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Abstract—Pesticides have been widely used in the cultivation of
crops to enhance their production, however, incorrect application
of pesticides will result in yield loss, product waste, environmental
pollution among many others. Therefore, timely evaluating spray
distribution of intelligent sprayers plays a pivotal role in the
appropriate delivery of pesticides to the crop. The exiting
approaches based on water-sensitive paper (WSP) either involve a
relatively tedious and labor-intensive procedure, or have a high
requirement on WSP image taking. So in this study we aim
to conduct spray distribution assessment in the field based on
mobile devices. To this end, the key issue of droplet deposition
segmentation under natural imaging environments is addressed.
WSPs with food dye droplets are first collected in the field
by mobile phones. Then an image dataset on droplet depo-
sition segmentation is created via thresholding approach with
human supervision. Then four popular deep convolutional neural
network (CNN) based segmentation algorithms are applied for
droplet deposition segmentation so that spray distribution can be
assessed. Comparative experiments show that UNeXt network is
the best one in consideration of accuracy, inference time and
network size.

Index Terms—Convolutional neural network (CNN); Droplet
segmentation; Pesticide spray analysis; Precision agriculture;
Semantic segmentation; Water sensitive paper.

I. INTRODUCTION

An increasing world population, projected to be 9 billion
by 2050, is placing an unprecedented demand on agriculture,
almost 70% more food demand increase. This global challenge
is even severer by considering the scarcity of the arable
land and natural resources, climate change and the societal
demand for shrinking agriculture’s environmental footprint
for its sustainable development [1], [2]. Crops, however, are
threatened by various stresses (e.g., abiotic stresses, pathogens
and pests) in their life-cycle, which if managed inappropriately
will lead to yield loss and quality degradation, posing serious
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threats on food security. In particular, it is estimated that about
30% of the crop loss worldwide is due to the adverse effects of
weeds, diseases and insect pests annually [3]. Two approaches
are generally available to attenuate the side effects of these
issues including chemical control and genetic resistance [4].

Although there is much progress in genetic resistance, at
present, chemical control, i.e., the application of pesticides is
still the dominant approach (e.g. representing a $40 billion
yearly budget) to enhance crop production, particularly in
developing countries and regions [5]. In this context, it is
significant that the right amount of pesticides should be
sprayed on the target crop areas of interest. This is because, on
the one hand, excessive uses of pesticides may leave residues
in the agricultural products along with ecological tainting (e.g.
increasing the likelihood of ground war contamination) and a
high cost, generating significantly economical, environmental
and social burdens [6]; on the other hand, insufficient doses
of pesticides may result in areas of the harvest fields that are
not protected, lessening crop productivity.

Therefore, it is highly desirable to develop an automated
spray distribution assessment system so that spraying variables
and parameters (e.g., nozzle type, droplet size, flow rate,
operational parameters of spraying systems such as flight
height and velocity in UAVs based sprayers) of agricultural
sprayers can be evaluated and optimised in a short time
window for a better spray distribution [3]. Various efforts have
been made for this purpose in the past two decades including
imaging and no-imaging based approaches. It is noted that
only imaging based approaches are briefly introduced in this
work due to the lack of space.

One notable work for this end is the DepositScan framework
[7] proposed in 2011, which is made of the DepositScan
software program and a handheld card scanner. In this frame-
work, the WSPs are first collected, and scanned by the
handheld business card scanner, which can obtain the image
pixel information due to the fixed width of scanner and the
scanner resolution (i.e., dots per inch or dpi). Then the scanned
images can be analysed by the open-access ImageJ software



in the DepositScan program. As a result, different key metrics
for spray distribution can thus be calculated including spray
coverage, number of droplets in unit area and droplet size
distribution. It is noted, however, that this scanning based
framework is inconvenient for field applications due to the
relative tedious and labor-intensive procedure therein.

Recent efforts have been made to develop field devices or
applications for onsite spray distribution assessment instead of
offline indoor processing. For example, [8] designs an intelli-
gent vision sensor node for WSP image collection, which can
adapt to the changes of light intensity in the environment. Then
a watershed segmentation algorithm is applied to separate
the droplets in the image. However, the system involves an
elevated cost, constraining its wide adoptions.

