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Abstract
We numerically study how rigid solid cylinders withlength over diameter aspect ratio of 10 settle
through suspensions consisting of uniformly sizetidsspheres and Newtonian liquid. We identify
regimes with preference for horizontal settling amgttical settling of the cylinders dependent oa th
overall solids volume fraction (in the range ofdd.58) and the Archimedes number of the cylinders.
These insights we use to interpret the behavidluafized suspensions consisting of mixtures ofesph
and cylinders with an emphasis on cylinder orieotatlistributions and slip velocities between seléhd
liquid phase. The three-dimensional and time depenhdimulations explicitly resolve the solid-liquid
interfaces by applying an immersed boundary metoodained in a lattice-Boltzmann flow solver.
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1. INTRODUCTION

Sedimentation and solid-liquid fluidization are efig studied topics given their relevance in natauad
engineered processes. Settling and fluidizationoreés and their relation to particle and fluiperties
and solids loading impact process time and propedg®rmance. Relative velocity (slip) between layjui
and solids determine heat and mass transfer ogkd{®uid) interfaces. Not only average veloc#tibut
also velocity fluctuations are important in thispect, with the fluctuations induced by the randessnof
particle assemblies and possibly turbulence. Nuraksimulations of flow phenomena at length scales
comparable to particle size are a way to probe Hwmvmicrostructure of suspensions and associated
momentum and mass transfer mechanisms depend oesproonditions and (solid and liquid) material
properties. Such computational activities appleguspensions containing spherical particles heded
important insights on drag forces and particletegla(collisional and streaming) stress [1-4]. Given
various types of applications, but also given thditonal (orientational) degrees of freedom thiaeg
rise to interesting flow phenomena, investigating-spherical and non-uniform collections of paescis
relevant.

When it comes to applications, one process we raw@nd is biomass conversion. Conversion of
biomass (gasification, pyrolysis) frequently usdgidfzed bed reactors to achieve homogeneous
conditions for high levels of heat transfer ancemsive mixing [5]. Fluidizability of biomass, whigh
general is a heterogeneous, fibrous material, smered by mixing with sand [6,7]. Another applioati
that has our interest is processing of materiatslitbium-ion battery electrodes [8,9] that invodve
dispersing (among more) cylinder-shaped partictegeey high volume fractions in a continuous carrie
liquid. From the perspective of such applicatidns worthwhile to study the interactions betwetrefs,
spherical particles and the continuous phase theg are immersed in under fluidized conditionsthis
paper we do this by means of numerical simulations.

The aim is to achieve insight in the behavior of #ylinders, their orientation relative to the

direction of gravity and their relative velocity tirespect to the spheres and the fluid. In ouvipus



paper on the topic of co-fluidization of cylindemad spheres [10], the focus was on the effect ef th
length over diameter aspect ratio of the cylindgesied between 4 and 10) and the relative amotint o
cylinder volume at a fixed overall solids volumadtion of 0.4. It was shown that the cylindersr'ste
system; the more cylinders, the stronger the viiditictuations. In the present paper we studyathect

of solids volume fraction on the orientation ofl @dé&ngth over diameter ratio 10) cylinders. It @l$o
quite remarkably, the tendency of individual cykensl to orient horizontally in lean spheres suserssi
(as the cylinders would also do in a single phgsees), and vertically in dense spheres suspensiidhs
ramifications for co-fluidization of cylinders aisgpheres.

Firstly in this paper we consider a single cylindea bed of spheres and fluid with the cylinder
settling through the spheres suspension and stadyrientation and settling speed as a functiothef
solids volume fraction. Secondly we progressivelyg anore cylinders so as to also probe the mutual
interaction between cylinders while being co-flaietl with the spheres.

The three-dimensional and time-dependent simulatexplicitly account for particle shape. We use
the lattice-Boltzmann method [11] to solve for thad flow on a lattice with a spacing much finéran
the sizes of the particles and couple this to amensed boundary method [12] to explicitly impose no
slip at the particle surfaces. This makes the strans computationally expensive on a per-particgis.

We thus are only able to consider small-scale, swsc systems containing of the order of férticles
and use tri-periodic boundary conditions to malegystems representative samples contained in B muc
larger fluidized bed.

