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Abstract 15 

Methane (CH4) is an important greenhouse gas (GHG) that contributes to climate 16 

change and one of its major sources is rice cultivation. The main aim of this paper was 17 

to compare two well-established biogeochemical models, namely Daily Century 18 

(DAYCENT) and DeNitrification-DeComposition (DNDC) for estimating CH4 19 

emissions and grain yields for a double-rice cropping system with tillage practice 20 

and/or stubble incorporation in the winter fallow season in Southern China. Both 21 

models were calibrated and validated using field measured data from November 2008 22 

to November 2014. The calibrated models performed effectively in estimating the 23 

daily CH4 emission pattern (correlation coefficient, r = 58−63, p < 0.001), but model 24 

efficiency (EF) values were higher in stubble incorporation treatments, with and 25 

https://www.abdn.ac.uk/ibes/research/groups/environmental-modelling/profiles/mabdalla


without winter tillage (treatments S and WS) (EF = 0.22−0.28) than that in winter 26 

tillage without stubble incorporation treatment (W) (EF = −0.06−0.08). We 27 

recommend that algorithms for the impacts of tillage practice on CH4 emission should 28 

be improved for both models. DAYCENT and DNDC also estimated rice yields for all 29 

treatments without a significant bias. Our results showed that tillage practice in the 30 

winter fallow season (treatments WS and W) significantly decreased annual CH4 31 

emissions, by 13−37% (p < 0.05) for measured values, 15−20% (p < 0.05) for 32 

DAYCENT-simulated values, and 12−32% (p < 0.05) for DNDC-simulated values, 33 

respectively, compared to no-till practice (treatments S), but had no significant impact 34 

on grain yields. 35 

Keywords: Methane; Management practices; DAYCENT model; DNDC model; 36 
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 38 

1. Introduction 39 

Methane (CH4) is a powerful greenhouse gas (GHG), the atmosphere amount of 40 

which has more than doubled since pre-industrial times, and approximately 60% of 41 

CH4 originates from anthropogenic sources (Nisbet et al., 2019; UNEP and CCAC, 42 

2021). Rice paddy fields are a major source of CH4 emissions, which are responsible 43 

for 8−11% (5−38 Tg CH4 yr−1) of global anthropogenic CH4 emissions (Shukla et al., 44 

2019; Saunois et al., 2020). Quantification of CH4 emissions from rice paddy soils is 45 

necessary for developing mitigation options and policies. However, accurate 46 

estimation of CH4 emissions is a great challenge due to the time consuming and 47 

expensive field flux measurements. Consequently, process-based models for 48 

estimating CH4 emissions have been developed to complement physical experiments 49 

by employing computers to calculate the likely outcomes of different physical 50 



phenomena (Giltrap et al., 2010). 51 

Simulation models allow complex interactions and real-world problems to be 52 

examined in a cost- and time-effective way (Giltrap et al., 2010; Cheng et al., 2013). 53 

DAYCENT and DeNitrification-DeComposition (DNDC) are two popular ecological 54 

process-based models to simulate methane (CH4) emissions from rice paddy fields in 55 

China (Li et al., 2006; Cheng et al., 2014; Zhang et al., 2019; Wang et al., 2021). 56 

Cheng et al. (2013) developed and evaluated the DAYCENT CH4 module using total 57 

97 rice paddy sites across China, with an overall r of 0.83 for model predictions vs. 58 

measurements. In addition, the DNDC model has been corroborated by many CH4 59 

emission datasets from Chinese rice fields, and the simulated values are generally in 60 

good agreement with the observed CH4 field emissions (Zhang et al., 2002; Li et al., 61 

2006; Zhang et al., 2019; Zhao et al., 2020; Wang et al., 2021).  62 

China is the largest rice producer in the world and is also trying to increase rice 63 

grain yield by improving rice cultivation management, while at the same time, 64 

minimizing CH4 emissions from rice paddy. Rice is a one of the primary cereal crops 65 

in China, with an area of about 30 million ha (FAO, 2020). Double rice is the common 66 

cropping system in China, accounting for >40% of the total harvested area and 67 

emitting about 50% of the total CH4 emission from rice paddy fields in China (Zhang 68 

et al., 2011; Chen et al., 2013). The double rice cropping system typically consists of 69 

one winter fallow season, and two rice growing seasons each year. Considerable 70 

research has been conducted on improving field management in the double-rice 71 

cropping system to mitigate CH4 emissions while maintaining optimal rice yields. 72 

These have mainly focused on the fertilization rate and method (Tang et al., 2020; Fu 73 

et al., 2021; Wang H. et al., 2021), irrigation management method (Li et al., 2020; 74 

Zeng and Li, 2020), and tillage management (Chen et al., 2021; Wang X. et al., 2021).  75 



Tillage after rice harvest in the winter fallow season can play key role in CH4 76 

emissions. It is beneficial for rainwater to run through into the subsoil, and thus 77 

reduce rainwater accumulation in the winter fallow season. Consequently, it would 78 

directly reduce CH4 emission during off-rice season because of a less anaerobic 79 

environment in the topsoil (Zhang et al., 2016). Moreover, it could also indirectly 80 

inhibit CH4 emissions during the following rice growth seasons. For example, tillage 81 

incorporates rice residues into the soil during winter fallow season, and soil 82 

microorganisms accelerate the decomposition of organic matter and thereby facilitate 83 

CH4 production and emissions (Pandey et al., 2012; Hussain et al., 2015). 84 

Subsequently, it would reduce the carbon substrate for methanogenesis during the 85 

following rice seasons, and thus decrease CH4 emissions (Yang et al., 2018).  86 

As a representative region of the double-rice cropping system, Jiangxi Province 87 

has the largest rice area; about 11% of total rice area in China (Yearbook, 2014) and 88 

emits substantial quantities of CH4. However, to the best of our knowledge, the 89 

process-based DNDC and DAYCENT models have not previously been calibrated and 90 

evaluated for a double-rice cropping system with different management in the winter 91 

fallow season in China. Moreover, little research has been done to compare different 92 

process-based models in simulating CH4 emissions. Therefore, the main objective of 93 

this study was to compare the results from two well-established biogeochemical 94 

models (DAYCENT and DNDC) for estimating CH4 emissions and crop yields from a 95 

double rice system in Jiangxi Province, southeast China from November 2008 to 96 

November 2014 under three different managements in the winter fallow season. This 97 

study will improve process understanding and enhance further applicability of 98 

DAYCENT and DNDC models for predicting CH4 emissions from the Chinese paddy 99 

rice ecosystem. 100 



 101 

2. Materials and Methods 102 

2.1. Experimental site and treatments 103 

This field experiment was conducted at Yingtan City, Jiangxi Province, China 104 

(28°15'N, 116°55'E) for 6 years from November 2008 to November 2014. This region 105 

is a typical double-rice cropping cultivation area, with one winter fallow season and 106 

two rice growing seasons each year. The selected soil is classified as a typical 107 

Haplaquept (18.2% clay, 31.3% silt, 50.5% sand), with its initial properties as follow: 108 

SOC 16.2 g kg-1, soil total nitrogen 1.43 g kg−1, bulk density 1.12 g cm-3, pH (H2O) 109 

4.74. The detailed site description and soil parameters were reported by Yang et al. 110 

(2018). The daily air temperature (°C) and precipitation (mm) were collected from 111 

weather station at the study site (Fig. S1). The average annual temperature and total 112 

precipitation were 18.2°C and 194.2 cm, respectively. The monthly mean air 113 

temperature and rainfall from 2008 and 2014 at the field site are presented in Table 114 

S1.  115 

Compared with rice stubble incorporation during the rice season, applying rice 116 

stubble during the fallow season produces much lower CH4 emissions (Yan et al., 117 

