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Biological invasions produce negative impacts worldwide, causing massive economic
costs and ecological impacts. Knowing the relationship between invasive species
abundance and the magnitude of their impacts (abundance-impact curves) is critical to
designing prevention and management strategies that effectively tackle these impacts.
However, different measures of abundance may produce different abundance-impact
curves. Woody plants are among the most transformative invaders, especially in
grassland ecosystems because of the introduction of hitherto absent life forms. In this
study, our first goal was to assess the impact of a woody invader, Pinus contorta
(hereafter pine), on native grassland productivity and livestock grazing in Patagonia
(Argentina), building abundance-impact curves. Our second goal, was to compare
different measure of pine abundance (density, basal area and canopy cover) as
predictors of pine’s impact on grassland productivity. Our third goal, was to compare
abundance-impact curves among the mentioned measures of pine abundance and
among different measures of impact: total grassland productivity, palatable productivity
and sheep stocking rate (the number of sheep that the grassland can sustainably
support). Pine canopy cover, closely followed by basal area, was the measure of
abundance that best explained the impact on grassland productivity, but the shape of
abundance impact curves differed between measures of abundance. While increases
in pine density and basal area always reduced grassland productivity, pine canopy
cover below 30% slightly increased grassland productivity and higher values caused
an exponential decline. This increase in grassland productivity with low levels of pine
canopy cover could be explained by the amelioration of stressful abiotic conditions for
grassland species. Different measures of impact, namely total productivity, palatable
productivity and sheep stocking rate, drew very similar results. Our abundance-impact
curves are key to guide the management of invasive pines because a proper
assessment of how many invasive individuals (per surface unit) are unacceptable,
according to environmental or economic impact thresholds, is fundamental to define
when to start management actions.
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Highlights

¢ Invasive species abundance-impact curves are key to designing management strategies.
e We assessed how increasing abundance of invasive pines impacted grasslands.
e Pine canopy cover over 30% reduced grasslands productivity exponentially.

e Managers should start controlling invasive pines before this threshold is reached.

Abstract

Biological invasions produce negative impacts worldwide, causing massive economic costs and
ecological impacts. Knowing the relationship between invasive species abundance and the
magnitude of their impacts (abundance-impact curves) is critical to designing prevention and
management strategies that effectively tackle these impacts. However, different measures of
abundance may produce different abundance-impact curves. Woody plants are among the most
transformative invaders, especially in grassland ecosystems because of the introduction of
hitherto absent life forms. In this study, our first goal was to assess the impact of a woody invader,
Pinus contorta (hereafter pine), on native grassland productivity and livestock grazing in Patagonia
(Argentina), building abundance-impact curves. Our second goal, was to compare different
measure of pine abundance (density, basal area and canopy cover) as predictors of pine’s impact
on grassland productivity. Our third goal, was to compare abundance-impact curves among the

mentioned measures of pine abundance and among different measures of impact: total grassland
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productivity, palatable productivity and sheep stocking rate (the number of sheep that the
grassland can sustainably support). Pine canopy cover, closely followed by basal area, was the
measure of abundance that best explained the impact on grassland productivity, but the shape of
abundance impact curves differed between measures of abundance. While increases in pine
density and basal area always reduced grassland productivity, pine canopy cover below 30%
slightly increased grassland productivity and higher values caused an exponential decline. This
increase in grassland productivity with low levels of pine canopy cover could be explained by the
amelioration of stressful abiotic conditions for grassland species. Different measures of impact,
namely total productivity, palatable productivity and sheep stocking rate, drew very similar
results. Our abundance-impact curves are key to guide the management of invasive pines because
a proper assessment of how many invasive individuals (per surface unit) are unacceptable,
according to environmental or economic impact thresholds, is fundamental to define when to

start management actions.

Keywords: Impact-based management, grasslands, livestock grazing, Pinus, primary productivity,

woody invasions.

1. Introduction

Biological invasions are one of the major components of global change (Diaz et al., 2019),
producing negative impacts globally (Cameron et al., 2016; Gallardo et al., 2016; Simberloff, 2011;
Vila et al., 2011) and incurring high economic costs (Diagne et al., 2021; Pimentel et al., 2005). All
continents are affected by biological invasions (van Kleunen et al., 2015), even the remote

Antarctica (Frenot et al., 2005; Hughes et al., 2015), as are all types of ecosystems (Vila and Hulme,
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2017), spanning tropical forests (Acurio et al., 2010) to deserts (Tellman, 2002). In addition to their
severe ecological impacts, the negative impacts produced by these invasive species threaten the
provision of essential ecosystem services and the economic activities that depend upon them (Vila
and Hulme, 2017). Knowing the relationship between invasive species abundance and the
magnitude of their impacts (abundance-impact curves hereafter) is essential to forecasting and
effectively managing damages (Cassey et al., 2006; Gilbert and Levine, 2013; Norbury et al., 2015;
Thomsen et al., 2011). These relationships can inform economic analyses (costs vs. benefits) of
management actions (Sofaer et al., 2018; Yokomizo et al., 2009) that are instrumental for
designing management strategies that effectively mitigate these impacts (Bradley et al., 2019;

Byers et al., 2002).

