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Abstract—Deep neural networks (DNNs) technique has
achieved impressive performance on semantic segmenta-
tion, while its training process requires a large amount of
pixel-wise labelled data. Domain adaptation, as a promising
solution, can break the restriction by training the model on
synthetic data, and generalising it in real-world data. How-
ever, there is still a lack of attention paid to the imbalance
problems on semantic segmentation adaptation, including
the imbalance problem between i) source and target data,
ii) different classes. To solve these problems, a progres-
sive hierarchical feature alignment method is proposed in
this paper. To alleviate the data imbalance problem, the
network is progressively trained by the data from multi-
source domains, so as to obtain domain-invariant features.
To address the class imbalance problem, the features are
aligned hierarchically across domains. According to the
experimental results, our method shows the competitive
adapted segmentation performance on three benchmark
datasets.

Index Terms—Image segmentation; convolution neural
networks; domain adaptation; deep learning;

I. INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable
performance in computer vision, especially in semantic seg-
mentation [1]. Semantic segmentation is to assign the predic-
tion of each pixel in an image. However, recent work shows
that DNNs cannot generalise well in unseen environments
[2]. One intuitive idea is to train a segmentation model
with more labelled data from the unseen environment. This
straightforward idea is not very realistic in practice due to
the high cost of obtaining pixel-wise manual annotations. To
tackle the issue, unsupervised domain adaptation algorithms
are introduced into semantic segmentation tasks for moving
one step closer to real-world practice. The purpose of domain
adaptation for semantic segmentation is to train a segmentation
network on the data and labels in the source domain and
generalise well in the target domain.

Most of the work on semantic segmentation adaptation
attempt to minimise the discrepancy of data distribution across
domains. Two main-stream methods are identified for this task.
In the first stream, many existing studies align two domains by
minimising the distribution discrepancy from various aspects.

Manuscript received... This work was supported by the University of
Aberdeen Internal Funding to Pump-Prime Interdisciplinary Research
and Impact under grant number SF10206-57. (∗Corresponding author:
Dewei Yi)
Yining Hua is with School of Arts, University of Roehampton, London
SW15 5PH, UK. (email: yining.hua@roehampton.ac.uk).
Dewei Yi is with Department of Computing Science, University of Ab-
erdeen, Aberdeen AB24 3UE, UK. (email: dewei.yi@abdn.ac.uk)

Pixel-wise alignment between source and target domains is
investigated in [3–5]. Feature level alignment across domains
is explored in [6–8]. In addition, the work of [9, 10] is to align
semantic classes from the source domain to the target domain.
Despite this stream has achieved great success so far, the work
of this stream cannot guarantee an optimal solution due to the
neglect of domain-specific knowledge. In the second stream,
many methods attempt to extract the knowledge of unlabelled
target domain data. Specifically, the methods of this stream
usually adopt a two-step pipeline, which is similar to the
traditional semi-supervised framework [11]. The first step is to
predict pseudo-labels by utilising the knowledge learnt from
the labelled data, e.g., the model trained on the source domain.
The second step is to minimise the loss on the pseudo-labels
of the unlabelled target domain data. In the training process,
pseudo-labels are usually regarded as accurate annotations to
optimise the model. However, this arises one inherent problem.
Pseudo-labels usually suffer from the noise caused by the
model trained on different data distributions. To deal with
this problem, [12] ignores pseudo-labels below a specific
confidence threshold. Our method takes full advantage of both
streams above. The discrepancy is minimised at different levels
and domain-specific knowledge of unlabelled target data is
fully exploited through self-learning learning.

As discussed in [13], although unsupervised domain adap-
tation algorithms do not need labels of target domain data,
to achieve promising performance, it requires a large number
of unlabelled data from the target domain for the training
purpose. However, it is hard to guarantee that there are enough
target domain data available. This can be formulated as a few-
shot unsupervised domain adaptation problem, where there are
a large amount of data in the source domain, and only a few
shots of data are available in the target domain. To deal with
this issue, we propose a progressive hierarchical feature align-
ment method on domain adaptation for semantic segmentation.
The data from multi-source domains are trained progressively
to obtain domain-invariant features. A more comprehensive
cross-domain alignment is realised by a hierarchical feature
alignment scheme, where all the objects, categories and images
are taken into account to achieve better alignment from the
source domain to the target domain. The main contributions
of this paper are summarised as follows:

• To learn domain-invariant features, a progressive multi-
source adversarial domain adaptation method is adapted
to extract domain-invariant by using synthetic data from
different simulators (e.g. GTA5, Unity).
• In practice, it is difficult to guarantee the availability of
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sufficient data from the target domain, where there are a
large number of data in the source domain while only a
few shots of data are available for the target domain. To
the best of our knowledge, in urban driving scene, this is
the first attempt to tackle the few-shot unsupervised domain
adaptation for semantic segmentation.

