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Abstract 1 

The instability of the surrounding rock in underground tunnels often induces major engineering disasters. The 2 

application of prestressed bolts is an effective reinforcement method for underground structures. In this work, 3 

we consider the interaction between the rock creep and the time-dependent anchoring forces in prestressed bolts. 4 

We derive theoretical solutions for rock creep displacement caused by excavation and for the anchoring forces 5 

of the prestressed bolts, and verify the solutions using a numerical simulation and an engineering example. First, 6 

based on the coordinated deformation between the prestressed bolts and the creeping rock mass, we establish a 7 

coupled model that takes into account the rock creep and the evolving anchoring forces. We then use the 8 

superposition principle to derive elastic solutions for rock displacement and anchoring force. Second, to reflect 9 

the effect of rock creep and time-dependent anchoring force, the Burgers model is used for the rock mass and 10 

the elastic model is used for prestressed bolts. According to the coordinated deformation between rock and bolts, 11 

we obtain the analytical solutions under the coupled actions in the Laplace space. The viscoelastic solutions for 12 

rock displacement and anchoring force considering the coupling effect are then solved by using the inverse 13 

Laplace transform. Finally, we compare the analytical solutions with numerical simulation results from FLAC3D 14 

and monitoring results from an engineering example to verify the accuracy of the analytical solutions. The 15 

theoretical model provides a reference for studying tunnel reinforcement, analyzing rock creep behavior and 16 

long-term stability of the reinforcement structure. 17 

 18 

Keywords: Tunnel; prestressed anchor bolt; rock creep; coupling effect; tunnel reinforcement; viscoelasticity 19 

1 Introduction 20 

 21 

Underground rocks usually exhibit time-dependent behavior, especially for soft rocks where creep can 22 

account for more than half of the total deformation (Sabitova et al., 2021; Zhu et al., 2022;). Hard rocks under 23 

high stress can also show significant time-dependent behavior or rheological characteristics. In tunneling at a 24 

great depth, excavation changes the stress state in rocks that may induce a time-dependent squeezing behavior. 25 

The instability and failure of tunnels is closely related to time, which has long been observed in many field 26 

examples and experimental studies (Forlati et al., 2001; Yang et al., 2014; Masoud et al., 2020;). Therefore, the 27 

creep deformation of the surrounding rock in tunnels cannot be ignored. Creep has a significant impact on the 28 

safety and long-term stability of underground engineering structures. 29 

Prestressed anchor bolt is the primary measure for reinforcing underground structures, and the long-term 30 

evolution of the anchoring force in the bolt plays an important role in the overall safety and stability of the rocks 31 

(Shreedharan and Kulatilake, 2016; Fan et al., 2018; Hu et al., 2020;). In this work, we study the coupled effect 32 

between rock creep and the evolving anchoring forces of prestressed bolts, and we aim to provide a theoretical 33 

basis for optimizing underground reinforcement design and improving engineering safety and reliability.  34 
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The use of prestressed bolts to reinforce creeping rock masses has attracted much attention of researchers 35 

around the world, and important research progress has been made. Many studies using field monitoring data 36 

have shown that the time-dependent effect exists in the loss of prestress of anchor cables in reinforcing 37 

applications (Zhu et al., 2002; Liu et al., 2012;). To study the stability of the surrounding rock of the tunnel 38 

during construction, Liu et al. (2007) explored the distribution and evolution of rock displacement and bolt axial 39 

force using field monitored data. Charlie et al. (2010) used observations in mines and revealed the loading 40 

conditions and failure modes of bolts under high-stress conditions. Zhang and Liu (2014) monitored the axial 41 

forces in reinforcing bolts over time and studied the evolution of the internal forces of different bolts. By 42 

monitoring the anchoring forces at several cross-sections of a roadway during its excavation, Zhang et al. (2015) 43 

found that the anchoring forces in the bolts changed, which affected the reinforcing capacity.  44 

In terms of experimental studies and numerical simulation, Chen et al. (2011) used physical model 45 

experiments to study the bolt-reinforced tunnel and analyzed the evolution of rock stress and bolt axial force 46 

over time. Based on the numerical analysis using the finite difference method FLAC3D, Du et al. (2016) explored 47 

the effect of prestressed bolts on the stress redistribution of the surrounding rock of the tunnel. Using the finite 48 

element method, Qian and Zhou (2018) examined the deformation and failure of rocks under high in-situ stress 49 

in the underground cavern group of the Jinping I Hydropower Station, and discussed the mechanisms for the 50 

failure and overrun of some anchor bolts. Considering the interaction between the reinforcement system and the 51 

rock, Cai et al. (2020) and Sun et al. (2021) studied the evolutions of bolt anchoring force and rock stress and 52 

displacement through numerical simulations.  53 

In terms of theoretical research, scholars have conducted numerous studies on the viscoelastic and 54 

viscoplastic solutions of stress and displacement after excavation for rheological rock masses (Fritz, 2010; Wang 55 

et al., 2015; Thanh-Canh and Jeong-Tae, 2018; Wu et al., 2020; Gao et al., 2021;). However, few theoretical 56 

studies have considered the reinforcement effect of bolts on creeping rock masses (Oreste, 2003; Park and Kim, 57 

2006; Nomikos et al., 2011; Do et al., 2020; Do et al., 2021), especially considering the coupling between rock 58 

creep and the anchoring forces. Based on the elasto-viscoplastic constitutive model proposed by Cristesc, Roatesi 59 

(2014) conducted theoretical time-effect analysis and numerical simulations on the reinforcing system under 60 

static water condition. Wang et al. (2015) used the Kelvin model for rock masses and the Maxwell model for 61 

anchored bolts to provide the viscoelastic solutions for circular tunnels by taking into account the coupling effect. 62 

