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Abstract Amending soil with biochar is a promising agricultural approach to abate 27 

climate change by sequestering carbon (C) into soil. Impacts of biochar addition on 28 

microbial mediated decomposition process could influence soil C sequestration, but 29 

the underlying mechanisms are uncertain. Here, we conducted a meta-analysis of 130 30 

studies and 563 paired observations worldwide, to investigate the effects of biochar 31 

addition on key extracellular enzyme activities that constitute the rate-limiting steps 32 

of microbial decomposition. Our results showed that biochar addition significantly 33 

increased soil ligninase activity targeting complex phenolic macromolecules, but 34 

suppressed cellulase activity degrading ordered polysaccharides with simpler structure. 35 

This trade-off in C-degrading enzyme activity explained more variation in soil C 36 

content response to biochar addition than a wide range of other climatic, edaphic and 37 

microbial attributes. Specifically, soil ligninase:cellulase ratio increased with time 38 

after biochar addition, and was negatively related to changing soil C content with 39 

biochar addition. These results indicate that despite the overall promotion of soil C 40 

content by reducing cellulase activity, the greater ligninase activity and increased 41 

ligninase:cellulase ratio may contribute to the declining effects of biochar amendment 42 

on soil C sequestration over time. Our results suggest that, through shift in key 43 

extracellular enzyme activities, physiological acclimation of soil microbial metabolic 44 

activity limit the long-term consequence of biochar addition on soil C sequestration. 45 
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1. INTRODUCTION 48 

Biochar amendments of carbon (C)-rich product from biomass pyrolysis, have 49 

increasingly been regarded as a cost-effective and environmentally friendly method of 50 

increasing soil C sequestration1-2. The amount of biochar amendment has substantially 51 

increased over past decades, and is currently estimated to sequester 0.3-2.0 Pg CO2 52 

annually1,3-4. Despite many studies demonstrating advantages of biochar to increasing 53 

soil C sequestration5-7, it remains unclear if and how biochar addition affects soil C 54 

dynamics over time. Indeed, several recent studies have shown that effects of biochar 55 

addition on soil C sequestration can be positive8-9, negative10-11 or neutral12-13. Such 56 

large discrepancies illustrate a poor understanding of the underlying mechanisms. The 57 

positive effects of biochar addition on soil C sequestration can be explained by the 58 

stimulation of plant growth2,14 with a subsequent adsorption of plant organic 59 

compounds on biochar surfaces15. On the other hand, biochar addition can accelerate 60 

decomposition of pre-existing soil organic C (SOC) by changing microbial 61 

community composition and activities11,16. However, a mechanistic understanding of 62 

the composite effects of biochar addition on SOC decomposition process is lacking, 63 

hampering the prediction of the long-term effects of biochar addition on soil C 64 

dynamics. 65 

Although some recent studies indicated that soil C sequestration varied 66 

significantly due to variations in time after biochar addition, biochar production 67 

technologies, and site-specific conditions (e.g., climate and soil properties)26-27, a 68 

comprehensive understanding of underlying mechanisms remain unexplored. In 69 



particular, there is no direct evidence of how biochar addition affects key enzyme 70 

activities (e.g., cellulase and ligninase) that are likely to influence long-term impacts 71 

on soil C sequestration across varying environmental conditions. 72 

Soil extracellular enzymes catalyze the degradation of soil organic matter, 73 

deconstructing plant and microbial residues by breaking down large macromolecules 74 

into simpler molecules17-18. Various extracellular enzymes target different pools of 75 

SOC, including ligninase (e.g., phenol oxidase (PO) and peroxidase (PER)) targeting 76 

structurally complex polyphenolic macromolecules, and cellulase (e.g., 77 

β-1,4-Glucosidase (BG) and α‐1,4‐glucosidase (AG)) degrading ordered 78 

polysaccharides with simpler structure17,19. Biochar addition may have different 79 

impacts on ligninase and cellulase activity, partly because of variations in chemical 80 

composition of soil organic matter and also due to shifts in microbial community 81 

composition20-22. For instance, the condensation of cellulose and hemicellulose into 82 

humic-like macromolecules on the surface of biochar2,23 could induce microbes to 83 

secret ligninase but suppress cellulase, as enzyme productions are commonly induced 84 

by the presence of adequate substrates24-25. This shift in C-degrading enzyme activity 85 

may have substantial but as yet unknown effects on soil C sequestration with biochar 86 

addition.  87 

To address these knowledge gaps, we conducted a global meta-analysis to 88 

evaluate the responses of soil cellulase and ligninase activities to biochar addition, 89 

and how these responses may affect soil C sequestration. We compiled a database of 90 

C-degrading enzyme activities and soil C sequestration from 130 biochar addition 91 



studies and 563 paired observations worldwide (Fig. S1; Table S1). We combined the 92 

advantages of classic meta-analysis with advanced model selection analysis to 93 

quantify the relative importance of potential predictors in explaining the effects of 94 

biochar addition on enzyme activities and soil C sequestration. This approach allows 95 

us to assess the role of enzyme activities in determining changes in soil C 96 

sequestration with biochar addition across a wide range of climatic, edaphic and 97 

experimental factors. Specifically, we tested the following hypotheses: (1) Biochar 98 

addition induces shifts in C-degrading enzyme activity, enhancing ligninase activity 99 

while suppressing cellulase activity; and (2) A shift in C-degrading enzyme activities 100 

will affect soil C sequestration with biochar addition.  101 

2. MATERIALS AND METHODS 102 

2.1 Description of the seven kinds of enzymes included in this study 103 

Seven kinds of extracellular enzymes involved in SOC decomposition were included 104 

in this meta-analysis (Table S2) following previous studies17,19,28. Specifically, 105 

cellulase included BG, AG, β-1,4-Xylosidase (BX) and β-D-Cellobiosidase (CBH). 106 

Ligninase included PO, Polyphenol oxidase (PPO) and PER. Enzyme activity assays 107 

are explained in Supplementary Note 1. 108 

2.2 Data collection 109 

We searched for articles on the effects of biochar addition on cellulase and ligninase 110 

activities using Web of Science (http://apps.webofknowledge.com/), Google Scholar 111 