Woody plants are among the most transformative plant invaders, especially in grassland
ecosystems because of the changes produced by the introduction of a new life form (Ehrenfeld,
2003; Rundel et al., 2014). This is a problem global in scope and growing, consequently requiring
immediate action (Archer et al., 2017; Simberloff et al., 2010; Van Auken, 2000). While many
impacts have been documented for invasive woody plants on natural grasslands (Davis et al.,
2019; Ferraina et al., 2021; Pawson et al., 2010), no study has yet quantified the relationship
between their abundance and the magnitude of their impacts on native grasslands productivity, or
how these impacts progressively affect economic activities which depend on this ecosystem
service, such as livestock grazing. For instance, a recent study has measured the impact of an
invasive woody plant (Gleditsia triacanthos) on the productivity of native grasslands, but only
comparing invaded vs uninvaded plots (i.e. with no gradient in invader abundance) (Ferraina et al.,
2021). Another study, assessed the impact of increasing P. contorta cover on native grasslands
species richness and relative cover (Taylor et al., 2016), which (although related) are different

from grassland productivity (Catchpole and Wheeler, 1992; Chiarucci et al., 1999; Jiang et al.,
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2017). Further, none of the mentioned studies focused on the invader impact on the productivity
of palatable grassland species (those foraged by livestock), which in turn would impact livestock

grazing. Management of invasive woody plants to tackle their impacts on grasslands productivity
and livestock grazing will benefit from detailed quantifications of their abundance-impact curves

(Bradley et al., 2019; Yokomizo et al., 2009).

The Pinus genus is an ideal study system to assess the abundance-impact relationship that
drives the impact of woody invasives on grassland productivity. Firstly, numerous species of this
genus have become invasive in grassland ecosystems around the world (Nufiez et al., 2017;
Richardson et al., 1994; Simberloff et al., 2010). Further, as most pine invasions start from
plantations maintained for economical purposes (Nufiez et al., 2017), their spread away from
these plantations, through wind dispersal, creates abundance gradients with the highest
abundance near the source of propagules and lower abundance with increasing distance (Langdon
et al., 2010; Taylor et al., 2016). These abundance gradients offer an exceptional opportunity to
measure Pinus invasion impacts at varying levels of invader abundance. Finally, the invasion of
Pinus species has notorious impacts in grasslands, and these impacts may affect grassland
productivity, namely a strong reduction in plant species richness and cover (Davis et al., 2019;
Franzese et al., 2017; Taylor et al., 2016), a steep increase in fuel load which affects the ecosystem
fire regime (Paritsis et al., 2018; Taylor et al., 2017) and an increase in litter depth (Taylor et al.,

2016) which may affect nutrients cycles (Araujo and Austin, 2015).

Abundance of invasive Pinus species can be measured in different ways, with a trade-off
between simplicity and the detail in the information obtained. On one hand, density is the most
easily obtained but it does not account for the difference in size between seedlings and adults,
which is key when assessing the impact of invasive woody plants (Franzese et al., 2017). Basal area

(the sum of the cross sections of all trees within a hectare) incorporates pine size through the



QO ~J oy O W N

AN T G UG UG DD DDA DDEDNDEDNWWWOMWWWWWWWNRONNNNONNNONMNDNNR P e e e
G WNHFOWOUdANTODd WNRFRPOW®OTIANUTDWNFRLOWOW®O-JdNTODdWNRFRLOW®OTIAANUTBDWNRFROWWOW-TJ O D WN - O O

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

additional measurement of individual diameters through a simple procedure that requires no
specialized or expensive equipment. On the other hand, canopy cover is more resource and time-
consuming, obtained through a more technical procedure which includes taking hemispheric
pictures and analyzing the obtained images. This requires relatively expensive (photographic

camera) and specialized (fisheye lens) equipment.

In this study, our first objective was to quantify the impact of Pinus contorta (hereafter
pine) invasion on native grassland productivity in northwest Patagonia. For this purpose, we built
abundance-impact curves, assessing the impact of pine invasion on grassland productivity along a
gradient of increasing pine abundance. Our second objective was to compare different measures
of pine abundance (density, basal area and canopy cover) as predictors of pine’s impact on
grassland productivity. While pine density is quick and easy to measure, we expected that it would
underestimate the individual impact of adults (which are considered equivalent to seedlings). We
expected that basal area would be a better predictor of pine impact, since it incorporates
individual size, while still being fairly straightforward to measure. Canopy cover moves a step
further, since it integrates the distribution of pine sizes, according to the distance of each
individual to the point of measurement, by recording the sky obstruction by pine canopies (Rich,
1990). Therefore, we expected that canopy cover would provide the best prediction of pine
impacts. Last but not least, our third objective was to compare abundance-impact curves among
different measures of pine abundance (previously mentioned) and among measures of impact,
including total grassland productivity, productivity of palatable species (i.e. those that are foraged
by sheep, the main livestock in the region (DNAP, 2018a, 2018b, 2018c)), and sheep stocking rate
(i.e. the number of sheep that can be supported by this palatable productivity). Since these are
semiarid grasslands, we expected that low pine abundance could facilitate grassland biomass