Alternatively, there are also several smartphone based imag-
ing approaches, which rely on smartphones for image collec-
tion and algorithm implementation. This approach is conceived
to be promptly accessible, and portable to the fields. In this
context, SnapCard [9] is the first pesticide spray coverage tool
running on a smartphone, which only supports the coverage
area of the WSPs. DropCard with DropScope is a commercial
smartphone application which relies on an external water-
card reader under restricted card sizes. In 2021, DropLeaf [5]
is proposed, where image analysis pipeline is developed to
analyze the WSP images taken carefully by the smartphone.
The pros and cons of the three smartphone based applications
for pesticide spray assessment are summarized in Table 1 of
[5]. It should be noted that the state-of-the-art DropLeaf has
a high requirement on WSP image taking.

Therefore, the main aim of the study is to develop a
droplet deposition segmentation system so that images of
WSPs taken in the field conditions by various mobile devices
can be automatically segmented, so that the spray distribution
of various sprayers can be evaluated quickly in the field
conditions. To this end, WSPs are first collected at different
locations of the citrus wogan structure and under different
spraying parameter settings. Then images of the WSPs are
taken in the field conditions by different mobile devices.
Considering the high workload involved in manual droplet
annotation, thresholding method is then used to segment the
droplets from the WSP background for the purpose of image
labelling, where the threshold is manually chosen by human
experts. Suitable regions of interest of the segmented WSP
images are chosen to construct the training image dataset. On
this basis, various deep CNN based segmentation approaches
are compared to identify the most suitable one for droplet
deposition segmentation. Some spray distribution metrics can
thus be calculated based on the segmented images. To be more
exact, the main contributions are summarized as below.

1) Dataset: An image dataset for droplet deposition seg-
mentation is generated by taking images of WSPs and
labelling via manually choosing thresholds and region
of interest (ROI) cropping.

2) Algorithm: Various deep CNN based segmentation algo-
rithms are compared for droplet deposition segmentation
with good performance.

II. MATERIALS AND METHODS

In this section, materials and methods relevant to the study
are introduced such as WSP image collection, image labelling
and labelled dataset generation, droplet deposition segmenta-
tion and metric calculation for spray distribution assessment.
To ease the understanding of this study, the flowchart of the
developed framework is displayed in Fig 1.

WSP image 
collection

Image 
labelling

Droplet deposit 
segmentation

Metric 
calculation

Labelled data 
generation

Figure 1. Flowchart of the developed framework including WSP image
collection, image labelling, labelled dataset generation, droplet deposition
segmentation and metric calculation for spray distribution.

A. WSP image collection

In the experiment, instead of directly spraying pesticide,
red food dye is adopted due to its low price and color
differences from the WSP background. WSPs are placed at
three different positions of the citrus crop. At the same time,
different operation parameters are adopted in the experiments
so that different droplet distributions can be obtained.

Upon spraying droplets being collected by the WSPs, WSPs
are placed above the printed reference calibration checker-
board, where the black and white squares have a fixed size of
1 × 1 cm. Then images are taken by different mobile phones
under different illumination conditions, where the imaging rule
is summarized as below: (1) the phone (with down-facing
camera) is placed above the WSPs so that the WSPs are in
the center of the image; (2) the phone is close enough to the
WSPs to guarantee a high spatial resolution but meanwhile
also make sure the images have no blur; (3) at least one white
square should be visible in the image so that the pixel physical
size can be determined. Some exemplary WSP images with
different spray distributions are displayed in Fig. 2.

B. Methods

In recent years, image segmentation has been undergoing
a significant progress, especially with the popularity of deep
learning methods. In this study, we also aim to exploit deep
CNN learning technique to segment the spraying droplets
from WSP background. Deep learning methods, especially
supervised deep learning methods, are generally data-hungry,
and there is no such a dataset which focuses on droplet
deposition segmentation. Hence, we create a dataset in which
annotation is done by thresholding color images in Hue-
Saturation-Value (HSV) color space. Image labelling and
labelled dataset generation, droplet deposition segmentation



Figure 2. Exemplary WSP images with different spray distributions taken by
different mobile phones under different illumination variations.

and metrics calculation for spray distribution assessment are
detailed as below.

