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Abstract 

We numerically study how rigid solid cylinders with a length over diameter aspect ratio of 10 settle 

through suspensions consisting of uniformly sized solid spheres and Newtonian liquid. We identify 

regimes with preference for horizontal settling and vertical settling of the cylinders dependent on the 

overall solids volume fraction (in the range of 0 to 0.58) and the Archimedes number of the cylinders. 

These insights we use to interpret the behavior of fluidized suspensions consisting of mixtures of spheres 

and cylinders with an emphasis on cylinder orientation distributions and slip velocities between solids and 

liquid phase. The three-dimensional and time dependent simulations explicitly resolve the solid-liquid 

interfaces by applying an immersed boundary method contained in a lattice-Boltzmann flow solver.  
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1. INTRODUCTION 

Sedimentation and solid-liquid fluidization are widely studied topics given their relevance in natural and 

engineered processes. Settling and fluidization velocities and their relation to particle and fluid properties 

and solids loading impact process time and process performance. Relative velocity (slip) between liquid 

and solids determine heat and mass transfer over (solid-liquid) interfaces. Not only average velocities but 

also velocity fluctuations are important in this respect, with the fluctuations induced by the randomness of 

particle assemblies and possibly turbulence. Numerical simulations of flow phenomena at length scales 

comparable to particle size are a way to probe how the microstructure of suspensions and associated 

momentum and mass transfer mechanisms depend on process conditions and (solid and liquid) material 

properties. Such computational activities applied to suspensions containing spherical particles have led to 

important insights on drag forces and particle-related (collisional and streaming) stress [1–4]. Given 

various types of applications, but also given the additional (orientational) degrees of freedom that give 

rise to interesting flow phenomena, investigating non-spherical and non-uniform collections of particles is 

relevant.  

When it comes to applications, one process we have in mind is biomass conversion. Conversion of 

biomass (gasification, pyrolysis) frequently uses fluidized bed reactors to achieve homogeneous 

conditions for high levels of heat transfer and intensive mixing [5]. Fluidizability of biomass, which in 

general is a heterogeneous, fibrous material, is enhanced by mixing with sand [6,7]. Another application 

that has our interest is processing of materials for lithium-ion battery electrodes [8,9] that involves 

dispersing (among more) cylinder-shaped particles at very high volume fractions in a continuous carrier 

liquid. From the perspective of such applications it is worthwhile to study the interactions between fibers, 

spherical particles and the continuous phase fluid they are immersed in under fluidized conditions. In this 

paper we do this by means of numerical simulations.  

The aim is to achieve insight in the behavior of the cylinders, their orientation relative to the 

direction of gravity and their relative velocity with respect to the spheres and the fluid. In our previous 
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paper on the topic of co-fluidization of cylinders and spheres [10], the focus was on the effect of the 

length over diameter aspect ratio of the cylinders (varied between 4 and 10) and the relative amount of 

cylinder volume at a fixed overall solids volume fraction of 0.4. It was shown that the cylinders “stir” the 

system; the more cylinders, the stronger the velocity fluctuations. In the present paper we study the effect 

of solids volume fraction on the orientation of tall (length over diameter ratio 10) cylinders. It shows, 

quite remarkably, the tendency of individual cylinders to orient horizontally in lean spheres suspensions 

(as the cylinders would also do in a single phase system), and vertically in dense spheres suspensions with 

ramifications for co-fluidization of cylinders and spheres. 

Firstly in this paper we consider a single cylinder in a bed of spheres and fluid with the cylinder 

settling through the spheres suspension and study its orientation and settling speed as a function of the 

solids volume fraction. Secondly we progressively add more cylinders so as to also probe the mutual 

interaction between cylinders while being co-fluidized with the spheres. 

The three-dimensional and time-dependent simulations explicitly account for particle shape. We use 

the lattice-Boltzmann method [11] to solve for the fluid flow on a lattice with a spacing much finer than 

the sizes of the particles and couple this to an immersed boundary method [12] to explicitly impose no-

slip at the particle surfaces. This makes the simulations computationally expensive on a per-particle basis. 

We thus are only able to consider small-scale, mesoscopic systems containing of the order of 104 particles 

and use tri-periodic boundary conditions to make the systems representative samples contained in a much 

larger fluidized bed.   

