson processes from day 3 to day 36 in a 3-day interval, averaged
across all regions. Standard error is shown

Fig. 16 The RMSE of the FOPP, POPP, POPP-Beta, C-POPP, and
POPP-Dirichlet filters across regions. The RMSE(s) are taken at the
36th day. Standard error is shown

different regions by the end of the 36th day. It can be seen
that the POPP-Dirichlet and the C-POPP once again outper-
formed the other models. Some regions such as 1, 2, and 3
have much more data than other regions. Since this provides
more data to create the sensor models than other regions,
the point-estimate joint sensor model for the C-POPP filter
can be more accurately estimated for these regions. Unlike
C-POPP filter, the POPP-Dirichlet estimates the joint sen-
sor model as a distribution. This drives the POPP-Dirichlet
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Fig. 17 The Jensen-Shannon of the FOPP, POPP, POPP-Beta, C-POPP,
and POPP-Dirichlet filters across regions. The Jensen-Shannon value(s)
are taken at the 36th day. Standard error is shown

slower and more conservative in estimating the parameter
λ(t) than the C-POPP model. Together with the choice of
Dirichlet prior that follows uniform distribution, the POPP-
Dirichlet requires more data to accurately estimate its joint
sensor model.

The POPP-Dirichlet has an advantage on regions with low
volume of data such as region 4, 5, 6 and 7. As some of these
data were used to construct the joint sensor model for both
C-POPP and the POPP-Dirichlet, a small amount of data cre-
ates an inaccurate point-estimate joint sensormodel, which is
used by the C-POPP filter. These problem is handled appro-
priately on the POPP-Dirichlet with its distribution joint
sensor model with the help of Dirichlet prior as explained
in Sect. 5.3.

One interesting finding here is that there is small to no
difference in performance between the POPP and the POPP-
Beta filters on region 4, 5, 6, and 7. One would have thought
that the performance of these two filters should follow the
C-POPP and the POPP-Dirichlet filters. We argue that the
volume of data used to create the sensor models for both
POPP and the POPP-Beta were enough for an accurate esti-
mate of point-estimate sensor model (POPP) and distribution
sensor model (POPP-Beta). However, due to high correla-
tions among sensors which were not captured by both the
POPP and the POPP-Beta sensor models, the accuracy in
estimating the parameter λ(t) is worse than the C-POPP and
the POPP-Dirichlet. It is also worse for the POPP-Beta filter
since the POPP-Beta is more conservative in estimating the
parameter λ(t) than the POPP model. For example, region
4 contains high tables and tall chairs where the leg detector
tended to falsely detected them as a person. Unless an upper
body detector detects a person, the leg detector detectionmay
be ignored. On the other hand, region 7 is a hallway with a
water dispenser around the corner. This water dispenser is
often falsely detected as a person by the upper body detector
and the leg detector detections helps in reducing this mistake.

8 Exploring for human activities

So far, the paper has focused on Bayesian methods for infer-
ring a belief state about the spatio-temporal patterns of human
occupancy from unreliable sensors. Given such a belief state
a robot may plan how to actively explore to acquire new
information so as to complete a task (Hanheide et al., 2017;
Sridharan et al., 2019). Here, the robot uses predicted counts
from the belief state to explore so as to detect human activities
with increasing efficiency.

Specifically, the robot’s choice is whether to explore new
region-time combinations or to exploit region-time combi-
nations that are known to yield a high number of activities.
This an instance of an exploration-exploitation problem.
Exploration-exploitation problems arise whenever an agent
lacks an adequate model of the process it must control. At
each moment, the agent chooses either to explore so as to
improve the model or to exploit the existing model so as to
maximise immediate performance.

While exploration-exploitation problems in reinforcement
learning, are typically intractable, there are well known,
fast to compute, approximations (Wyatt, 1998; Alba & Dor-
ronsoro, 2005; Audibert et al., 2009). One such approach
is to use the upper bound of a probability distribution over
the quantity being maximised. This causes the decision-
making agent to exploit high-scoring, certain estimates, and
explore highly uncertain estimates. In our robot exploration,
for example, when the robot visits a place, it can be because
the place either actually has high number of people (exploita-
tion) or potentially has high number of people (exploration).
In our case we use an upper bound on the arrival rate (λ) of a
Poisson process (λUB) to choose the region for the robot to
visit next. The upper bound of the probability interval of the
arrival rate of a Poisson process is calculated as follows:

λUB(ti , t j ) =
∫ t j

ti
CDF−1(% = 0.95 | αt , βt ) dt (17)

with λUB(ti , t j ) as the upper bound of λwithin time ti and t j ,
i, j ∈ {1, . . . ,�}, and CDF−1 as the inverse of the cumu-
lative density function of a Gamma distribution. Given the
upper bounds λrU B(ti , t j ) for each region r from the set of all
regions R, the region to be visited between time ti and t j is
chosen by:

argmax
r∈R

λrU B(ti , t j ) (18)

Figure 18 depicts a comparison between theMAPhypothesis
estimate and the upper bound estimate of a Poisson process.