Considering the stability and safety of tunnels, Wang et al. (2017; 2018) used the generalized Kelvin model for 63 

rock masses and the elastic model for anchored bolts to derive the viscoelastic solution of stress and displacement 64 

of non-circular tunnels and twin-tunnels. Zeng et al. (2020) analyzed the time-dependent displacement of two 65 

viscoelastic models with time and obtained analytical solutions for displacement and stress induced by 66 

continuous excavation in viscoelastic rocks. 67 

In summary, most studies have used the generalized Kelvin model to characterize rock masses and conducted 68 

theoretical analysis for tunnel deformation. In the derivation of viscoelastic problems, the number of creep 69 

parameters greatly affects the difficulty of solving the problems. Each additional parameter further increases the 70 
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difficulty. Therefore, in previous studies, the generalized Kelvin model is used to characterize the creep 71 

properties of rocks. However, the generalized Kelvin model with three parameters cannot fully characterize rock 72 

masses with steady-state creep properties (or secondary creep with a constant stain rate), especially not suitable 73 

for weak rocks with long-term deformation at constant strain rate. And in previous research, few scholars 74 

analyzed the coupling time-dependent effect between rocks and bolts. In this work, we have established a 75 

theoretical model to reveal the interaction between rock creep and the time-dependent anchoring force of 76 

prestressed anchor bolts. When the tunnel contacts with the prestressed anchor bolt, the surrounding rock of the 77 

tunnel will deform under the initial geo-stress and the anchor bolt anchoring force. Considering the compatible 78 

displacements between bolts and rocks (equal-strain assumption), the rock creep will cause the corresponding 79 

deformation of the anchor bolt. Therefore, the anchoring force of the prestressed bolt are affected, then the 80 

change of the anchoring force of the bolts will affect the creep of the rock. Based on the interaction between the 81 

creep of rock mass and the anchoring force of prestressed anchor bolt, we derived the viscoelastic theoretical 82 

solution of the coupled model, which can intuitively reflect the interaction. Finally, we compare and analyze the 83 

analytical solutions, numerical solutions, and monitoring results of rock displacement and anchoring forces of 84 

prestressed bolts to verify the fidelity of the proposed model. 85 

 86 

2 Coupled mechanical analysis of prestressed bolts and tunnel rock masses 87 

 88 

2.1 Coupled mechanical model for prestressed anchor bolts and tunnel rock masses 89 

 90 

Considering the creep characteristics, the rock displacement increases over time due to the excavation effect. 91 

Once locked, the bolts and the anchored rock mass can be regarded as an integral unit bearing the forces. 92 

Therefore, the anchoring forces of the prestressed bolts are affected by the displacement of the rock mass. The 93 

time-dependent deformation of the rock mass occurs simultaneously with the deformation of the anchored bolts. 94 

As the rock mass and the prestressed bolts have deformation compatibility, the rock creep induces a 95 

corresponding deformation to the prestressed bolts, which causes the axial forces of the prestressed bolts to 96 

change accordingly. Therefore, the creep of the rock mass interacts with the anchoring forces of the prestressed 97 

bolts, based on which we establish a mechanistic model that couples the rock creep and the anchoring forces of 98 

the bolts. 99 

Anchor bolts can be considered as springs with load proportional to the elongation (Bobet, 2006). The anchor 100 

bolt can be replaced by a pair of concentrated loads of equal magnitude and opposite direction, one acting on the 101 

anchor head and the other acting on the anchoring point. In tunnel excavation and reinforcement, the anchor bolt 102 

transmits the force through the structure of the anchoring section. Therefore, anchor bolts can be considered as 103 

springs with load proportional to the elongation. Both ends of the anchor bolt exert a concentrated force of equal 104 

magnitude and opposite direction. Fig. 1 shows the coupled mechanical model of bolts and the rock mass. 0 is 105 

the initial rock stress, and P is the anchoring force of the prestressed bolt. r is the excavation radius of the circular 106 
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tunnel, L is the length of the tension section of the prestressed bolt, R is the length from the center of the tunnel 107 

to the end of the bolt, L  and Lz are the radial and circumferential spacing of the bolts, respectively. 108 

The following assumptions are made in this work: (1) The cross-section of the tunnel is circular under plane 109 

strain condition; (2) The rock mass is a homogeneous, isotropic, and viscoelastic medium with infinitesimal 110 

deformation; (3) The in-situ stress is a hydrostatic stress 0 acting on the far field boundaries; (4) The excavation 111 

and reinforcement of the tunnel are carried out simultaneously; and (5) The deformation of the prestressed bolts 112 

and the deformation of the rock mass are coordinated (compatible). 113 

Based on these assumptions, the theoretical solutions of the coupling model for prestressed bolts and the rock 114 

mass are linear elasticity with small deformation. Thus, the equations of elasticity, including the Lame equation, 115 

the Equilibrium differential equation, the Beltrami-Michel equation, and the Fourier series equation, as well as 116 

the displacement boundary conditions and stress boundary conditions, are all linear. Therefore, we use the 117 

superposition principle to solve the elastic theoretical solutions for the coupled model. Fig. 2 shows the four 118 

basic problems that are superimposed. 119 

Because of elasticity, the four basic problems correspond to the following:  120 

(i) a concentrated force P applied at the anchor head at the tunnel perimeter (Fig. 2a);  121 

(ii) a concentrated force P in an infinite medium (without the tunnel) applied at a distance R (Fig. 2b);  122 

(iii) a stress field applied at the tunnel perimeter, the magnitude of which is equal to that of problem (ii) at 123 

the same location, but in the opposite direction (Fig. 2c). A superposition of problems (ii) and (iii) will solve the 124 

problem of a concentrated force in a medium with a circular tunnel, i.e., zero normal and shear stresses at the 125 

tunnel perimeter;  126 

(iv) a far-field stress 0 acting on the surrounding rock of the tunnel (Fig. 2d). 127 

We superimpose the solutions of problem (i) to problem (iv) to obtain the coupled elastic theoretical solutions 128 

for tunnels considering rock creep and evolving anchoring forces in prestressed bolts. We assume that the 129 

excavation of the tunnel and the installation of the prestressed bolts are carried out at the same time. Once the 130 

circular tunnel is excavated, the deformation between the surrounding rock of the tunnel and the prestressed 131 

bolts is coordinated. Therefore, the displacement of the prestressed bolt is equal to the displacement of the 132 

surrounding rock, and the two ends of the prestressed bolt are subjected to concentrated forces (Bobet, 2006; 133 

Wang et al., 2015), 134 

 1 2 3 4 2

4

π

i i

i i i i Z

b b

L L L P
u u u u P

E d k


   