This paper has been organized as follows. First the flow conditions are defined in terms of 

dimensionless numbers. The numerical procedures section that follows gives an overview of the 

methodology used for the simulations that we have in place, with references to previous papers that 

contain the details of the methodology. Then the physical parameter space that has been covered is 

described, and so are the numerical settings such as the resolution of the simulations in space and time. 

The Results section consists of two parts: first the part on a single cylinder settling through a bed of 
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fluidized spheres, second the part on co-fluidization of cylinders and spheres. A summary of the main 

findings and a research outlook conclude the paper.       

2. FLOW SYSTEMS 

The flow domains are three-dimensional with periodic boundary conditions in all three coordinate 

directions. Their size is denoted as nx ny nz× ×  in x, y and z-direction respectively. Gravity acts in the 

negative z-direction: g=− zg e  with ze  the unit vector in z-direction. The domain contains Newtonian 

fluid with density ρ  and kinematic viscosity ν . It also contains one or more solid, rigid cylinders with 

length ℓ , diameter d  and density pρ , and it contains solid spheres all having the same diameter d  and 

density pρ . Note that throughout this paper the diameter of the spheres is the same as the diameter of the 

cylinder(s) and that spheres and cylinders have the same density. The overall solids volume fraction is 

denoted as φ , the cylinders volume fraction is cφ  and their ratio cφ φ , which is the volume 

contained in cylinders over the total solids volume, is an input parameter that has been varied.  The 

Archimedes number is defined as ( ) 3 2Ar 1 gdγ ν= −  with pγ ρ ρ= .  

With a fully periodic simulation domain we must make sure the overall system is force-balanced. 

To do so, and with the particles feeling net gravity in the negative z-direction, we apply a body force on 

the fluid in the positive z-direction: ( )1 gφ γ ρ= − zf e  [4]. In fluidization terms, this body force is the 

vertical pressure gradient that drives the fluidization process. 

3. NUMERICAL PROCEDURES 

We use a variant of the lattice-Boltzmann (LB) method to solve for the fluid flow [13,14]. The lattice is 

uniform and cubic with spacing ∆ . The flow solutions evolve in time with a time step t∆ . An immersed 

boundary method (IBM) has been used to represent the presence of the solid particles in the fluid [15]. In 

this method, solid particle surfaces are covered by closely spaced sets of marker points with nearest 

neighbor spacing of 0.5∆  to 0.7∆ . At the marker points, no-slip is imposed by locally applying forces 

on the fluid such that the fluid velocity matches the solid surface velocity. The distribution of forces over 
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the surface of each particle is integrated so as to determine the total hydrodynamic force and torque on 

that particle.  

In addition to hydrodynamic forces, the particles feel close-range interaction forces. Identifying 

contact between non-spherical particles is more elaborate than for spheres. See for example the analytical 

approach for contact between cylinders as proposed by Kodam et al [16]. In this paper, a numerical 

approach has been followed where we identify close proximity of two particles using the same marker 

points as the ones of the IBM [17]. There are two stages in close-range interaction. In the first stage, when 

the spacing between two marker points on two different particles falls below ∆ , a lubrication force is 

activated [18]. This is because at that stage the lattice cannot resolve the flow in the narrow space 

between the two particles anymore. The lubrication force has a radial and a tangential component, each of 

which is proportional to relative velocity between the particles in radial and tangential direction at the 

contact location. The radial proportionality constant for the lubrication force has been derived from the 

analytical expression for creeping flow between equally sized spheres with diameter d  [19] but is also 

used for sphere-cylinder (SC) and cylinder-cylinder (CC) contacts given the lack of analytical expressions 

or other types of correlations for lubrication at such contacts. A reason for this choice is that the 

overwhelming majority of contacts in the simulations is sphere-sphere. Tangential lubrication is much 

weaker than radial lubrication [19] which is accounted for by making their proportionality constant one 

order of magnitude smaller than the radial one [17]. Further details on contact identification and modeling 

are given in [17].  

We have checked sensitivity to lubrication in a single-cylinder simulation by increasing the 

proportionality for SC contacts by a factor of two (we increase because cylinder surfaces are less curved 

than sphere surfaces). This change of lubrication parameters has no discernable effect on the statistics 

(averages and fluctuation levels) of cylinder’s behavior as quantified by its settling velocity and 

orientation angle.   
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The second stage of close-range interaction kicks in at a closer proximity of 3∆ . Then a linear 

radial spring force between the particles is activated which prevents them from overlapping. Note that we 

do not apply a tangential spring force, i.e. we do not consider “dry” friction between the particles. As for 

the lubrication force, details and parameter settings of the spring force are in [17]. 