(http://scholar.google.com/), and China National Knowledge Infrastructure 112 

http://apps.webofknowledge.com/
http://scholar.google.com/


(http://www.cnki.net/). The cutoff date was May 2022. The following keywords and 113 

terms were used for literature searching: (a) “biochar addition” or “biochar 114 

amendment” or “biochar application” (b) “cellulase” or “ligninase” or “glucosidase” 115 

or “xylosidase” or “cellobiosidase” or “peroxidase” or “phenol oxidase”, and (c) “soil” 116 

or “terrestrial” or “land”.  117 

Articles included in this study had to meet the following criteria: (a) climatic, 118 

vegetation and soil attributes were similar for the control and biochar addition 119 

treatments; (b) biochar properties (biochar materials, biochar pH, biochar temperature, 120 

biochar C% and biochar N%) and application protocols (biochar application method, 121 

biochar application rate and duration) were clearly described; (c) ecosystem types 122 

were reported; and (d) standard deviation (SD) and sample size were reported or 123 

could be calculated from the data presented in the publication. Measurements with 124 

different duration of biochar addition in the same site were considered as independent 125 

observations since one of the primary purposes is to explore the duration impacts on 126 

enzyme activities and soil C dynamics. Measurements from contaminated soil were 127 

excluded to eliminate the confounding effects of pollutants on soil enzyme 128 

activities29-30. The PRISMA flowchart illustrating processes for the selection of the 129 

included articles is shown in Fig. S1. Based on these criteria, we obtained 563 paired 130 

observations from 130 articles worldwide (Fig. S2, Table S1 & Supporting Dataset). 131 

For results that were presented in graphs, we used Getdata Graph Digitizer (version 132 

2.26) (http://www.getdata-graph-digitizer.com/download.php) to extract the data.  133 

We first extracted information on cellulase and ligninase activities. If one paper 134 

http://www.cnki.net/
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reported two or more kinds of cellulase or ligninase, the sum of these enzyme 135 

activities were calculated as the overall responses of cellulase and ligninase activities, 136 

respectively19,31. We further collected a wide range of environmental factors, 137 

including elevation (0-1746 m), latitude (−42.95° S-55.37° N), longitude (−119.74° 138 

W-147.10° E), mean annual precipitation (MAP, 27-2500 mm), mean annual 139 

temperature (MAT, −1.0-32.3 °C), and vegetation type (cropland, grassland, forest, 140 

open area and wetland) for each site. Edaphic properties, including SOC, soil total 141 

nitrogen (N), soil C:N, soil pH and soil texture (sand, silt and clay content) were also 142 

recorded. For missing environmental and edaphic variables we searched for relevant 143 

publications by the same research group at the same study sites or contacted the 144 

corresponding authors. Alternatively, missing data of climatic (including MAT, MAP) 145 

and soil attributes (SOC, total N and soil texture) were obtained from the 146 

WorldClimate Database (http://www.worldclim.org/) and Soil grids database 147 

(https://www.isric.org/explore/soilgrids), respectively. For biochar properties and 148 

application protocols, we recorded biochar materials (i.e., wood, herb, residue, urban 149 

waste), pH, pyrolysis temperature, C and N content (%) as well as method (Field, Pot 150 

and Lab), rate (%) and duration (year) of biochar application. Additionally, we 151 

recorded SOC, total N, soil C:N, pH, microbial biomass, the abundance of fungi, 152 

bacteria, fungi:bacteria, and plant biomass for both ambient and biochar addition 153 

treatments, when these variables were reported. 154 

2.3 Data analysis 155 

We used meta-analysis to qualify the effect of biochar addition on soil cellulase and 156 

http://www.worldclim.org/
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ligninase activities, ligninase:cellulase ratio and other edaphic and microbial 157 

variables32-33. Specifically, we calculated the logarithmic response ratio (LnR) of each 158 

variable using the following equation: 159 

LnR=Ln(
XB

XC

) =Ln(XB) − Ln(XC)                       (1) 160 

with XB and XC as the arithmetic average values in the biochar addition and control 161 

treatments, respectively. The variance (Vi) of Ln-R was calculated as: 162 

Vi = 
SDB

2

nBXB
2 +

SDC
2

nCXC
2                                     (2) 163 

with SDB and SDC are the standard deviations, nB and nC are the number of replicates, 164 

and XB and XC are the averaged arithmetic values of variables for biochar addition 165 

and control treatments, respectively.  166 

The overall effects of biochar addition on different variables and 95% confidence 167 

intervals (CI) were evaluated using ‘rma.mv’ function in the ‘metafor’ package of R 168 

project34. We included “Publication” and “Observation” as random factors in the 169 

mixed-effect models, because some studies contributed more than one paired 170 

observation19,35. To facilitate the interpretation of data, the effect size was 171 

back-transformed to percentage change. The effect of biochar addition on each 172 

variable was considered significant if the 95% CI did not overlap with zero. The 173 

normality of each kind of enzyme activity was tested using the Kolmogorov-Smirnov 174 

and Shapiro-Wilk tests, except for PPO due to its small sample size. 175 

We conducted meta-analytic models to analyze the combined effects of 176 

environmental, edaphic and experimental factors on the responses of soil cellulase 177 



activities, ligninase activities, ligninase:cellulase ratio and soil C sequestration to 178 

biochar addition. Briefly, we used a mixed-effects meta-regression model using 179 