1) Image labelling and dataset generation: In order to
build the deep CNN based droplet deposition segmentation
model, a labelled dataset should be first generated for this
supervision learning task. Considering the high workload in
manually labelling the droplets one by one in WSPs, an image
labelling algorithm in Algorithm 1 is proposed.

In this approach, a suitable grayscale image is first obtained
by the RGB color bands or color space transformation (e.g.
HSV) of the original RGB image or different vegetation
indices [10]. Then the thresholding approach is adopted for
the grayscale images, where the threshold is manually chosen
for each sample WSP so that the labelling errors can be
minimized. In addition, due to the substantial illumination
changes in practical field conditions, the thresholding approach
may be only valid for some part of the WSPs even various
thresholds are chosen for different WSPs. So the correctly
segmented regions are cropped out by abandoning the wrongly
segmented areas.

Until this step, we already have the dataset and its labels
for training a deep network, but the images so far have various
image sizes (e.g. length and width), which is unable to feed
to different deep networks for a fair comparison. Therefore,
after image labelling, we further process the images to a
fixed image size, which is 128 × 128 pixels in our setup. In
particular, given a labelled image, a sliding window of size of
128×128 starts from the top-left corner of the image and crop
the corresponding regions of size 128× 128. Meanwhile, the
corresponding label images are also cropped in the same way
as its original label images so that image pairs are generated
including source image and label image. Then the sliding
window is moved with the stride of 10 × 10 pixels in width
and height directions until it reaches the bottom-right corner
of the image. To this end, our dataset consists of 3600 images
where 80% are used for training, 10% for validation and the
remaining 10% for testing. In Fig. 3, four selected exemplary

images and their labels are shown. Note that these images are
taken under various lighting conditions.

Algorithm 1 Semi-automatic labelling for dataset generation
Input: WSP images.
Output: Labelled dataset for model construction.
Step 1: Do RGB band separation or color space transfor-
mation (e.g. HSV) to obtain a suitable grayscale image;
Step 2: Separate the droplet depositions from the back-
ground via thresholding approach with manually chosen
threshold for each WSP;
Step 3: Crop the regions with good droplet segmentation
performance by visual inspection;
Step 4: Construct the labelled dataset by generating a large
number of image patches with a fixed size of 128 × 128
from the images in Step 3.

Figure 3. Exemplary image pairs including source RGB image (first row)
and label image (second row) from our created dataset.

2) Droplet segmentation: Upon generating the labelled
dataset for algorithm construction, we now consider the
problem of droplet segmentation. In order to identify the
most suitable model for droplet segmentation, we evaluate
four state-of-the-art semantic segmentation networks including
VGG16 [11], VGG16+CBAM (Convolutional Block Attention
Module) [12], Unet [13], [14] and UNeXt [15] on our dataset.

Specifically, UNet and UNeXt are particularly-designed
networks for medical images segmentation by using a few
annotated data. In addition, VGG network is a well-known
architecture and has shown significant performance in many
computer vision tasks. In this study, we also explore the
combination of VGG and an attention network CBAM to im-
prove the representation of the features. The CBAM module is
used to enhance the feature representation using two attention
networks in channel and spatial axis, respectively.We insert
the CBAM module into the second last layer of VGG16.
The dimension of the features remain the same before and
after the addition of the CBAM module. In order to obtain
the droplet segmentation results, we modify the last layers of
the aforementioned four networks, letting them generate two
feature maps including background and foreground with the
same size of input image. Their qualitative and quantitative
comparison results will be analysed in section III.



Performance evaluation: To evaluate the performance of
segmentation networks, we use metrics including Recall, Pre-
cision, F1-Score, Average precision score (AP), and Intersec-
tion over Union (IOU), where a higher value indicates better
performance. In particular, the Recall and Precision are defined
as below:

Recall =
Tp

Tp + Fn
, P recision =

Tp
Tp + Fp

(1)

where Tp represents the number of true positive, Fn means
the number of false negative, and Fp is the number of false
positive.

F1-score, the harmonic mean of precision and recall, is able
to consider recall and precision simultaneously. It is useful for
imbalanced dataset and is calculated as:

F1score = 2× Precision×Recall

Precision+Recall
. (2)

AP summarizes a precision-recall curve as the weighted
mean of precisions achieved at each threshold, with the
increase in recall from the previous threshold used as the
weight. AP is defined as below

AP =
∑
n

(Recalln −Recalln−1)× Precisionn, (3)

where Precisionn and Recalln are the precision and recall
at the nth threshold.