2009). Additionally, soil tillage with rice stubble incorporation in the winter fallow 118 

season has been reported to reduce CH4 emission relative to rice stubble incorporation 119 

just before rice transplanting (Zhang et al., 2016; Yang et al., 2018). In this study, 120 

three treatments were laid out in the winter fallow season with three replicates in a 121 

fully randomized block design: rice stubble incorporation without winter tillage (S), 122 

winter tillage with rice stubble incorporation (WS), and winter tillage without rice 123 

stubble incorporation (W). Fresh rice stubble was left standing in the fields after late 124 

rice harvest in treatments S and WS, with a dry weight of 2.5−4.0 t ha−1 (about 30 cm 125 



long), while stubble was moved out of field after late rice harvest in treatment W. No 126 

extra straw/stubble was incorporated in the following rice seasons.  127 

Generally, ploughing is the traditional tillage practice in the local area, with 128 

tillage occurring before the transplantation of early- and late-rice. For better 129 

cultivation, all experimental plots (S, WS and W) were ploughed before the 130 

transplantation of early- and late-rice rice without any rice stubble/straw incorporation. 131 

The winter tillage plots (treatments WS and W) were ploughed again as soon as the 132 

late rice had been harvested. The tillage operation (up to 20 cm soil depth) was the 133 

same for all tillage practices.  134 

Local rice cultivars, Zhongzao 33 and Nongxiang 98, were planted in the 135 

following early-rice and late-rice seasons, respectively. Seeds were sown in the 136 

seeding nursery and then transplanted to the experimental plots at the third and fourth 137 

leaf stage. The early rice seedlings were transplanted in middle or late April and 138 

harvested in middle or late July, and then late rice seedlings were transplanted 139 

immediately after the early rice harvest and harvested in November or December from 140 

2009 and 2014 (Table 1). For each rice season, the total amount of nitrogen (N) and 141 

potassium (K) fertilizers applied were 180 kg N ha−1 and 150 kg K ha−1, respectively. 142 

These fertilizers were applied at three different times as basal, tillering and panicle 143 

initiation fertilizer with a ratio of 5:3:2 and 3:4:3, respectively. Phosphorus (P) 144 

fertilizer was applied as a basal fertilizer at a rate of 75 kg P ha−1.  145 

For water management, flooding was initiated 2-4 days before early-rice 146 

transplanting, drained after tillering fertilization application for 5-8 days midseason 147 

aeration, re-flooded for two or three weeks, then subjected to drying-wetting 148 

alternation (with a cycle of 5-day drying and 5 day-wetting) until roughly 1-2 weeks 149 

of a dry period before early rice harvest. During the late-rice season, the water 150 



management was similar to that during the early-rice season but the duration of the 151 

dry period before late rice harvest was roughly 3-5 weeks. A detailed schedule of the 152 

field management, including soil tillage, rice cultivation and water management, is 153 

presented in Table 1. 154 

2.2. Field measurements and GHG emissions 155 

The CH4 fluxes were measured using a static chamber (Ma et al., 2009), every 2 156 

to 6 days over the rice seasons, and every 7 to 10 days over the winter fallow seasons 157 

in 15 min intervals. The yield of early- and late-rice grain was determined at harvest 158 

in each plot by subtracting a moisture content of 0.14 g H2O g−1 fresh weight. The 159 

details of measurement information for daily CH4 flux and yield were described by 160 

Yang et al. (2018). 161 

GHG emissions (kg CO2-eq ha−1 yr−1) based on CH4 emission were estimated 162 

using global warming potential (GWP) (CO2-eq) for CH4 over a 100-year time span 163 

(Eq (1)). The GWP for CH4 is 28 over a 100-year time span (IPCC, 2021): 164 

            GHGCH4 = 28 × CH4                                 (1) 165 

To determine the emission intensity of production, GHG emission per unit of 166 

crop yield was calculated (Eq (2)): 167 

          yield-scaled GHG = GHG/ (early rice yield + late rice yield)       (2) 168 

 169 

2.3. Model descriptions and simulations  170 

We used two process-based ecosystem models, DAYCENT and DNDC, 171 

developed to simulate soil carbon and nitrogen dynamic in plant-soil system (Parton 172 

et al., 1998; Li, 2000; Gilhespy et al., 2014). Model concept and mechanisms are 173 

described in greater detail elsewhere for DAYCENT (Del Grosso et al., 2001; Cheng 174 

et al., 2013; Begum et al., 2019), and DNDC (Li et al., 1994; Li et al., 2006). Daily 175 



weather data, plant, soil and management data including N fertilizer, water 176 

management and tillage are needed as inputs for both models.  177 

With an understanding of the processes of CH4 production, oxidation and 178 

emission, a methanogenesis sub-model for the DAYCENT model was developed for 179 

predicting methane fluxes dynamics in rice paddy soils by Cheng et al. (2013). 180 

Rice-DAYCENT simulates plant production, soil organic matter (SOM) 181 

decomposition, soil hydrology and thermal regimes. The methanogenesis sub-model 182 

simulates CH4 emissions based on methanogenic substrate derived from SOM 183 

decomposition and root rhizodeposition, and associated influences of redox potential 184 

(Eh) and soil temperature (Huang et al., 1998; Cheng et al., 2013). As described in 185 

Cheng et al. (2013), the decomposition of organic matter in soil was simulated by 186 

DAYCENT model through heterotrophic respiration using three kinetically defined 187 

active, slow and passive pools. The amount of carbon added to the soil through 188 

rhizodeposition was simulated using a simplified linear equation with root carbon 189 

production estimated in the plant production sub-model. The influence of Eh was 190 

simulated under flooding and drainage, respectively. Only part of the CH4 produced in 191 

the process of methanogenesis is emitted to atmosphere because about 40-90% of CH4 192 

is oxidized to CO2 by methanotrophs at aerobic-anaerobic interfaces (Huang et al., 193 

1998; Chen et al., 2013). The pathway of CH4 from the paddy soil into the atmosphere 194 

occurs in various ways: via aerenchyma in the plant (90%), via ebullition (10%) or via 195 

diffusion through the soil and water layer (1%) (Groot et al., 2003). The 196 

methanogenesis sub-model adopted the approach proposed by Huang et al. (2008, 197 

2004) to simulate CH4 emissions through the rice plant and ebullition. The simulation 198 

of CH4 emission rates through the rice plant was based on the CH4 production rate, 199 

and the fraction of CH4 emitted via rice. The algorithm for simulating CH4 emissions 200 



through ebullition was based on CH4 production rate, soil temperature, and root 201 

biomass. The CH4 oxidation model was based on field capacity, bulk density, soil 202 

temperature, water-filled pore space and volumetric soil water content.  203 

The DNDC model was modified by adding a series of anaerobic process for 204 

simulating the carbon cycle and CH4 emission in rice paddy field as described in Li et 205 

al. (2000; 2004). The DNDC model accommodates two components. The first 206 

component consists of three main sub-models as follow: the soil climate sub-model 207 

calculating soil temperature, moisture and Eh profiles; the plant growth sub-model 208 

simulating crop biomass accumulation and partitioning; the decomposition sub-model 209 

simulating concentration of substrates, i.e., dissolved organic carbon and NH4
+, 210 

nitrogen oxides. The second component, namely the fermentation sub-model, predicts 211 

the CH4 fluxes dynamics from plant-soil systems. For example, CH4 production rate 212 

was simulated using kinetical equations based on available carbon concentration and 213 

temperature as soon as the simulated Eh reaches −150 mV or lower. In addition, CH4 214 

oxidation rate was simulated using a function of soil CH4 concentration and Eh. 215 

DNDC models simulated CH4 emissions through plant aerenchyma and ebullition, 216 

respectively, based on CH4 concentration, soil temperature and soil porosity. 217 

 218 

2.4. Model calibrations and sensitivity analyses 219 

This study investigated the suitability of the DAYCENT and DNDC models for 220 

estimating CH4, crop yield for typical double rice paddy field in Southern China. This 221 

double rice cropping system in our study consists of a 4- or 5-month long winter 222 

fallow season, followed by early rice (grown from April to July), and then late rice 223 

planted immediately after the early rice harvest (grown from July to 224 

November/December). The DAYCENT model was calibrated on crop yield / annual 225 



CH4 emissions for the site using the measured data from the control treatment S. 226 