 +  +  +  = =   
  

 (1) 135 

where | |i i i

R ru u u   = = = − ; u  is the displacement of the rock mass; i is the number of the prestressed 136 

bolts; Eb is the elastic modulus of the rock mass; bd  is the diameter of the prestressed bolt; P is the anchoring 137 

force of the prestressed bolt; L and Lz are radial and circumferential spacing of the prestressed bolts, 138 
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respectively; L is the length of the tension section of the prestressed bolt; k is the stiffness of the reinforcement 139 

system, and 

2π

4

b b

Z

E d
k

L L L

= . 140 

The left side of Eq. (1) represents the elongation of prestressed bolt i caused by far-field stresses and all 141 

prestressed bolts,  and the right side represents the elongation of the prestressed bolt shaft due to force P. 142 

Assuming that the prestressed bolt loads are distributed by the length of the tunnel, the product of the load and 143 

the longitudinal prestressed bolt spacing is the actual load carried by the prestressed bolts. 1

iu , 2

iu , 3

iu , 144 

and 4

iu represent the deformation of the prestressed bolts in problem 1 to problem 4, respectively. The stress 145 

and displacement boundary conditions are as follows. 146 

The initial stress boundary conditions:  147 

 , 0 0| R   = = =  (2) 148 

 
, 0| r

z

P

L L
  



 = = =  (3) 149 

The displacement compatibility conditions: 150 

 | |R b Ru u  = ==  (4) 151 

 | |r b ru u  = ==  (5) 152 

where   is the radial stress of the surrounding rock; 
0   is the initial rock stress; u  is the radial 153 

displacement of the surrounding rock; bu  is the displacement of the prestressed bolt; and   represents the 154 

radial coordinate distance; R is the length from the center of the tunnel to the end of the bolt; r is the Excavation 155 

radius of the circular tunnel. 156 

 157 

2.2 Elastic solutions of the coupled mechanical model 158 

 159 

By superimposing the solutions of problem (i) to problem (iv), we can obtain the coupled elastic theoretical 160 

solutions for tunnels considering rock creep effects and evolving anchoring forces in prestressed bolts. 161 

 162 

2.2.1 Concentrated force P applied at the tunnel perimeter 163 

The mechanical model of concentrated force P applied at the anchor head at the tunnel perimeter is shown in 164 

Fig. 3. In this section, we use the inverse solution in elasticity to solve the problem (i). First, the Airy stress 165 

function   that satisfies the compatibility equation is selected. Considering the compatibility equation in polar 166 

coordinates, we obtain stress components with unknown constants. Second, according to the stress boundary and 167 

displacement boundary conditions, we find the unknown constants in the Airy stress function. Finally, we obtain 168 
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the displacement analytical solutions for the surrounding rock mass by geometric equations and physical 169 

equations. 170 

For the mechanical model of concentrated force P applied at the anchor head at the tunnel perimeter, the Airy 171 

stress function with a structure similar to that for plane stress condition is chosen as (Timoshenko and Goodier, 172 

1970)  173 

 5
1 2 3 4sin ln sin ln cos cos

a
a a a a        


 = + + + +  (6) 174 

where   is the Airy stress function; 1a , 2a , 3a , 4a , and 5a  are constants obtained from boundary conditions; 175 

and   is an auxiliary angle in polar coordinates. 176 

From the Airy stress function, stresses can be obtained as 177 

 

2

2 2

1 1


   

  
= +

 
 (7) 178 

 

2

2


 
=


 (8) 179 

 
1


  

  
= −  

  
 (9) 180 

where   is the radial stress of the rock;   is the tangential stress of the rock; and   is the shear stress 181 

of the rock. 182 

This Airy stress function satisfies equilibrium, strain compatibility, and boundary conditions. Thus, the Airy 183 

stress function   for a concentrated force in plane strain condition in an elastic infinite medium is written as 184 

(Bobet, 2006) 185 

 
( )

( )

( )

( )

21 2 3 4 1
sin ln sin ln cos cos

π 2π 2π 4π 1 8π 1

P PrP Pr P  
        

  

− −
 = + − − −

− −
186 

  (10) 187 

Combining Eq. (10) with Eqs. (7), (8), and (9) yields the stress components as 188 

 

( )
( )

( )

( )

( )

( )

( )

( )

2 2 2 2

2 22 2 2 2 2

2

2 3

2 cos 1 cos sin

cos sin cos sin

π
5 6 cos 3 4 cos

2 4 1 4 1

r r

r r r rP

rr



    

     


   

    

 − + −
 +

− +  − +  =  
 − −

+ − + 
− −  

 (11) 189 
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( )

( )

( )

( )

( )

( )

2 2

2 22 2 2

2

3

2 cos sin 1 2 cos

2 4 1cos sin

π 3 4 cos

4 1

r r r

r rP

r


    

    


 

 

 − −
+ − 

−  − +  = −  
 −

+ 
−  

 (12) 190 

 
( ) ( )

( )

( )

( )

( )

2 3

2 22 2 2 2 2

2

3

2 sin cos 2 sin

cos sin cos sin

π 1 2 sin 3 4 sin

4 1 4 1

r r

r r r rP

r


   

     


   

   

 
+ 

− +  − + 
 =  

 − −
− + 

− − 

 (13) 191 

Based on the stress components, the displacement components are solved by geometric and physical 192 

equations, and the solutions are written as  193 

 
1

u

u u




 






  


=




= +



 (14) 194 

 

( )

( )

1

1

r

r

E

E

  

  

  

  

= −

= −

 (15) 195 

where u  is the tangential displacement of the surrounding rock,   is the Radial strain of the surrounding 196 

rock,   is the tangential strain of the surrounding rock, Er is the elastic modulus of the rock mass. 197 

Therefore, combining Eqs. (11), (12), (14), and (15) yields the radial and tangential displacements of 198 

concentrated force P applied at the anchor head at the tunnel perimeter as 199 

 
( )

( ) ( )
( )

( ) ( )

( )

( )

( )

2
2 2 2

1

22

2 22 2

5 12 8
1 cos ln cos sin cos ln

4 1

1 cos π
1 2 sin tan

π sin 2

3 4 cossin

2 8 1cos sin

r

r r

P r
u sign

E r

rr r

r r



 
      



  
  



  

    

−

 − + − − + − 
  − 

 
+  −   

= − − − −   
   

 −
 + − −

− − + 

 (16) 200 
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( )