IOU is the ratio of area of overlap/intersection over area of
union, where a value closer to 1 means better performance.

IOU =
Area of Overlap

Area of Union
. (4)

3) Metrics for spray distribution: After droplet segmenta-
tion, the next step would be computing the metrics evaluating
the spray performance. There are generally three metrics quan-
tifying the spray distribution including spray coverage (SP),
number of droplets per unit area (NDUA, droplets/cm2),
droplet diameter distribution. In particular, SP refers to the
relative zone occupied by the droplets in the Region Of Interest
(ROI), which is calculated as below Eq. 5

SP =
NoPixel by droplets

NoPixel in ROI
(5)

where NoPixeli denotes the No. of pixels.
Droplet diameter distribution is usually quantified by DV 0.1,

DV 0.5, DV 0.9, which represent the distribution of the droplet
diameters such that droplets with a diameter smaller than
DV 0.1, DV 0.5, DV 0.9 compose 10%, 50% and 90% of the
total liquid volume, respectively [7]. It is noted that in the
calculation of the above metrics (except SP), the pixel reso-
lution (e.g., the physical size of each pixel in the image) is
vital, which is detailed as below.

In image analysis, the Areai of the ith droplet can be
calculated by the number of pixels occupied by the droplet
multiplying the physical (instead of pixel) area of each pixel,
which is given by

Areai = NoPixeli × width2px. (6)

where NoPixeli denotes the No. of pixels occupied by the
ith droplet, and widthpx refers to the physical size of each
pixels (usually in the unit of µm), which can be calculated
from the reference calibration checkerboard as below.

widthpx =

√
Areaws

NoPixelws
. (7)

where the Areaws denotes the physical area of the black/white
square in the reference checkerboard (a known constant via its
fixed size) and NoPixelws refer to the No. of pixels occupied
by one black/white square in the reference checkerboard. The
detection of black/white squares for the widthpx will be
implemented in the future.

Upon calculating the Areai of the ith droplet, the droplet
diameter of the ith droplet can be derived from the formula

of the circle area Areacircle = π × (
diameter

2
)2, given by

Diameteri = 2×
√
Areai
π

. (8)

Then the calculation of DV 0.1, DV 0.5, DV 0.9 is followed by
statically analysing the diameters of all droplets. It is noted
that alternative/modified formula is also available in [7].

Finally, the calculation of NDUA is given as below

NDUA =
No. of droplets

AreaROI
. (9)

where AreaROI denotes the area of ROI and the No. of
droplets in a ROI can be automatically obtained by applying
image analysis function on the droplet segmentation images.

III. RESULTS

This section presents the results including training details,
test performance of different segmentation networks and spray
coverage calculation.

A. Training details
The four networks are trained with a batch size of 16 and

200 iterations. The Adam optimiser is used for optimising
VGG and VGG+CBAM with learning rate 1e-4. For the
training of Unet and Unext, their hyperparameters are identical
as in [13] and [15]. The networks are tested on a Nvidia GTX
1080 Ti graphic card. The loss function used for training is
semantic cross-entropy loss, and it takes approximately 5 hours
to converge.

B. Droplet segmentation performance
In Table I, we present the evaluation results of four networks

on testing set. As one can see, all selected networks can
achieve an F1 score of more than 80%, showing a relatively
good performance.

Inference time: In Table II, we also list the time of networks
for processing one image in the feed-forward calculation. The
VGG network has the lowest inference time: 6.6 milliseconds
per image. The lapsed time between mentioned networks is
short and therefore it can be used for real-life applications.

Network Parameters: The size of network is a key index
when deploying in practical applications, particularly, using



deep CNN in embedded system. Furthermore, considering
the analysis to be done in the smartphone or other portable
devices instead of workstation, we need a light-weight model
for this task. In the second row of table II, we summarize
the parameters of the aforementioned network. Both VGG
and Unet networks have encoder-decoder like architecture, but
Unet utilises the skip-connection, which can bring up global
and local features to decoder part to construct more accurate
performance. CBAM is a light-weight attention module, comb-
ing with VGG increases 24MB parameters compared with
VGG only.