This paper has been organized as follows. Firstfline conditions are defined in terms of
dimensionless numbers. The numerical proceduretosethat follows gives an overview of the
methodology used for the simulations that we haw@lace, with references to previous papers that
contain the details of the methodology. Then thgsmal parameter space that has been covered is
described, and so are the numerical settings ssithearesolution of the simulations in space amgk i

The Results section consists of two parts: first the part osirggle cylinder settling through a bed of



fluidized spheres, second the part on co-fluidaraf cylinders and spheres. A summary of the main
findings and a research outlook conclude the paper.

2. FLOW SYSTEMS

The flow domains are three-dimensional with pecgotoundary conditions in all three coordinate

directions. Their size is denoted asxnyxnz in X, y andzdirection respectively. Gravity acts in the
negativez-direction: g=—ge, with e, the unit vector ire-direction. The domain contains Newtonian
fluid with density p and kinematic viscosity . It also contains one or more solid, rigid cylirglevith

length ¢, diameterd and densityp,, and it contains solid spheres all having the sdiameterd and
density p,. Note that throughout this paper the diametehefdpheres is the same as the diameter of the

cylinder(s) and that spheres and cylinders haveséime density. The overall solids volume fracti®n i

denoted ag¢), the cylinders volume fraction i&,) and their ratio(¢,)/(¢), which is the volume

contained in cylinders over the total solids volyngean input parameter that has been varied. The
Archimedes number is defined &s = (y—1)gd®/v* with y=p_/p.

With a fully periodic simulation domain we must neagure the overall system is force-balanced.

To do so, and with the particles feeling net gsaintthe negative-direction, we apply a body force on

the fluid in the positive-direction: f :(¢>(7—1)pgez [4]. In fluidization terms, this body force is the

vertical pressure gradient that drives the fluiic@aprocess.

3. NUMERICAL PROCEDURES

We use a variant of the lattice-Boltzmann (LB) noetho solve for the fluid flow [13,14]. The lattice
uniform and cubic with spacing.. The flow solutions evolve in time with a timegtat. An immersed
boundary method (IBM) has been used to represemnpritisence of the solid particles in the fluid [1B]

this method, solid particle surfaces are coveredclbgely spaced sets of marker points with nearest
neighbor spacing 00.5A to 0.7A. At the marker points, no-slip is imposed by lbcapplying forces

on the fluid such that the fluid velocity matchhe solid surface velocity. The distribution of fescover



the surface of each particle is integrated so atetermine the total hydrodynamic force and torgae
that particle.

In addition to hydrodynamic forces, the particleglfclose-range interaction forces. ldentifying
contact between non-spherical particles is moreoeéde than for spheres. See for example the acallyt
approach for contact between cylinders as propase&odam et al [16]. In this paper, a numerical
approach has been followed where we identify clo®ximity of two particles using the same marker
points as the ones of the IBM [17]. There are ttagss in close-range interaction. In the first sfaghen
the spacing between two marker points on two diffeparticles falls below\, a lubrication force is
activated [18]. This is because at that stage #lticé cannot resolve the flow in the narrow space
between the two particles anymore. The lubricaftwoe has a radial and a tangential component, each
which is proportional to relative velocity betwethe particles in radial and tangential directiortre
contact location. The radial proportionality comstéor the lubrication force has been derived fridra
analytical expression for creeping flow betweenadigusized spheres with diametdr [19] but is also
used for sphere-cylinder (SC) and cylinder-cylin(feC) contacts given the lack of analytical expiess
or other types of correlations for lubrication afcls contacts. A reason for this choice is that the
overwhelming majority of contacts in the simulagois sphere-sphere. Tangential lubrication is much
weaker than radial lubrication [19] which is acctaehfor by making their proportionality constanteon
order of magnitude smaller than the radial one.[Ed}ther details on contact identification and elod)
are given in [17].

We have checked sensitivity to lubrication in ag&ncylinder simulation by increasing the
proportionality for SC contacts by a factor of twee increase because cylinder surfaces are legscur
than sphere surfaces). This change of lubricatemarpeters has no discernable effect on the statisti
(averages and fluctuation levels) of cylinder's dabr as quantified by its settling velocity and

orientation angle.