( ) ( )
( )

( ) ( )

( )
( )

( )

( )

( )

( )

2
2 2 2

1

2 2 2 2

22 2 2

5 12 8
1 sin ln cos sin sin ln

4 1

1 cos π
1 2 sin tan

π sin 2

sin 1 2 sin 3 4 sin

4 1 8 12 cos sin

r

r r

P r
u sign

E r

r r

r r



 
      



  
  



     

    

−

 
− +  − − + −

   −
 
 +  −   

= + − −   
   

 − − − + − −
 − − − +
   

 (17) 201 

 202 

2.2.2 Concentrated force P in an infinite medium 203 

The concentrated force P is assumed to act at a point in the infinite medium, and the coordinates are shown 204 

in Fig. 4a. We derive the stress and displacement equations without gravity, which is the Kelvin’s problem 205 

(Boresi et al., 2011). In the following discussion, we assume that the concentrated force P in an infinite medium 206 

is spatially axisymmetric. 207 

In this section, we define a biharmonic Love displacement function to obtain the stress and displacement 208 

components under the special form of the Galerkin vector. We transform the spatially axisymmetric problem 209 

into a two-dimensional axisymmetric problem in the process, as shown in Fig. 4b. The Galerkin vector is written 210 

as 211 

 
( )

23
3 3

1

2 1
U e

z







= −  + 

− 
 (18) 212 

where U is the function in a special form of the Galerkin vector;   is the Poisson's ratio of the rock; 3  is the 213 

Love displacement function; 3e  is the direction unit vector; and   is the Laplace operator, and 214 

2 2 2

2 2

1

z  

  
 = + +

  
.  215 

The stress and displacement components in polar coordinates under the special form of the Galerkin vector 216 

are expressed as 217 

 
( )

( ) ( ) ( )( )

( )( ) ( )

( ) ( ) ( )

( )( ) ( )

2 2 2

2

2
2 2 2

2 7 4 cos 4 1 cos 2 cos3

cos sin

cos 2 cos 2 cos3 cos 48π 1

cos sin

r L r L

r L r L
P

r L r L r L

r L r L



      

  


     


  

− + + − − − + − 
 

− + + +  
= −  + + − + − + +−  −

  − + + +
   

 (19) 218 
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( )

( ) ( ) ( )( )

( )( ) ( )

( ) ( ) ( )

( )( ) ( )

2 2 2

2

2
2 2 2

2 3 4 cos 4 1 cos 2 cos3

cos sin

cos 2 cos 2 cos3 cos 48π 1

cos sin

r L r L

r L r L
P

r L r L r L

r L r L



      

  


     


  

− + − − + − + + 
 

− + + +  
= −  + + − + − + +−  +

  − + + +
   

 (20) 219 

 
( )

( ) ( )( )

( )( ) ( )

( ) ( )

( )( ) ( )

2 2 2

2

2
2 2 2

5 4 sin 4 1 sin 2 sin 3

cos sin

3 cos 2 sin 2 sin 3 sin 48π 1

cos sin

r L

r L r L
P

r L r L

r L r L



      

  


     


  

− − + − + + 
 

− + + +  
= −  − + − + +−  +

  − + + +
   

 (21) 220 

 
( )

( )
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 223 

2.2.3 Stress field at the tunnel perimeter 224 

In Section 2.2.2, the elastic solutions of the stress and displacement under the concentrated force in an infinite 225 

medium are obtained. However, this is not the case, because there is an opening with a radius of r. The stress 226 

field in problem (ii) creates non-zero radial and shear stresses at the tunnel perimeter. The correct solution is 227 

obtained by applying radial and shear stresses of the same magnitude and opposite signs as problem (ii) at the 228 

tunnel perimeter, as shown in Fig. 5a. Problem (iii) is transformed into solving the uniformly distributed stress 229 

field of a circular opening in an infinite medium. An approximate solution can be found by expressing the radial 230 

and shear stresses at the tunnel perimeter in the form of Fourier series and then using the Michell’s solution. The 231 

formulas are expressed as (Soutas-Little, 1999) 232 
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Finally, the coefficients in Eqs. (24) - (28) can be found in the Fourier series terms Eq. (29). Note that the 238 

stresses and displacements in Eqs. (24) - (28) consists of a series of terms. As we expected, the more terms the 239 

more accurate the result. For practical purposes, a good approximation can be found with only a few terms as 240 
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 (29) 241 

 242 

2.2.4 Tunnel with a far-field stress 243 

The stress and displacement solutions of the surrounding rock in problem (iv) can be solved according to the 244 

plane strain problem (Cai, 2013), and the stress analysis diagram is shown in Fig. 5b. In addition, Fig. 5c shows 245 

a schematic diagram of the force on the representative elementary volume (REV) at a certain distance from the 246 

center of the tunnel in Fig. 5b. The stress and displacement fields under the original stress under the plane strain 247 

condition are 248 
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 252 

2.2.5 Elastic solution of the coupled mechanical model 253 

By superimposing the above problems (i), (ii), (iii), and (iv), we obtain the elastic solution of the displacement 254 

component u  of the rock mass as  255 
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Then, Eq. (33) is further simplified as 257 
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The radial displacements at the top and tail ends of the prestressed bolt are marked as ru  and Ru , 263 

respectively. Then the radial displacements are expressed as 264 
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Without considering the effects of rock gravity and other environmental stresses, we assume that the prestress 267 

of the prestressed bolt acts uniformly on the rock. Then, the anchoring force of the prestressed bolt is 268 

 0
0b b b b b b b b b

L L
P A E A E A P E A

L L


 

−  
= = = = −  (37) 269 

where b  is the stress of prestressed anchor bolt; P0 is the initial prestress of anchor bolt; b  is the total 270 

strain of the prestressed bolt; 
bE  is the elastic modulus of the prestressed bolt; bA  is the cross-sectional area 271 

of the prestressed bolt; 0  is the pre-tension length of the prestressed bolt; and L  is the deformation of the 272 

prestressed bolt during coordinated deformation. 273 

In addition, because of the coordinated deformation between the prestressed bolt and the rock mass, the axial 274 

deformation L of the anchor bolt is equal to the deformation of the rock mass u  as 275 

 
R rL u u u =  = −  (38) 276 

where u   is the deformation of the rock mass. 277 

After calculating Eq. (38), we obtain 278 
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 (39) 279 