After summing the close-range interaction forces for each particle, and determining the resulting 

torques per particle they are included in their linear and rotational equations of motion respectively. These 

we solve explicitly with a split-derivative method [20] with a time step equal to the LB time step t∆ . For 

convenience, the rotational (Euler) equations of motion are solved in a reference frame attached to each 

particle. This approach requires back-and-forth  mapping from the inertial xyz coordinate system to the 

local coordinate systems of the particles. For this, each particle is equipped with a quaternion that keeps 

track of its orientation which then facilitates the mapping operations [21].               

4. SET-UP OF SIMULATIONS 

Two classes of simulations have been performed. In the first class, a single cylinder with aspect ratio 

10d =ℓ  and density ratio 2.0pρ ρ=   settles  through a suspension of spheres having a diameter equal 

to the cylinder diameter and the same density as the cylinder. For these simulations the overall solids 

volume fraction  ranges from 0φ ≈  (actually 0.002φ =  with one cylinder and no spheres) to 0.58. 

Three values of the Archimedes number have been investigated: Ar 207, 864 and 1730= , with the 

middle value the base-case and most studied one. The Archimedes number was changed by changing the 

gravitational acceleration and/or the kinematic viscosity of the liquid. 

The dimensions of the domain are 15 6 45nx ny nz d d d× × = × × . As described above, fully periodic 

boundary conditions apply with forces explicitly balanced over the entire flow system. We need a tall 

domain (i.e. a large domain size in vertical (is z) direction) so as to correctly capture the wake that – at 

least for the low solids volume fraction cases – develops behind the cylinder [22]. The relatively narrow 

dimension in the y-direction, along with the periodic boundary conditions, makes that, if the cylinder 

changes its orientation, it will preferentially do so by rotating along the y-axis. By comparing simulations 
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that have 6ny d=  with ones that have 12ny d=  it was observed that the y-width of the flow domain 

hardly had a measurable impact on the cylinder settling process after a dynamic steady state had been 

reached.   

Initially spheres are placed randomly in the domain in a non-overlapping fashion. The cylinder is 

then placed in the center of the domain either vertically (along the z-axis) or horizontally (along the x-

axis) and the spheres that would overlap with the cylinder’s volume are removed. The simulation is 

started from zero solids and liquid velocity. The spatial resolution of the simulations is such that 

16d = ∆ . Temporal resolution changes with the Archimedes number. For the base-case, that has Ar=864, 

one viscous time scale 2 6400d tν = ∆ . The simulations in this class will be referred to as single-cylinder 

settling simulations. 

In the second class of simulations (referred to as co-fluidization simulations), multiple cylinders are 

co-fluidized with spheres. In terms of the setup of the simulations (including numerical settings), the only 

differences with the first class are the number of cylinders, which now is larger than one, and the domain 

size. The main aim of these simulations is to investigate to what extent the cylinders interact with one 

another as a function of the amount of cylinder volume relative to the total solids volume. The domain 

size has been fixed to 15 15 30nx ny nz d d d× × = × × . Overall solids volume fractions are in the range 

0.30 0.48φ = − , and all simulations in this class have Ar 864= .  

As compared to the single-cylinder settling simulations we do not need such tall domains since no 

lengthy wakes are able to develop behind the cylinders given the φ  levels considered. In a previous 

study [10], domain size effects have been assessed at comparable φ  and Ar  values. Domains of 

15 15 30d d d× ×  and 12 12 24d d d× ×  showed almost identical average and fluctuating velocities of co-

fluidized cylinders with 10d =ℓ . Next to the overall solids volume fraction, the amount of solid volume 

contained in the cylinders relative to the total solids volume has been varied in the range 0.05cφ φ =  

to 0.50.      
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5. RESULTS 

5.1 Single-cylinder settling simulations 

Impressions of a single cylinder settling through a fluidized suspension of monodisperse spheres are 

given in Figure 1. The panels are instantaneous realizations displaying all particles (spheres and cylinder) 

taking part in the simulation. We show examples of the two ends of the spectrum in terms of overall 

solids volume fraction φ : 5% solids and 54% solids. In the lean suspension also impressions of the 

velocity field are given in the form of velocity magnitude contours. At φ =0.05, the cylinder has been 

released vertically. A cylinder vertically released in a single phase (liquid only) system at the given 

Archimedes number of ~900 quickly flips to a horizontal orientation [22]. This also happens in the 

φ =0.05 suspension as can be seen in the second panel from the left in Figure 1. Different from the 

single-phase case, the wake behind the cylinder extends over much shorter distance in the 5% suspension 

with the particles apparently hindering the formation of a long wake, even at this low solids volume 

fraction. 