Model calibration for crop yield / annual CH4 emissions was done by optimizing the 227 

crop parameters of radiation use efficiency (PRDX), optimum temperature (PPDF(1)), 228 

and the fraction of CO2 from soil respiration used to produce CH4 (Table 2), as 229 

suggested by previous studies (Cheng et al., 2014; Begum et al., 2019). The parameter 230 

values were modified until the DAYCENT model matched measured grain 231 

yield/annual CH4 emission values from the control treatment S. The calibrated model 232 

was then used to run those for another two treatments WS and W from November 233 

2008 to November 2014. 234 

Similarly, the DNDC model was also calibrated on crop yield/annual CH4 235 

emissions for the site using the measured data from the control with treatment S. 236 

Model calibration for crop yields and CH4 emissions was done by optimizing a 237 

combination of different crop growth parameters, including maximum biomass 238 

production, biomass fraction, biomass C/N ratio, thermal degree days (Table 3), as 239 

suggested by Zhang et al. (2019) and Abdalla et al. (2020). Crop parameter input 240 

default values were tested until the DNDC model matched the measured grain 241 

yield/annual CH4 emission values from the control treatment S. The calibrated model 242 

was then used to run those for another two treatments WS and W from November 243 

2008 to November 2014.  244 

The sensitivity of DAYCENT and DNDC and the attribution of CH4 and 245 

early-/late-rice grain yields to different input parameters were investigated to quantify 246 

the effects of these parameters on the CH4 emissions and grain yields (Smith and 247 

Smith, 2007; Cheng et al., 2013; Wang et al., 2021). The baseline scenario was 248 

composed based on the treatment S. Only one parameter was changed at a time and all 249 

the other kept constant. Simulations were run to assess how CH4 and grain yields were 250 



affected by average daily temperature (increased/decreased by a range from −2 oC to 251 

+2 oC), initial SOC content (decreased/increased by a rang from −50% to +50%), soil 252 

pH (decreased/increased by a range from −1 to +1) and the amounts of N fertilizer 253 

(decreased/increased by a rang from −50% to +50%).  254 

 255 

2.5. Statistical methods  256 

The models were validated by comparing measured and simulated values. Based 257 

on the statistical routines provide in MODEVAL (Smith et al., 1997; Smith & Smith, 258 

2007), the total difference between measured and simulated values was assessed by 259 

calculating the root mean square error (RMSE, Eq. (3)), relative RMSE (rRMSE, Eq 260 

(4)), relative deviation (RD, Eq(5)): 261 

         RMSE =                          (3) 262 

         rRMSE =  × 100                            (4) 263 

RD = × 100                              (5) 264 

Where Si is the simulated value, Mi is the measured value, n is the number of 265 

measured values, and  is the average of the measured values. The rRMSE can 266 

compare between different models whose errors are measured in the different units, 267 

and a low rRMSE often indicates a strong predictive power. 268 

The DAYCENT and DNDC models’ accuracies were evaluated by calculating 269 

modelling efficiency (EF, Eq (6)). EF provides a comparison of the efficiency of the 270 

chosen model compared to describing the data as the mean of the measurements 271 

(Yang et al., 2014):  272 



            EF = 1 −                          (6) 273 

Values of EF can be positive or negative values. Specifically, a positive value 274 

shows that the simulated values describe the trend in the measured data better than the 275 

mean of the measurements, and closer to 1 suggests a better modelling efficiency. A 276 

negative value indicates that the simulated values describe the data less well than a 277 

mean of the measurements. 278 

The sample correlation coefficient (r) was used (Eq. (7)) to test for association 279 

between the simulated and measured values (Smith et al., 1997).  280 

          r =            (7) 281 

All the statistical analyses were conducted in R version 3.4.0 (Team, 2008) and 282 

Minitab (Minitab, Limited Liability Company, USA), and a Map was created using 283 

Original (Origin Lab Corporation, USA).  284 

 285 

3. Results 286 

3.1. Models calibration and sensitivity analyses  287 

The DAYCENT and DNDC models were calibrated by adjusting the 288 

combination of crop parameters as shown in Tables 2 and 3 to enhance their 289 

performances in simulating CH4 emissions and grain yields. The calibrated 290 

DAYCENT and DNDC model accurately simulated the measured annual CH4 291 

emissions, early and late rice yields for the control with treatment S from November 292 

2008 to November 2014 (Table 4).  293 

The sensitivity of the DAYCENT- and DNDC-models to the essential input 294 

parameters (i.e. SOC content, soil pH, the N fertilizer rate and air temperature) for 295 



simulating annual CH4 emission and grain yield of double-cropping rice system was 296 

tested. As shown in Fig. 1, DAYCENT was more sensitive to changes in SOC content 297 

and soil pH than the other parameters, whilst the DNDC was more sensitive to 298 

changes in air temperature and N fertilizer. For grain yields, neither model was 299 

sensitive to change in air temperature, but DNDC was very sensitive to changes in N 300 

fertilizer rate and SOC content (Fig. 1).  301 

 302 

3.2. Performance of DAYCENT and DNDC models in simulating CH4 emissions 303 

and rice grain yields 304 

3.2.1. CH4 emissions 305 

Fig. 2 shows that, for all treatments, DAYCENT- and DNDC-simulated daily 306 

CH4 emissions pattern were generally consistent with the measured CH4 flux 307 

dynamics. The daily CH4 emissions for all three treatments increased under 308 

continuous flooding, with the highest peak measured at about 3−5 weeks after the 309 

early-rice transplanting and 2−4 weeks after late-rice transplanting. Thereafter, daily 310 

CH4 emissions dramatically decreased after midseason aeration. An emission peak 311 

occurred again after re-flooding, particularly in the early-rice season. CH4 emissions 312 

always showed a lower peak in the treatment W, observed both in simulations and 313 

measurements. As shown in Table 5, DAYCENT and DNDC models performed better 314 

when simulating treatments S and WS, with a lower rRMSE (i.e., 124−129) and 315 

higher EF values (i.e., 0.22−0.28), than treatment W (i.e., 140-150 and −0.07−0.08, 316 

respectively), but all three treatments showed significant correlations of simulated 317 

versus measured daily emission values (r = 58-63, p < 0.001). 318 

The annual CH4 emissions simulated by DAYCENT and DNDC models were 319 

also generally similar to the measured annual values for all three treatments (Table 4). 320 



The measured average annual CH4 emissions were 175, 152, and 111 kg C ha−1 for the 321 

treatment S, WS and W, respectively (Table 4). Correspondingly, the DAYCENT- and 322 

DNDC-simulated average annual CH4 emissions were 173, 148 and 138 kg C ha−1, 323 

and 173, 153 and 117 kg C ha−1, respectively. Both the observed and simulated results 324 

showed significantly lower (p < 0.05) annual CH4 emissions from the treatment W 325 

than from the treatment S. Over the six annual rotation cycles from November 2008 to 326 

November 2014, the measured annual CH4 emission was not significantly different 327 

within years for treatment S, while significantly decreased from the first rotation year 328 

of 2008-2009 to final rotation year of 2013-2014 for treatments WS and W (Fig.3).   329 

As shown in Fig.4, winter tillage (treatments WS and W) decreased the seasonal 330 

CH4 emission for early rice season from −36 to −15% for measured values (p<0.05), 331 

from −26 to −17% for DAYCENT-simulated values, and from −38 to −13% for 332 

DNDC-simulated values. Similarly, the seasonal CH4 emissions for late rice season 333 

also decreased from −40 to −14% for measured values, from −18 to −14% for 334 

DAYCENT-simulated values, and from −28 to −11% for DNDC-simulated values. 335 

By contrast, the tillage in winter fallow season (treatments WS and W) increased the 336 

seasonal CH4 emission by 31−87% for measured values (p<0.05) and 9−36% for 337 

DAYCENT-simulated (p < 0.05) compared to no-till treatment (treatment S).  338 

3.2.2. Rice yields  339 

The DAYCENT and DNDC models estimated grain yield for all treatments 340 

effectively (Table 4). As shown in Fig. 5, the correlation coefficient (r) of simulated 341 

against measured yields of both early and late rice season were 0.90, 0.85 and 0.92 by 342 

DAYCENT model (p < 0.001), which were higher than the values of 0.82 (p < 0.01), 343 