The second stage of close-range interaction kickat ia closer proximity ofA/3. Then a linear

radial spring force between the particles is atdigavhich prevents them from overlapping. Note that
do not apply a tangential spring force, i.e. wendbconsider “dry” friction between the particlés for
the lubrication force, details and parameter sgétiof the spring force are in [17].

After summing the close-range interaction forcaesdach particle, and determining the resulting
torques per particle they are included in theiedinand rotational equations of motion respectivehese
we solve explicitly with a split-derivative meth@2D] with a time step equal to the LB time st&p. For
convenience, the rotational (Euler) equations ofiomoare solved in a reference frame attached ¢b ea
particle. This approach requires back-and-forthppimreg from the inertiakyz coordinate system to the
local coordinate systems of the particles. For, thech particle is equipped with a quaternion Kesfps
track of its orientation which then facilitates timapping operations [21].

4. SET-UP OF SIMULATIONS

Two classes of simulations have been performedhénfirst class, a single cylinder with aspectaati

¢/d =10 and density ratip, /p = 2.0 settles through a suspension of spheres havitignaeter equal
to the cylinder diameter and the same density ascytinder. For these simulations the overall solid

volume fraction ranges fromy) ~ 0 (actually (¢)=0.002 with one cylinder and no spheres) to 0.58.

Three values of the Archimedes number have beeastigated: Ar =207,864 and 173, with the

middle value the base-case and most studied oreeAfdhimedes number was changed by changing the
gravitational acceleration and/or the kinematicossty of the liquid.

The dimensions of the domain amex nyxnz=15d x 6d x 451 . As described above, fully periodic

boundary conditions apply with forces explicitlyldmaced over the entire flow system. We need a tall
domain (i.e. a large domain size in verticalZjiglirection) so as to correctly capture the walad th at
least for the low solids volume fraction cases vetlgps behind the cylinder [22]. The relatively noav
dimension in they-direction, along with the periodic boundary comatis, makes that, if the cylinder

changes its orientation, it will preferentially do by rotating along thgaxis. By comparing simulations



that haveny =6d with ones that havely =12d it was observed that thewidth of the flow domain
hardly had a measurable impact on the cylindetirsgtprocess after a dynamic steady state had been
reached.

Initially spheres are placed randomly in the domai@ non-overlapping fashion. The cylinder is
then placed in the center of the domain eithericadly (along thez-axis) or horizontally (along the-
axis) and the spheres that would overlap with thlender’'s volume are removed. The simulation is
started from zero solids and liquid velocity. Theatsal resolution of the simulations is such that
d =16A. Temporal resolution changes with the Archimedeslver. For the base-case, that has Ar=864,
one viscous time scalé?/v = 6400\t . The simulations in this class will be referrecatsingle-cylinder
settling simulations.

In the second class of simulations (referred toca#uidization simulations), multiple cylindersear
co-fluidized with spheres. In terms of the setuphef simulations (including numerical settingsg timly
differences with the first class are the numbetydihders, which now is larger than one, and thendim
size. The main aim of these simulations is to itigage to what extent the cylinders interact witkeo
another as a function of the amount of cylindeuwu relative to the total solids volume. The domain

size has been fixed toxxnyxnz=15d x 15 x 3@ . Overall solids volume fractions are in the range
(¢)=0.30— 0.4¢, and all simulations in this class hate=864.

As compared to the single-cylinder settling simolas we do not need such tall domains since no
lengthy wakes are able to develop behind the cghadjiven the<¢> levels considered. In a previous
study [10], domain size effects have been asseasexxbmparable<¢> and Ar values. Domains of

15d x 15 x 3@ andl1l2d x 12 x 24 showed almost identical average and fluctuatirigoies of co-

fluidized cylinders with¢/d =10. Next to the overall solids volume fraction, theaunt of solid volume
contained in the cylinders relative to the totdidsovolume has been varied in the rargg)/(¢) = 0.05

to 0.50.