To tie the estimate of a particular Poisson process over a
time interval to data collected previously, as in Sect. 7 we
assume that human presence in each region follows a peri-
odic Poisson process with daily periodicity. This allows us
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Fig. 18 A spectral Poisson process of region 9 (see Fig. 12) represented
by itsMAP hypothesis (blue line) and its upper bound of the probability
interval (red line) (Color figure online)

l-AAM Jovan et al. (2016)
Input: x1, . . . , xn : input signal,

total: maximum total frequency
Output: S: a collection of (s, p, f )
Procedure:

1. Init. k ← 0
// Get frequency 0 with Fourier Transform
2. [s, p, f ] ← DFT (x1, . . . , xn)[0]
3. S[k] ← [s, p, f ]
4. Repeat until k > total

• k ← k + 1
// Get the highest amplitude’s frequency
• [s, p, f ] ← argmaxs DFT (x1, . . . , xn)
// Update S with frequency f
• if f ∈ S, [s′, p′, f ′] ← S[k′, f ′ = f ]

s ← s + s′; p ← p + p′
• S[k] ← [s, p, f ]
// Create a cosine signal from f
• x ′

1, . . . , x
′
n ← s ∗ cos(2π ∗ f + p)

// Subtract current x1, . . . , xn with the cosine
• x1, . . . , xn ← x1, . . . , xn − x ′

1, . . . , x
′
n

to regularise, and fill missing data, across the point estimates
of upper bounds using methods based on the Fourier trans-
form. This exploits assumptions and algorithms introduced
in our prior work. In particular, the series of upper bounds
λUB(ti , t j ) are encoded and extracted via spectral analysis
with the l-AAM technique described in (Jovan et al., 2016).
The plot in Fig. 18 shows how a spectral Poisson process
look like, i.e., the effects of the spectral processing on a peri-
odic Poisson process. Algorithm 2 depicts the process of
computing the upper bound of a Poisson process and apply-
ing spectral analysis to it. We use this approach with upper
bounds produced by our previously presented estimators:
FOPP, POPP, and POPP-Beta. C-POPP and POPP-Dirichlet
estimators are excluded in our experiments due to a need
to limit experimental time to 45 days to keep building use
conditions that were broadly the same.7

7 The experiments were conducted during a single academic semester
within a university building.

Algorithm 2 Upper Bound
Input: (α1, β1), . . . , (αn, βn): Poisson process
Output: λub1 , . . . , λubn : upper bound
Procedure:

1. Init. k ← 1, m ← η

2. Repeat until k > n
• k ← k + 1
// Get the upper bound
• λk ← CDF(0.95, αk , βk)

// Transform λ1, . . . , λn to with l-AAM
3. S ← l-AAM(λ1, . . . , λn , m)
5. Init. k ← 0, λub1 , . . . , λubn ← (0, . . . , 0)
4. Repeat until k > m

// Create a cosine signal from S[k]
• [s, p, f ] ← S[k]
• x1, . . . , xn ← s ∗ cos(2π ∗ f + p)
// Add current λub1 , . . . , λubn with the cosine
• λub1 , . . . , λubn ← λub1 , . . . , λubn + x1, . . . , xn

Exploration evaluation

The dataset used in the previous section was collected by a
mobile robot over 69 days of a real world trial. This robot was
controlled by the exploration models described above. Due
to hardware failures, sensor malfunctions and other external
issues, only 48 days from the dataset were usable.

Three different exploration models were applied sepa-
rately during three phases of the 69 days of the trial. All of
these models used Eq. 18 to create their exploration policies.
For the first 27 day phase of the trial, the robot followed an
exploration policy based on the FOPP model. This resulted
in 18 days of data. From day 28 to day 47, the robot followed
an exploration policy according to the POPP model. This
resulted in 15 days of data. Finally, from day 48 onwards, the
robot followed an exploration policy according to the POPP-
Beta model. This also resulted in 15 days of data. Such that
all three models can be compared equally, in the following
we also constrain the data available for for the FOPP model
to the first 15 of its 18 days. We can compare the different
exploration policies on the observations the robot made dur-
ing the phase each policy was active. Due to the absence of
information regarding occupancy in the places that the robot
did not visit, only a comparison of the positive observations
can be made.