0.67 (p < 0.05) and 0.58 by the DNDC model, for treatments S, WS and S, 344 

respectively.  345 



On average, the measured yields were 6.3, 6.6, and 6.5 t ha−1 over early rice, and 346 

6.4, 6.5, and 6.3 t ha−1 over late rice, for the treatments S, WS and W, respectively 347 

(Table 4). Correspondingly, the DAYCENT-simulated average yields were 6.4, 6.4, 348 

and 6.4 t ha−1 over early rice, and 6.3, 6.3, and 6.3 t ha−1 over late rice; 349 

DNDC-simulated average yields were 6.1, 6.7, and 7.0 t ha−1 over early rice, and 6.6, 350 

6.8, and 6.7 t ha−1 over late rice, respectively. Overall, the grain yields were not 351 

significantly different among the three treatments, observed both in measurements and 352 

simulations (Table 4).  353 

Over the six annual rotation cycles from November 2008 to November 2014, the 354 

annual yields were not significantly different within most years, except in the rotation 355 

year of 2009-2010. The lower annual yield in 2010 was due to the flood damage, 356 

resulting in the delaying of late rice transplanting, thus reducing the rice grain yields 357 

(Fig.3).   358 

 359 

3.2.3. Yield-scaled GHG emissions 360 

Compared with the treatment S, measured yield-scaled GHG emissions were 361 

lower by 17% for treatment WS and by 38% for treatment W (p < 0.01) (Table 3). 362 

Similarly, simulated yield-scaled GHG emissions were lower by 15% and 16% with 363 

treatment WS, by 21% and 37% with treatment W (p < 0.01) for DAYCENT and 364 

DNDC, respectively.  365 

 366 

4. Discussion 367 

4.1. Model calibration and sensitivity analysis  368 

In this study, calibration and validation of DAYCENT and DNDC models was 369 

required because of differences in the Chinese rice cultivars and climates (Cheng et al., 370 



2013; Wang et al., 2021). However, the adopted parameters for calibration between 371 

DAYCENT and DNDC models are different due to differences in the crop growth and 372 

CH4 algorithms in the two models (Li, 2000; Cheng et al., 2013).  373 

Sensitivity analysis was also used to evaluate the response of the simulated 374 

results to the variation in the input parameters. We utilized the calibrated DAYCENT 375 

and DNDC models to test how CH4 emission and rice grain yield were influenced by 376 

soil properties, climate factors and N fertilizer application rates. As the CH4 algorithm 377 

is implemented in different ways, the results indicate the robustness and uncertainty of 378 

the different processes. While the models showed good performances on aerobic 379 

systems, impacts of management changes and mitigation strategies, the diverse 380 

management on the considered sites will allow the models to be challenged on these 381 

aspects as well. For both of CH4 emission and grain yields, DAYCENT and DNDC 382 

models were not sensitive to the same parameters as shown in Fig. 1, which may be 383 

due to differences in the algorithms of the methanogenesis sub-model (Li, 2000; 384 

Cheng et al., 2013), thus resulting in the differences of dominant factors influencing 385 

CH4 emissions, with the effects of other factors being overshadowed by the influence 386 

of the dominant factors (Wang et al., 2021).  387 

For simulating CH4 emissions, the DAYCENT model is more sensitive to 388 

changes in initial SOC content. The initial SOC content determined the amount of 389 

carbon substrate for methanogenic bacteria, for CH4 production and also emissions 390 

(Conrad, 2007). Therefore, annual CH4 emissions changed with a change in the initial 391 

SOC content in the same direction under otherwise identical conditions (Fig. 1). By 392 

contrast, the DNDC model was less sensitive to the changes of initial SOC content 393 

(Fig. 1), which was also reported by Wang et al. (2021). This can be explained by 394 

differences in the calculation of available C from SOM decomposition between the 395 



two process models. Moreover, DAYCENT and DNDC models have a different way 396 

of representing initial SOC. For example, the initial SOC stock (g m−2) at 20 cm soil 397 

depth was required to define the initial soil organic matter pools in DAYCENT model, 398 

but initial SOC content (kg kg−1) at 10 cm soil depth was required in DNDC model. 399 

Therefore, when the same changes of initial SOC content were applied, DAYCENT 400 

and DNDC models have different relative changes of initial carbon stock input, thus 401 

different changes of available C concentration.  402 

Decreased soil pH (pH < 4.7, under acidic conditions) significantly decreased 403 

annual CH4 emissions in DAYCENT model, but increased pH slightly increased CH4 404 

emissions, which is related to the soil pH thresholds effecting decomposition rate in 405 

the model. When pH value decreases especially from ~5 to 3, the decomposition rate 406 

dramatically reduces in the DAYCENT model, thereby significantly decreasing CH4 407 

emissions. By contrast, when soil pH value increases from 5 to 7, the decomposition 408 

rate barely changes because, it is close to the maximum rate in the DAYCENT model. 409 

Cheng et al. (2013) also showed that the performance in simulating in CH4 emission 410 

by DAYCENT was mainly controlled by the initial SOC content and soil pH. 411 

However, for DNDC, the annual CH4 emission was not sensitive to the changes of soil 412 

pH, but very sensitive to air temperature (Wang et al., 2021). As shown in Li (2000), 413 

the effect of temperature on CH4 production rates in DNDC is based on an 414 

exponential function, and when temperature increase, the temperature effect becomes 415 

larger directly. Moreover, DNDC simulates CH4 fluxes diffusion through ebullition to 416 

atmosphere using a simplified linear equation with temperature. Therefore, this is 417 

probably why a significantly effect of temperature on CH4 emissions was observed in 418 

DNDC model. By contrast, in DAYCENT model, the algorithm for calculating 419 

transport CH4 through ebullition was based on a natural logarithm function with 420 



temperature, thus there is barely changes of temperature effects when temperature 421 

increase/decrease within 2 oC (Cheng et al., 2013).  422 

For simulating yields, the DAYCENT model was slightly sensitive to changes of 423 

air temperature, which may be due to the saturation effect above 30 oC for rice paddy 424 

in the model. In the test site, the average values of maximum temperature in rice 425 

reproductive period were 30.29−34.58 oC during June to September, therefore the 426 

simulated yields only slightly changed with air temperature changes. In contrast, the 427 

DNDC model was also slightly sensitive to changes of air temperature, but very 428 

sensitive to the changes of N fertilizer rate and initial SOC content. In the plant 429 

growth sub model of DNDC, N uptake by crop is the key process linking crop growth, 430 

and the availability of NH4
+ and NO3

− in soil profile is one of main controlling factors 431 

on N uptake rate (Li et al. 1994). Therefore, changes of N fertilizer rate directly affect 432 

the concentration of NH4
+ and NO3

− in the model, and thereby influence rice plant 433 

growth and yields as well. On the other hand, calculating NH4
+ concentration from N 434 

fertilizer in DNDC model is also controlled by the concentration of soluble C from 435 

decomposition sub model, which is why changes of initial SOC content in DNDC 436 

directly affects the rice plant growth and grain yields (Li et al., 1992).  437 

 438 

4.2. Evaluation of DAYCENT and DNDC models  439 

4.2.1. CH4 emissions       440 

Simulation of substrate C available under different water and field management 441 

is crucial for predicting CH4 emissions accurately by DAYCENT (Cheng et al., 2013) 442 

and DNDC (Li, 2007). Large CH4 emissions were simulated at the middle growth 443 

stage in the month of May for early rice, and at the early growth stage in the month of 444 

July-August for late rice, when carbohydrates derived from plants was greater, and 445 



soil Eh was lower due to continuous flooding conditions after rice transplantation in 446 

this study. A clear CH4 peak was also simulated during the re-flooding period after 447 

midseason aeration in the month of May-June for early rice and August-September for 448 

late rice. This could be due to re-flooding cutting off the oxygen supply from the air 449 

into soil and decreasing soil Eh, thus benefiting methanogenetic activity (Cai et al., 450 