Subsequently, combining Eq. (38) with Eq. (37), the resultant force on the prestressed bolt unit can be 280 

expressed as 281 

 0 0b b b b

uL
P P E A P E A

L L


= − = −  (40) 282 

Therefore, u  can be easily obtained by combining Eqs. (35) - (40). Finally, the elastic solution of the 283 

radial deformation u  of the rock mass under the coupled effect is obtained as 284 
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Based on the deformation coordination between the bolt and the rock mass, the elastic solution of the 286 

anchoring force T of the bolt under the coupled effect is obtained as 287 
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where mA  is the cross-sectional area of the anchoring section of the bolt, and 
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3 Viscoelastic analytical solutions of the coupled model 296 
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 297 

In the small deformation range of rock materials, the viscoelastic problem and the elastic problem differ only 298 

in constitutive relations; and the equilibrium equations, geometric equations, and boundary conditions are 299 

exactly the same. According to the principles of elasticity-viscoelasticity, the viscoelastic problems can be solved 300 

through the following procedure. First, elastic parameters in the elastic solution of the theoretical model are 301 

replaced by viscoelastic parameters. Then, the operator function of the creep model is substituted to obtain the 302 

analytical solutions of the problem in the Laplace space. Finally, the inverse Laplace transform is applied to the 303 

analytical solutions to obtain the viscoelastic solution of the problem (Mogilevskaya, 2018). 304 

 305 

3.1 Selection and definition of the coupled model 306 

 307 

In this work, the linear elastic model is used to describe the mechanical behavior of the bolt, and the Burgers 308 

model is used to describe the mechanical behavior of the rock. The component diagrams of the two models are 309 

shown in Fig. 6. 310 

 311 

3.1.1 Selection of creep model for the prestressed bolt and definition of operator functions 312 

The prestressed bolt is described by the elastic model, whose constitutive equation satisfies 313 

 bE =  (43) 314 

where  and  are total stress and total strain, respectively. 315 

Because the axial stiffness of the prestressed bolt is much larger than the tangential stiffness, the prestressed 316 

bolt can be regarded as an ideal one-dimensional (1D) elastic material. The axial stress is represented by b  317 

and the axial strain is represented by b , and the generalized one-dimensional elastic constitutive equation of 318 

the prestressed bolt can then be written as 319 

 
( )

( )
b

b b

b

Q D

P D
 =  (44) 320 

 ( ) ( ) ( )
0 0

, , ,
k km m

b b k b kk k
k k

D P D D P D p Q D q
t t t t= =

   
= = = = =

   
   (45) 321 

where D is the differential operator; ( )bP D  and ( )bQ D  are operator functions for the 1D constitutive 322 

equation of the prestressed bolt in Eq. (44); and kp  and kq  are constants of the prestressed bolt material. 323 

Hence, the parameter transformation in the Laplace domain is given by 324 

 ( )
( )

( )
b

b

b

Q s
E s

P s
=  (46) 325 
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where s is the Laplace variable; ( )bP s  and ( )bQ s  are operator functions of the 1D constitutive equation of 326 

the prestressed bolt after the Laplace transform. Specifically, the operator functions are written as 327 

 
( )

( )

1b

b b

P s

Q s E

=

=
 (47) 328 

 329 

3.1.2 Selection of creep model for the rock mass and definition of operator functions 330 

The Burgers model is used to describe the creep properties of the rock mass. The one-dimensional constitutive 331 

equation of the rock mass satisfies 332 

 1 2 1 1 2 1 2
1

1 2 1 2 2

r r r r r r r
r

r r r r rE E E E E

      
     

 +
+ + + = + 

 
 (48) 333 

where   and   are the derivatives of   and  , respectively, and   and   are the second derivatives 334 

of   and  , respectively. E1r and E2r are the visco-elastic parameters. 335 

It is well known that rock mechanics and engineering problems are often three-dimensional. The rock mass 336 

in the tunnel should be considered as three-dimensional viscoelastic material, therefore the one-dimensional 337 

constitutive equation should be expanded to three-dimensional. From the perspective of elastic theory, the one-338 

dimensional form of the elastic constitutive relationship is rE = , and the three-dimensional tensor form is 339 

expressed as 340 

 2 , 3ij ij ij ijS Ge K = =  (49) 341 

where G and K are the bulk modulus and shear modulus, respectively. ijS  and ije  are the deviatoric stress 342 

and strain tensors, respectively. ij  and ij  are the stress tensor and strain tensor, respectively. 343 

The three-dimensional constitutive models for elastic and viscoelastic materials can be expressed as 344 

 
( )

( )

( )

( )
2 2 , 3 3ij ij ij ij ij ij

Q D Q D
S Ge e K

P D P D
  

 
= = = =

 
 (50) 345 

where ( )P D , ( )Q D , ( )P D , ( )Q D  are the operator functions of the viscoelastic constitutive model. 346 

Therefore, the parameter transformation in the Laplace domain is given by 347 

 ( )
( )

( )
( )

( )

( )
,

Q s Q s
G s K s

P s P s

 
= =

 
 (51) 348 

where ( )P s , ( )Q s , ( )P s , ( )Q s  are the operator functions of the viscoelastic constitutive model after the 349 

Laplace transformation. In addition, the operator functions of the Burgers model are 350 
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( )

( )

( )

( )

2 21 2 2 1 2
1 2

1 2 1 2

2 21 2
2 1 2

1

1 1

1

r r r r r
r r

r r r r

r r
r r r
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G G G G

Q s s s q s q s
G

P s

Q s K

    

 


 +
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 

 = + = +

 =

 =

 (52) 351 

where 1r  and 2r  are the viscosity coefficients of the rock mass; 1rG and 2rG  are the elastic shear 352 

modulus and visco-elastic shear modulus of the rock mass, respectively. 353 

 354 

3.2 General viscoelastic solution of the coupled model 355 

 356 

In the three-dimensional space, the relationships between elastic modulus E, Poisson ratio , elastic shear 357 

modulus G, and bulk modulus K are 358 

 
9

=
3

GK
E

K G+
 (53) 359 

 
( )
3 2

=
2 3

K G

K G


−

+
 (54) 360 

Substituting the expressions of E and  into Eqs. (41) and (42), the spatial solutions of the radial deformation361 

u  of the rock mass and the anchoring force T of the bolt can then be obtained as 362 
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 (56) 364 