‘glmulti’ package in R28,36-37. The importance of different factors was evaluated using 180 

the sum of Akaike weights. The weight was considered as the overall support for each 181 

variable in all potential models. A cutoff of 0.8 was set to identify the significant 182 

predictors for each model19,33,38. Further, we used Spearman’s rank correlation 183 

analysis to evaluate the relationships of cellulase activities, ligninase activities, and 184 

ligninase:cellulase ratio with environmental, edaphic and experimental factors. To 185 

further understand the effect of experiment duration on soil C sequestration, we 186 

conducted both linear regression and piece-wise regression models to fit the 187 

relationship between the LnR of SOC and time after biochar addition. Specifically, a 188 

piece-wise regression model was carried out using the ‘segmented’ R package39. The 189 

optimal regression model was selected by comparing regression coefficients (r) and 190 

the model was statistically significant if P < 0.05. 191 

3. RESULTS 192 

Averaged across all studies, biochar addition significantly suppressed cellulase 193 

activity by 8.3% (P < 0.001; Fig. 1a). Specifically, biochar addition decreased the 194 

activities of BG and BX by 7.3% and 9.3% (P < 0.05), respectively. In contrast, 195 

biochar addition increased ligninase activity by 7.1% on average (P < 0.001), with an 196 

increase of PER activity by 7.0% (P < 0.001). The differential responses of cellulase 197 

and ligninase activities to biochar addition led to marginally increased ratio of 198 

ligninase:cellulase activities by 10.7% (P = 0.052). In addition, the responses of 199 



cellulase, ligninase and ligninase:cellulase ratio were normally distributed according 200 

to both Kolmogorov-Smirnov and Shapiro-Wilk test (P > 0.05; Fig. 1b).  201 

Model selection analysis showed that the effects of biochar addition on cellulase 202 

activity were best explained by biochar application rate, MAP, longitude and soil clay 203 

content (Fig. 2a). On the other hand, the responses of ligninase activity to biochar 204 

addition were mostly explained by soil N content, biochar temperature, site locations 205 

(i.e., longitude) and biochar pH. Linear regression analysis confirmed that LnR of 206 

cellulase activity was negatively correlated with biochar application rate, whereas a 207 

positive correlation was found with MAP (P < 0.05). Moreover, LnR of ligninase had 208 

negative relationships with soil N content and biochar pyrolysis temperature, but 209 

positive correlation to biochar pH (P < 0.05; Fig. 2b). Regarding the 210 

ligninase:cellulase ratio, the most important predictors were the duration of biochar 211 

addition, soil C:N, biochar C content, and biochar C:N. Specifically, the 212 

LnR-Ligninase:cellulase ratio was positively correlated with duration of biochar 213 

addition but negatively correlated with soil C:N, biochar C content and C:N (P < 214 

0.05). 215 

For studies that have reported SOC, biochar addition enhanced SOC by an 216 

average of 52.8% (P < 0.001) (Fig. 3a). Our piece-wise regression analysis showed 217 

that biochar-induced increases in SOC generally diminished with duration of biochar 218 

addition (Fig. 3b; P < 0.001). The model selection analysis showed that the response 219 

of SOC to biochar addition was best explained by LnR-Ligninase:cellulase across a 220 

wide range of variables of environmental (Longitude, MAT and MAP), edaphic (soil 221 



N, C:N, clay and pH), experimental protocols (biochar C, biochar C:N, biochar pH, 222 

biochar temperature, biochar rate and time) and changes in microbial attributes 223 

(LnR-microbial biomass and LnR-fungi:bacteria). Specifically, changes in SOC with 224 

biochar application were negatively related to the ratio of ligninase:cellulase (Fig. 3d, 225 

P < 0.001).  226 

4. DISCUSSION 227 

Our results indicate that biochar addition significantly increased ligninase activity and 228 

decreased cellulase activity, resulting in marginally increased ligninase:cellulase ratio 229 

(Fig. 1). Changes in ligninase:cellulase explained the most variation in the response of 230 

SOC to biochar addition across a wide range of environmental, edaphic and 231 

experimental variables. Specifically, increases in ligninase:cellulase ratio were 232 

associated negatively with the responses of SOC. Moreover, the response of 233 

ligninase:cellulase ratio increased with time after biochar addition, suggesting a 234 

declining capacity for soil C sequestration with long-term addition5,23. Together, to the 235 

best of our knowledge, our findings provide the first evidence from soil extracellular 236 

enzymes relevant to unravelling the mechanisms controlling soil C sequestration with 237 

prolonged biochar exposure. 238 

4.1 Differential responses of cellulase and ligninase activity with biochar addition 239 

We propose three possible underlying mechanisms to explain different responses of 240 

cellulase and ligninase activity with biochar addition (Fig. 4). First, biochar-induced 241 

reductions in soil N availability could stimulate ligninase rather than cellulase activity. 242 



Several lines of evidence have demonstrated reductions in soil N availability after 243 

biochar addition, perhaps driven by (1) higher plant biomass production (Fig. S3) and 244 

associated translocation of N from soil to vegetation, (2) the additional C inputs 245 

increasing bulk soil stoichiometric C:N ratios (Fig. S4a), and (3) occlusion of soil 246 

available NH4
+ by phenolic- and lignin-like compounds through complex 247 

organo-mineral interactions on biochar surfaces (Fig. S4b). In response, soil 248 

microorganisms may increase ligninase production to stimulate the breakdown of 249 

complex phenolic- and lignin-like compounds to acquire bound N. In support of this 250 

explanation, we found that soil N content was the most important predictor (negative) 251 

of the effects of biochar addition on soil ligninase activity (Fig. 3). Indeed, this 252 

explanation supports the “microbial N mining theory”, which assumes that 253 

microorganisms invest resources to decompose complex structural macromolecules to 254 

acquire N under N limitation40-42. 255 

Second, biochar addition significantly altered the chemical composition of soil 256 

organic matter11,27, which likely contributed to the trade-off responses of cellulase and 257 

ligninase. By introducing additional phenolic- and lignin-like compounds, biochar 258 

could reduce the availability of readily decomposable C compounds since they could 259 

be occluded within macromolecule assemblages through complex organo-mineral 260 

interactions on biochar surfaces20-21. Thus, microbial utilization of these readily 261 

decomposable C compounds could be suppressed due to limitation in substrate 262 

availability20-21. In contrast, the addition of lignin-like organic C would induce 263 

expression of ligninase encoding microbial genes and possibly translational 264 



upregulation of ligninase enzymes. In addition, this explanation from the perspective 265 

of chemical composition could be supported by the great importance of production 266 

temperature on predicting the responses of soil ligninase activity to biochar addition 267 

(Fig. 2a), since biochar produced at high pyrolysis temperature commonly have more 268 