• A hierarchical feature alignment scheme is proposed to align
object-level, category-level, and image-level features across
domains along with self-supervised learning to enhance the
performance of adapted segmentation.

• To evaluate the performance of our proposed method, ex-
tensive experiments are conducted to adapt from synthetic
GTA5 and SYNTHIA datasets to real-world Cityscapes
dataset. Many advanced methods are compared with our
proposed method on the scenario that only a few shots of
data are available for the target domain. The experimental
results demonstrate the superiority of our proposed method
along with competing with other existing methods.

II. RELATED WORK

In this section, important work about the three most related
tasks are broadly discussed, i.e. 1) domain adaptation for
semantic segmentation, 2) the imbalanced problems in domain
adaptation, and 3) multi-source domain adaptation.

A. Domain Adaptation for Semantic Segmentation

Since labelling a large amount of pixel-level data is labour-
intensive work, training networks on automatically labelled
virtual data become a promising solution to alleviate the efforts
of manual annotation. However, there exists a gap between
virtual data and real-world data, which makes the segmentation
networks trained on the virtual data cannot generalise well in
real-world data. To this end, domain adaptation is introduced to
semantic segmentation, to obtain better generalisation ability
when human intervention is reduced. By minimising the dis-
crepancy between source and target domains, adapted semantic
segmentation can achieve promising performance in the target
data after training a model with labelled source data along
with unlabelled target data.

Recently, methods related to adversarial learning are treated
as a promising way to bridge the gap across domains,
such as [3, 5, 14–17]. Studies on [14] and [3] achieve
the alignment of feature space latent representations across
domains. In [5] and [15], input level adaption is enforced for
minimising the visual difference of different domains. The
work of [9] adapts the semantic predictions across domains
by using output-feature space discriminators. As mentioned
[18], previous GAN-style methods focus on minimising the
appearance difference between generated features and target
domain features. One insight is observed that the appearance
of background classes is similar to each other. This should
be noticed during adversarial domain adaptation. The naı̈ve
combination of the image transferring model and segmentation
model is insufficient to minimise the gap across domains.
This is because the quality of segmentation is impaired a
lot when there exists the failures of image style translation

across domains. To further improve the generalisation of cross-
domain semantic segmentation, [18] introduces bi-directional
learning to help CycleGAN retain local semantic information
when carrying out the unpaired image style translation and also
proposes a self-training approach to generate pseudo-labels
for target data. The work of [19] attempts to align different
domains by both considering the local regions of an image and
the entire image. [20] enhances the performance of semantic
segmentation by taking the predictions of multi-scales into
account. However, the alignments of different feature levels,
e.g. object-level, category-level, and image-level, are not being
paid enough attention. Therefore, we propose a hierarchical
feature alignment scheme to generalise well from source to
target data.

B. Imbalanced Problems in Domain Adaptation

In this paper, we focus on two kinds of imbalanced prob-
lems: i) the class imbalance problem, and ii) the imbalance
between source and target data. The class imbalance problem
occurs when the respective numbers of data for different
classes are imbalanced. The imbalanced dataset is with a
long-tailed class distribution. This problem is more severe
for the pixel-level category prediction of an image, which
is known as semantic segmentation. For the perception of
urban scenes, Cityscapes [21] is a commonly used dataset to
assess the performance of semantic segmentation. This dataset
has many samples on the classes of road and sky, which are
defined as head classes in the class distribution, while there
are significantly fewer samples for traffic signs, which are
defined as one of the tail classes in the class distribution. If a
model is trained on an imbalanced dataset, it will be skewed
to the head classes [22]. When there is a large amount of data
available from the source domain but much fewer from the
target domain, the imbalance between source and target data
occurs, which would bring a big challenge in source to target
domain alignment.