An opposite orientation change of the cylinder occurs in the dense suspension, see Figure 1 (the 

right two panels). After releasing the cylinder horizontally in the φ =0.54 suspension it rotates to a more 

or less stable vertical orientation.  The same cylinder released vertically in the same suspension stays 

close to its original orientation while settling, as shown in Figure 2 (most right panel). Figure 2 shows 

time series of the angle ψ  between the center line of the cylinder and the vertical direction. In addition to 

the observations described above related to Figure 1, it shows a strongly fluctuating orientation angle ψ  

for φ =0.35, and the flipping from vertical to horizontal in a no-spheres case and in a φ =0.05 case. 

Without spheres, the cylinder wobbles periodically; adding 5% spheres clearly disturbs this wobbling 

periodicity. We thus observe – at a fixed value of Ar=864 – that at low φ  the stable orientation for 

settling is horizontal and at high φ  it is vertical. At an intermediate value of φ =0.35 the cylinder’s 

orientation strongly fluctuates.   
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The transition from horizontal settling for lean (low φ ) suspensions to vertical settling in dense 

suspensions has been investigated further by a range of simulations with cylinders released vertically and 

horizontally in suspensions with varying solids volume fraction. Most of these simulations are at 

Ar 864= ; however also Ar 207=  and 1730 have been considered. The results are in Figure 3. It shows 

the time-average orientation angle ψ  and its root-mean-square value ψ′  with averages taken over a 

dynamically steady portion of the orientation time series between 1t  and 2 1t t>  such that 

( ) 2
2 1 20t t dν− ≥ . If we first focus on the results for Ar 864=  (the blue symbols) one sees preferential 

horizontal settling if 0.25φ ≤ ; mostly vertical settling if 0.40φ >  and a transition range in between 

these two values. The transition range is associated with high levels of ψ′ , i.e. in the transition range the 

orientation angle of the cylinder fluctuates strongly while it moves through the suspension of spheres. 

This was already noted in the time series of Figure 2 – the panel with 0.35φ = . The results for 

vertically and horizontally released cylinders (open and closed blue symbols respectively in Figure 3) 

agree fairly well in terms of ψ  as well as ψ′  with the largest differences in the transition zone likely 

being the result of statistical uncertainty. As expected, the initial orientation has no influence on the long-

time orientational behavior of the cylinder. At the high end of φ , angle fluctuations approach zero. The 

cylinder moves vertically with only weak excursions from its orientation. At low φ  the fluctuations are 

mostly due to wobbling (see Figure 2, left panel) with only a slight increase in ψ′  as φ  goes from ≈0 

(no spheres) to 0.05. Only when we enter the transition (at 0.30φ ≈ ), ψ′  increases significantly.  

Similar observations apply to Ar 207=  (red symbols in Figure 3) and Ar 1730=  (green symbols) 

with, however, a shift over the x-axis as compared to Ar 864= . For Ar 207=  the horizontal-to-vertical 

transition zone shifts to lower values of φ  which means that it is more likely for the cylinder to settle 

vertically if the Archimedes number decreases. An increase in Ar is mostly felt at the high end of φ . At 
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Ar 1730=  and 0.44φ =  we are clearly in the transition range where this was not so for Ar 864= . At 

the lower φ  end, the Ar 1730=  results closely follow those with Ar 864= .  

In Figure 4 it is shown how the Reynolds number associated with the cylinder depends on the solids 

volume fraction φ  and on Ar. This Reynolds number is defined as ,Rec slip vc eu d ν=  with 

,slip vc z czu u u≡ −  the average vertical slip velocity of the cylinder, zu  the volume and time-averaged 

vertical superficial velocity, czu  the time-averaged vertical cylinder velocity, and 33
2ed d d= ℓ  the 

cylinder’s equivalent diameter. The velocity ,slip vcu  in this Reynolds definition is the average vertical 

velocity of the cylinder one would observe in an experiment while it settles through a fluidized spheres 

suspension.  