C being present in aromatic compounds43-44. Therefore, our findings indicate that after 269 

the initial depletion and stabilization of readily decomposable C by biochar, soil 270 

microbes likely stimulate ligninase production to access more chemically recalcitrant 271 

C pools45. 272 

Third, shifts in microbial community composition could contribute to the 273 

opposite effects of biochar addition on cellulase and ligninase activity. Our results 274 

show positive associations between ligninase activity and microbial biomass with 275 

biochar addition, but not for cellulase (Fig. S5). These results suggest that soil 276 

microbial community composition or enzyme production efficiency may change 277 

under biochar addition. Indeed, previous studies have reported that biochar addition 278 

stimulates fungal growth such as the two most commonly occurring types of 279 

mycorrhizal (arbuscular mycorrhizal and ectomycorrhizal) fungi46-47.Consistently, we 280 

found increased fungal abundance with biochar addition, which were positively 281 

correlated with changes in ligninase activity (Fig. S5-6). These results indicate that 282 

biochar-induced shifts toward a fungi-dominant microbial community could promote 283 

ligninase activity, possibly because fungi were more efficient in mineralizing 284 

structural complex macromolecules than bacteria and are the primary producers of 285 

phenol oxidase49. In addition, we observed positive relationships between 286 



LnR-Ligninase:cellulase and LnR-fungi:bacteria (Fig. S5), further suggesting that the 287 

shifts in extracellular enzyme activities observed in this study were related to changes 288 

in microbial community composition. 289 

4.2 Linking trade-off in soil enzyme activity to changes in SOC with biochar 290 

addition 291 

The trade-off responses of cellulase and ligninase could exert inverse effects on soil C 292 

sequestration with biochar addition. Specifically, the suppressed cellulase activity 293 

may promote soil C sequestration with biochar by reducing the decomposition of 294 

ordered polysaccharides with simpler structure17. In contrast, the enhanced ligninase 295 

activity may cause increase in the decomposition of complex phenolic 296 

macromolecules, which is commonly considered as rate-limiting step of SOC 297 

decomposition50-51. Therefore, biochar-induced sequestration of SOC could reflect the 298 

trade-off effects of these key extracellular enzymes. In support of this, our model 299 

selection analysis results indicate that shifts in soil enzyme activity from cellulase to 300 

ligninase explained the most variations in soil C sequestration with biochar addition 301 

(Fig. 3). Our regression analysis further showed a significant negative relationship 302 

between ligninase:cellulase ratio and SOC with biochar addition (Fig. 3d), suggesting 303 

that the increased decomposition of lignin-like substrates relative to cellulose-like 304 

substrates may limit soil C sequestration with biochar addition. 305 

Moreover, ligninase:cellulase ratio increased with time after biochar addition, 306 

which could exacerbate the decline in soil C over time. Previous studies have reported 307 



that complex macromolecule C adsorbed on the surface of biochar could be used by 308 

microbial community when polysaccharides with simple ordered structure are 309 

depleted over time22,48. Therefore, this gradual increase in ligninase:cellulase over 310 

time may also reflect changes in the chemical composition of soil organic matter and 311 

associated shifts in microbial community composition with time after biochar 312 

addition16,52. These results indicate that a functional acclimation of soil 313 

microorganisms to chemical composition of organic substrate affects the response of 314 

soil C sequestration to biochar addition over time. Similar declines in soil C 315 

sequestration with the time after biochar addition have also been observed in 316 

long-term case studies, and are mainly considered the result of declining adsorption 317 

capacity of biochar over time23,53.  318 

However, the moderate correlations between soil C sequestration and 319 

ligninase:cellulase suggest that shifts in soil enzyme activity alone cannot fully 320 

explain the variations in soil C sequestration with biochar addition (Fig. 3d). Indeed, 321 

overall soil C sequestration is determined by interactions among at least three C pools, 322 

namely biochar, the pre-existing SOC and plant litter/root exudates2. Therefore, other 323 

soil processes, such as the decomposition of labile component of biochar and priming 324 

of pre-existing C in soil could also affect soil C sequestration with biochar 325 

addition54-55. For instance, a previous meta-analysis indicates that a small part of 326 

biochar (approximately 3%) is bioavailable with a mean residue time of 108 days56, 327 

which may partly contribute to the initial decline in the response of soil C 328 

sequestration during the first year of biochar addition in this study. Further studies 329 



deciphering these processes (e.g., using isotopic tracers) are needed to accurately 330 

predict long-term consequences of biochar addition to soil C sequestration. In addition, 331 

the properties of original soil (e.g., SOC, pH, soil clay content) and experimental 332 

protocols (e.g., application rates) may also interactively affect soil enzyme activities 333 

and soil C sequestration with biochar addition15,20-21. However, such interactions are 334 

difficult to evaluate under field conditions due to high soil and experimental 335 

heterogeneities, which require further quantifications to identify maximum soil C 336 

accrual with biochar addition. 337 

Models used to predict increases in soil C sequestration with biochar addition 338 

vary significantly, with the annual increases in SOC ranging from 0.07% to 10% per 339 

unit of biochar C addition2,57. Large uncertainties in estimates stem from the 340 

timescales and soil C mineralization processes simulated in different models. Existing 341 

biochar models commonly consider soil C mineralization as simple first-order 342 

reactions57. However, C mineralization is a complex process that combines 343 

enzyme-mediated mineralization of both fast- and slow-mineralization organic 344 

fractions28,31. Our results suggest that retaining inflexible microbial functional traits 345 

over the duration of biochar addition may lead to inaccurate predictions of soil C 346 

sequestration. Therefore, it is necessary to include the temporal shifts in microbial 347 