5. RESULTS
5.1 Single-cylinder settling simulations

Impressions of a single cylinder settling througlilladized suspension of monodisperse spheres are
given in Figure 1. The panels are instantaneodzatians displaying all particles (spheres andnzigr)

taking part in the simulation. We show exampledhaf two ends of the spectrum in terms of overall

solids volume fractior‘<¢>: 5% solids and 54% solids. In the lean suspenalso impressions of the

velocity field are given in the form of velocity mmitude contours. At¢)=0.05, the cylinder has been
released vertically. A cylinder vertically releaseda single phase (liquid only) system at the give
Archimedes number of ~900 quickly flips to a honta orientation [22]. This also happens in the
(¢)=0.05 suspension as can be seen in the second fpamethe left in Figure 1. Different from the
single-phase case, the wake behind the cylindendstover much shorter distance in the 5% suspensio
with the particles apparently hindering the formatiof a long wake, even at this low solids volume

fraction.

An opposite orientation change of the cylinder esda the dense suspension, see Figure 1 (the

right two panels). After releasing the cylinderikontally in the<¢>=0.54 suspension it rotates to a more

or less stable vertical orientation. The samendgdr released vertically in the same suspensioys sta
close to its original orientation while settlings ahown in Figure 2 (most right panel). Figure Bveh

time series of the anglg¢ between the center line of the cylinder and théiced direction. In addition to

the observations described above related to Figguiteshows a strongly fluctuating orientation angl

for (¢)=0.35, and the flipping from vertical to horizontala no-spheres case and irf¢8 =0.05 case.
Without spheres, the cylinder wobbles periodicaligding 5% spheres clearly disturbs this wobbling
periodicity. We thus observe — at a fixed valueAof864 — that at Iow<¢> the stable orientation for
settling is horizontal and at highp) it is vertical. At an intermediate value ¢b)=0.35 the cylinder's

orientation strongly fluctuates.



The transition from horizontal settling for leal <¢>) suspensions to vertical settling in dense

suspensions has been investigated further by a raingimulations with cylinders released verticalhd
horizontally in suspensions with varying solids wok fraction. Most of these simulations are at

Ar =864; however alscAr =207 and 1730 have been considered. The results &igume 3. It shows
the time-average orientation angle and its root-mean-square valug¢ with averages taken over a

dynamically steady portion of the orientation tinseries betweent, and t,>t, such that
(t2 —tl)y/d2 > 20. If we first focus on the results fakr =864 (the blue symbols) one sees preferential
horizontal settling if(¢) < 0.25; mostly vertical settling if(¢)>0.40 and a transition range in between

these two values. The transition range is assatiatth high levels ofy’, i.e. in the transition range the
orientation angle of the cylinder fluctuates stignghile it moves through the suspension of spheres
This was already noted in the time series of Fighire the panel With<¢>:0.35. The results for
vertically and horizontally released cylinders (opgnd closed blue symbols respectively in Figure 3)
agree fairly well in terms of) as well asy)’ with the largest differences in the transition edikely
being the result of statistical uncertainty. As @sted, the initial orientation has no influencetioa long-

time orientational behavior of the cylinder. At thigh end of<¢>, angle fluctuations approach zero. The
cylinder moves vertically with only weak excursidnam its orientation. At Iovx(¢> the fluctuations are
mostly due to wobbling (see Figure 2, left panethvenly a slight increase in’ as<¢> goes from=0

(no spheres) to 0.05. Only when we enter the ttians{at (¢) ~0.30), ¢’ increases significantly.

Similar observations apply t&r =207 (red symbols in Figure 3) andir =1730 (green symbols)

with, however, a shift over theaxis as compared tdr =864. For Ar =207 the horizontal-to-vertical

transition zone shifts to lower values <o;f> which means that it is more likely for the cylinde settle

vertically if the Archimedes number decreases. #argase in Ar is mostly felt at the high end<¢1>. At



Ar =1730 and <¢> = 0.44 we are clearly in the transition range where Weas not so forAr =864. At

the lower(¢) end, theAr =1730 results closely follow those witAr =864.

In Figure 4 it is shown how the Reynolds numbepeissed with the cylinder depends on the solids

volume fraction <¢> and on Ar. This Reynolds number is defined B®, =uy,.d./v with

the average vertical slip velocity of the cylindéu,) the volume and time-averaged

usﬁp,vc = ‘<uz>_Ucz
vertical superficial velocity,u,, the time-averaged vertical cylinder velocity, adgd=d32¢/d the

cylinder’'s equivalent diameter. The velocity,, . in this Reynolds definition is the average vettica

velocity of the cylinder one would observe in apexment while it settles through a fluidized spzer
suspension.