The two panels in Figure 4 represent the same data in two different ways. In the left panel we see – 

as expected – a decrease of Rec with increasing φ  (hindered settling [23]), and an increase with Ar. 

There is some evidence of the transition between vertical and horizontal settling. In the interval 

0.35 0.40φ≤ ≤  there is a hiccup – for Ar=864 – in the decrease of Rec  with increasing φ  which 

likely is the result of the settling orientation transition from horizontal to vertical. In the right panel of 

Figure 4 this transition can be witnessed more clearly. Here the data are presented in a “Richardson-Zaki” 

way [23]. Given that, according to Richardson and Zaki, hindered settling speed is proportional to 

( )1
N

φ−  we plot Rec  vs ( )1 φ−  in a double logarithmic way. We see that the orientation transition is 

correlated to a slight but significant change of slope, the latter representing the exponent N .   

The effect of the Archimedes number on the orientation of a settling slender cylinder through a 

single phase Newtonian and non-Newtonian fluids has been studied extensively by experimental as well 

as computational means [24,22]. When the cylinder is released vertically in a Newtonian fluid it has been 

demonstrated that it will eventually turn horizontally [24] where the time this takes depends on the 

Archimedes number; the higher Ar, the shorter this time. Above we have observed fundamentally 
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different behavior for a cylinder settling through a suspension of spheres with – for high solids volume 

fractions – a stable vertical orientation.  

As a way to further interpret the behavior of the cylinder – specifically its orientation – as it settles 

through the spheres suspension we view the spheres suspension as a continuum fluid with an effective 

viscosity and density. This is a somewhat crude approach given that the diameter of the cylinder is the 

same as the diameter of the spheres so that the cylinder does not really experience the spheres suspension 

as a continuum but rather encounters the spheres as individual particles. For the effective density of the 

suspension we take the mixture density ( )1m pρ φ ρ φ ρ= + − ; for the effective viscosity the Krieger-

Dougherty [25] expression ( )
2.5

1 mx

eff m mx

φ

ν ρ νρ φ φ
−

= −  where we have set the random-close-packing 

solids volume fraction to 0.64mxφ = . This then enables the definition of a modified Archimedes number 

( )* 3 2Ar 1eff effgdγ ν= −  with eff p mγ ρ ρ= .  

In Figure 5 the data for the average angle ψ  as plotted in Figure 3 (top panel) have been replotted 

as ψ  as a function of *Ar . In order to capture the wide range of *Ar  it is plotted on a logarithmic scale. 

Despite the significant scatter in Figure 5, the overall trend is clear: a transition from vertical settling at 

low *Ar  to horizontal settling at high *Ar  where the solids volume effect as observed in Figure 3 has now 

been captured through the way effective viscosity and density depend on φ . Note that an increase of 

φ  makes *Ar  smaller for two reasons: its effect on the density ratio and on the effective viscosity. 

On a more tentative level, the concept of the spheres suspension as a continuum through which the 

cylinder settles might provide hints for the understanding of vertical settling under dense conditions in 

terms of viscoelastic effects. It has been argued that if only viscous and inertial forces are at play, a 

cylinder eventually turns horizontal when settling [24]. Experiments show that in liquids exhibiting 

elasticity, under certain conditions (mostly related to visco-elastic time scales) a vertical orientation of the 

cylinder is the stable one [24]. Given that dense, non-Brownian hard-sphere suspensions exhibit 
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viscoelastic behavior [26,27] this might be relevant for our observations of vertical settling under certain 

circumstances. It would require further study to (quantitatively) substantiate this.         

5.2 Co-fluidization of cylinders and spheres 

In this section on co-fluidization of multiple cylinders and spheres, only the base-case Archimedes 

number, Ar=864, has been considered. Figure 6 shows impressions of how simulations are started and 

how they evolve with an emphasis on the cylinders, their position and orientation. In a random spheres-

only assembly, space for the cylinders is created by removing spheres that overlap with the cylinders. 

Once the cylinders are placed the simulation is started from rest. Our main interest is in the statistical 

properties of cylinder and sphere motion after a dynamic steady state has been reached. To assess when 

this is, we keep track of the volume-average orientation angle ψ  as a function of time. By comparing 

vertically and horizontally released cylinders (see Figures 7 and 8) it becomes clear that after some time – 

approximately 15 viscous time scales (corresponding to a convective time of , 75slip vcu t d ≈ ) – the system 

has forgotten its initial condition and has entered a dynamic steady state. 