To handle the class imbalance issue, some approaches
have been proposed to rebalance the classes [22, 23]. For
example, for each class, [22] uses a effective number of
samples to calculate the class-balanced loss and then rebalance
such a loss. In [23], a cut-and-paste approach is proposed
to increase the amount of tail-class training data. However,
without target labels, these methods cannot be applied directly
to unsupervised semantic segmentation. In our method, the
class imbalance problem is alleviated by introducing maximum
square loss. Moreover, we attempt to make pioneering efforts
on the cross-domain data imbalance issue. It is because there
is not much related work done in the literature.

C. Multi-source Domain Adaptation

By using multi-source data, multi-source to single target
adaption can achieve better generalisation in the target domain
data. For example, in literature [24], the distribution shifts
are adjusted by a generalisation bound, which is found by
leveraging heuristic algorithms. The authors of [25] propose
a certain ad-hoc scheme, which combines coefficients α to



implement multi-source domain adaption. Additionally, mul-
tiple domain matching network (MDMN) in [26] computes
domain similarities on both source-to-target domain and within
the source domain based on the Wasserstein-like measure.
Nonetheless, calculating such pairwise weights can be compu-
tationally demanding, especially when there are a lot of source
domains. Their bound requires additional smooth assumptions
on the labelling functions fSi and fT . Thus, unlike existing
work, multi-source data in this paper is learnt progressively to
obtain auxiliary information, which helps extract the domain-
invariant features.

III. PROGRESSIVE HIERCHICAL FEATURE ALIGNMENT

This section introduces the details of our proposed pro-
gressive hierarchical feature alignment method on the domain
adaptation for semantic segmentation. To bridge the gap be-
tween the source domain and target domain, we first enforce
the progressive adversarial domain adaptation by multi-source
data. Consequently, auxiliary information can be obtained to
enable preliminary domain alignment and extract domain-
invariant features. A detailed description of progressive adver-
sarial domain adaptation is provided in Section III-B. Second,
features from different domains are aligned hierarchically to
carry out a more subtle alignment. Cross-domain features
are aligned from low level to high level. In Section III-C,
a hierarchical feature alignment scheme is elaborated. Third,
Section III-D describes a self-guidance framework, which is
introduced into our proposed method to achieve the label-
level transferring. Finally, the full objective and the entire
framework of our proposed method are presented in Section
III-E and Fig. 1, respectively.

A. Problem Formulation

We consider the unsupervised multi-source domain adap-
tation with only a few shots of data available in the target
domain. In this case, there are multiple labelled source do-
mains. Source domains X1

S , X
2
S , . . . , X

M
S and the correspond-

ing ground truth YS are given, where the i-th image of the
source domain XS is defined as xis. In addition, only a few
shots of target domain images are given without labels from
a small target set XT . The aim is to learn a generative model
G for transferring knowledge from the source domain to the
target domain so that G can correctly predict semantic labels
(e.g. road, building, sign, etc.) at the pixel-level in the target
domain. That is, an adaptation model trained on XM

S , YMS and
XT can assign the correct labels for the target domain data.

B. Progressive Adversarial Domain Adaptation with Aux-
iliary Information

The progressive adversarial domain adaptation targets on
learning domain-invariant feature representations. To achieve
this, multi-source domain data are involved in the adversarial
learning of domain adaptation. First, the preliminary source
data are used to train the domain adaptation model and proceed
initial alignment from synthetic data to realistic data. In this
way, basic feature representations are extracted, and they are
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Fig. 1. The framework of the proposed progressive hierarchical feature
alignment method.

used as the auxiliary information for more subtle alignment.
Second, the primary source data are used to learn domain-
invariant feature representation. This is a sequential learning
process, so named “progressive learning”.

C. Hierarchical Feature Alignment Scheme
Due to the diversity and complexity of data distribution

of different domains, cross-domain feature alignment is a
challenging task. To achieve a holistic representation of the
mapping from the source domain to the target domain, it is
not enough if we only conduct global-level alignment. The
cross domain mapping is required to be in different levels,
e.g. object-level for objects and foreground, category-level
for semantic classes and background, and image-level for
image style translation. Thus, we propose a novel hierarchical
feature alignment scheme to map feature representation from
source domain to target domain in a better manner, where
the bottom-top alignment is conducted. In the low level,
objects (e.g., cars or persons) of source and target domains are
aligned individually. In the medium level, different categories
of semantic classes are aligned to achieve better probabil-
ity balance so called category-level alignment, where class-
balanced weighting factor is adopted for the sake of balancing
the number of classes. In the high level, the image of source
domains are transferred to the target domain image style
through CycleGAN [18].