Figure 19 shows the percentage of visits to each region
which yielded a non-zero true count. As can be seen, the
exploration policy produced by POPP-Beta has the highest
proportion of such visits in many of the regions, followed by
the exploration policy according to the POPP model. Recall
that some regions, such as 4, 5, 6, and 7, are not densely pop-
ulated with humans across time compared to other regions
(such as 1, 2, 3, and 10). The POPP and POPP-Beta models,
however, still managed to improve the percentage of positive
observations. This shows that the models correctly predicted
that people would be present in particular locations at partic-
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Fig. 19 This graph shows the percentage of time that the robot observed
activities when it was present in a region. It is a measure of how suc-
cessful the robot’s visit policy (choice of visit time and visit location)
was in finding people. It presents results for for the FOPP, POPP and
POPP-Beta algorithms

ular times. One should note that region 6 contains vending
machines which are often detected as a person by the upper
body detector. This leads to the FOPPmodel planning to visit
this particular location when no activity is taking place. The
POPP and the POPP-Beta models were able to correct the
miscounts occurring in region 6, providing a better estimate
of the posterior over the arrival rate λ. This leads to mod-
els that better capture the true underlying process and thus
support more accurate exploration-exploitation trade-offs.

During the first few days of each 15 day phase the robot
primarily explores since each model initially has a highly
uncertain estimate of λ. Every three days, the sensor model
for both the POPP and the POPP-Beta is updated to repre-
sent more accurate true positive and false positive rates. Note
that the first 3 days of each exploration for the POPP and the
POPP-Beta, the sensor model is set to follow a perfect sen-
sor model (i.e. setting the true positive rate to 1.0 and false
positive rate to 0.0) with the hyperparameters for the POPP-
Beta set to follow uniform distribution. As more days of data
are experienced the estimates increase in confidence and the
robot starts to exploit this increased confidence by visiting
locations which are likely to provide higher counts8. Figure
20 shows the number of actual humans (performing some
activities) observed throughout each its exploration policy.
Looking at the raw numbers provided by the figure, it seems
that the exploration policy following the POPP model per-
formed really well in finding people. However, this metric is
quite unfair due to the time when the exploration was con-
ducted (e.g. the exploration policy following the POPP-Beta
model was conducted in Saturday and Sunday in some occas-
sions). To allow us to produce a metric for a fair comparison
across threemodels (FOPP, POPP, and POPP-Beta) deployed
at different times (and thus experiencing different population

8 Note that this change from exploration to exploitation occurs natu-
rally and gradually in an upper bound-based model, and therefore the
characterisation of the behaviour as exploring or exploiting is a post-hoc
justification.

dynamics), we look at the ratio between the expected obser-
vations made by a baseline policy and those made by our
exploration policy in the same period. To create the base-
line total for each model we take the true counts experienced
for its first three days then multiply these by five to give an
expected total over 15 days (the number of days of data avail-
able to every model). Three days are chosen to align with the
3-day periodical update of the sensor model for the POPP
and the POPP-Beta and create a uniform baseline across dif-
ferent explorations since both the POPP and the POPP-Beta
explorations should act similarly to the FOPP exploration in
the first 3 days. This is the denominator in Eqn. 19, where
s(n) is the (true) number of people observed on day n. This
is used to divide the cumulative number of observations up
to the current day:

ŝ(n) =

n∑
i=1

s(i)

3∑
i=1

s(i) ∗ 5

(19)

Given this, a ŝ score of 1.0 on day 15 shows that people
have been observed people at the rate of the baseline, i.e. the
underlying model has failed to exploit additional data cor-
rectly. A result over 1.0 shows that the model has exploited
the available data to observe people at a greater rate than
in the first 3 days. Figure 21 presents the cumulative nor-
malised true counts of people observed by the robot across
the three phases. This shows that exploration driven by the
POPP and the POPP-Beta models improves the number of
people observed during these phases. By the end of each of
these two phases, the ratio is around 1.7. On the other hand,
the FOPP showed a stable ratio around the baseline (1.0 at
day 15), this means that the FOPP is not be able to improve
the number of people observed over time.

Exploration limitations

There are some limitations in our robot exploration experi-
ment as a result of carrying them out on a real robot in an
uncontrolled setting. A major limitation is how we stretched
our assumption about (approximately) constant population
dynamics throughout the 69-day exploration. It is clear that
the population in a university building fluctuates within a sin-
gle academic semester (e.g. students tend to be around in the
middle of the semester–Fig. 20–than during the last week
of the semester–Fig. 20). We mitigate this by normalising
the raw counts following Eq. 19. The normalisation is effec-
tive when the differences in population dynamics are within
reasonable range.