growth (Belsky, 1994; Blaser et al., 2013; Dohn et al., 2013; Mazia et al., 2016) by ameliorating
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stressful abiotic conditions through the reduction of air temperature and soil water evaporation
(Belsky et al., 1993) and via the pumping of water (by hydraulic lift) from deeper soil (Neumann
and Cardon, 2012) (Figure S1). We also expected that low pine abundance would favor the
proportion of palatable species in the grasslands (Bernardi et al., 2016; Peterson et al., 2007;
Scholes and Archer, 1997), possibly by providing microsite conditions more favorable for these
species, concomitantly increasing palatable productivity, even more than total productivity via
positive effects on total productivity and the proportion of palatable productivity. Additionally, we
also expected that high pine abundance would reduce both total and palatable productivity (Davis
et al., 2019; Franzese et al., 2017; Taylor et al., 2016), mainly through the reduction in solar

radiation (Rago et al., 2021).

2. Materials and Methods

2.1 Study area

We conducted our research on five sites (called Al, A2, A3, C1 and C2) in northwest Patagonia
(Argentina; Figure 1a & 1b, Table 1) where plantations of Pinus contorta were established
approximately 30 years ago, replacing areas of native grasslands. Each of these five plantations has
invaded adjacent native grasslands producing a gradient of invasion abundance, with the highest
abundance near the plantations and decreasing with distance. Mean annual precipitation is 900
mm and mean annual temperature is 8.3 °C (Bariloche Airport meteorological station, located
within our study area). Vegetation cover in these native grasslands is on average 60%, and
dominated by Pappostipa speciosa and Festuca pallescens, both perennial tussock grasses and

palatable species to sheep, supplemented with other plant species present in lower abundances
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(Anchorena and Cingolani, 2002; Bonvissuto et al., 2008). These grasslands cover a large
proportion of the Patagonian region and are among the most susceptible ecosystems to pine
invasions (Richardson et al., 1994; Simberloff et al., 2010). Pine plantations have replaced large
areas of these grasslands (Schlichter and Laclau, 1998), becoming a source for invasions that, in
turn, further replace areas of these native grasslands (Nufiez et al., 2017). The most important
economic activity in these grasslands is extensive livestock grazing, mainly by sheep (DNAP, 2018b,
2018a, 2018c), which depends almost exclusively on native rangelands for forage (Golluscio et al.,

1998; Soriano and Paruelo, 1990).

2.2 Experimental design

2.2.1 Assessing pine impacts on grassland productivity using abundance-impact curves

To quantify the impact of invasive pines on grassland productivity, we estimated grassland
productivity along transects of increasing pine abundance, in the five sites described before (A1,
A2, A3, C1 and C2). We defined grassland productivity as the dry aerial biomass produced annually
per surface unit (kg /hectare/year). We used green biomass in the peak production as a metric for
aboveground annual productivity, as proposed by Sala and Austin (2000) in sites where the
growing season is brief and marked. In the region where our sites are located, the growing season
spans from December to March (Heinemann and Kitzberger, 2006). In each of our five sites, we
built transects (five transects per site) radiating from the edge of a pine plantation, following the
main dispersal direction, until we reached a position beyond the invasion front, where invasive
individuals were absent (Figure 1c and 1d). On each transect, we compared grassland productivity
in the absence of pine invasion (control plot) with grassland productivity in paired plots with

increasing levels of pine abundance (invaded plots). Since the distance between the plantation and
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invasion front varied across sites, we adjusted the length of our transects accordingly. Therefore,
in sites A2 and C2 our transects were 200-m long, in site C1 transects were 350-m long, and in sites
Al and A3 transects were 500 m long. The distance between the five transects within the same
site was 50 m. Along each independent transect, we set circular plots at the following distances
from the pine plantation (propagule source): 0, 25, 50, 75, 100, 150, 200, 350 and 500 m (these
two last distances only for sites with transects that reached 350 and 500 m) based on visible
thresholds in pine density. Distance between plots was smaller closer to the pine plantation than
near the invasion front because the greatest variation in invasion density occurs near the seed

source and we wanted to capture this variability.

2.2.2 Comparing the performance of different measures of pine abundance as predictors of their

impact on grassland productivity

We measured three different metrics of pine abundance, to find out which one best predicted

their impact in grassland productivity:

a) Density (trees/ha): number of pines per hectare. Within each circular plot (10 m diameter), we
counted the number of pine individuals and calculated the corresponding number of individuals

for a hectare.

b) Basal area (m?/ha): the sum of the cross sections of all pines per hectare. Within each plot, we
recorded each individual diameter at ground level to calculate every cross section and add them

up to obtain basal area (m?/ha).

c) Canopy cover (%): the percentage of the sky that is blocked by the projection of the pine

crowns. Within each circular plot, we randomly distributed six square subplots (0.25 m?). In each
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of these subplots we took a hemispheric picture to estimate pine canopy cover using a Nikon

Coolpix P80 camera with an Opteka fisheye lens 0.20x.