1) Object-level Alignment: The object-level alignment fo-
cuses on the objects of foreground classes. These objects come



from the classes of cars, persons, etc. Since the object level
annotations are not available, we follow [27] to generate the
foreground object mask. In a label map, the foreground objects
are found through identifying the disconnected regions of
each foreground class. By using such a coarse segmentation,
objects can be identified from intra-class semantic regions.
Subsequently, various object-level feature representations can
be extracted from an image by using Equation (1).
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i

∑
k∈K

1

|T t
k|
∑

rt∈T t
k

min
j

∣∣∣∣∣
∣∣∣∣∣

∑
h,w

I
(h,w)
t F (xt

i)
(h,w)

max(ε,
∑

(h,w) I
(h,w)
t )

− xsj.k

∣∣∣∣∣
∣∣∣∣∣
1

1

(1)

Where i ∈ 1, . . . , |XT | and T tk = {Ik1 , Ik2 , Iki , . . . , Ikm}. Iki
is the binary mask of the connected region with regard to i-th
target domain image xti on class k, k ∈ K. T tk is the set of
objects on k-th class in the target domain. xsj,k is the averaged
features of k-th class denoted in Equation (1). With minimising
the loss of in Equation (1), the object features of the closest
intra-class sample in the source domain can be pushed to get
closer to the object features of the target domain.

2) Category-level Alignment and Balancing: Category-
level alignment is to align the various semantic classes across
domains. Entropy minimisation method is one of the most
popular approaches in semi-supervised learning, which is
promising to be used in the semantic segmentation adaptation.
However, conventional entropy minimisation method has a
problem that the gradient of entropy is overly concerned with
easy-to-transfer classes. Adequate attention is not paid to the
hard-to-transfer classes. As a result, the gradients of easy-
to-transfer classes are much larger than the hard-to-transfer
classes class during the training process. To avoid the training
process dominated by easy-to-transfer classes, the maximum
square loss is adopted for balancing the probabilities of
different classes. The maximum square loss has linear growth
of gradient, which makes areas with higher confidence keep
larger gradients while their dominant effects are suppressed for
letting hard-to-transfer classes obtain training gradients. As a
consequence, the alignment of various classes is conducted in a
more balanced manner. In addition, there are more pixels about
the easy-to-transfer classes on the label map and this situation
causes an imbalance in quantity. Since labels are not available
for target domain data in the unsupervised domain adaptation
task, the class frequency of the target domain cannot be
obtained so the conventional weighting-based methods are not
appropriate for this case.

To tackle the problem of missing the target domain label,
each target image is used to compute the class frequency
rather than using the whole data of target domain as given
in Equation (2).

L
(h,w)
t,P∗ =

{
1 if P ∗ = argc maxL

(h,w)
t,Pi

0 otherwise,

N c =
∑W
w=1

∑H
h=1 L

(h,w)
t,P∗

(2)

Taking the inaccurate predictions into account, the average
loss of a target image relies on both the total number of pixel

samples (W ×H) and the number of classes N c as shown in
Equation (3).

Lclass(xt) = −
W∑
w=1

H∑
h=1

C∑
c=1

(L
(h,w)
t,P∗ )2

2(N c)α × (W ×H)(1−α)

(3)
where α is a hyper-parameter and set as 0.2 as suggested in
[28].

In addition, the feature representations of background se-
mantic classes are extracted for enforcing category-level align-
ment. In contrast to foreground classes, the appearance of
background classes is inclined to be invariant and occupying a
big part of an image. The overlap of the predictions and ground
truth is leveraged to generate the label map with corrected
predictions, which is given in Equation (4).