The two panels in Figure 4 represent the sameidateo different ways. In the left panel we see —

as expected — a decreaseR¥, with increasing(¢) (hindered settling [23]), and an increase with Ar.

There is some evidence of the transition betweenicaé and horizontal settling. In the interval

0.35<(¢) < 0.4 there is a hiccup — for Ar=864 — in the decreakeRe, with increasing(¢) which

likely is the result of the settling orientatiorarisition from horizontal to vertical. In the righ&nel of
Figure 4 this transition can be withessed morerlsleblere the data are presented in a “RichardsakiZ

way [23]. Given that, according to Richardson arakiZ hindered settling speed is proportional to
(1—<¢>)N we plot Re, vs (1-(¢)) in a double logarithmic way. We see that the deiton transition is

correlated to a slight but significant change opsl, the latter representing the exponint

The effect of the Archimedes number on the oriegmtadf a settling slender cylinder through a
single phase Newtonian and non-Newtonian fluidslbesen studied extensively by experimental as well
as computational means [24,22]. When the cylingleeleased vertically in a Newtonian fluid it hasb
demonstrated that it will eventually turn horizdiyg24] where the time this takes depends on the

Archimedes number; the higher Ar, the shorter timse. Above we have observed fundamentally

10



different behavior for a cylinder settling throughsuspension of spheres with — for high solids melu
fractions — a stable vertical orientation.

As a way to further interpret the behavior of tlyinder — specifically its orientation — as it $est
through the spheres suspension we view the spBesgension as a continuum fluid with an effective
viscosity and density. This is a somewhat crudeaagh given that the diameter of the cylinder is th
same as the diameter of the spheres so that timeleyldoes not really experience the spheres sagpen

as a continuum but rather encounters the sphergsli@gdual particles. For the effective densitythé

suspension we take the mixture dengity=(¢)p, +(1—(¢))p; for the effective viscosity the Krieger-

Dougherty [25] expressiow p,, = up<1—<¢>/¢w)72'5®"“ where we have set the random-close-packing

solids volume fraction t@,, = 0.64. This then enables the definition of a modifiecimedes number
Ar’ = (%ﬁ —1) od®/v% with v =p, /Py -

In Figure 5 the data for the average angles plotted in Figure 3 (top panel) have been temlo
as ¢ as a function ofAr”. In order to capture the wide rangeAf it is plotted on a logarithmic scale.
Despite the significant scatter in Figure 5, therall trend is clear: a transition from verticattbeg at

low Ar” to horizontal settling at higiAr’ where the solids volume effect as observed inr€iguhas now

been captured through the way effective viscosity density depend oﬁﬁ). Note that an increase of

<¢> makesAr~ smaller for two reasons: its effect on the densitio and on the effective viscosity.

On a more tentative level, the concept of the ggeuspension as a continuum through which the
cylinder settles might provide hints for the undangling of vertical settling under dense conditioms
terms of viscoelastic effects. It has been arguined if only viscous and inertial forces are at play
cylinder eventually turns horizontal when settlif##t]. Experiments show that in liquids exhibiting
elasticity, under certain conditions (mostly rethte visco-elastic time scales) a vertical orientabf the

cylinder is the stable one [24]. Given that densen-Brownian hard-sphere suspensions exhibit

11



viscoelastic behavior [26,27] this might be relaviam our observations of vertical settling undertain
circumstances. It would require further study todigtitatively) substantiate this.

5.2 Co-fluidization of cylinders and spheres

In this section on co-fluidization of multiple cyllers and spheres, only the base-case Archimedes
number, Ar=864, has been considered. Figure 6 shayeessions of how simulations are started and
how they evolve with an emphasis on the cylind#érsir position and orientation. In a random spheres
only assembly, space for the cylinders is creatgedelnoving spheres that overlap with the cylinders.
Once the cylinders are placed the simulation igexdlafrom rest. Our main interest is in the stadadt

properties of cylinder and sphere motion after aadyic steady state has been reached. To assess whet

this is, we keep track of the volume-average oaeorn angle<¢> as a function of time. By comparing

vertically and horizontally released cylinders (S&gures 7 and 8) it becomes clear that after stome—

approximately 15 viscous time scales (corresponttirggconvective time ofi; .t / d ~ 75) — the system

slip,vc
has forgotten its initial condition and has enteaeti/namic steady state.
We expect to observe similar preferential cylindeentations in fluidization with a relatively srhal

number of cylinders as we saw when a single cylirgkdtles through a suspension of spheres as

discussed previously. This is confirmed in Figuria@ shows time series ¢f) for (¢)=0.30, 0.40, and