2.2.3 Comparing abundance-impact curves across metrics of pine abundance and among pine

impacts

We compared abundance-impact curves across the metrics of pine abundance described

above and across three measures of pine impacts on grasslands:

1) Total productivity: aerial green biomass per hectare, considering all grassland species. In the
same subplots where we measured pine canopy cover (by taking hemispheric pictures), we
estimated total grassland productivity by harvesting (using pruning scissors) all the green biomass
of grasses, forbs and shrubs at the peak of the growing season (early summer) (Sala and Austin,
2000). We classified each species into palatable and non-palatable (foraged and not foraged by
sheep, respectively) according to a handbook for natural grassland condition in Patagonia
(Bonvissuto et al., 2008). We oven-dried the harvested biomass at 60°C for 48h and used a

precision scale (0.001 grams) to measure the dry weight.

2) Palatable productivity: aerial green biomass per hectare, only considering species foraged by
sheep. We followed the procedure described to estimate total productivity but here we only

considered palatable grassland species, including grasses, forbs and shrubs.

3) Sheep stocking rate: number of sheep that can be sustained by the palatable productivity. To
assess the impact of pine invasions on livestock grazing, mainly sheep, which relies almost
exclusively on rangelands for forage, we calculated the sheep stocking rate that the grasslands of

our study can sustainably support based on the feeding requirement of an Ovine Livestock Unit
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(OLU). The OLU represents an individual Merino wether (castrated male sheep) with an average
live weight of 40 kg that consumes 365 kg of dry forage in a year in Patagonia grasslands. We used
this livestock equivalence as a reference that establishes a correspondence between different
animal species. We also considered the vegetation Use Factor (UF) of each site, a value
corresponding to a proportion of effectively consumable forage that can be grazed by sheep
without compromising a sustainable forage production over time (Table 1) (Bonvissuto et al.,

2008; Golluscio et al., 2009).

Because pines show rare events of long distance dispersal (Langdon et al., 2010), and even
though our transects went beyond the invasion front (which is driven by the predominant short
distance dispersal kernel), in some specific cases the plot that was most distant form the
plantations ended up located in an area with small groups of invasive pine individuals. We did not
consider for analyses the transects where pines were present in all plots along the transect
because these transects lacked a control plot, making it impossible to assess their impact. The
total number of transects (throughout the five sites) not considered for analyses was five: three in

site A2, one in site A3 and one in site C2.

2.3 Statistical analyses

To evaluate the impact of increasing pine abundance on grassland productivity we used
linear regression models (Im function in R) (Chambers and Hastie, 1992; Wilkinson and Rogers,
1973), with pine abundance as predictor variable and their impacts as response variables
(abundance-impact curves). To compare different measures of pine abundance as predictors of
their impact in grassland productivity we used the three different measures of pine abundance

previously described (density, basal area and canopy cover) as predictor variables in our regression
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models. We only used one predictive variable for each regression model. We compared regression

models with different prediction variables based on the Akaike Information Criterion (AIC).

To compare abundance-impact curves among different metrics of pine abundance, we
used these regression models where the predictive variable was either pine density, pine basal
area or pine canopy cover. To compare abundance-impact curves among measures of impact we
used the three measures of impact described before (total grassland productivity, productivity of
palatable species, and sheep stocking rate) as response variables in our regression models (one
response variable for each regression model). In all cases, we built both a linear and a polynomial
(order 2) regression, since both linear and nonlinear relationships between abundance and impact
of invasive species have been documented (Bradley et al., 2019; Sofaer et al., 2018). For each

predictive variable, we selected between the linear and nonlinear regressions based on AIC.

Since grassland productivity is variable across sites (Figure S2), we standardized our impact
measures by calculating effect sizes. For each subplot we calculated three different effect sizes
(ES), focusing on the three different impacts on grasslands mentioned before (Figure 2), using log-

response ratios:

1) The effect size of pine invasion on grassland total productivity (EStp):
EStp = In (Bi/Bc).

2) The effect size of pine invasion on grassland palatable productivity (ESpp):
ESpp = In (Pi/Pc)

3) The effect size of pine invasion on the sheep stocking rate that the grassland can
sustainably support (ESsr):

ESsr = In (Si/Sc)
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where Bi is the total grassland dry aerial green biomass (including grasses, forbs and shrubs, both
palatable and non-palatable) for subplots located in plots invaded by pines, Pi is the total dry aerial
green biomass of palatable species for the same subplots, and Si is the sheep stocking rate that
can be sustainably supported by the total dry aerial green biomass of palatable species for the
same subplots. Bc is the total grassland dry aerial green biomass for subplots located in the paired
control plot of the same transect, which is the most distant from the pine plantation and has not
been invaded yet (Figure 1d), Pc is the total dry aerial green biomass of palatable species for
subplots located in the control plot, and Sc is the sheep stocking rate that can be sustainably
supported by the total dry aerial green biomass of palatable species for subplots located in the

control plot.

