UNIVERSITY OF ABERDEEN: SESSION 2022/2023

Degree Examination in PX4012
Date $\quad 7^{\text {th }}$ December 2022

Statistical Physics and Stochastic Systems
Time 9:00-11:00

PLEASE READ CAREFULLY

Candidates should attempt to answer TWO questions from Section A (30 marks) and THREE questions from Section B (45 marks). Total: 75 marks (75% of the course marks).

Rubric

You may find the following formulae useful:

Stirling's approximation

$$
N!\cong N^{N} e^{-N} \quad \text { or } \quad \ln (N!) \cong N[\ln (N)-1]
$$

The volume of a 3 N -dimensional sphere with radius R is given by

$$
V=\frac{\pi^{3 N / 2}}{\Gamma\left(\frac{3 N}{2}+1\right)} R^{3 N}=\frac{\pi^{3 N / 2}}{\left(\frac{3 N}{2}\right)!} R^{3 N}
$$

The Gaussian integral holds

$$
\int_{-\infty}^{+\infty} d x e^{-x^{2}}=\sqrt{\pi}
$$

The hyperbolic cosine and sine of a variable x are

$$
\cosh (x)=\frac{e^{x}+e^{-x}}{2}, \quad \sinh (x)=\frac{e^{x}-e^{-x}}{2}
$$

The geometric sums

$$
\sum_{n=1}^{\infty} x^{n}=\frac{1}{1-x}, x<1 \quad \sum_{n=1}^{N} n=N(N+1) / 2 \quad \sum_{n=1}^{N} n^{\wedge} 2=N(N+1)(2 N+1) / 6
$$

You may need to use the following constants in your calculations:

Constant
Ideal gas constant
Boltzmann constant Planck constant
Avogadro constant

Symbol	Value
R	$=8.314 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$
k_{B}	$=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
h	$=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~S}$
N_{A}	$=6.626 \times 10^{-23} \mathrm{l} / \mathrm{mol}$

SECTION A - Classical Statistical Mechanics

Total: 30 marks
(You should attempt to solve TWO problems in this section)

1. Consider an isolated box with adiabatic walls and volume V. The box has a removable interface that divides the volume in half, V/2. Initially, let an ideal gas with N particles be placed in one section of the container.
(a) Write the Hamiltonian of the ideal gas and find an expression for the available microstates when the total energy is E.
(b) Find the change in entropy from the free expansion of the gas after the interface has been removed (i.e., from the initial volume to the whole V).
(c) Discuss how irreversibility emerges as a statistical property from the reversible microscopic dynamics if one assumes the postulate of equal a priori probabilities. Explain why the opposite phenomenon, that is, the gas particles all moving to the initial fraction of the volume, is never observed macroscopically.
2. Consider a closed system of N identical and non-interacting particles with two energy levels ($s_{i}=0$ or $s_{i}=1$, with $i=1, \ldots, N$) that is in thermal equilibrium with a heat reservoir at temperature T. The single-particle energies for these two states are: $E_{i}\left(s_{i}=0\right)=-\varepsilon / 2$ and $E_{i}\left(s_{i}=1\right)=\varepsilon / 2$, where $\varepsilon>0$.
(a) Determine the mean energy per particle $(\langle H\rangle / N)$.
(b) Discuss the behaviour of the mean energy per particle at low $\left(k_{B} T \ll \varepsilon\right)$ and high $\left(k_{B} T \gg \varepsilon\right)$ temperatures. Describe physically what happens to the occupation levels of each state in both extreme scenarios.
(c) Find Helmholtz free energy $F(T, V)$ and the entropy $S(T, V)$.
3. (a) State the classical equipartition theorem
(b) Consider an equilibrium mixture of two monoatomic (or noble) gases at low density: Helium (atomic mass number $A=4$) and Neon $(A=20)$. Which of the two gases will have the highest mean speed (i.e., root mean squared velocity $v_{\text {rms }}$) and by how much? Briefly explain your answer.
(c) Consider an ideal gas at thermal equilibrium made of diatomic molecules. Describe qualitatively how its specific heat at constant volume c_{v} depends on temperature, and which degrees of freedom are contributing to the c_{v} as the temperature is increased.
4.

The mathematical expression of Planck's distribution $u(v, T)$ is

$$
u(v, T)=\frac{8 \pi h v^{3}}{c^{3}} \frac{1}{e^{h v / k_{B} T}-1}
$$

(a) Discuss the meaning of Plank's distribution and its classical limit. What kind of physics paradox is solved by this law? Draw a sketch of the distribution.
(b) Consider a black-body cavity at temperature T_{0}. If you heat it to a higher temperature, $T_{1}>T_{0}$, will the number of photons per unit frequency in the cavity decrease or increase? Explain your answer.
2. (a) Discuss the differences between the Bose-Einstein statistics for bosons and the Fermi-Dirac statistics for fermions. Focus on the properties of the mean occupation number for fermions and bosons, drawing sketches and explaining the difference between statistics for conserved and nonconserved particles.
(b) Explain under which conditions the Bose-Einstein and Fermi-Dirac statistics converge to the classical Boltzmann distribution.
3. Consider a ferromagnet of dimension $D=3$ and temperature T is placed in an external magnetic field B. The Hamiltonian of this spin system is

$$
H=-J \sum_{\{i, j\}} s_{i} s_{j}-B \mu \sum_{i=1}^{N} s_{i}
$$

(a) Use the mean-field approximation to derive an equation for the magnetization M (Hint: proceed as discussed in the lectures for $B=0$ and then include the external field).
(b) Assume that the intrinsic magnetic moment is $\mu=9.3 \times 10^{-24}$ Joules/Tesla, which can either be parallel or anti-parallel to the field. Let $J=2.5 \times 10^{-21}$ Joules and $T=300 \mathrm{~K}$. Discuss how the magnetization changes when the amplitude of the magnetic field is changed from -400 Tesla to +400 Tesla.
4. Consider the following stochastic process on a one-dimensional lattice with spacing $a=1$. There is a walker using an icosahedron-sided fair die (i.e., a die with 20 sides) to advance randomly along the lattice, where the starting position is arbitrarily set to $0(n=0)$. That is, at every step, the walker rolls the die and moves forward according to the result of the die roll.
(a) Find the mean position and its standard deviation (i.e., root-mean-square deviation) after N time-steps.
(b) Give the probability distribution $P(n, N)$ for the walker's position after having taken a large number of N steps ($N \gg 1$).