Due to the impact of occasional hardware and sensor
malfunctions, plus an external time limit for running the
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Fig. 20 The number of actual activities observed by the robot for each exploration policy

Fig. 21 The improvement ratio of activity observations during each
phase of the trial. The dash line indicates a baseline performance, i.e.,
no improvement in exploration over time

experiments (winter break was approaching), we further
stretched our assumption by assuming the population dynam-
ics during weekends were similar to weekdays. However,
upon inspection, there were far fewer students on the week-
ends for the robot to observe than on the weekdays (see
Fig. 20). The mismatch between our assumption and the
experimental setting mostly affected exploration following
the POPP-Beta policy, which was tested last. The inclusion
of weekends creates a big deviation in the population dynam-
ics that renders the normalisation ineffective. Although the
POPP-Beta policy was affected by a large variation in pop-
ulation dynamics, the policy was still able to improve the
number of people observed over time. This can be shown by
removing theweekends from calculations in Eq. 19, resulting
1.48 at day 15 for the POPP-Beta policy. An ideal experiment
would be to run robot explorations with multiple identical
robots employing different exploration policies at the same
time.

9 Conclusion

This article has presented Bayesian estimators for (1) esti-
mating human activities, as count data, at each time of the
day and (2) helping an autonomous robot optimise between
exploring for new time-place combinations where it might
discover a high-level of human activity and re-visiting learnt
time-place combinations that a wealth of human activity is

to be found. Our work was motivated by the application of
counting people from an autonomous mobile robot using
noisy sensors and perception algorithms. The work extends
our prior work Jovan et al. (2018) with two main contribu-
tions. First, we presented variations of our previous POPP
formulation: POPP-Beta extends POPP by accounting for
the unreliability of the observation model; C-POPP extends
POPP by modelling the case when sensors are uncorrelated;
and POPP-Dirichlet combines POPP-Beta and C-POPP to
provide the benefits of each correction. Evaluations on syn-
thetic data and observations taken by a robot show that
each extension provides progressively more accurate esti-
mates than the POPP filter. Second, posteriors from FOPP,
POPP and POPP-Beta were used to drive exploration by a
mobile robot for a series of three exploration experiments. An
upper bound interval explorationmethod in combinationwith
Fourier transformation was used to solve the exploration-
exploitation problem. This resulted in a labelled dataset of
human presence counts. Our initial evaluation demonstrated
that POPP and POPP-Beta were able to drive the robot to
observemore people over time than the FOPP-basedmethod.

There are many directions for further work including
utilizing C-POPP and POPP-Dirichlet to drive the robot
observation in an extended time period, allowing another fil-
ter strategies for faster andmore accurate posterior estimates,
and removing convenient closed forms of conjugate priors in
the sensor models.
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Appendix A Sensor model

Here we provide detailed sensor models for each region. The
sensor model was built from the first 15 days of data to give a
representative idea how each sensor performs across regions

Table 3 Averaged sensor model for each region trained from 15 days
of data

Region Sensor True Negative True Positive

1 Leg 0.820 0.102

Upper body 0.749 0.244

Scenery change 0.760 0.612

2 Leg 0.991 0.655

Upper body 0.862 0.691

Scenery change 0.826 0.778

3 Leg 0.854 0.116

Upper body 0.833 0.130

Scenery change 0.780 0.687

4 Leg 0.896 0.180

Upper body 0.967 0.227

Scenery change 0.897 0.592

5 Leg 0.918 0.086

Upper body 0.881 0.200

Scenery change 0.877 0.957

6 Leg 0.964 0.351

Upper body 0.929 0.143

Scenery change 0.803 0.541

7 Leg 0.949 0.264

Upper body 0.829 0.071

Scenery change 0.939 0.090

8 Leg 0.889 0.473

Upper body 0.791 0.360

Scenery change 0.900 0.591

9 Leg 0.702 0.383

Upper body 0.711 0.172

Scenery change 0.591 0.673

10 Leg 0.956 0.537

Upper body 0.973 0.423

Scenery change 0.823 0.584

for each of our experiments. For the experiment in Sect. 7,
we used 48 days of data, and as we performed four fold
cross validation, we only used 12 days of data to build the
sensor model and the rest (36 days) of data were used to
test and build the POPP models and its variants. During the
exploration setting in Sect. 8, only the first 3 days from 15
days of exploration for each exploration model were used to
build the sensor model Table 3.
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