For each plot, we calculated an average for each of the three effect sizes (EStp, ESpp and
ESsr) using the data from the six subplots. A positive effect size would indicate that pine invasion
increased grassland productivity, while a negative effect size would indicate that grassland
productivity is negatively affected by the invasion of pines. The absolute value of the effect size
indicates the magnitude of the response of grassland productivity to the invasion of pines, either

positive or negative.

To understand how different measures of pine abundance relate to each other we built
three regression models. In the first case, we built a generalized linear model, with pine density as
predictive variable and pine basal area (rounded up to the nearest integer) as response variable,
assuming a Poisson distribution. In the second model, we used pine density as predictive variable
and pine canopy cover (converted from percentage to proportion data) as response variable,
assuming a Beta distribution (“betareg” function from the “betareg” package) (Cribari-Neto and

Zeileis, 2010). For the third model, we considered pine basal area as predictive variable and pine
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canopy cover (converted from percentage to proportion data) as response variable, assuming a

Beta distribution.

Finally, for each subplot we assessed how pine density, basal area and canopy cover
influenced the proportion of palatable (out of the total) productivity. For this purpose, we built a
regression model assuming a Beta distribution (“betareg” function from the “betareg” package)
(Cribari-Neto and Zeileis, 2010), with proportion of palatable productivity as response variable and
pine density, basal area, or canopy cover as predictive variables. Each regression included only one
pine abundance measure as predictive variable. We performed all statistical analyses using R

v.4.1.1 (R Development Core Team, 2021).

3. Results

3.1 Assessing pine impacts on grassland productivity using abundance-impact curves

We found a predominantly negative effect of pine invasions on grassland total productivity,
palatable productivity and sheep stocking rate, with increasing levels of pine abundance causing
further declines on each of the measures of impact studied here (Figure 3). However, this pattern
was affected by the measure of pine abundance with which abundance-impact curves were built.
On one hand, pine density and pine basal area both produced only declines of grassland total
productivity, palatable productivity and sheep stocking rate across the range of pine abundance
explored here. On the other hand, low levels of pine canopy cover (below 30%) produced an
increase of grassland total productivity, palatable productivity and sheep stocking rate, while

higher levels of pine canopy cover caused a strong decline.
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3.2 Comparing the performance of different measures of pine abundance as predictors of their

impact on grassland productivity

We found variation among our measures of pine abundance in their adequacy as predictors of
impact on grassland productivity (Table 3). The measure of pine abundance that best explained
variability in the impact of pine invasion (across all three impact measures) was canopy cover,

followed by basal area, and pine density came last, as we expected.

While all measures of pine abundance showed a positive relationship with each other,
increases in one measure were not associated with proportional increases in other measures
(Figure 4). While pine basal area increased exponentially with density, pine canopy cover at first
increased exponentially with density and basal area, to then stabilize at high levels of pine density
(approximately 3500 pines/ha) and basal area (approximately 60 m?/ha), without reaching 100 %

cover.

3.3 Comparing abundance-impact curves across metrics of pine abundance and among pine

impacts

We found different relationships between abundance and impact for different pine
abundance measures. When considering total productivity, the impact of pine density and basal
area was best predicted by a linear function, while that of pine cover was best predicted by a
nonlinear (polynomial order 2) function (Table 2a). In the case of palatable productivity and sheep
stocking rate, the impact of pine density and cover were also best captured by a nonlinear
function, while that of pine basal area was still best described by a linear relationship (Table 2b &

2c).
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We found that pine density (R? = 0.46, p < 0.0001, Figure 3a) and basal area (R*=0.53, p <
0.0001, Figure 3a) showed a strong negative linear relationship with grassland total productivity
throughout the range of pine abundance surveyed. On the other hand, we found that the best
model including pine cover as predictive variable had a negative linear component and a negative
polynomial component, resulting in a nonlinear relationship where pine cover below ~30% slightly
increased total productivity and higher values strongly reduced it (R? = 0.53, p < 0.0001, Figure 3a).
In the case of palatable productivity, the best model including density as measure of abundance
had a negative linear and a positive polynomial component, which resulted in a nonlinear
relationship where the most rapid decline in palatable productivity occurred at low pine density
(R2=0.42, p < 0.0001, Figure 3b). On the other hand, pine basal area showed a strong negative
linear relationship with palatable productivity (R? = 0.43, p < 0.0001, Figure 3b) and pine canopy
cover showed a nonlinear relationship where cover values below ~30% slightly increased it and

higher values strongly reduced it (R? = 0.43, p < 0.0001, Figure 3b).