C-degrading enzyme activity to improve model predictions of soil C sequestration 348 

over time with added biochar. 349 

Our study provides evidence for the contribution of biochar addition to 350 

enzyme-catalyzed microbial decomposition processes and soil C sequestration over 351 



wide temporal and environmental scales. Our results show that trade-off responses in 352 

cellulase and ligninase activities drive long-term impacts of biochar addition on soil C 353 

sequestration. This physiological acclimation in microbial metabolic activity has been 354 

overlooked to date, as a result of previously focusing on physical and chemical 355 

processes6,21. In addition, our analyses offers insights to options for regulating soil C 356 

sequestration with biochar addition across a broad range of environmental and 357 

experimental factors. Specifically, the responses of cellulase and ligninase depend on 358 

different environmental, edaphic and experimental factors (Fig. 2). Therefore, it 359 

should be possible to promote soil C accrual with biochar addition by regulating 360 

factors controlling different soil enzyme activities. For instance, biochar can be 361 

applied with N fertilizer to promote C sequestration by reducing N-mining via 362 

ligninase. Moreover, reduced response of soil ligninase activity and associated 363 

increase in soil C sequestration could also be achieved by selecting the appropriate 364 

pyrolysis temperature of biochar production. Innovative biochar management 365 

techniques to mediate different soil enzyme activities are possible, which requires 366 

collective actions of policy makers, farmers and industry at both local and regional 367 

scales. 368 

5. CONCLUSIONS 369 

Our synthesis identifies the trade-off responses of cellulase and ligninase to biochar 370 

addition, with important implications for soil C sequestration. We also show that 371 

biochar addition increased ligninase activity but reduced cellulase activity,with an 372 

increasing ligninase:cellulase ratio over time after biochar addition. Moreover, 373 



biochar-induced changes in ligninase:cellulase were negatively related to SOC pool 374 

size, suggesting a progressive reduction in soil C sequestration with long-term biochar 375 

addition. Different factors influenced the effects of biochar addition on cellulase and 376 

ligninase activities, which could help engineer the system to increase soil C 377 

sequestration under prolonged biochar exposure. 378 
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Graphical Abstract 530 



 

FIGURE 1 (a) Effects of biochar addition on cellulase activity, ligninase activity, and 

ligninase:cellulase ratio. (b) Distribution of the response ratios (log-transformed, Ln-R) of 

cellulase activity, ligninase activity, and ligninase:cellulase to biochar addition. The values 

represent the mean percentage of changes in each variable with biochar addition vs. control; error 

bars indicate 95% confidence intervals. The sample sizes of each variable are shown in the right 

column of the figure. BG, β‐1,4‐glucosidase, AG, α‐1,4‐glucosidase, CBH, β‐D‐cellobiohydrolase, 

BX, β‐1,4‐xylosidase, PO, phenol oxidase, PPO, Polyphenol oxidase, PER, peroxidase. 



  

FIGURE 2 (a) Relative importance of different variables regulating the effects of biochar addition 

on cellulase activity, ligninase activity, and ligninase:cellulase ratio. (b) Correlations between 

studied variables and the responses (LnR) of cellulase activity, ligninase activity, and 

ligninase:cellulase to biochar addition. The relative importance is according to the sum of Akaike 

weights of model selection. A cutoff of 0.8 is set to differentiate the important vs. nonessential 

predictors. MAP, mean annual precipitation, MAT, mean annual temperature, Biochar C, the 

content of C (%) in biochar; Biochar C:N, the C:N of biochar, Biochar pH, the pH of biochar, 

Biochar temperature, the temperature of biochar production, Biochar rate, the application rate of 

biochar addition, Duration, the duration of biochar addition. 



 

FIGURE 3 (a) Effects of biochar addition on soil organic C sequestration. (b) Relationship 

between duration of biochar addition and the response (LnR) of soil organic C to biochar addition. 

(c) Relative importance of different variables regulating the effects of biochar addition on soil 

organic C sequestration. (d) The relationship between the response of ligninase:cellulase and the 

response of soil organic C to biochar addition. The relationship between duration of biochar 

addition and LnR-Soil organic C was analyzed using a piece-wise regression model. Cutoff of 0.8 

is set to differentiate the important vs. nonessential predictors. MAP, mean annual precipitation, 

MAT, mean annual temperature, Biochar C, the content of C (%) in biochar; Biochar C:N, the C:N 

of biochar, Biochar pH, the pH of biochar, Biochar temperature, the temperature of biochar 

production, Biochar rate, the application rate of biochar addition, Duration, the duration of biochar 

addition. 



 

FIGURE 4 A conceptual paradigm illustrating the mechanisms of biochar addition on soil 

carbon-degrading enzyme activities and their impacts on soil organic carbon dynamics. Biochar 

addition has differential effects on soil cellulase and ligninase activities via direct and indirect 

effects on substrate quality, microbial community composition and soil N availability. The 

differential responses of cellulase and ligninase activities to biochar addition results in an 

increasing ligninase:cellulase ratio with duration of biochar addition, which may reduce soil 

organic carbon (SOC) sequestration over time. 
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TABLE S1. Overview of studies included in our meta-analysis. 

References 
Latitude 

(o) 

Longitude 

(o) 

Elevation 

(m) 

MAP 

(mm) 

MAT 

(oC) 

Land use 

Type 

Experiment 

Type 

Soil 

Depth 

(cm) 

Biochar 

Material 

1Abujabhah et al. 2016 -42.95 147.10 163 744 11.5 Farmland Field 0-15 Wood 

2Al Marzooqo et al. 2017 24.45 54.39 2 392 28.0 Farmland Lab Incubation 0-15 Wood 

3Ameloot et al. 2014 53.24 -0.54 69 569 9.4 Farmland Lab Incubation 0-10 Wood 

4Awad et al. 2013 38.28 128.15 451 1252 7.8 Farmland Lab Incubation 0-5 Wood 

5Awad et al. 2018 48.71 9.19 405 744 9.2 Farmland Lab Incubation 0-5 Wood 

6Azlan Halmi et al. 2018 3.05 102.05 443 2500 27.0 Farmland Field 0-20 Residue 

7Bailey et al. 2011 46.76 -117.18 785 523 8.6 Farmland Lab Incubation 0-5 Herb 

8Bamminger et al. 2014 50.92 11.58 145 644 8.9 Forest Lab Incubation 0-10 Herb 

9Bandara et al. 2017 7.72 80.94 93 1805 27.2 Forest Pot 0–15 Herb 

10Benavente et al. 2018 49.32 3.48 150 651 9.9 Open area Lab Incubation 0–15 Urban Waste 