2000). Correspondingly, both the DAYCENT and DNDC models simulated relatively 451 

lower soil Eh during re-flooding period after midseason aeration, with on average 452 

values of −193, −192 and −190 and −185, −174 and −173 mV for treatment S, WS 453 

and W, respectively. 454 

     A difference between seasonal simulated and measured CH4 emissions was 455 

observed in this study, especially in the winter fallow season. In the test sites, field 456 

plots were fallow in the winter season with soil being undrained after late rice harvest, 457 

which were often flooded after rain (Zhang et al., 2016), hence providing favourable 458 

anaerobic conditions for CH4 production. Compared with DNDC model, DAYCENT 459 

accurately estimated the seasonal CH4 emissions during the winter fallow season, 460 

mainly due to better simulating the water condition during the winter fallow season. 461 

However, the DNDC model runs without setting flooding conditions during the winter 462 

fallow season because there is not a suitable corresponding flood setting option in the 463 

model, thereby resulting in underestimated seasonal CH4 emissions during winter 464 

fallow season. But the seasonal CH4 emissions during the winter fallow season 465 

contributed, on average, around 2% to the annual CH4 emissions observed in 466 

measured and DAYCENT-simulated values, hence it had small effects on the 467 

estimation of annual CH4 emissions. On the other hand, DNDC underestimated the 468 

seasonal CH4 emissions from early rice seasons while slightly overestimating 469 

emissions from late rice seasons for all treatment S, WS and W, which may be due to 470 



the sensitivity of the DNDC model to air temperature changes. Slightly lower air 471 

temperatures were found in the month of May-June (i.e., 22.9−26.0 oC) compared to 472 

July-September (i.e., 25.6−29.6 oC) in this study, which also led to a CH4 emission 473 

peak for early and late rice season, respectively.  474 

 The response of CH4 emissions to the incorporation of stubble was influenced 475 

by the winter tillage. Winter tillage (treatments WS and W) significantly increased 476 

CH4 emission by 31−87% for measured values during the winter fallow season 477 

relative to no winter tillage (treatment S) (Fig. 4), in agreement with previous 478 

measurements from a single-cropping rice field in northeast China (Liang et al., 2007). 479 

By contrast, it significantly decreased CH4 emissions during the following early- and 480 

late-rice seasons by −36 to −15% (Fig. 4), in agreement with our early field 481 

observation (Yang et al., 2017), and previous measurements from a single-cropping 482 

rice field in southern Brazil (Bayer et al., 2015).  483 

The impact of winter tillage practices was satisfactorily replicated by both 484 

DAYCENT and DNDC models. Compared to no-tillage in the winter fallow season, 485 

winter tillage promotes the decomposition of rice stubble, which creates an anaerobic 486 

soil environment suitable for methanogenic activity because of oxygen consumption, 487 

and thereby enhanced observed/simulated CH4 emissions in the winter fallow season 488 

(Zhang et al., 2015; Yang et al., 2018). By contrast, as the easily decomposable 489 

portion of the rice stubble has largely been decomposed during the whole winter 490 

fallow season, the positive effect of the remaining rice stubble (a less-decomposable 491 

part of organic matter) on CH4 production and emissions is greatly reduced during the 492 

following seasons (Watanabe and Kimura, 1998; Bayer et al., 2015).  493 

 494 

4.2.2. Rice yields 495 



An adequate simulation of yield is of key importance to accurately predict CH4 496 

emissions for process-based models of plant-soil systems because carbohydrate 497 

exudation from roots, the major labile carbon source driving CH4 emissions, is closely 498 

related to rice plant biomass (Cheng et al., 2013). Both models simulating rice yields 499 

performed effectively after calibration in this study. Significant positive correlations 500 

of simulated against measured rice yields were observed in this study, with r values of 501 

0.85−0.92 for DAYCENT, and 0.67−0.82 for DNDC (Fig. 5). Similar previous studies 502 

in China were also able to simulate rice yield adequately using the DAYCENT 503 

(Stehfest et al., 2007; Cheng et al., 2013) and DNDC models (Zhang et al., 2019; 504 

Zhao et al., 2020). It is crucial the key growth processes (i.e. plant production and 505 

allocation of net primary production, mineralization/immobilization, and nutrients 506 

uptake by plant) are well represented in the approaches of the DAYCENT and DNDC 507 

models (Li et al., 1994; Cheng et al., 2013).  508 

Tillage and/or stubble incorporation in winter fallow season did not impact rice 509 

yields significantly (Table 4 and Fig. 3). In the DNDC and DAYCENT models, once 510 

the soil is ploughed, decomposition rates of soil organic matter would be directly 511 

increased due to the changes in soil structure and aeration conditions (Li et al., 1994; 512 

Cheng et al., 2013). As for stubble incorporation after harvest, SOM would increase 513 

by a certain percentage in DAYCENT and DNDC models. However, changes SOM 514 

(i.e. soil C content) would not have a direct effect on simulation of yield, especially in 515 

DAYCENT. Moreover, only 15% of leaf and stem was assumed to be left in field after 516 

harvest in the DNDC model, which might have less impact on total SOM, and thereby 517 

rice yields.  518 

 519 

4.2.3. Yield-scaled GHG emissions 520 



Compared with the treatment S, annual CH4 emissions were clearly lower in the 521 

treatments of WS and W, observed in both field measured and simulated results (Table 522 

4). Similar measured results from a single-cropping rice field in northeast China were 523 

reported by Liang et al. (2007). Additionally, maintaining rice paddy yield has always 524 

been given priority before implementation of alternative management practice (Liu et 525 

al., 2016). In this study, no significant differences in rice paddy yields were observed 526 

among three treatments over the six years, consequently, annual yield-scaled GHG 527 

emissions were lower in the treatments of WS and W compared with treatment S for 528 

both model simulated and field measured results (Table 4). Similar findings were 529 

shown by Zhang et al. (2016) and Yang et al. (2018). This indicates that the tillage 530 

practice in the winter fallow season could be a potential strategy for reducing annual 531 

GHG emissions without a significant impact on grain yield in double rice cropping 532 

systems. 533 

 534 

5. Conclusions 535 

This study has provided an insight into the differences of model performance 536 

between DNDC and DAYCENT in simulating CH4 emission from a double-rice 537 

cropping system in Southern China. Both models were able to effectively estimate 538 

daily CH4 emission patterns and grain yields across all treatments from November 539 

2008 to November 2014. Compared with the DNDC model, DAYCENT simulated the 540 

seasonal CH4 emissions during winter fallow seasons better, mainly due to better 541 

reflecting the water conditions in the real field for winter fallow seasons. Moreover, 542 

the high sensitivity of the DNDC model to air temperature results in imperfectly 543 

estimated seasonal CH4 emissions for early and late rice seasons. As observed in the 544 

simulations of both models and field measurements, the tillage practice in the winter 545 



fallow season could be a potential strategy for reducing annual CH4 emissions without 546 

a significantly impacting grain yield in double rice cropping systems. Further 547 

measurements of emissions for tillage and/or stubble incorporation in the winter 548 

fallow season are recommended before implementing the model outcomes. 549 
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Table 701 

Table 1 Schedule of field management practices in the experimental plots over the six years from November 20108 to November 2014. 702 

Season Field Management  2008-2009 2009-2010 2010-2011 2011-2012 2012-2013 2013-2014 

Winter 

fallow Winter tillage 8 Nov 2008 13 Nov 2009 2 Dec 2010 3 Nov 2011 5 Dec 2012 11 Nov 2013 

        

Early-rice Spring tillage 12 Apr 2009 17 Apr 2010 19 Apr 2011 23 Apr 2012 20 Apr 2013 10 Apr 2014 

 First flooding 13 Apr 2009 17 Apr 2010 21 Apr 2011 23 Apr 2012 22 Apr 2013 10 Apr 2014 

 Basal fertilizers 17 Apr 2009 26 Apr 2010 22 Apr 2011 27 Apr 2012 24 Apr 2013 13 Apr 2014 

 Rice translates 17 Apr 2009 27 Apr 2010 23 Apr 2011 27 Apr 2012 24 Apr 2013 13 Apr 2014 

 Tillering fertilizers 26 Apr 2009 11 May 2010  14 May 2011 15 May 2012 17 May 2013 29 Apr 2014 