Next, the equations for the spatial solutions, (i.e., Eqs. (55) and (56)), are solved using the Laplace transform 365 

as follows. In the viscoelastic case, 0P  is replaced by its Laplace transform 0P

s
, G  is replaced by 

( )

( )

Q s

P s




, 366 

K  is replaced by 
( )

( )

Q s

P s




, and bE  is replaced by 

( )

( )
b

b

Q s

P s
, the general solutions of the radial deformation 367 

u  of the rock mass and the anchoring force T of the bolt in the Laplace domain are obtained. 368 

 369 

3.3 Viscoelastic analytical solution of the coupled model  370 

 371 

Based on the theoretical models, the Burgers model is used for the rock mass, and the elastic model is used 372 

for the prestressed bolt. Substituting the differential operators into the general solutions of u  and T yields 373 

the analytical solutions of the deformation u  of the rock mass and the anchoring force ( )T s  of the 374 

prestressed bolt in the Laplace domain. Here, we first combine Eqs. (47) and (52) with the general solutions of 375 

the rock radial deformation u  and the anchoring force T, and then the corresponding expressions of u  376 

and ( )T s  can be obtained as  377 

 ( )
( )

8 7 6 5 4 3 2

1 2 3 4 5 6 7 8 9

8 7 6 5 4 3 2

10 11 12 13 14 15 16 17 18

h s h s h s h s h s h s h s h s h
u s

s h s h s h s h s h s h s h s h s h


+ + + + + + + +
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+ + + + + + + +
 (57) 378 

 ( )
( )

8 7 6 5 4 3 2

1 2 3 4 5 6 7 8 9

8 7 6 5 4 3 2

10 11 12 13 14 15 16 17 18

j s j s j s j s j s j s j s j s j
T s

s j s j s j s j s j s j s j s j s j

+ + + + + + + +
=

+ + + + + + + +
 (58)379 

where h1 ~ h18, j1 ~ j18 can be found in Appendix A. 380 

Then, Eq. (57) is further simplified as 381 
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 (59) 382 

In Eq. (59), s1 ~ s9 are the roots of the characteristic equation 383 

9 8 7 6 5 4 3 2

10 11 12 13 14 15 16 17 18 0h s h s h s h s h s h s h s h s h s+ + + + + + + + = . r1 ~ r9 are coefficients to be determined, 384 

which are called residues of Eq. (59) at s1 ~ s9, and can be calculated according to the following formula 385 

 ( ) ( )lim
i

i i
s s

r s s u s
→

= −   (60) 386 

Finally, these analytical solutions can be inverted back into the time domain using the inverse Laplace 387 

transform. Hence, by using the inverse Laplace transform on Eq. (59), the viscoelastic analytical solutions of the 388 

rock radial deformation u  under the coupled effect can be obtained as 389 

 3 5 6 7 8 91 2 4

1 2 3 4 5 6 7 8 9( )
s t s t s t s t s t s ts t s t s t

u t re r e r e r e r e r e r e r e r e = + + + + + + + +  (61) 390 

where s is the Laplace variable; t is the time. 391 

Subsequently, Eq. (58) is further simplified as, 392 

 393 
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 (62) 394 

In Eq. (62), s1 - s9 are the roots of the characteristic equation 395 

9 8 7 6 5 4 3 2

10 11 12 13 14 15 16 17 18 0j s j s j s j s j s j s j s j s j s+ + + + + + + + = . 1r
 ~ 9r

  are coefficients to be 396 

determined, and are the residues of Eq. (62) at s1 ~ s9, and can be calculated according to the following formula 397 

 ( ) ( )lim
i

i i
s s

r s s T s
→

= −  (63) 398 

Finally, we perform the inverse Laplace transform on Eq. (62) to obtain the viscoelastic analytical solution 399 

of the anchoring force T of the bolt in the time domain under the coupled effect as  400 

 3 5 6 7 8 91 2 4

1 2 3 4 5 6 7 8 9( )
s t s t s t s t s t s ts t s t s tT t re r e r e r e r e r e r e r e r e        = + + + + + + + +  (64) 401 

 402 

4 Verification of the theoretical model 403 

 404 

In this section, we use the finite difference software FLAC3D to verify the fidelity of the analytical solutions 405 

proposed in this work. 406 
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 407 

4.1 Establishment of the numerical model 408 

 409 

FLAC3D is used to numerically simulate the coupled effect of the rock creep and the evolving anchoring force. 410 

Since the theoretical model is symmetrical, we simplify the numerical model to a quarter circular tunnel. The 411 

mesh of the model is shown in Fig. 7. The size of the numerical model, divided into 1230 grids and 2750 nodes, 412 

is 40m in length (X direction), 0.5m in width (Y direction), and 40m in height (Z direction) with a tunnel radius 413 

of 4m. In addition, the length of the anchor bolt in the numerical model is 5m, and the length of the tension 414 

segment is 4.5m. The prestressed bolts are set at different anchoring angles of 0°, 15°, 30°, 45°, 60°, 75°, and 415 

90°. To comply with the plane strain assumption, the displacements of the nodes in the direction perpendicular 416 

to the plane are fixed, and that along the plane direction are variable. The boundaries are fixed and set far enough 417 

to eliminate the boundary condition effects.  418 

In numerical simulations, the rock mass is described by the Burgers model, and the prestressed bolt is 419 

described by the Elastic model. To make the numerical simulation consistent with the analytical solution, it is 420 

necessary to ensure that the anchoring force of the bolt changes with the creep effect of the rock at each time 421 

step. Accordingly, the Fish function is used to calculate the deformation of the rock at each time step, and the 422 

anchoring force of the bolt in the current creep state is calculated by using Eq. (37) to meet the requirement of 423 

the coupled creep effect. Rock mechanical parameters used in the numerical model are listed in Table 1. 424 

Parameters of the prestressed bolt used in the numerical model are provided in Table 2. 425 