11Bera et al. 2016 46.26 -119.74 271 178 11.2 Farmland Field 0-15 Wood 

12Bera et al. 2019 29.40 -82.15 22 1299 20.7 Grassland Lab Incubation 0-10 Wood 

13Bhattachariya et al. 2016 29.00 79.30 244 1247 24.6 Farmland Pot 0-15 Residue 

14Bian et al. 2019 44.30 86.06 72 648 8.3 Farmland Pot  Herb 

15Chang et al. 2016 37.36 120.44 504 807   11.9 Farmland Pot 0-20 Herb 

16Chen et al. 2013 31.05 104.17 504 807 16.5 Farmland Field 0-15 Herb 

17Chen et al. 2016 31.05 104.17 38 1420 16.5 Farmland Field 0-15 Herb 

18Chen et al. 2017 30.25 119.72 28 1392 15.8 Farmland Field 0-20 Wood 

19Chen et al. 2019 28.72 112.87 

  

17.1 Farmland Field 0-15 Herb 

20Chintala et al. 2014 44.21 -96.74 503 587 6.4 Farmland Pot 0-15 Herb 

21Cordovil et al. 2019  38.90 -9.42 106 692 15.7 Farmland Lab Incubation 0-20 Wood 

22Demisie et al. 2014 30.20 120.09 110 1333 16.5 Farmland Pot 0-15 Wood 



23Du et al. 2014 36.97 117.98 17 600 12.4 Farmland Field 0-20 Herb 

24Elzobair et al. 2016 42.52 -114.37 1190 251 9.4 Farmland Field 0-30 Wood 

25Espinosa et al. 2020 32.28 -110.94 713 305 20.7 Farmland Field 0-5 Wood 

26G. Gascó et al. 2016 40.12 -4.24 595 351 14.9 Farmland Lab Incubation 0-20 Manure 

27Gebhardt et al. 2017 31.82 -110.73 1504 559 15.6 Grassland Pot 0-20 Wood 

28Guo et al. 2020 30.23 119.70 49 1420 15.9 Forest Pot 0-20 Residue 

29Imparato et al. 2016 55.37 12.08 25 614 8.4 Farmland Field 0-15 Herb 

30Jegajeevagan et al. 2015 9.76 79.94 9 1221 28.1 Farmland Lab Incubation 0-20 Residue 

31Jenkins et al. 2017  50.98 -0.46 33 742 10.0 Farmland Field 0-15 Herb 

32Jin et al. 2019 28.62 116.43 26 1549 17.5 Farmland Field 0–15 Herb 

33Kaewpradit et al. 2019 16.21 102.82 217 1132 27.0 Farmland Lab Incubation 0-15 Wood 

34Karimi et al. 2020 31.31 48.66 18 209 27.3 Farmland Lab Incubation 0-20 Residue 

35Kumar et al. 2013 23.70 86.41 175 1171 26.0 Farmland Pot 0-15 Herb 

36Li et al. 2017 34.30 108.07 526 652 12.9 Farmland Lab Incubation 0-20 Wood 

37Li et al. 2018 30.23 119.70 150 1628 15.8 Forest Field 0-20 Residue 

38Li et al. 2020 30.23 119.70 150 1614 15.6 Farmland Field 0-20 Herb 

39Liang et al. 2014 22.68 112.90 48 1700 21.7 Farmland Lab Incubation 0-10 Manure 

40Liang et al. 2016 23.17 113.35 48 1700 21.7 Farmland Lab Incubation 0-10 Residue 

41Liang et al. 2014 40.14 116.18 50 400 11.6 Farmland Lab Incubation 0-20 Residue 

42Liao et al. 2016 44.30 86.03 469 175 8.3 Farmland Lab Incubation 0-20 Herb 

43Liu et al. 2017 23.08 114.38 105 1854 22.2 Open area Pot 0-20 Residue 

44Liu et al. 2016 43.45 82.90 823 194 7.5 Farmland Pot 0-20 Wood 

45Liu et al. 2020 30.23 119.70 49 1420 15.9 Forest Pot 0-20 Herb 

46Lu et al. 2020 52.52 119.69 604 1242 17.1 Farmland Field 0-15 Herb 

47Luo et al. 2016 22.50 114.03 0 2033 22.1 Wetland Lab Incubation 0-2 Residue 

48Ma et al. 2019 52.52 14.11 68 451 19.0 Farmland Field 0-15 Wood 



49Manasa et al. 2018 30.76 76.77 7 604 23.5 Farmland Pot 0-15 Herb 

50Masto et al. 2013 23.82 86.46 353 1008 32.3 Farmland Field 0-15 Wood 

51Ouyang et al. 2014 23.17 112.53 193 537 21.2 Forest Lab Incubation 0-10 Manure 

52Pandey et al. 2016 26.89 80.98 360 1774 25.1 Farmland Pot 0-15 Wood 

53Paz-Ferreiro et al. 2012 40.63 -4.10 113 900 12.2 Forest Pot 0-10 Urban Waste 

54Paz-Ferrerio et al. 2014 22.68 112.90 986 431 21.7 Forest Pot 0-10 Wood 

55Pei et al. 2020 30.90 120.31 48 1700 15.9 Farmland Lab Incubation 0-20 Residue 

56Pokharel et al. 2018 53.42 -113.55 49 1420 2.9 Grassland Lab Incubation 0-10 Wood 

57Rafael et al. 2020 -25.73 32.65 353 1008 23.0 Grassland Lab Incubation 0-20 Residue 

58Rafael et al. 2019 -25.73 32.65 37 782 23.0 Grassland Lab Incubation 0-20 Residue 

59Ren et al. 2020 22.22 107.78 1200 301 22.0 Forest Field 0-20 Herb 

60Sanchez-Hernandez et al. 