 

Midseason drainage 8 May 2009~15 May 

2009  

23 May 2010~27 

May 2010  

23 May 2011~31 

May 2011  

25 May 2012~5 

Jun 2012  

28 May 2013~3 Jun 

2013  

22 May 2014~29 

May 2014  

 

Second flooding 16 May 2009~2 Jun 

2009  

28 May 2010~2 Jun 

2010  

1 Jun 2011~24 Jun 

2011  

6 Jun 2012~18 Jun 

2012  - 

30 May 2014~16 Jun 

2014  

 

Panicle initiation 

fertilizers 26 May 2009  12 Jun 2010 16 Jun 2011  12 Jun 2012 14 Jun 2013 10 Jun 2014  

 

Dry/wet alternation 3 Jun 2009~3 Jul 

2009 

22 Jun 2010~15 Jul 

2010 

25 Jun 2011~3 Jul 

2011  

19 Jun 2012~23 

Jun 2012  - 

17 Jun 2014~29 Jun 

2014  

 Final drainage 4 Jul 2009 16 Jul 2010 4 Jul 2011  24 Jun 2012 4 Jul 2013 30 Jun 2014  

 Rice harvest  9 Jul 2009 22 Jul 2010 11 Jul 2011  13 Jul 2012 18 Jul 2013 16 Jul 2014  

        

Late-rice Tillage 10 Jul 2009 31 Jul 2010 11 Jul 2011  14 Jul 2012 22 Jul 2013 19 Jul 2014  

 First flooding 12 Jul 2009 31 Jul 2010 12 Jul 2011  15 Jul 2012 24 Jul 2013 20 Jul 2014  

 Basal fertilizers 14 Jul 2009 5 Aug 2010 16 Jul 2011  27 Jul 2012 24 Jul 2013 22 Jul 2014  



 Rice translates 15 Jul 2009 5 Aug 2010 16 Jul 2011  27 Jul 2012 24 Jul 2013 22 Jul 2014  

 Tillering fertilizers 29 Jul 2009 23 Aug 2010 3 Aug 2011 14 Aug 2012 13 Aug 2013 4 Aug 2014  

 

Midseason drainage 16 Aug 2009~23 

Aug 2009 

4 Sep 2010~8 Sep 

2010 

17 Aug 2011~23 

Aug 2011 

22 Aug 2012~1 

Sep 2012 

23 Aug 2013~4 Sep 

2013 - 

 

Second flooding 24 Aug 2009~6 Sep 

2009  

8 Sep 2010~29 Sep 

2010 

24 Aug 2011~4 Sep 

2011 

2 Sep 2012~1 Oct 

2012 

5 Sep 2013~19 Sep 

2013 

1 Sep 2014~22 Sep 

2014 

 

Panicle initiation 

fertilizers 30 Aug 2009 20 Sep 2010 23 Aug 2011 4 Sep 2012 4 Sep 2013 4 Sep 2014 

 

Dry/wet alternation 7 Sep 2009~9 Oct 

2009 

30 Sep 2010~29 Oct 

2010 

5 Sep 2011~7 Oct 

2011 

3 Oct 2012~25 Oct 

2012 

20 Sep 2013~17 

Oct 2013 

23 Sep 2014~15 Oct 

2014 

 Final drainage 10 Oct 2009 30 Oct 2010 8 Oct 2011 26 Oct 2012 18 Oct 2013 16 Oct 2014 

  Rice harvest  30 Oct 2009 1 Dec 2010 2 Nov 2011 4 Dec 2012 10 Nov 2013 6 Nov 2014 

 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 

 711 

 712 



Table 2 The plant production and cultivation parameter files used to calibrate DAYCENT model for simulating CH4 emission and grain yield. 713 

Name of the file Parameter Description Unit Value 

Crop.100 PRDX Coefficient for calculating potential aboveground monthly  

production as a function of solar radiation outside the atmosphere 

Scaling factor, (g C production) 

m−2 month−1 Langley−1  

3.00 

 

PPDF (1) Optimum temperature for production for parameterization of a Poisson 

Density Function curve to simulate temperature effect on growth 

°C 25 

 

PPDF (2) Maximum temperature for production for parameterization of a Poisson 

Density Function curve to simulate temperature effect on growth 

°C 

45 

Sitepar.100 CO2_to_CH4 Fraction of CO2 from soil respiration used to produce CH4   0.15 

 714 
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 720 

 721 



Table 3 The crop parameters used to calibrate DNDC model for simulating CH4 emission and grain yield. 722 

Cropping season/parameter Grain Leaf Stem Root 

Early rice (Zhongzao 33)  
    

Maximum biomass production (kg C ha-1 y-1) 8500 4829 4636 1352 

Biomass fraction 0.44 0.25 0.24 0.07 

Biomass C/N ratio 51 85 85 30 

Thermal degree days 2000 
   

Water demand (g water/g DM) 508 
   

Optimum temperature (°C) 25 
   

Late rice (Nongxiang 98)  
    

Maximum biomass production (kg C ha-1 y-1) 8500 4829 4636 1352 

Biomass fraction 0.44 0.25 0.24 0.07 

Biomass C/N ratio 50 85 85 30 

Thermal degree days 2850 
   

Water demand (g water/g DM) 508 
   

Optimum temperature (°C) 25       

 723 

 724 



Table 4. Comparison between the DAYCENT- and DNDC-simulated and measured average annual CH4 (kg C ha-1 yr-1) fluxes, early- and late-rice yield (t 725 

ha-1), yield-scaled GHG emission (kg CO2-eq ha-1 yr-1) by the treatment of stubble incorporation (S), winter tillage with stubble incorporation (WS) and winter 726 

tillage (W). RD means relative deviation between simulated and measured emission/yield. 727 

Treatments Measured DAYCENT RD (%) DNDC RD (%) 

Annual CH4 flux (kg C ha−1 yr−1)      

S 175±26Aa 173±15A 1 173±15A 1 

WS 152±29AB 148±19AB 3 153±20A -1 

W 111±26B 138±18B -24 117±22B -5 

Early rice yield (t ha-1)  

S 6.3±0.2A 6.4±0.4A -1 6.1±0.3A 2 

WS 6.6±0.3A 6.4±0.4A 3 6.7±0.6A -2 

W 6.5±0.2A 6.4±0.4A 2 7.0±0.8A -8 

Late rice yields (t ha-1)  

S 6.4±0.8A 6.3±0.8A 1 6.6±0.7A -3 

WS 6.5±0.9A 6.3±0.8A 4 6.8±0.7A -4 

W 6.3±0.9A 6.3±0.8A 0 6.7±0.7A -6 

Yield-scaled GHGCH4 (kg CO2-eq ha-1 yr-1)      

S 0.52±0.03A 0.52±0.03A 0 0.51±0.03A 2 

WS 0.43±0.03AB 0.44±0.03AB -2 0.43±0.03AB 0 

W 0.32±0.03B 0.41±0.03B -28 0.32±0.03B 0 

a Values followed by the same letter are not significantly different within the treatments at p < 0.05 based on Turkey tests. 728 

 729 



 730 

Table 5. Statistical describing the performance of the DAYCENT and DNDC models for the simulations of daily CH4 fluxes under different treatments in the 731 

double rice paddy from November 2008 to November 2014. The n is the number of measured CH4 fluxes from November 2008 to November 2014. 732 

Treatment Model Measured (kg C ha-1) RMSE (kg C ha-1) rRMSE (%) EF r M (kg C ha-1) 

S (n=398) 

DAYCENT 

0.67 

0.85 127 0.28 0.60*** 0.04ns 

DNDC 0.85 128 0.27 0.61*** 0.03ns 

WS (n=398) 

DAYCENT 

0.58 

0.75 129 0.22 0.58*** 0.04ns 

DNDC 0.72 124 0.28 0.63*** 0.02ns 

W (n=335) 

DAYCENT 

0.42 

0.63 150 −0.07 0.59*** −0.08* 

DNDC 0.52 140 0.08 0.60*** −0.02ns 

a S, stubble incorporation without winter tillage; WS, winter tillage with stubble incorporation; W, winter tillage without stubble incorporation.  733 