Table I
QUANTITATIVE EVALUATION RESULTS OF FOUR CNNS

F1 Precision Recall AP IOU
VGG 0.817 0.739 0.93 0.817 0.695

VGG+CBAM 0.845 0.779 0.933 0.848 0.736
Unet 0.884 0.838 0.958 0.873 0.799

UNeXt 0.903 0.947 0.869 0.873 0.824

Table II
INFERENCE TIME AND NETWORK SIZE

VGG VGG+CBAM Unet UNeXt
Time (second per
frame)

0.0066 0.0068 0.0073 0.007

Total size (MB) 225.01 249.39 268.26 6.49

It is shown from Table. I and II that UNeXt network obtains
the best performance in consideration of F1 score, Precision,
Recall, AP, IOU, computation time and total size and so should
be adopted in practical applications. This is mainly due to its
improved design of network architecture, where convolutional
networks are only used for learning low-dimensional features
in early stage and tokenized Multi-layer perception (MLPs) to
represent high-dimensional features by using few parameters
compared with Convolutional network. Especially, this design
demonstrates the ability to represent local dependencies that
result in better segmentation performance in our test dataset.

Segmentation visualization: In Fig. 4, we present the qual-
itative segmentation results of the four CNNs, where the seg-
mentation results of VGG, VGG+CBAM, Unet, and Unext are
from second column to last column. There are five exemplary
images with various illumination and spraying distributions
chosen from our testing set. From the second column, VGG
assigns some pixels to the background (smaller black holes
in the white areas) which are false negative. These wrongly
assigned pixels are mainly located in the spraying areas with
unequally red color. With the auxiliary of CBAM, these false
negative pixels have reduced slightly. From fourth column,
we find that Unet can handle this problem better. But in the
extremely case like the fifth source image, it encounters large
areas of blurry droplets, VGG, VGG+CBAM, and Unet can
not overcome this issue properly. In the contrast, Unext can
still recognise these pixels as droplets.

C. Spray coverage calculation

In this subsection, we report the SP index of WSPs based
on the segmentation result of Unext. The whole process of SP
calculation is illustrated in Fig. 5. In step 1, we manually crop
the WSP from the background as the physical size of pixel is
not required in SP calculation. It should be noted that the
cropped images have different image sizes from the training
samples and can not be directly feed to Unext. So in step 2,
we resize the images to a larger square size 1024 × 1024 so
that Unext can process them. In step 3, the fixed-size images
are provided to Unext to obtain the masks of droplet. In SP
calculation, the masks (white pixels) are treated as the droplet
and the whole images are treated as the ROI. In the end, the
spray distribution can simply be calculated via Eq. 5, which
are 5.7% and 38.1% for WSP1 and WSP2, respectively.

IV. CONCLUSIONS AND FUTURE WORK

This work considers the challenges of spray distribution
assessment via water sensitive paper images taken in field
conditions. The main task under investigation is first trans-
formed into droplet deposition segmentation under illumina-
tion changes, where droplets are labelled in a semi-automatic
manner via manually tuned thresholds. Then four popular
deep convolutional neural networks (CNNs) including VGG,
VGG+CBAM, Unet and UNeXt are compared to identify the
most suitable one for droplet deposition segmentation task.
It is shown that UNeXt is the best one in consideration of
accuracy performance, inference time and network size.

Although the performance of droplet deposition segmen-
tation is satisfying and some metrics quantifying spraying
distribution (e.g. spray coverage) are also obtained, there
is still much room for further development in order that
the developed system can be applied in real-life application
for in-field spray distribution assessment. These aspects are
summarized as below.

1) The dataset can be expanded to include more real-
world field imaging conditions so that the semantic
segmentation models become more robust and reliable.

2) More spraying distribution metrics (e.g. droplet number
in unit area, droplet diameter distribution) can be calcu-
lated with the advert of pixel size information obtained
from the reference checkerboard, and compared against
the ground truth metrics obtained by the widely accepted
approaches (e.g. Deposit Scan).

3) It would be interesting to see whether the developed
framework can be translated to directly evaluating spray-
ing distribution on crop leaves instead of water sensitive
papers by using food dye of suitable concentration.
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