LsCi
= LsGi

∩ {argk∈N max(G(xsi )
(h,w))(k)} (4)

where the map of correct predictions is denoted by LsCi
. It is

calculated by the overlap between the ground truth label map
LsGi

and the predicted label map, where the prediction of each
pixel in an image is obtained by G(xsi ). The height and width
of the feature map are denoted as h and w, respectively. k is
the class type for the corresponding position in the feature
map. The averaged features of the same background class
are defined as the representations of background classes in
Equation (5)

xsj,b =

∑
h,w ∆(L

(h,w)
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Where xsj,b is the j-th semantic feature sample of class b
in the source domain. The Dirac delta function is denoted as
∆(•). If xsj,b 6= 0, then j = i mod ζ, b ∈ B, i ∈ {1, . . . , |XS |}.
The ζ represent the number of stored feature samples of
each class and τ is the regularising term. We minimise the
distance between the features of each background class in the
target domain and its closet intra-class features in the source
domain. The feature representation of each background class
is obtained with using the predicted label map due to the lack
of the ground truth on the target images. The source to target
domain adaptation of background class feature representations
is realised by minimising the loss function defined in Equation
(6) during the training process.

Lback =∑
i

∑
b minj

∣∣∣∣∣∣∣∣∑h,w δ(L
(h,w)
t,Pi

−b)F (xs
i )(t,i)

(h,w)

max(ε,
∑

h,w δ(L
(h,w)
t,Pi

−b))
− xsj,b

∣∣∣∣∣∣∣∣1
1

(6)

where i ∈ 1, . . . , |XT | and b ∈ L(h,w)t,Pi ∩B.
3) Image-level Alignment: The image-level alignment is to

transfer the image style from the source domain to the target
domain. To alleviate the effect of failing alignment on image-
to-image translation, this paper adopts bi-directional learning
to retain local semantic information when carrying out the
unpaired image style translation. Since the observation from
[18] clarifies that source data and image translated source



data or target data and image translated target data have the
same labels when we obtain an ideal segmentation adaptation
model. The perceptual loss is introduced to measure the
difference between source data and image translated source
data or target data and image translated target data, which
is used to guide the training process for obtaining an ideal
segmentation adaptation model. The perceptual loss (lppl) is
given in Equation (7).

Lppl = λpplEXS
||I(XS)− I(G(XS))||1

+ λpplreconEXS
||I(F (XS))− I(XS)||1

(7)

where I is segmentation network. G is image-to-image trans-
lation network from XS → XT . F is translation network from
XT → XS . Lppl and λpplrecon are the weighted factors for
con structuring and reconstructing paths. Due to the symmetry,
the Lppl of XT and F (XT ) is similar as shown above.

D. Self-Guidance with Our Proposed Method

In the semantic segmentation adaptation, the labels of target
data are not available. The segmentation loss is computed
by using the ground truth annotations from source domains.
Such a manner neglects the discrepancy of the distribution for
ground truth labels in the source and target domains. Taking
this into account, our proposed method is combined with a
self-supervised learning framework to alleviate misalignment
of ground truth labels from source and target domains.

There are two stages for self-guidance training. First, a
model is trained on the source domain images XS and their
corresponding ground truth annotations YS along with the
target domain images XT . Second, the model obtained from
the first step is applied to produce pseudo-labels. More specif-
ically, the pseudo-labels of the training set images XT are
generated by using the pixels with high predicted confidence
scores as shown in Equation (8).

σk(G(xti)) > ykt ⇒ ŷti = arg max
k∈N

G(xti)
(k) (8)

where σk(•) returns the confidence score of class k, which
is generated by generative network G(xti). The confidence
threshold of class k is denoted as ykt . Then, our model is
retrained with using the semantic segmentation loss of the
target domain images, which is given in Equation (9).

LTseg(F (xt)) = −
∑
i,h,w

∑
k∈K

ŷ
(h,w)
i log(σk(G(xti)

(h,w)))

(9)
With the help of pseudo-labels, the generated features of

corresponding classes are pushed closer to the corresponding
intra-class features of the source domain. As a result, adapted
segmentation performance can be further enhanced for hierar-
chical feature alignment.

E. Full Objective

Following [18, 27], a two-stage training pipeline is enforced
to make trained model generalise better in the target domain
dataset on semantic segmentation. The former step is to train
our model without the pseudo-labels. The target function is

optimised through an adversarial training strategy given in
Equation (10).

min
G,D

Lformer = min
G

(λsegL
S
former + λadvLadv

+ Lhierarchy + minD λDLD)
(10)

where λseg , λadv , and λD are the weights of segmentation
loss, adversarial loss, and discriminator loss. After obtaining
the pseudo-labels of the target domain from the former step,
latter step is to repeat the training process with reinitialising
the weights of the network and using pseudo-labels to guide
the optimisation of minimising the loss function in Equation
(11)

min
G,D

Llatter = min
G

(λSseg(L
S
seg + LTseg) + λadvLadv

+ L̃hierarchy + minD λDLD)
(11)

where L̃hierarchy is augmented with predicted ŷti according to
Equation (8).