* Significant correlation (r) between modelled and measured values at p < 0.05, or significance mean error (M) at p=0.025. 734 

*** Significant correlation (r) between modelled and measured values at p < 0.001. 735 

ns Non-significant between modelled and measured values at p < 0.05, or no significance mean error (M) at p=0.025. 736 

 737 

 738 

 739 



 740 

Figure legends 741 

Fig. 1. Sensitivity of CH4 fluxes and yield to changes in the input parameters. SOC: soil organic carbon content (from 0.5 to 1.5 times the 742 

baseline). pH: soil pH (from “baseline − 1” to “baseline + 1”). N fer: application of N fertilizer (from 0.5 to 1.5 times the baseline). T: air 743 

temperature (from “baseline − 2” to “baseline + 2”). The SOC, pH, N fertilizer and daily average air temperature were 0.016 g kg-1, 4.6, 360 kg 744 

N ha-1 and 18.16 oC.  745 

Fig. 2. Comparison between the DAYCENT- and DNDC-simulated and measured daily CH4 flux (Kg C ha−1 d−1) from November 2008 to 746 

November 2014 for the treatments of stubble incorporation (S), winter tillage with stubble incorporation (WS) and winter tillage (W). 747 

Fig. 3. Measured annual CH4 emission (kg C ha−1 yr−1) and yield (t ha−1 yr−1) over the six annual rotation cycles from November 2008 to 748 

November 2014 for the treatments of stubble incorporation (S), winter tillage with stubble incorporation (WS) and winter tillage (W). Values are 749 

the means with standards deviations shown by vertical bars (n=3); uppercase letters indicate significant differences within years at p < 0.05. 750 

Fig. 4. Comparison between DAYCENT- and DNDC-simulated and measured seasonal CH4 (kg C ha−1) for three treatments of stubble 751 

incorporation (S), winter tillage with stubble incorporation (WS) and winter tillage (W) from November 2008 to November 2014.  752 

Fig. 5. Relationship between the DAYCENT- and DNDC-simulated and measured yields of early and late-paddy rice for the treatments of 753 

stubble incorporation (S), winter tillage with stubble incorporation (WS) and winter tillage (W). 754 
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Fig. S1 Measured daily air temperature (oC) and rainfall (cm) during the experimental period (from November 2008 to November 2014) in the 
Yingtan of China.  
 
 
 
 
 
 



 
Table S1 Monthly mean air temperature and rainfall from 2008 and 2014 at the field site. 

Year/Month  Rainfall (cm)   Mean air temperature (oC) 

  2008 2009 2010 2011 2012 2013 2014 Mean   2008 2009 2010 2011 2012 2013 2014 Mean 

January 10 3.8 11.3 5.6 13.0 3.2 1.9 6.5  3.9 4.6 6.6 2.9 5.3 5.1 6.7 5.2 
February 7.0 6.8 15.3 5.0 9.7 16.7 16.6 11.7  5.3 11.5 10.1 8.4 6.3 9.1 7.3 8.8 
March 17.4 29.8 22.8 8.8 29.9 27.5 28.3 24.5  13.6 12.6 12.5 11.2 11.7 13.9 13.4 12.5 
April 25.8 19.0 34.5 15.2 25.2 20.4 16.1 21.7  19.0 19.1 15.5 19.1 19.3 16.9 19.3 18.2 
May 14.2 18.5 41.5 11.9 36.2 25.2 21.5 25.8  23.8 23.0 22.7 22.5 23.3 23.4 22.3 22.9 
June 26.1 10.3 58.3 49.4 38.3 39.8 22.8 36.5  25.8 27.1 24.5 26.1 26.0 26.4 25.8 26.0 
July 18.9 12.1 22.2 11.8 25.1 2.8 22.6 16.1  29.7 29.2 29.6 29.9 29.8 30.1 28.8 29.6 
August 5.9 14.0 7.4 19.2 36.2 3.3 15.4 15.9  29.1 29.0 29.9 28.8 28.5 30.6 27.5 29.1 

September 5.2 2.3 14.0 2.0 14.4 3.4 4.1 6.7  26.7 26.9 26.6 25.2 23.3 25.2 26.5 25.6 
October 6.1 1.3 7.6 6.5 3.5 1.8 0.3 3.5  20.6 20.8 18.4 19.3 19.6 19.3 20.6 19.6 
November 13.0 13.2 18.4 7.1 25.5 11.5 6.7 13.7  12.5 10.8 13.4 16.5 11.9 13.2 14.4 13.4 
December 2.1 6.7 20.3 4.2 13.2 7.6 9.5 10.2  7.2 6.9 7.9 6.7 6.5 5.9 6.0 6.6 

 
 
 
 
 
 
 
 



 



Table 1 

Table 1 Schedule of field management practices in the experimental plots over the six years from November 20108 to November 2014. 2 

Season Field Management  2008-2009 2009-2010 2010-2011 2011-2012 2012-2013 2013-2014 

Winter 
fallow Winter tillage 8 Nov 2008 13 Nov 2009 2 Dec 2010 3 Nov 2011 5 Dec 2012 11 Nov 2013 

        
Early-rice Spring tillage 12 Apr 2009 17 Apr 2010 19 Apr 2011 23 Apr 2012 20 Apr 2013 10 Apr 2014 

 First flooding 13 Apr 2009 17 Apr 2010 21 Apr 2011 23 Apr 2012 22 Apr 2013 10 Apr 2014 

 Basal fertilizers 17 Apr 2009 26 Apr 2010 22 Apr 2011 27 Apr 2012 24 Apr 2013 13 Apr 2014 

 Rice translates 17 Apr 2009 27 Apr 2010 23 Apr 2011 27 Apr 2012 24 Apr 2013 13 Apr 2014 

 Tillering fertilizers 26 Apr 2009 11 May 2010  14 May 2011 15 May 2012 17 May 2013 29 Apr 2014 

 

Midseason drainage 8 May 2009~15 
May 2009  

23 May 2010~27 
May 2010  

23 May 2011~31 
May 2011  

25 May 2012~5 
Jun 2012  

28 May 2013~3 
Jun 2013  

22 May 2014~29 
May 2014  

 

Second flooding 16 May 2009~2 Jun 
2009  

28 May 2010~2 Jun 
2010  

1 Jun 2011~24 Jun 
2011  

6 Jun 2012~18 Jun 
2012  - 

30 May 2014~16 
Jun 2014  

 

Panicle initiation 
fertilizers 26 May 2009  12 Jun 2010 16 Jun 2011  12 Jun 2012 14 Jun 2013 10 Jun 2014  

 

Dry/wet alternation 3 Jun 2009~3 Jul 
2009 

22 Jun 2010~15 Jul 
2010 

25 Jun 2011~3 Jul 
2011  

19 Jun 2012~23 
Jun 2012  - 

17 Jun 2014~29 Jun 
2014  

 Final drainage 4 Jul 2009 16 Jul 2010 4 Jul 2011  24 Jun 2012 4 Jul 2013 30 Jun 2014  

 Rice harvest  9 Jul 2009 22 Jul 2010 11 Jul 2011  13 Jul 2012 18 Jul 2013 16 Jul 2014  

        
Late-rice Tillage 10 Jul 2009 31 Jul 2010 11 Jul 2011  14 Jul 2012 22 Jul 2013 19 Jul 2014  

 First flooding 12 Jul 2009 31 Jul 2010 12 Jul 2011  15 Jul 2012 24 Jul 2013 20 Jul 2014  

 Basal fertilizers 14 Jul 2009 5 Aug 2010 16 Jul 2011  27 Jul 2012 24 Jul 2013 22 Jul 2014  



 Rice translates 15 Jul 2009 5 Aug 2010 16 Jul 2011  27 Jul 2012 24 Jul 2013 22 Jul 2014  

 Tillering fertilizers 29 Jul 2009 23 Aug 2010 3 Aug 2011 14 Aug 2012 13 Aug 2013 4 Aug 2014  

 

Midseason drainage 16 Aug 2009~23 
Aug 2009 

4 Sep 2010~8 Sep 
2010 

17 Aug 2011~23 
Aug 2011 

22 Aug 2012~1 
Sep 2012 

23 Aug 2013~4 
Sep 2013 - 

 