0.48. For the lowest relative amount of cylindetumee considered in this study(,)/(¢)=0.05 — the

time-averaged orientation angle in steady st@ (the volume and time-averaged orientation angle)

decreases with increasingp): (¢)~ 0.35r, 0.20r, and 0.13r for (¢)=0.30, 0.40, and 0.48

respectively. These angles are similar to or dightigher than single-cylinder angles at the

corresponding solids volume fractions, see Figu(®f panel, data for Ar=864). Adding more cylinder

volume (and taking out the same amount of sphelteme), i.e. increasings,)/(#), makes(y) smaller

12



for (¢)=0.30 and larger fof¢)=0.48; for (¢)=0.40 there is no clearly discernable trend with)/(¢)

(see Figure 9).
More detailed information on how the cylinders atiender a range of conditions is in Figures 9

and 10 that show distributions. As a reference, each panel of tliggsges includessiny which is the

way 1 would be distributed for an isotropically orientethdom assembly of cylinders. Figure 9 focuses
on (¢,)/(¢)=0.05, while Figure 10 investigates trends withréasing(¢,)/(¢). Some data in Figure 9
have been duplicated in Figure 10.

It is remarkable to see in Figure 9 that f@r} < 0.37 the cylinders completely avoid going vertical,
while for (¢) = 0.48 virtually no horizontally oriented cylinder is enmtered. Fof¢) > 0.40 the angle
distribution peaks at) ~ 0.1r .

Increasing (¢,)/(¢) from 0.05 to higher values makes the angle distidns generally less
extreme. This is shown in Figure 10. Azt>: 0.30the zero plateau of the pdf near=0 has vanished
when (¢,)/(¢)>0.15 and the angle distribution gets closer to an agitr distribution with, however, a
consistent underrepresentation of horizontal cgiad For<¢>:0.48 the zero plateau near horizontal
orientation () =m/2) only shows for(¢,)/(¢)=0.05 and has disappeared when)/(¢)=0.15. Al

angle distributions for<¢>:O.48 and 0.44 show a pronounced preference for negicakrcylinder
orientation. From experiments, this is a phenomdmmwn to also occur in dense cylinder-only setlin
through liquid or in fluidization by liquid [28,29]

From Figure 10 it is clear that the relative amooitylinder volume impacts the co-fluidization

behavior of the system at large and the behaviahefcylinders in particular. To investigate to wha

extent this is the result of enhanced direct cyineylinder interaction upon an increase{of)/(¢), the

average coordination number of cylinder-cylindemtast was determined. For a large number of

realizations of each simulation the number of ccistdbetween cylinders was counted. The average

13



coordination numberc, then is the average number of cylinders a cylindein contact with at any
moment in time. Obviouslyg, increases if the cylinder volume fracti«§¢0> increases, see Figure 11. It
does so, however, in an approximately linear maandrlargely independent of the overall solids wwdu
fraction <¢> i.e. independent of the number of spheres preSdm coordination numbec, almost
uniquely depends of, ) ; most data points in the figure follow the sanentt line, only the/¢) = 0.48
data tend to slightly higher, values. We interpret this as evidence that thndgls are distributed over
the flow volume in a way that is independent<¢i}. In other words, the cylinders show no tendency to

cluster or preferentially concentrate. This thedidgates that the different ways in which the oration

angle distributions change with increasifyg)/(¢) for different(¢) — as shown in Figure 10 — are not

the result of cylinders clustering.