IV. EXPERIMENTAL EVALUATION

A. Datasets

To evaluate our proposed method, three benchmark datasets,
i.e. GTA5, SYNTHIA, and Cityscapes [9], are used in the
experiments. In specific, GTA5 and SYNTHIA are chosen as
the source domain data since they are both synthetic datasets
and easy to be collected and labelled. The Cityscapes dataset
is chosen as the target domain since it is a realistic dataset
and difficult to be labelled due to the large data scale.

1) GTA5 to Cityscapes: The GTA5 dataset consists of
24,966 fine annotated synthetic images with the resolutions
of 1914×1052. All these images are captured from a photo-
realistic open-world computer game called “Grand Theft Auto
V”. Similar to [7, 9, 18, 27], GTA5 images are resized into
the resolution of 1280×720 for saving GPU memory. In the
GTA5 dataset, there are 19 classes shared with the Cityscapes
dataset. Therefore, all the 19 classes can be used to evaluate
the performance of semantic segmentation. The images in the
Cityscapes dataset are resized to the resolutions of 1024×512
for training and validating purposes.

2) SYNTHIA to Cityscapes: The SYNTHIA [9] dataset
consists of 9400 images with the resolutions of 1280×760, and
also the dense pixel-level annotations. Following [7, 9, 18, 27],
we evaluate our models on Cityscapes validation set with
the 13 common classes between SYNTHIA and Cityscapes.
Similar to the adaption from GTA5 to Cityscapes, the models
are trained and tested on Cityscapes images with the resolution
of 1024×512.

B. Implementation Details

To train the segmentation and discriminator networks, Py-
torch is used on a single RTX2080ti GPU. As emphasised
in [9], a strong baseline model is helpful to obtain better
understanding on the effect of different adaptation approaches,
and enhance the performance for the practical applications.
Thus, according to the conventional literature, the backbone of
pre-trained ResNet-101 on ImageNet is chosen as our baseline



model [7, 9, 18, 27]. Specifically, the backbone network is
with 5 convolutional layers. The final layer is used to obtain a
high-quality feature map, and atrous spatial pyramid pooling
(ASPP) is applied for classification modules with control-
ling the weight by hyperparameter λadv . In agreement with
[7, 9, 18, 27], discriminator network contains 5 convolutional
layers with channel number {64, 128, 256, 512, 1}. The kernel
size and stride are set to 4×4 and 2, respectively. To train the
discriminator network, the output of ASSP head on the final
conventional layer is upsampled with weights λadv and λD.
The detailed configuration of training process is given in Table
I. But unlike the conventional literature, we only use 1% of the
data from Cityscapes training dataset, which are 30 images,
instead of using all unlabelled images of the training set as in
[7, 9, 18, 27], which are 2,975 images. Thus, in our evaluation
scenario, the amount of data in source and target domain are
extremely imbalanced, which is more realistic and closer to
the practical real-world applications.

C. Evaluation Metrics

This section provides the metrics for evaluating the per-
formance of adapted semantic segmentation. To quantitatively
evaluate the results of semantic segmentation, interaction-
over-union (IoU) is used to assess the performance for each
semantic class . The definition of IoU is given by

IoU(Y, Ŷ ) =
Y ∩ Ŷ
Y ∪ Ŷ

=
tp

tp + fn + fp
(12)

where Y are pixel-wise labels of ground truth and Ŷ are the
predictions of each pixel. tp, fn, and fp represent the true
positives, false negative, and false positives, respectively. IoU
is used to measure the performance of a specific semantic class
and it is not affected by the class imbalances. In addition, the
overall performance of different methods is measured through
the mean value of IoU for all semantic classes, which is
defined by mIoU.