Second flooding 24 Aug 2009~6 Sep 
2009  

8 Sep 2010~29 Sep 
2010 

24 Aug 2011~4 Sep 
2011 

2 Sep 2012~1 Oct 
2012 

5 Sep 2013~19 Sep 
2013 

1 Sep 2014~22 Sep 
2014 

 

Panicle initiation 
fertilizers 30 Aug 2009 20 Sep 2010 23 Aug 2011 4 Sep 2012 4 Sep 2013 4 Sep 2014 

 

Dry/wet alternation 7 Sep 2009~9 Oct 
2009 

30 Sep 2010~29 Oct 
2010 

5 Sep 2011~7 Oct 
2011 

3 Oct 2012~25 Oct 
2012 

20 Sep 2013~17 
Oct 2013 

23 Sep 2014~15 Oct 
2014 

 Final drainage 10 Oct 2009 30 Oct 2010 8 Oct 2011 26 Oct 2012 18 Oct 2013 16 Oct 2014 
  Rice harvest  30 Oct 2009 1 Dec 2010 2 Nov 2011 4 Dec 2012 10 Nov 2013 6 Nov 2014 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 



Table 2 The plant production and cultivation parameter files used to calibrate DAYCENT model for simulating CH4 emission and grain yield. 13 

Name of the file Parameter Description Unit Value 

Crop.100 PRDX Coefficient for calculating potential aboveground monthly  

production as a function of solar radiation outside the atmosphere 

Scaling factor, (g C 

production) m−2 month−1 

Langley−1  

3.00 

 
PPDF (1) Optimum temperature for production for parameterization of a Poisson 

Density Function curve to simulate temperature effect on growth 

°C 25 

 

PPDF (2) Maximum temperature for production for parameterization of a Poisson 

Density Function curve to simulate temperature effect on growth 

°C 

45 

Sitepar.100 CO2_to_CH4 Fraction of CO2 from soil respiration used to produce CH4   0.15 

 14 

 15 

 16 

 17 

 18 

 19 

 20 



 21 

Table 3 The crop parameters used to calibrate DNDC model for simulating CH4 emission and grain yield. 22 

Cropping season/parameter Grain Leaf Stem Root 

Early rice (Zhongzao 33)  
    

Maximum biomass production (kg C ha-1 y-1) 8500 4829 4636 1352 

Biomass fraction 0.44 0.25 0.24 0.07 

Biomass C/N ratio 51 85 85 30 

Thermal degree days 2000 
   

Water demand (g water/g DM) 508 
   

Optimum temperature (°C) 25 
   

Late rice (Nongxiang 98)  
    

Maximum biomass production (kg C ha-1 y-1) 8500 4829 4636 1352 

Biomass fraction 0.44 0.25 0.24 0.07 

Biomass C/N ratio 50 85 85 30 

Thermal degree days 2850 
   

Water demand (g water/g DM) 508 
   

Optimum temperature (°C) 25       



 23 

 24 

Table 4. Comparison between the DAYCENT- and DNDC-simulated and measured average annual CH4 (kg C ha-1 yr-1) fluxes, early- and late-rice yield (t ha-25 

1), yield-scaled GHG emission (kg CO2-eq ha-1 yr-1) by the treatment of stubble incorporation (S), winter tillage with stubble incorporation (WS) and winter tillage 26 

(W). RD means relative deviation between simulated and measured emission/yield. 27 

Treatments Measured DAYCENT RD (%) DNDC RD (%) 

Annual CH4 flux (kg C ha−1 yr−1)      

S 175±26Aa 173±15A 1 173±15A 1 

WS 152±29AB 148±19AB 3 153±20A -1 
W 111±26B 138±18B -24 117±22B -5 

Early rice yield (t ha-1)  

S 6.3±0.2A 6.4±0.4A -1 6.1±0.3A 2 
WS 6.6±0.3A 6.4±0.4A 3 6.7±0.6A -2 
W 6.5±0.2A 6.4±0.4A 2 7.0±0.8A -8 

Late rice yields (t ha-1)  

S 6.4±0.8A 6.3±0.8A 1 6.6±0.7A -3 
WS 6.5±0.9A 6.3±0.8A 4 6.8±0.7A -4 
W 6.3±0.9A 6.3±0.8A 0 6.7±0.7A -6 

Yield-scaled GHGCH4 (kg CO2-eq ha-1 yr-1)      
S 0.52±0.03A 0.52±0.03A 0 0.51±0.03A 2 

WS 0.43±0.03AB 0.44±0.03AB -2 0.43±0.03AB 0 
W 0.32±0.03B 0.41±0.03B -28 0.32±0.03B 0 

a Values followed by the same letter are not significantly different within the treatments at p < 0.05 based on Turkey tests. 28 



 29 

 30 

Table 5. Statistical describing the performance of the DAYCENT and DNDC models for the simulations of daily CH4 fluxes under different treatments in the 31 

double rice paddy from November 2008 to November 2014. The n is the number of measured CH4 fluxes from November 2008 to November 2014. 32 

Treatment Model Measured (kg C ha-1) RMSE (kg C ha-1) rRMSE (%) EF r M (kg C ha-1) 

S (n=398) 
DAYCENT 

0.67 
0.85 127 0.28 0.60*** 0.04ns 

DNDC 0.85 128 0.27 0.61*** 0.03ns 

WS (n=398) 
DAYCENT 

0.58 
0.75 129 0.22 0.58*** 0.04ns 

DNDC 0.72 124 0.28 0.63*** 0.02ns 

W (n=335) 
DAYCENT 

0.42 
0.63 150 −0.07 0.59*** −0.08* 

DNDC 0.52 140 0.08 0.60*** −0.02ns 

a S, stubble incorporation without winter tillage; WS, winter tillage with stubble incorporation; W, winter tillage without stubble incorporation.  33 

* Significant correlation (r) between modelled and measured values at p < 0.05, or significance mean error (M) at p=0.025. 34 

*** Significant correlation (r) between modelled and measured values at p < 0.001. 35 

ns Non-significant between modelled and measured values at p < 0.05, or no significance mean error (M) at p=0.025. 36 

 37 

 38 



Figure legends 39 

 40 

Fig. 1. Sensitivity of CH4 fluxes and yield to changes in the input parameters. SOC: soil organic carbon content (from 0.5 to 1.5 times the baseline). 41 

pH: soil pH (from “baseline − 1” to “baseline + 1”). N fer: application of N fertilizer (from 0.5 to 1.5 times the baseline). T: air temperature (from 42 

“baseline − 2” to “baseline + 2”). The SOC, pH, N fertilizer and daily average air temperature were 0.016 g kg-1, 4.6, 360 kg N ha-1 and 18.16 oC.  43 



 44 

Fig. 2. Comparison between the DAYCENT- and DNDC-simulated and measured daily CH4 flux (Kg C ha-1 d-1) from November 2008 to November 45 

2014 for the treatments of stubble incorporation (S), winter tillage with stubble incorporation (WS) and winter tillage (W). 46 



 47 

Fig. 3. Measured annual CH4 emission (kg C ha-1 yr-1) and yield (t ha-1 yr-1) over the six annual rotation cycles from November 2008 to 48 

November 2014 for the treatments of stubble incorporation (S), winter tillage with stubble incorporation (WS) and winter tillage (W). Values are 49 

the means with standards deviations shown by vertical bars (n=3); uppercase letters indicate significant differences within years at p < 0.05. 50 



 51 

Fig. 4. Comparison between DAYCENT- and DNDC-simulated and measured seasonal 52 

CH4 (kg C ha-1) for three treatments of stubble incorporation (S), winter tillage with 53 

stubble incorporation (WS) and winter tillage (W) from November 2008 to November 54 

2014.  55 



 56 

 57 

 58 

Fig. 5. Relationship between the DAYCENT- and DNDC-simulated and measured yields of early and late-paddy rice for the treatments of stubble 59 

incorporation (S), winter tillage with stubble incorporation (WS) and winter tillage (W). 60 
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