2019 39.80 -4.13 

489 1610 

16.6 Open area Lab Incubation 0-15 Residue 

61Sekaran et al. 2019 44.21 -96.74 665 27 8.0 Farmland Field 0-7.5 Residue 

62Sial et al. 2019a 34.33 108.40 500 580 13.0 Farmland Lab Incubation 0-20 Residue 

63Sial et al. 2019b  34.33 108.40 516 630 13.0 Farmland Lab Incubation 0-20 Residue 

64Sial. et al. 2019c  34.33 108.40 516 630 13.0 Farmland Lab Incubation 0-20 Residue 

65Song et al. 2016 34.78 113.66 516 630 14.4 Farmland Pot 0-20 Herb 

66Song et al. 2018 34.78 113.66 100 640 14.4 Farmland Pot 0-20 Herb 

67Song et al. 2019  34.78 113.66 100 640 14.4 Farmland Field 0-20 Herb 

68Song et al. 2019  30.23 119.70 100 640 16.2 Forest Field 0-20 Residue 

69Song et al. 2020   26.33 116.79 150 1712 18.5 Farmland Lab Incubation 0-40 Residue 

70Song et al. 2020  34.78 113.66 384 1464 14.4 Farmland Field 0-20 Herb 

71Song et al. 2020  50.63 6.99 100 640 9.1 Farmland Lab Incubation 45-75 Herb 

72Song et al. 2020 43.81 125.32 173 748 5.5 Farmland Lab Incubation 0-15 Herb 

73Teutsherova et al. 2018 40.05 -3.52 221 582 14.9 Farmland Pot 0-10 Residue 



74Tian et al. 2016 26.73 115.05 476 153 18.0 Farmland Field 0-20 Wood 

75Ventura et al. 2014 44.55 11.59 597 387 13.0 Farmland Field 20-40 Wood 

76Walelign et al. 2015 30.21 120.09 32 700 16.5 Farmland Lab Incubation 0-15 Wood 

77Wang et al. 2015 34.78 113.66 1830 1316 14.5 Farmland Lab Incubation 0-20 Herb 

78Wang et al. 2018 37.69 112.75 123 1333 9.5 Farmland Lab Incubation 0-20 Herb 

79Wu et al. 2013 52.77 -111.68 100 613 2.7 Farmland Lab Incubation 0-6 Herb 

80Wu et al. 2018 37.12 38.82 813 411 18.0 Farmland Lab Incubation 0-10 Herb 

81Wu et al. 2019 30.70 103.85 670 393 16.3 Farmland Pot 0-15 Herb 

82Wu et al. 2020 30.77 111.33 467 439 16.5 Farmland Lab Incubation 0-15 Herb 

83Yang et al. 2018 33.35 120.16 536 964 14.6 Open area Pot 0-20 Residue 

84Yadav et al. 2019 26.80 80.90 97 1100 24.0 Farmland Field 0-10 Herb 

85Yang et al. 2020a  34.26 121.09 2 950 15.5 Farmland Field 0-10 Herb 

86Yang et al. 2020b 34.26 121.09 129 53 15.5 Farmland Field 0-20 Herb 

87Yi et al. 2019 22.26 112.83 23 1097 22.6 Farmland Pot 0-15 Residue 

88Yoo et al. 2012 36.82 127.11 7 2066 11.5 Farmland Lab Incubation 0-10 Herb 

89Yoo et al. 2015 37.20 126.83 51 961 11.6 Farmland Lab Incubation 0-10 Herb 

90Zhai et al. 2015 40.22 116.26 54 1283 11.2 Farmland Lab Incubation 0-20 Herb 

91Zhang et al. 2014 36.97 111.55 5 1265 9.8 Farmland Field 0-20 Herb 

92Zheng et al. 2016 31.05 104.17 44 511 16.5 Farmland Field 0-15 Herb 

93Zheng et al. 2019 40.80 123.55 146 483 7.5 Farmland Field 0-20 Herb 

94Zhou et al. 2020 36.07 112.10 695 36 11.0 Forest Field 0-20 Residue 

95Chang et al. 2016 34.27 112.70 598 1722 14.2 Farmland Field 0-20 Wood 

96Chen et al. 2015 34.26 108.07 1254 600 12.9 Farmland Field 0-20 Wood 

97Chen 2019 38.02 106.60 313 641 8.6 Grassland Pot 0-10 Herb 

98Duan 2020 24.75 109.85 1357 231 19.0 Forest Field 20-30 Wood 

99Gao et al. 2020 34.07 117.55 234 1875 14.8 Farmland Field 0-15 Herb 



100Guo 2018 46.83 127.04 36 830 3.0 Farmland Field 0-20 Herb 

101Han 2017 36.21 116.69 695 736 13.1 Forest Field 0-20 Herb 

102Hu et al. 2019 26.47 118.78 156 531 19.4 Forest Lab Incubation 0-20 Wood 

103Jia et al. 2016 36.45 113.25 295 670 9.5 Open area Pot 0-20 Herb 

104Lei 2016 27.05 118.15 486 1501 18.0 Forest Pot 0-15 Wood 

105Li 2016 33.25 112.90 970 533 15.0 Farmland Field 0-30 Residue 

106Li et al. 2016 33.27 113.03 457 1747 15.0 Farmland Field 0-30 Herb 

107Meng 2016 28.06 110.03 157 848 17.2 Farmland Pot 5-20 Herb 

108Meng et al. 2018 44.43 121.83 157 732 18.5 Farmland Field 10-20 Herb 

109Song 2014 34.60 112.42 471 619 13.6 Farmland Pot 0-20 Residue 

110Sun 2015 39.00 115.00 459 619 12.0 Farmland Lab Incubation 0-20 Herb 

111Wang et al. 2017 40.87 117.76 150 630 8.8 Farmland Field 0-20 Herb 

112Wang 2018 36.04 103.74 18 550 8.7 Farmland Lab Incubation 0-20 Herb 

113Wei 2019 30.13 116.63 1620 345 17.0 Farmland Lab Incubation 0-20 Herb 

114Wei & Hong 2019 36.47 113.02 1750 470 10.2 Farmland Field 0-20 Herb 

115Wu et al. 2018 34.14 113.81 889 599 703.5 Farmland Pot 0-30 Residue 

116Xu et al. 2019 30.25 120.30 17 1050 15.9 Farmland Field 0-20 Herb 

117Zhang 2013 45.70 126.64 82 15 4.7 Farmland Pot 0-20 Herb 

118Zhang et al. 2017 37.69 112.64 65 418 10.0 Farmland Pot 0-20 Herb 

119Zhao et al. 2015 24.31 103.40 65 759 21.2 Farmland Field 30-40 Herb 

120Zhao et al. 2016 34.26 108.07 65 418 13.0 Farmland Field 0-20 Wood 

121Zhao 2016 34.29 108.07 1432 1446 13.0 Farmland Field 0-20 Wood 

122Zhao 2018 40.94 122.06 452 621 10.5 Farmland Pot 0-20 Herb 

123Zheng et al. 2018 20.05 110.20 452 621 24.3 Open area Lab Incubation 10-100 Residue 