D. Quantitative and Qualitative Analysis

Table II and III provide the semantic segmentation results on
GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes adaptation,
respectively. FCN is the baseline for domain adaptation, where
a segmentation model is only trained by the source dataset
and then assessed on the target dataset. For the GTA5-to-
Cityscapes adaptation, the mean IoU is used to exhibit the
performance of 19 common classes shared between the two
datasets. To keep consistency with [7, 9, 18, 27], the mean
IoU for SYNTHIA-to-Cityscapes adaptation is evaluated in
13 categories, and 6 categories (i.e. fence, wall, pole, terrain,
truck, and train) are not taken into account. Compared with the
FCN baseline model, our proposed method outperforms on all
classes in class-wise IoU and mIoU. Specifically, the mIoU
score of our proposed method can be boosted to 46.8 and
51.0 on the GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes
adaptation, respectively. In addition, to alleviate the difficulty
of maintaining the category and spatiality information for
aligning the marginal distributions across domains, we not

only enforce output space feature (as in AdaptSegNet [9]),
but also introduce reliable target-style images into the training
process to prevent the spatial information being interrupted in
the segmentation network. According to comparative results
provided in Table II and III, our method can achieve a sig-
nificant improvement compared with other methods. The best
performance of a specific semantic class is highlighted in blue
and the best performance of mIoU is highlighted in bold black.
The qualitative results of adapted segmentation are illustrated
in Fig. 2, where we can visually inspect the effectiveness of
our method on imbalanced adapted segmentation.

E. Ablation Study

Table IV identifies the contributions of different components
to the overall performance in our proposed model, where
AA is adversarial adaptation, IT is image transferring, SG is
self-guidance, and HFA is hierarchical feature alignment. The
mIoU can achieve 36.6 when purely trained on the source
domain dataset. Then, the adversarial training of output space
is proceeded as [9]. The mIoU can be improved to 38.88. As
argued in [18], image-level adaption also provides a significant
contribution to minimising the discrepancy of the data distri-
bution. In light of this, we adopt a bi-directional translation
to change the image style from GTA5 to Cityscapes images
by utilising a CycleGAN structure. This further improves the
mIoU to 44.0.

Next, we add our proposed hierarchical alignment scheme
to the training framework. Alignment is enforced hierarchi-
cally in the object, category, and image levels. In the object
level, foreground classes, e.g. car, truck, person, are aligned
across domains with λobj = 0.01 and w=50 semantic source
domain feature samples. In the category level, we achieve the
alignment of semantic classes from the source domain to the
target domain by a maximum square loss, which is defined in
equation (6).

Finally, a self-guidance framework is introduced into our
hierarchical feature alignment scheme to further improve the
segmentation performance, where our model is retrained with
using the given pseudo-labelled target dataset. The pseudo-
labels of the target dataset are obtained by choosing the
confidence threshold for each class respectively. The pixel-
level pseudo-labels are identified for each target image. A con-
fidence score map is produced based on the pseudo-labels for
the corresponding image in the target domain. Subsequently,
each pixel-level label is mapped with a confidence score. We
rank the confidence scores of the same class for the entire
target dataset and set the threshold of confidence score to 0.9
for a specific class when the median of confidence scores
for the class is higher than 0.9. Otherwise, the threshold of
confidence score for the class is set to the median of confidence
scores. After this, the new ykt is set and we can follow Eq (8) to
generate the pseudo-labels with neglecting the target dataset.
To this end, the model is retrained through optimising Eq (11).
The combination of our hierarchical feature alignment scheme
and self-guided framework can improve mIoU to 46.8.



TABLE I
THE CONFIGURATION OF NETWORKS: ILR IS THE INITIAL LEARNING RATE, DP IS DECAY POWER, AND WD IS WEIGHT DECAY.

Network Optimiser ILR DP β1 β2 λseg λadv Momentum WD λclass λD λobj w

Segmentor SGD
1× 10−4 0.9 - - 1 - 0.9 5× 104 0.003 - 0.01 50

Discriminator Adam 0.9 0.99 - 0.01 - - - 1 - -

(a) (b) (c) (d)

Fig. 2. The visualisation of segmentation results: (a) is the target domain image. (b) is the segmentation ground truth of the corresponding target
image. (c) is the generated images from AdaptSegNet. (d) is the generated images from our model.