We expect to observe similar preferential cylinder orientations in fluidization with a relatively small 

number of cylinders as we saw when a single cylinder settles through a suspension of spheres as 

discussed previously. This is confirmed in Figure 8 that shows time series of ψ  for φ =0.30, 0.40, and 

0.48. For the lowest relative amount of cylinder volume considered in this study – cφ φ =0.05 – the 

time-averaged orientation angle in steady state (ψ , the volume and time-averaged orientation angle) 

decreases with increasing φ : ψ ≈ 0.35π , 0.20π , and 0.13π  for φ =0.30, 0.40, and 0.48 

respectively. These angles are similar to or slightly higher than single-cylinder angles at the 

corresponding solids volume fractions, see Figure 3 (top panel, data for Ar=864). Adding more cylinder 

volume (and taking out the same amount of sphere volume), i.e. increasing cφ φ , makes ψ  smaller 
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for φ =0.30 and larger for φ =0.48; for φ =0.40 there is no clearly discernable trend with cφ φ  

(see Figure 9). 

More detailed information on how the cylinders orient under a range of conditions is in Figures 9 

and 10 that show ψ  distributions. As a reference, each panel of these figures includes sinψ  which is the 

way ψ  would be distributed for an isotropically oriented random assembly of cylinders. Figure 9 focuses 

on cφ φ =0.05, while Figure 10 investigates trends with increasing cφ φ . Some data in Figure 9 

have been duplicated in Figure 10. 

It is remarkable to see in Figure 9 that for 0.37φ ≤  the cylinders completely avoid going vertical, 

while for 0.48φ =  virtually no horizontally oriented cylinder is encountered. For 0.40φ ≥  the angle 

distribution peaks at 0.1ψ π≈ . 

Increasing cφ φ  from 0.05 to higher values makes the angle distributions generally less 

extreme. This is shown in Figure 10. At 0.30φ = the zero plateau of the pdf near 0ψ=  has vanished 

when 0.15cφ φ ≥  and the angle distribution gets closer to an isotropic distribution with, however, a 

consistent underrepresentation of horizontal cylinders. For 0.48φ =  the zero plateau near horizontal 

orientation ( 2ψ π= ) only shows for cφ φ =0.05  and has disappeared when cφ φ =0.15. All 

angle distributions for 0.48φ =  and 0.44 show a pronounced preference for near-vertical cylinder 

orientation. From experiments, this is a phenomenon known to also occur in dense cylinder-only settling 

through liquid or in fluidization by liquid [28,29].  

From Figure 10 it is clear that the relative amount of cylinder volume impacts the co-fluidization 

behavior of the system at large and the behavior of the cylinders in particular. To investigate to what 

extent this is the result of enhanced direct cylinder-cylinder interaction upon an increase of cφ φ , the 

average coordination number of cylinder-cylinder contact was determined. For a large number of 

realizations of each simulation the number of contacts between cylinders was counted. The average 
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coordination number cc  then is the average number of cylinders a cylinder is in contact with at any 

moment in time. Obviously, cc  increases if the cylinder volume fraction cφ  increases, see Figure 11. It 

does so, however, in an approximately linear manner and largely independent of the overall solids volume 

fraction φ , i.e. independent of the number of spheres present. The coordination number cc  almost 

uniquely depends on cφ ; most data points in the figure follow the same trend line, only the 0.48φ =  

data tend to slightly higher cc  values. We interpret this as evidence that the cylinders are distributed over 

the flow volume in a way that is independent of φ . In other words, the cylinders show no tendency to 

cluster or preferentially concentrate. This then indicates that the different ways in which the orientation 

angle distributions change with increasing cφ φ  for different φ  – as  shown in Figure 10 – are not 

the result of cylinders clustering.  