We note that thep distributions are getting less extreme upon irsirgn(¢, )/(¢). This could
mean that the increased number of cylinders stirflindized system more vigorously (as also obsekrve
in [10]) thus deviating the cylinders more from itheherent preferential orientations (horizontat f
lower (¢), vertical for higher(¢)). To test this hypothesis, we have determined reghand cylinders
velocity fluctuation levels; see Figure 12 that whoroot-mean-square (rms) velocity values. It
distinguishes between spheres and cylinders andamdal and vertical velocity components. As hasrbe

observed previously in liquid fluidization / sedintation, the vertical fluctuation levels are

approximately larger by a factor of 2 than the ommelsorizontal direction [29]. An increasing tremath

(¢.)/(¢) is observed for the horizontal and vertical sphets values as well as for the vertical cylinder

velocity fluctuations. The horizontal componenttié cylinder velocity fluctuations is not sensitite

(¢,)/(¢). We conclude that the fluidized system gets mgitaged when the amount of cylinder volume

is increased. This then contributes to a widenihtpe orientation angle distribution upon incregsihe

14



relative number of cylinders. However, also theréased direct contact between cylinders (see Figure
11) will have its influence on the angle distrilouti

It is not obvious how to distinguish between caard effect when it comes to relating cylinder
orientation angle distributions and cylinder vetgcfluctuations. For the cylinders, a wider angle
distribution contributes to more vertical velocityctuations since orientation angle and verticabeity
are related. A horizontal cylinder will experienc®re drag than a vertical one and will move slower

through the spheres suspension. Figure 13 shawsffiect in terms of average vertical cylindepsli

velocities. With increasing¢,)/(¢) at (¢)=0.30 and 0.35, cylinders get less horizontal (see FEigi@r
for (¢)=0.30) and — as a result — increase their slip veloditye opposite happens f¢p) = 0.48 and

0.44 where slip velocities get smaller becausendglis get less vertical with larges, ) /().

6. CONCLUSIONS
This paper reports on particle-resolved simulatiohthe behavior of tall rigid cylinders in a susp®n
of spherical particles in a Newtonian liquid overrange of conditions. The main dependencies
investigated are those with the overall solids waduraction as well as those with the relative amai
solids volume of the cylinders. We have restricted simulations to a single cylinder aspect ratio
(¢/d =10) and a single solid over fluid density ratipp(/p: 2.0). The Archimedes numbers are such
that overall we have been dealing with laminar fisith Reynolds numbers associated to particle slip
velocities and velocity fluctuation levels of ordeD.

The eventual orientation of a single cylinder saftthrough a spheres suspension depends strongly

on the solids volume fraction of the latter. At Iealids volume fraction the cylinder eventuallyasges

— on average — a horizontal orientation. At higldsovolume fraction<¢> it eventually settles vertically.

The transition range depends on the Archimedes eunftor the mostly investigated value of Ar=864,

the transition range roughly B.3§(¢> < 0.4. In this range, the angle between the cylindegisterline

and the vertical fluctuates strongly. The changaverage orientation witl<|¢> was noticeable in the

15



average slip velocity of the cylinder as a changeslope in the logarithmic hindered settling plot
displayingl—(¢) versus the Reynolds number based on the cylirigevedocity.

The trend of preferential orientation persists whasre cylinders are added to the system. With a

relative amount of cylinder volume @f,)/{¢) = 0.05, co-fluidized cylinders in dense systems almost

completely avoid getting horizontal. Conversely, vestical cylinders are encountered for the rektiv

low solids volume fraction o(¢>: 0.30. Increasing the relative amount of cylinder volumakes the

orientation angle distributions less extreme. At shme time it was noted that velocity fluctuatievels
of the spheres increase with more cylinders in giistem; more cylinders stir the fluid bed more

vigorously. The cylinders’ fluctuating velocity lels in vertical direction are also increasing with

(¢.)/(¢) while the horizontal velocity fluctuations are émsitive to(¢,)/(¢). Finally, as for the single

cylinders, the average vertical cylinder slip véies to some extent reflect the changes in average
orientation of the cylinders, i.e. a change to meeetical orientation increases slip velocity andev
versa.