When considering the sheep stocking rate that can sustainably be supported by these
grasslands, pine density also showed a nonlinear relationship where the most rapid decline
occurred at low density (R?> = 0.36, p < 0.0001, Figure 3c), while pine basal area still showed a
strong negative linear relationship (R? = 0.40, p < 0.0001, Figure 3c). Pine cover showed the same
nonlinear relationship where values below ~30% slightly increased stocking rate and higher values
strongly reduced it (R? = 0.41, p < 0.0001, Figure 3c). We found no significant effects of pine
density (p = 0.1727), basal area (p = 0.4236) or canopy cover (p = 0.7536) on the proportion of

palatable (out of the total) productivity.

4. Discussion
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We have described the relationship between invasive pine abundance and the response of
natural grassland productivity using abundance-impact curves. We found that pine canopy cover,
closely followed by basal area, was the abundance measure that best explained the impact of pine
invasion on grassland productivity. This is likely indicative of the effects of competition for light, as
pine canopy cover quantifies the availability of light in the community (Rago et al., 2021; Trentini
et al., 2017). We obtained different shapes (linear and nonlinear) for our abundance-impact curves
depending on our different measures of pine abundance, highlighting the importance of defining
how to measure invasive species abundance. Remarkably, our analyses revealed that while
increases in pine density and basal area produced a negative response of grassland productivity
throughout the range of pine abundance assessed, pine canopy cover below 30% produced a slight
increase in productivity and higher values caused an exponential decline. Different measures of
impact such as total productivity, palatable productivity and sustainable sheep stocking rate

yielded very similar results.

Different measures of invasive pine abundance showed different relationships with
grassland response to invasion (i.e., different abundance-impact curves). While pine density and
basal area showed mostly negative impacts on grassland productivity, canopy cover showed
positive and negative impacts at low and high pine abundances, respectively. Invasive species
show multiple abundance-impact curves (Sofaer et al., 2018; Strayer, 2020; Yokomizo et al., 2009)
due to variations in the invaded habitat (Thiele et al., 2010) and the impact measured (Kelemen et
al., 2016; Robinson et al., 2005; Strayer, 2020). However, there is a glaring gap in our
understanding of how abundance-impact curves for the same invasive species can be affected by
the measure of abundance used. This novel result highlights the importance of defining an
appropriate measure for invader abundance, an aspect intimately related to the impact studied

(Strayer, 2020).
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Different abundance-impact curves could be related to different mechanisms
underpinning the impact of pine invasions in grasslands. There may be different species
interactions behind each measure of abundance. Competition has been proposed as one of the
key mechanisms affecting invaded grasslands (Levine et al., 2003; Simberloff, 2011; Strayer et al.,
2006; Vila et al., 2011) and pine invasions reduce grassland species richness and cover (Davis et al.,
2019; Franzese et al., 2017; Taylor et al., 2016). However, facilitation may be the main interaction
between trees and grasses under stressful abiotic conditions (Belsky, 1994; Blaser et al., 2013;
Dohn et al., 2013; Mazia et al., 2016). In this sense, high pine canopy cover is an indicator of
competition for light (Araujo and Austin 2015, Taylor et al. 2016, Rago et al. 2021) but low canopy
cover may be associated with facilitation by reducing stressful abiotic conditions. On the other
hand, density and basal area are indicators of competition for different resources (water,
nutrients, light) (Alvarez Taboada et al., 2004; Biging and Dobbertin, 1995; Contreras et al., 2011;
Tomé and Burkhart, 1989). Each new tree, and its concurrent increase in basal area, requires
resources for growth, which if consumed by trees become unavailable for grassland species (Rago

et al., 2021; Trentini et al., 2017).

Our results broadly concur with previous research focused on the impact of invasive pines
in grasslands. For instance, the strong reduction in grassland productivity we found here parallels
the sharp decrease in plant richness and cover caused by pine invasions (Davis et al., 2019;
Franzese et al., 2017; Taylor et al., 2016). However, we also found positive impacts on grassland
productivity when pine abundance was low, confirming the results from studies reporting the
facilitation of grassland productivity by trees through the reduction of abiotic stress (Belsky, 1994;
Blaser et al., 2013; Dohn et al., 2013; Mazia et al., 2016). Another possible mechanism by which
pines are facilitating grassland species growth is by reducing soil erosion, which can be achieved at

levels of plant cover below 30% (Eshghizadeh et al., 2018).
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The abundance-impact curves described here may be useful to guide management of
invasive pines. In particular, low pine canopy cover (below 30%) seems to slightly promote
grassland productivity. Therefore, 30% cover is a good candidate threshold to trigger management
actions (e.g. start control interventions) to prevent strong increases in negative impacts (Sofaer et
al., 2018; Yokomizo et al., 2009). However, 30% cover is rapidly reached, at relatively low pine
densities (such as 1000 pines/ha), which may help explain why grassland productivity shows a
strong decrease with increasing pine density even for low values of density. In such cases, early
detection and rapid response will be the most effective way to manage the impacts of pine

invasions (Bradley et al., 2019).