We note that the ψ  distributions are getting less extreme upon increasing cφ φ . This could 

mean that the increased number of cylinders stir the fluidized system more vigorously (as also observed 

in [10]) thus deviating the cylinders more from their inherent preferential orientations (horizontal for 

lower φ , vertical for higher φ ). To test this hypothesis, we have determined spheres and cylinders 

velocity fluctuation levels; see Figure 12 that shows root-mean-square (rms) velocity values. It 

distinguishes between spheres and cylinders and horizontal and vertical velocity components. As has been 

observed previously in liquid fluidization / sedimentation, the vertical fluctuation levels are 

approximately larger by a factor of 2 than the ones in horizontal direction [29]. An increasing trend with 

cφ φ  is observed for the horizontal and vertical sphere rms values as well as for the vertical cylinder 

velocity fluctuations. The horizontal component of the cylinder velocity fluctuations is not sensitive to 

cφ φ . We conclude that the fluidized system gets more agitated when the amount of cylinder volume 

is increased. This then contributes to a widening of the orientation angle distribution upon increasing the 
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relative number of cylinders. However, also the increased direct contact between cylinders (see Figure 

11) will have its influence on the angle distribution.   

It is not obvious how to distinguish between cause and effect when it comes to relating cylinder 

orientation angle distributions and cylinder velocity fluctuations. For the cylinders, a wider angle 

distribution contributes to more vertical velocity fluctuations since orientation angle and vertical velocity 

are related. A horizontal cylinder will experience more drag than a vertical one and will move slower 

through the spheres suspension.  Figure 13 shows this effect in terms of average vertical cylinder slip 

velocities. With increasing cφ φ  at 0.30φ =  and 0.35, cylinders get less horizontal (see Figure 10 

for 0.30φ = ) and – as a result – increase their slip velocity. The opposite happens for 0.48φ =  and 

0.44 where slip velocities get smaller because cylinders get less vertical with larger cφ φ .  

6. CONCLUSIONS 

This paper reports on particle-resolved simulations of the behavior of tall rigid cylinders in a suspension 

of spherical particles in a Newtonian liquid over a range of conditions. The main dependencies 

investigated are those with the overall solids volume fraction as well as those with the relative amount of 

solids volume of the cylinders. We have restricted the simulations to a single cylinder aspect ratio 

( 10d =ℓ ) and a single solid over fluid density ratio ( 2.0pρ ρ= ). The Archimedes numbers are such 

that overall we have been dealing with laminar flow with Reynolds numbers associated to particle slip 

velocities and velocity fluctuation levels of order 10.  

The eventual orientation of a single cylinder settling through a spheres suspension depends strongly 

on the solids volume fraction of the latter. At low solids volume fraction the cylinder eventually assumes 

– on average – a horizontal orientation. At high solids volume fraction φ  it eventually settles vertically. 

The transition range depends on the Archimedes number. For the mostly investigated value of Ar=864, 

the transition range roughly is 0.3 0.4φ≤ ≤ . In this range, the angle between the cylinder’s centerline 

and the vertical fluctuates strongly. The change in average orientation with φ  was noticeable in the 
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average slip velocity of the cylinder as a change in slope in the logarithmic hindered settling plot 

displaying 1 φ−  versus the Reynolds number based on the cylinder slip velocity. 

The trend of preferential orientation persists when more cylinders are added to the system. With a 

relative amount of cylinder volume of 0.05cφ φ = , co-fluidized cylinders in dense systems almost 

completely avoid getting horizontal. Conversely, no vertical cylinders are encountered for the relatively 

low solids volume fraction of 0.30φ = . Increasing the relative amount of cylinder volume makes the 

orientation angle distributions less extreme. At the same time it was noted that velocity fluctuation levels 

of the spheres increase with more cylinders in the system; more cylinders stir the fluid bed more 

vigorously. The cylinders’ fluctuating velocity levels in vertical direction are also increasing with 

cφ φ  while the horizontal velocity fluctuations are insensitive to cφ φ . Finally, as for the single  

cylinders, the average vertical cylinder slip velocities to some extent reflect the changes in average 

orientation of the cylinders, i.e. a change to more vertical orientation increases slip velocity and vice 

versa.  