 426 

4.2 Comparison of analytical solutions and simulation results 427 

 428 

Fig. 8 shows the tunnel total displacement nephogram after FLAC3D calculation. Fig. 9 shows the comparison 429 

of the analytical and numerical solutions of the rock radial displacement and the anchoring force of the bolt in 430 

the coupled model, the monitoring point is at the anchor head of the anchor bolt, as shown in Fig. 7. The 431 

simulation results show that the radial displacement   of the rock and the anchoring force T of the bolt 432 

increase with time. 433 

Fig. 9a shows the increasing rock radial displacement with time. Clearly, both numerical simulation results 434 

and analytical solutions of the rock radial displacement exhibit time dependence. Specifically, the rock mass 435 

deforms along the radial direction of the bolt towards the center of the tunnel. The radial displacement increases 436 

with time and eventually converges to a stable value. Right after the tunnel excavation and reinforcement, the 437 

rock mass is unstable, the initial deformation rate is large, and then it gradually decreases. Fig. 9b shows the 438 

evolution of bolt anchoring force T with time. Similarly, both the numerical simulation results and analytical 439 

solutions show time dependence. Specifically, the anchoring force of the bolt gradually increases over time and 440 

eventually converges to a stable value. 441 
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When considering the coupling effect, the evolutions of the rock radial displacement and the bolt anchoring 442 

force in the numerical simulation are similar to that of the analytical solutions. In addition, the magnitudes 443 

associated with the two solutions are also very consistent, suggesting the fidelity of the solution procedure and 444 

the results of the coupled model. In general, the final rock radial displacement from the numerical simulation is 445 

slightly larger than that from the analytical solution. Similarly, the anchoring force from the numerical simulation 446 

is also slightly larger than that from the analytical solution. The main reasons for the difference between the 447 

analytical solution and the numerical simulation are related to the size and the geometric distribution of the 448 

numerical model, and the simplification of the analytical model of the rock mass. 449 

 450 

5 Engineering application 451 

 452 

5.1 Project overview 453 

 454 

Qingdao Metro Line 6 is located in the Huangdao District, Qingdao City. The project is a typical shallow-455 

buried large cross-section tunnel with a main section of 27.5 m. Most of the tunnel is in a slightly weathered 456 

granite formation, which is relatively stable. Its engineering geological structure of the tunnel project is shown 457 

in Fig. 10. However, some sections of the tunnel pass through multiple fractures and fractured zones, and local 458 

joints are well developed, leading to the deformation of the surrounding rock and large surface subsidence. The 459 

long-term stability of the surrounding rock is the key to the safe operation of the tunnel. If the reinforcing system 460 

has safety hazards during construction, it is easy to cause large rock deformation, fracture of the reinforcing 461 

components, and even large-scale landslides in subway stations. Therefore, to ensure the long-term safety of the 462 

Qingdao Metro Line 6 project, we carried out long-term monitoring on the anchoring force of the bolts and the 463 

displacement of the rock. The monitoring data are used to analyze the evolutions of rock creep and anchoring 464 

force of prestressed bolts in the tunnel. The location and field application of prestressed bolts in the tunnel of the 465 

Qingdao Metro Line 6 are shown in Figs. 11 and 12 (Wang et al., 2022). 466 

 467 

5.2 Model validation 468 

 469 

Taking the Qingdao Metro Line 6 project as an example, we compare the measured displacement of the rock 470 

mass and the anchoring force of the bolts with the analytical solutions to verify the applicability of the theoretical 471 

model. 472 

Constant resistance and energy absorption bolts are used for reinforcement in this area. The parameters of the 473 

rock mass and prestressed bolts are given in Table 3, and the comparison results are shown in Fig. 13. The bolt 474 

prestress design value for this area is 130 kN, and the design length is 2.4 m. The diameter of the bolt is 18mm, 475 

and the tensile strength is 906 MPa. 476 

As can be seen from Fig. 13, the theoretical model results are consistent with the field monitoring data, 477 
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indicating the validity of the theoretical model. Specifically, the tunnel vault settled. Affected by rock properties 478 

and in-situ stress, the initial rate of the displacement is relatively large and tends to stabilize after 600 hours. The 479 

anchoring force of the bolt increases, and the prestress change rates in the analytical solution result and the 480 

monitoring data are 2.29% and 2.12%, respectively. Therefore, the theoretical model can be used to analyze the 481 

interaction between the rock mass and prestressed anchor bolts. 482 

 483 

6 Discussion 484 

 485 

6.1 Application analysis 486 

 487 

Based on the study of the coupling effect between the rock creep and the changing anchoring force of the 488 

prestressed bolts, in this section we discuss and analyze the rock radial deformation with and without the 489 

coupling effect to gain a comprehensive understanding of the reinforcing effect of the theoretical model. 490 

Fig. 14 shows the creep decomposing into elementary strains in different stages. If the rock creep strain 491 

reaches stability after a long enough time, it is called a stable creep. If the creep keeps increasing and cannot get 492 

stabilized, it is then called an unstable creep. Most hard rocks exhibit stable creep behavior, which can be 493 

described by the generalized Kelvin model. The Burgers model is often used to describe unstable creep for soft 494 

rocks. 495 

In order to verify the applicability of the new theoretical model, Qingdao Metro Line 6 Project in China is 496 

taken as the research background. The actual engineering parameters are brought into the single Burgers model, 497 

the generalized Kelvin coupling model and the Burgers coupling model for calculation, and are compared with 498 

the detection data of rock mass deformation in the actual engineering. Fig. 15 shows the rock radial displacement 499 

as a function of time, with and without the coupling effect. From the analysis of Fig. 15, we can get the following: 500 

(i) The prestressed bolts are applied to the rock after excavation, but the coupling effect between the changing 501 

anchoring force and the rock creep is not considered (red line). When the rock exhibits unstable creep behavior, 502 

the radial displacement continues to increase, which cannot fully reflect the reinforcing effect of the anchor bolts.  503 

(ii) When the Burgers model is applied to the rock and the coupling effect is considered (black line), although 504 

the rock exhibits unstable creep behavior, the radial displacement after excavation is eventually stabilized with 505 

prestressed bolts, which can well reflect the reinforcing effect of the prestressed bolts. 506 