For basal area, we found a linear relationship with impact, as reported by Bradley et al
(2019) for cases where the invasive species and the impacted native populations are at the same
trophic level, and competition is the prevalent interaction. In such cases, management of invasive
populations may be beneficial at any level of basal area (Bradley et al., 2019). However, pine basal
area increases exponentially with pine density, so there is a high risk of achieving high levels of
basal area before being noticed, especially if abundance is monitored using density. Based on this,
a key target for management should be to define a limit of grassland productivity loss or sheep
stocking rate reduction beyond which further losses are not affordable, either from an economic
(Barney, 2016; Higley and Pedigo, 1996; Sofaer et al., 2018; Yokomizo et al., 2009) or from an
ecological point of view ( i.e. “breakpoints”, Vila et al. 2011). This limit could be context-specific,
specified according to the impact measure (total grassland productivity, palatable productivity or
sheep stocking rate), or according to the economic context and the trade-offs between cost of
control and benefits of increases in grassland productivity (i.e. reduction of impacts) (Higley &

Predigo 1996, Yokomizo et al. 2009, Soafer et al. 2018). Nevertheless, it is paramount that the pine
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abundance measure used to guide management matches those of the abundance-impact curves

and is also used to monitor invasive pine abundance.

We have inferred possible mechanisms behind our results, but further research will be
needed to test these ideas. For example, measuring and comparing abiotic conditions across
gradients of pine abundance could help describe the growing conditions of grassland species. Our
abundance-impact curves may be applicable to other invasive woody species, especially other
members of the Pinus genus, and to grasslands in other temperate regions. However, some of our
results may be specific to our study species and our study region. Therefore, replications of our
study may be needed in new regions and with other invasive species to assess if our abundance-

impact curves hold similar.

5. Conclusions

The abundance-impact curves we have built here may be useful to guide the management of
invasive woody plants in grasslands with similar abiotic conditions. In temperate regions with
lower summer abiotic stress, grassland productivity may be reduced by invasive woody plants
throughout the whole range of woody canopy cover. Conversely, in regions with higher summer
water deficit invasive woody canopy cover above 30% may still increase grassland productivity.
While we show a predominant negative impact of invasive woody plants on native grassland
productivity and their capacity to sustain livestock grazing, our abundance-impact curves differ
among measures of invader abundance, and the timing of management actions could differ
substantially according to the measure of abundance used to monitor the invader. Ideally,
managers should consider using multiple measures of invader abundance to monitor invasions

since they provide complementary information. However, in general, time and money are limiting
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and only one measure of abundance can be frequently assessed. In such cases, we suggest using
invader canopy cover to monitor and guide the management of woody plant invasions in

grasslands.
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Tables

Table 1: Location (latitude and longitude), mean individual tree diameter (and standard error; SE),

surface covered (hectares) for each Pinus contorta plantation, as well as mean (and SE) grassland

palatable productivity and its corresponding vegetation use factor (UF), for each study site.

. Palatable Vegetation
. . . Diameter Surface -
Site Latitude Longitude (cm) (ha) productivity use factor
(kg/ha) (%)
Al  41°9'48.13"S  71°15'32.84"0 44.9(2.4) 3.206 479 (96) 40
A2 41°12'50.99"S 71°13'10.64" 0 29.9(1.2) 2.171 281 (145) 30
A3 41°12'2595"S  71°13'59.91"0 36.1(1.2) 2.778 153 (73) 20
C1 41°7'33.55"S 71°12'36.86" O 35.7(2.2) 1.811 394 (119) 40
C2 41°8'53.55" S 71°13'54.18" 0 34.5(1.7) 3.332 119 (25) 20
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733 Table 2: Parameters of our models for different measures of Pinus contorta abundance as
734 predictive variables and the following response variables:
735 a) Effect size on total productivity (EStp)
Model Variable Functi Estimate Estimate t p (poly) R AIC
odel Variable Function . 0
v (linear)  (poly) (linear) (linear) (poly) P ipoly
1 densit linear -0.002 - 0.0002 -10.873 <0.0001 - - 0.46 656
2 y poly -26.884 47271 2.4751 -10.862 <0.0001 1.910 0.0583 0.48 654
3 basal area linear -0.145 - 0.0117 -12.392 <0.0001 - - 0.53 638
4 poly -28.830 -2.1582 2.3277 -12.386 <0.0001 -0.93 0.3550 0.53 639
5 cover linear -0.081 - 0.0091 -8.885 <0.0001 - - 0.37 670
6 poly -24.030 -16.043 2.3370 -10.282 <0.0001 -6.86 <0.0001 0.53 631
736
737 b) Effect size on palatable productivity (Espp)
Estimate Estimat t
Model Variable Function s.lma € rstimate ) ) P p(poly) R®> AIC
(linear)  (poly) (linear) (linear) (poly)
densit linear -0.002 - 0.0002 -9.666 <0.0001 - - 0.40 685
¥ poly -26.588 5.906 2.7143 -9.795 <0.0001 2.176 0.0313 0.42 682
basal area linear -0.139 - 0.0135 -10.277 <0.0001 - - 0.43 677
poly -27.554 0.3774 2.6906 -10.241 <0.0001 0.14 0.8890 0.43 679
11 cover linear -0.082 - 0.0098 -8.376 <0.0001 - - 0.34 691
12 poly -24.388 -12.268 2.7250 -8.950 <0.0001 -4.5 <0.0001 0.43 673
738
739 c) Effect size on the stocking rate that the grassland can sustainably support (Essr)
Estimate Estimate t
Model Variable Function . SE . . P p (poly) R? AIC
(linear)  (poly) (linear) (linear) (poly)
13 densit linear -0.001 - 0.0001 -8.399 <0.0001 - - 0.34 619
14 ¥ poly -18.310 5.0612 2.1447 -8.537 <0.0001 2.36 0.0197 0.36 616
15 basal area linear -0.100 - 0.0105 -9.592 <0.0001 - - 0.40 606
16 poly -19.911 1.5593 2.0790 -9.577 <0.0001 0.75 0.455 0.40 607
17 cover linear -0.062 - 0.0074 -8.373 <0.0001 - - 0.34 612
18 poly -18.344 -8.5883 2.0711 -8.857 <0.0001 -4.15 <0.0001 0.41 598
740
741
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Figure Legends