It is important to realize that the work described in this paper is purely computational and is in need 

of experimental validation. There are ample avenues for interesting experimental work. If it would be 

possible to create refractive index matched liquid-spheres systems [30] one could visualize the cylinder 

behavior quantitatively and test hypotheses with regards to orientation angle (distributions) of single and 

multiple cylinders as a function of the parameters that were varied in this paper. Given the modest 

Reynolds numbers, these could be relatively small-scale (order 0.1 m) experimental systems with order 

mm diameter particles. From a computational perspective there is room for enhancing the spatial 

resolution of the simulations to try and further verify the results. Future work will involve the effect of 

cylinder flexibility [31] on the way they orient and organize themselves when co-fluidized with spheres. 
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Another – more theoretical – avenue for future research is aimed at obtaining a better understanding 

of preferential vertical orientation of single cylinders moving through dense spheres suspensions and 

exploring the potential role of elastic properties of the suspension in this respect. 
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Figures 

Figure 1. A single cylinder (green) settling through liquid with spherical particles (red). Two left panels: 
0.05φ = ; two right panels 0.54φ = . Time after startup as indicated per panel. The left panels show 

contours of liquid velocity magnitude in the xz-plane that goes through the center of the cylinder. In the 
right panels the spheres are transparent so as to be able to see the cylinder. For 0.05φ =  the cylinder 

was released vertically; for 0.54φ =  horizontally. Ar 864= . The Cartesian coordinate system is 

defined in the left panel. 
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Figure 2. Sample time series of the orientation angle ψ of a single cylinder settling through liquid with 
spherical particles at Ar 864= . From left to right: 1st: comparison between a cylinder settling through 
clear liquid and through a suspension with 0.05φ = ; 2nd: 0.35φ =  with the cylinder either released 

vertically or horizontally (as indicated); 3rd: 0.48φ =  with the cylinder either released vertically or 

horizontally; 4th: 0.54φ =  with the cylinder either released vertically or horizontally. 
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Figure 3. Time-averaged orientation angle ψ  and the root-mean square value of the fluctuations of the 

angle ψ′  as a function of overall solids volume fraction φ  for three values of Ar as indicated. Cylinders 

were released vertically except for the cases having a filled blue square that have horizontal release. 
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Figure 4. Cylinder Reynolds number Rec  as a function of overall solids volume fraction φ  for three 

values of Ar as indicated. Cylinders were released vertically except for the cases having a filled blue 
square. Left and right are two representations of the same data. Left φ  vs Rec  on linear scales; right 

1 φ−  vs Rec  on logarithmic scales. 
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Figure 5. Time-averaged orientation angle ψ  as a function of the modified Archimedes number *Ar  
(defined in the text). Same data and same legend as in the top panel of Figure 3. 
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Figure 6. Evolution of co-fluidized systems with φ =0.48, 0.05cφ φ = , and Ar 864= ; starting 

with vertical cylinders (top) and horizontal cylinders (bottom). From left to right instantaneous 
realizations at moments 2 0t dν = , 6.25, 12.5, and 25. respectively. The spheres have been made semi-
transparent for better visibility of the cylinders.  
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Figure 7. Time series of the volume-average cylinder orientation angle ψ  in co-fluidization 

simulations. Comparison between vertically and horizontally released cylinders. Ar=864. 
 

 



 28

Figure 8. Time series of the average cylinder orientation angle ψ  in co-fluidization simulations. From 

left to right: φ =0.30, 0.40, and 0.48 respectively. Relative solids volume of cylinders cφ φ  as 

indicated. In all cases Ar=864. 
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Figure 9. Probability density functions (pdf’s) of the orientation angle ψ  in co-fluidization simulations 

over a range of overall solids volume fractions. All cases have cφ φ =0.05 and Ar=864. The red curve 

is sinψ  which is what an isotropic orientation distribution would look like. 
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Figure 10. Probability density functions (pdf’s) of the orientation angle ψ  in co-fluidization simulations. 

From left to right the relative amount of cylinder volume cφ φ  increases. From top to bottom φ  

increases. Ar=864. The red curve is sinψ .  
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Figure 11. Average coordination number of cylinder-cylinder contacts cc  as a function of the cylinder 

volume fraction cφ  for a range of overall solids volume fractions φ  as indicated. 
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Figure 12. Root-mean-square values of fluctuating particle velocities (non-dimensionalized with dν ) as 

a function of the relative amount of cylinder volume cφ φ  for a range of overall solids volume 

fractions φ . Left panels: cylinder velocities in vertical and horizontal direction (vcu′  and hcu′  

respectively). Right panels: sphere velocities in vertical and horizontal direction (vsu′  and hsu′  

respectively). 
 

 
 



 33

Figure 13. Average vertical cylinder slip velocity ,slip vcu  as a function of the relative amount of cylinder 

volume cφ φ  for a range of overall solids volume fractions φ . 

 
 

  
 
 
 
 
 