124Azeem et al. 2020 33.98  -117.33  523 264.00 17.60 Grassland Field 0-15 Wood 

125Chen et al. 2021 30.39  119.87  73 1553.00 17.00 Farmland Field 0-20 Residue 



126Ghosh et al. 2021 23.86  86.34  270 1215.00 25.40 Open area Lab Incubation 0-15 Herb 

127Halmi et al. 2021 3.05  102.05  349 1219.00 29.40 Open area Lab Incubation 0-20 Residue 

128Hou et al. 2021 43.51  124.81  187 550.00 4.50 Farmland Field 0-20 Herb 

129Sial et al. 2022 34.33  108.40  420 627.00 13.10 Farmland Lab Incubation 0-20 Residue 

130Zhang et al. 2021 29.93  118.85  150 15.90 1450.00 Forest Lab Incubation 0-20 Residue 



TABLE S2. Overview of cellulases and ligninases included in this meta-analysis. 

Extracellular enzyme EC1 Class Type Target 

β-1,4-Glucosidase (BG) 3.2.1.21 Cellulase 
C-targeting 

hydrolysis 
Cellulose 

α‐1,4‐glucosidase (AG) 3.2.1.20 Cellulase 
C-targeting 

hydrolysis 
Cellulose 

β-1,4-Xylosidase (BX) 3.2.1.37 Cellulase 
C-targeting 

hydrolysis 
Hemicellulose 

β-D-Cellobiosidase 

(CBH) 
3.2.1.91 Cellulase 

C-targeting 

hydrolysis 
Cellulose 

Phenol oxidase (PO) 1.10.3.2 Ligninase 
Recalcitrant C 

oxidation 

Lignin and other complex 

compounds 

Polyphenol oxidase 

(PPO) 
1.14.18.1 Ligninase 

Recalcitrant C 

oxidation 

Lignin and other complex 

compounds 

Peroxidase (PER) 1.11.1.7 Ligninase 
Recalcitrant C 

oxidation 

Lignin and other complex 

compounds 

1EC: Enzyme Commission Numbers; abbrevations used in manuscript for each enzyme are shown in 

parentheses. 



SUPPLEMENTARY NOTE 1 Soil carbon-degrading extracellular enzymes assays. 

Multiple methods have been used to measure enzyme activities based on assessments 

of substrate concentrations or products over time at certain temperatures1-3. Most 

studies measured soil cellulase activity using fluorimetric methods with fluorescent 

4-methylumbelliferone substrates1,4, and assessed soil ligninase activity by 

colorimetric methods using L-3,4-dihydroxy-phenylalanine as substrate2. We 

acknowledge that methods and incubation conditions often varied among studies. 

However, we only consider the logarithmic response ratio of enzymes in each 

individual study, in which experiment condition such as the type and concentration of 

substrates, buffer pH, incubation temperature and time etc. were the same for each 

paired observations. Therefore, differences in measurement methods should have 

minimum influence on the biochar effect on enzyme activities in this meta-analysis5-6. 

Reference for Supplementary note: 

1. Marx M-C, Wood M & Jarvis S. A microplate fluorimetric assay for the study of 

enzyme diversity in soils. Soil Biol Biochem 33, 1633-1640 (2001). 

2. Deforest JL. The influence of time, storage temperature, and substrate age on 

potential soil enzyme activity in acidic forest soils using MUB-linked substrates and 

L-DOPA. Soil Biol Biochem 41, 1180-1186 (2009). 

3. Burns RG, et al. Soil enzymes in a changing environment: current knowledge and 

future directions. Soil Biol Biochem 58, 216-234 (2013). 

4. Sinsabaugh R, Carreiro M & Repert D. Allocation of extracellular enzymatic 

activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 

60, 1-24 (2002). 

5. Chen J, et al. Soil carbon loss with warming: New evidence from 

carbon-degrading enzymes. Global Change Biol 26, 1944-1952 (2020). 

6. Chen J, et al. Differential responses of carbon-degrading enzyme activities to 

warming: Implications for soil respiration. Global Change Biol 24, 4816-4826 (2018). 



 

FIGURE S1 PRISMA flowchart illustrating the processes for the selection of articles 

included for the meta-analysis. 



 

FIGURE S2 Global distribution of the biochar addition experiments selected for this 

meta-analysis. 

  



 

FIGURE S3 (a) Effects of biochar addition on plant biomass. (b) Relationship 

between the response of soil organic C (SOC) and plant biomass to biochar addition. 



 

FIGURE S4 (a) Effects of biochar addition on soil carbon:nitrogen. (b) Effects of 

biochar addition on soil NH4
+. (c) Relationship between biochar-induced changes in 

carbon:nitrogen and the application rate of biochar addition.



 

FIGURE S5 Relationships between the responses of cellulase, ligninase and 

ligninase:cellulase with microbial attributes after biochar addition. (a) Soil microbial 

biomass vs. soil cellulase. (b) Soil microbial biomass vs. soil ligninase. (c) Soil fungi 

abundance vs. ligninase. (d) Soil fungi:bacteria vs. ligninase:cellulase.



 

FIGURE S6 (a) Effects of biochar addition on fungi abundance. (b) Relationship 

between the response of fungi abundance and biochar carbon:nitrogen after biochar 

addition.
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