Figure 1: a) Map of Argentina showing the location of our study region (red square). b) Map of our
study region showing the location of our study sites (yellow dots). c) Scheme of the experimental
design, showing the five transects of 500 m included in one site and the location of sampling
circular plots (10 m diameter) along each transect. d) Scheme showing one transect of 500 m as an
example. Each circle represents a plot, including a representative picture. In both c) and d) the

dotted line shows the location of the invasion front.

Figure 2: Conceptual model showing the different impacts measured here (orange bubbles) and

which factors (green boxes) are considered in their calculation.

Figure 3: Estimate, 95% confidence and predictive intervals of the relationship between effect size
of pine invasion on a) total grassland productivity, b) palatable productivity and c) sheep stocking
rate, and pine density (left pane), basal area (center pane) and canopy cover (right pane). For each
predictive variable we show the best regression model (based on AIC). While the confidence
intervals show the likely range of values that contain each of the mentioned response variables
(effect sizes), the prediction intervals predict in what range a future individual observation will fall.

Prediction intervals are much wider than confidence intervals, since they show higher uncertainty.

Figure 4: Estimate and 95% confidence intervals of the relationship between pine basal area and
density (left pane), between pine canopy cover and density (center pane) and between pine

canopy cover and basal area (right pane).
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Figure 1: a) Map of Argentina showing the location of our study region (red square). b) Map of our
study region showing the location of our study sites (yellow dots). c) Scheme of the experimental
design, showing the five transects of 500 m included in one site and the location of sampling
circular plots (10 m diameter) along each transect. d) Scheme showing one transect of 500 m as an
example. Each circle represents a plot, including a representative picture. In both c) and d) the

dotted line shows the location of the invasion front.

Figure 2: Conceptual model showing the different impacts measured here (orange bubbles) and

which factors (green boxes) are considered in their calculation.

Figure 3: Estimate, 95% confidence and predictive intervals of the relationship between effect size
of pine invasion on a) total grassland productivity, b) palatable productivity and c) sheep stocking
rate, and pine density (left pane), basal area (center pane) and canopy cover (right pane). For each
predictive variable we show the best regression model (based on AIC). While the confidence
intervals show the likely range of values that contain each of the mentioned response variables
(effect sizes), the prediction intervals predict in what range a future individual observation will fall.

Prediction intervals are much wider than confidence intervals, since they show higher uncertainty.

Figure 4: Estimate and 95% confidence intervals of the relationship between pine basal area and
density (left pane), between pine canopy cover and density (center pane) and between pine

canopy cover and basal area (right pane).
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Figure 1: a) Map of Argentina showing the location of our study region (red square). b) Map of our
study region showing the location of our study sites (yellow dots). c) Scheme of the experimental
design, showing the five transects of 500 m included in one site and the location of sampling
circular plots (10 m diameter) along each transect. d) Scheme showing one transect of 500 m as an
example. Each circle represents a plot, including a representative picture. In both c) and d) the

dotted line shows the location of the invasion front.
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Figure 2: Conceptual model showing the different impacts measured here (orange bubbles) and which

factors (green boxes) are considered in their calculation.
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Figure 3: Estimate, 95% confidence and predictive intervals of the relationship between effect size of

pine invasion on a) total grassland productivity, b) palatable productivity and c) sheep stocking rate, and

pine density (left pane), basal area (center pane) and canopy cover (right pane). For each predictive

variable we show the best regression model (based on AIC). While the confidence intervals show the

likely range of values that contain each of the mentioned response variables (effect sizes), the prediction

intervals predict in what range a future individual observation will fall. Prediction intervals are much

wider than confidence intervals, since they show higher uncertainty.
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4 Figure 4: Estimate and 95% confidence intervals of the relationship between pine basal area and
5 density (left pane), between pine canopy cover and density (center pane) and between pine

6  canopy cover and basal area (right pane).