(iii) When the generalized Kelvin model is used for the rock and the coupling effect is considered (blue line), 507 

the final radial displacement of the rock also reaches a stable value. In addition, the displacement is smaller than 508 

that of the Burgers model (black line), which is related to the stable creep properties of the rock and the 509 

reinforcing effect of the prestressed bolts.  510 

(iv) The engineering observed data of tunnel surrounding rock displacement after anchoring are plotted into 511 

curves (green line) and compared with Burgers model (black line) and generalized Kelvin model (blue line) 512 
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considering coupling effects, as shown in Fig. 15. It can be seen that the theoretical derivation results of the 513 

coupling model discussed in this work have certain applicability to actual projects. In addition, comparing the 514 

engineering observed data curve (green line) with the separate Burgers model (red line) in the Fig.15, it is 515 

obvious that the displacement of the surrounding rock of the tunnel is obviously constrained after the anchor bolt 516 

is applied to the rock mass, and no longer increases infinitely with time, which confirms the supporting role of 517 

the anchor bolt in the tunnel engineering. 518 

It is worth noting that after considering the coupling effect between the rock creep and the changing anchoring 519 

force of prestressed bolts, the rock with unstable creep properties also shows stable creep behavior (black line) 520 

after being reinforced with prestressed bolts. This phenomenon fully reflects the reinforcing effect of the 521 

prestressed bolts and is consistent with the observations from engineering practices. 522 

 523 

6.2 Research prospect 524 

 525 

In this work, a series of assumptions are set, so the following problems still need to be solved: 526 

The theoretical model of coupling mechanics studied in this work is applicable to actual engineering, but the 527 

model has been simplified to some extent before researching, ignoring some influencing factors, which affects 528 

the calculation accuracy. Therefore, in the follow-up study, the influence of the hydrogeological conditions and 529 

the internal structural characteristics of the surrounding rock on the time-dependent displacement of the tunnel 530 

surrounding rock will be considered to further improve the accuracy of the calculation model. In addition, the 531 

theoretical geometric model is assumed to be circular cross-section in this work, and horseshoe shaped and 532 

rectangular tunnel sections are also commonly used in engineering. As the theoretical calculation of horseshoe 533 

shaped and rectangular tunnels is more difficult, it is one of the contents that we need to study in the future. 534 

 535 

7 Conclusions 536 

 537 

In this work, we developed coupled analytical solutions for the rock radial displacement and the anchoring 538 

forces of prestressed bolts that consider the rock creep and the evolving anchoring forces. Subsequently, we 539 

validated the fidelity of the analytical solutions by comparing against numerical simulation results using the 540 

finite difference software FLAC3D and monitoring results from an engineering example. The following 541 

conclusions can be drawn from this study. 542 

(1) We established a theoretical model considering the coupled effect between rock creep and the time-543 

dependent anchoring forces of prestressed bolts. We further derived the elastic and viscoelastic analytical 544 

solutions for the rock displacement and the bolt anchoring force under coupled actions. 545 

(2) The numerical results, engineering monitoring data, and analytical solutions are all in good agreement, 546 

which suggests the fidelity of the analytical solutions considering the coupling effect. The model provides a 547 
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theoretical reference for studying the tunnel reinforcement, analyzing the creep behavior of underground rock 548 

masses and the long-term stability of the reinforcement structure. 549 

(3) Both the displacement of rock mass and the anchoring force of anchor bolts exhibit time dependence. 550 

After excavation, the surrounding rock mass undergoes creep under the initial geo-stress and the anchoring force 551 

of prestressed anchor bolt. The creep causes corresponding deformation of anchor bolt, and the anchoring force 552 

changes accordingly, which limits the creep of rock mass. As the model considers the coupling effect, for the 553 

rock mass with unstable creep properties, the rock displacement after excavation and reinforcement also reaches 554 

to a stable value eventually, which can well reflect the reinforcing effect of prestressed bolts.   555 

(4) Because the mathematical derivation in the theoretical analysis process is extremely complex, some 556 

assumptions are applied to simplify the research. For more complex cases, it will be further studied in future 557 

work, such as non-circular tunnels, complex hydrogeological conditions, etc.558 
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Table Captions 

Table 1. Rock mechanical parameters used in the numerical model. 

Table 2. Parameters of the prestressed bolt used in the numerical model. 

Table 3. Physical and mechanical parameters of the rock mass of the Qingdao Metro Line 6 project. 

 

Figure Captions 

Figure 1. Simplified coupling mechanical model of bolts and tunnel rock mass. 

Figure 2. Decomposition diagram of coupling mechanical model of bolts and tunnel rock mass. (a) 

Concentrated force P applied at the tunnel perimeter; (b) Concentrated force P in an infinite 

medium; (c) Stress field at the tunnel perimeter; (d) Tunnel with a far field stress. 

Figure 3. Mechanical model of the concentrated force P applied to the anchor head at the tunnel 

perimeter. 

Figure 4. 3D to 2D representations of concentrated force P at the anchor end in an infinite medium: 

(a) 3D representation of the concentrated force P in an infinite medium; (b) 2D representation 

of the concentrated force P in an infinite medium. 

Figure 5. Stress analysis of tunnel：(a) Stress field at the tunnel perimeter; (b) Mechanical model 

of the tunnel under the action of the original rock stress; (c) Schematic diagram of the stress 

state in a representative elementary volume (REV). 

Figure 6. Creep models of the bolts and rocks: (a) Elastic model for bolts; (b) Burgers model for 

rocks. 

Figure 7. Dimension, grid and boundary conditions of the numerical model. 

Figure 8. Tunnel total displacement nephogram (Unit: m). 

Figure 9. Comparison between analytical solutions and numerical simulation results (The 

monitoring point is at the anchor head of the anchor bolt, as shown in Fig. 7): (a) Comparison 

between analytical solutions and numerical simulation results of rock mass displacement; (b) 

Comparison between analytical solutions and numerical simulation results of the bolt 

anchoring force. 

Figure 10. Geological cross-section of the tunnel project. 

Figure 11. Location and anchoring details of tunnel construction. 
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Figure 12. Field layout of the prestressed anchor bolts. 

Figure 13. Comparisons between the theoretical solutions and the monitored data: (a) Comparison 

between the theoretical solutions and the monitored data of rock displacement; (b) Comparison 

between the theoretical solutions and the monitored data of the anchoring force. 

Figure 14. Creep decomposing into elementary strains in different stages. 

Figure 15. Comparison of rock radial displacement between coupled model and uncoupled model. 
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