TABLE II
QUANTITATIVE COMPARISON RESULTS FROM GTA5 TO CITYSCAPES (UNIT %)

Semantic Class FCN (baseline) [7] AdaptSegNet [9] CLAN [29] SIM [27] BDL [18] SIM with SSL [27] Ours (PHEA)
road 75.8 82.0 85.8 86.3 89.8 87.9 89.7
sidewalk 16.8 29.7 16.1 26.1 41.0 29.5 41.6
building 77.2 78.8 79.6 78.0 82.8 79.1 83.4
wall 12.5 21.9 25.3 25.6 28.2 29.2 29.8
fence 21.0 18.0 22.4 19.8 20.9 17.9 26.1
pole 25.5 26.4 28.7 21.5 29.7 23.8 30.7
light 30.1 28.5 32.9 23.1 31.4 31.6 34.2
sign 20.1 26.6 20.5 13.2 28.5 17.5 32.3
vegetation 81.3 80.0 82.5 81.5 83.3 82.7 83.5
terrain 24.6 26.7 32.3 31.6 36.2 34.1 39.0
sky 70.3 72.8 72.8 77.7 82.5 75.2 81.6
person 53.8 55.4 57.8 48.2 58.6 54.3 58.9
rider 26.4 25.1 28.1 22.6 27.6 27.9 28.2
car 49.9 72.5 80.0 75.1 83.2 79.0 84.1
truck 17.2 30.2 33.5 29.3 36.7 28.6 33.5
bus 25.9 13.2 28.4 28.5 42.0 37.1 42.7
train 6.5 11.4 0.5 2.0 1.6 1.4 2.7
motorcycle 25.3 29.3 29.0 29.3 25.0 22.3 28.1
bicycle 36.0 10.5 25.3 23.2 38.0 29.1 38.2
mIoU 36.6 38.9 41.1 39.1 45.6 41.5 46.8

TABLE III
QUANTITATIVE COMPARISON RESULTS FROM SYNTHIA TO CITYSCAPES (UNIT %)

Semantic Class FCN (baseline) [7] AdaptSegNet [9] CLAN [29] SIM [27] BDL [18] SIM with SSL [27] Ours (PHEA)
road 55.6 61.2 56.3 61.9 72.6 61.7 77.2
sidewalk 23.8 26.5 22.2 23.9 34.4 24.0 36.3
building 74.6 65.5 75.7 75.6 71.7 77.7 79.6
light 6.1 17.8 19.9 10.7 21.9 12.0 26.9
sign 12.1 22.7 15.4 9.5 23.7 11.7 35.6
vegetation 74.8 75.5 77.6 74.1 77.6 77.7 81.3
sky 79.0 77.5 78.0 76.6 75.6 78.5 82.2
person 55.3 45.0 51.5 48.8 47.1 52.2 48.3
rider 19.1 21.0 22.9 18.0 22.6 22.4 23.4
car 39.6 72.1 60.1 66.4 74.0 68.1 74.1
bus 23.3 24.7 30.2 22.4 27.1 20.6 30.0
motorcycle 13.7 15.3 13.0 15.6 14.1 19.6 20.9
bicycle 25.0 37.8 31.6 30.1 47.7 41.3 47.7
mIoU 38.6 43.3 42.6 41.1 46.9 43.6 51.0

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a progressive hierarchical fea-
ture alignment method on imbalanced domain adaptation for
semantic segmentation. The imbalance is from two aspects:
i) class imbalance from source to target domain; ii) data
imbalance between source data and target data. To alleviate

the negative effects of the data imbalance, we make fully use
of multi-source domain data to learn domain-invariant features.
To remit the class imbalance problem, we align the features
across domains hierarchically from bottom to top, named
“hierarchical feature alignment scheme”, in order to main-
tain the category and spatial information when aligning the



TABLE IV
ABLATION STUDY ON THE VARIOUS COMPONENTS OF OUR METHOD

FOR DOMAIN ADAPTATION (UNIT %)

FCN(baseline) AA IT SG HFA mIoU
X 36.6
X X 38.9
X X X 44.0
X X X X 45.6
X X X X X 46.8

marginal distributions of two domains. Our proposed method
is evaluated by transfer learning tasks on synthetic datasets,
GTA5 and SYNTHIA, and a realistic dataset, Cityscapes.
According to the experimental results, our proposed method
achieves competitive performance on imbalanced semantic
segmentation adaptation. We also conduct an ablation study
to investigate the contribution of various components in our
method. In the future, this work can be further extended
from two aspects. On one hand, more advanced pseudo-
labelling algorithms, such as DCBT-Net [30], can be integrated
into the proposed method to achieve better self-guidance. On
the other hand, the region-level feature [19] and the diverse
characteristics of target domain [20] can be combined into our
framework for providing a better holistic alignment.
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