It is important to realize that the work descriliedhis paper is purely computational and is inchee
of experimental validation. There are ample averfoesnteresting experimental work. If it would be
possible to create refractive index matched liggpteres systems [30] one could visualize the cgtind
behavior quantitatively and test hypotheses withards to orientation angle (distributions) of senghd
multiple cylinders as a function of the parametdrat were varied in this paper. Given the modest
Reynolds numbers, these could be relatively snualles(order 0.1 m) experimental systems with order
mm diameter particles. From a computational petsgedhere is room for enhancing the spatial
resolution of the simulations to try and furtherifyethe results. Future work will involve the etfeof

cylinder flexibility [31] on the way they orient drorganize themselves when co-fluidized with sphere

16



Another — more theoretical — avenue for future aegeis aimed at obtaining a better understanding
of preferential vertical orientation of single ayliers moving through dense spheres suspensions and

exploring the potential role of elastic propertxthe suspension in this respect.
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Figures

Figure 1. A single cylinder (green) settling through liquidth spherical particles (red). Two left panels:
(¢)=0.05; two right panels¢)=0.54. Time after startup as indicated per panel. THepinels show

contours of liquid velocity magnitude in tixe-plane that goes through the center of the cylinbrethe
right panels the spheres are transparent so as &blb to see the cylinder. F()i))z 0.05 the cylinder

was released vertically; fo(¢>:0.54 horizontally. Ar =864. The Cartesian coordinate system is
defined in the left panel.

tvid*=1.56 | tv/d*=60.9
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Figure 2. Sample time series of the orientation anglef a single cylinder settling through liquid with
spherical particles af\r =864. From left to right: I: comparison between a cylinder settling through
clear liquid and through a suspension w{th) = 0.05; 2™ (¢) = 0.35 with the cylinder either released

vertically or horizontally (as indicated)!®3 <¢>:O.48 with the cylinder either released vertically or

horizontally; 4" (#)=0.54 with the cylinder either released vertically orizontally.
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Figure 3. Time-averaged orientation angle and the root-mean square value of the fluctuatifrihie
anglet’ as a function of overall solids volume fracti(m> for three values of Ar as indicated. Cylinders
were released vertically except for the cases lgaaifilled blue square that have horizontal release
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Figure 4. Cylinder Reynolds numbeRe. as a function of overall solids volume fracti(m> for three

values of Ar as indicated. Cylinders were releagedically except for the cases having a filledeblu
square. Left and right are two representationhefdame data. Lelfrcﬁ> vs Re, on linear scales; right

1—(¢) vs Re, on logarithmic scales.
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Figure 5. Time-averaged orientation angle as a function of the modified Archimedes numiet
(defined in the text). Same data and same legendthe top panel of Figure 3.
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Figure 6. Evolution of co-fluidized systems witly)=0.48, (¢,)/(¢)=0.05, and Ar =864; starting
with vertical cylinders (top) and horizontal cylexd (bottom). From left to right instantaneous
realizations at moments//d* =0, 6.25, 12.5, and 25. respectively. The spheres haen made semi-

transparent for better visibility of the cylinders.
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Figure 7. Time series of the volume-average cylinder origoita angle <¢> in co-fluidization
simulations. Comparison between vertically andzwnially released cylinders. Ar=864.
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Figure 8. Time series of the average cylinder orientatiogleuw) in co-fluidization simulations. From
left to right: (¢)=0.30, 0.40, and 0.48 respectively. Relative solidsime of cylinders(¢,)/(¢) as
indicated. In all cases Ar=864.
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Figure 9. Probability density functions (pdf's) of the ortation angley in co-fluidization simulations
over a range of overall solids volume fractiond.dsises havég, )/(¢) =0.05 and Ar=864. The red curve
is siny which is what an isotropic orientation distributisvould look like.
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Figure 10. Probability density functions (pdf's) of the ortation angley> in co-fluidization simulations.

From left to right the relative amount of cylindeslume (¢)/(¢) increases. From top to botto(w)
increases. Ar=864. The red curvesia .
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Figure 11. Average coordination number of cylinder-cylindentactsc, as a function of the cylinder
volume fraction(¢,) for a range of overall solids volume fractiogs as indicated.
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Figure 12. Root-mean-square values of fluctuating particleciges (non-dimensionalized with/d ) as
a function of the relative amount of cylinder voleris,)/(¢) for a range of overall solids volume
fractions (¢). Left panels: cylinder velocities in vertical arfwbrizontal direction ¢, and uj,

respectively). Right panels: sphere velocities iertical and horizontal directionuf and uj,
respectively).
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Figure 13. Average vertical cylinder slip velocityy,, . as a function of the relative amount of cylinder

volume (¢, )/(¢) for a range of overall solids volume fractiofs .
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