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Abstract 43 

A prominent facet of social-cognitive functioning is that self-relevant information is 44 

prioritized in perception, attention, and memory. What is not yet understood, however, is whether 45 

similar effects arise during learning. In particular, compared to other people (e.g., best friend), is 46 

information about the self acquired more rapidly? To explore this matter, here we used a 47 

probabilistic selection task in combination with computational modeling (i.e., Reinforcement 48 

Learning Drift Diffusion Model analysis) to establish how self-relevance influences learning under 49 

conditions of uncertainty (i.e., choices are based on the perceived likelihood of positive and 50 

negative outcomes). Across two experiments, a consistent pattern of effects was observed. First, 51 

learning rates for both positive and negative prediction errors were slower for self-relevant 52 

compared to friend-relevant associations. Second, self-relevant (vs. friend-relevant) learning was 53 

characterized by the exploitation (vs. exploration) of choice selections. That is, in a complex (i.e., 54 

probabilistic) decision-making environment, previously rewarded self-related outcomes were 55 

selected more often than novel — but potentially riskier — alternatives. The implications of these 56 

findings for accounts of self-function are considered. 57 

      58 

 59 
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Sticky Me: 69 

Self-Relevance Slows Reinforcement Learning 70 

 71 

1. Introduction 72 

The self is an indispensable psychological construct, providing coherence and continuity to 73 

the narrative that underpins a personal sense of being (Baars, 1988; Baumeister, 1998; Conway, 74 

2005; Conway & Pleydell-Pearce, 2000; Gallagher, 2000; James, 1890; Markus & Nurius, 1986; 75 

Markus & Wurf, 1987; Oakley & Halligan, 2017). As Markus and Wurf (1987, pp. 299-300) 76 

reported, “the self-concept…interprets and organizes self-relevant actions and experiences, it has 77 

motivational consequences, providing the incentives, standards, plans, rules, and scripts for 78 

behavior; and it adjusts in response to challenges from the social environment.” In other words, the 79 

self serves as a basic processing hub around which social-cognitive functioning unfolds 80 

(Humphreys & Sui, 2016; Sui & Humphreys, 2015). 81 

In documenting how the self influences thinking and doing, a common theme runs through 82 

decades of research. Regardless of the specific outcome under investigation (e.g., attributions, 83 

memories), personal relevance biases information-processing and response selection in self-84 

enhancing and self-prioritizing ways (e.g., Conway, 2005; Mezulis et al., 2004; Sedikides & Alicke, 85 

2012; Sui & Humphreys, 2015; Sui & Rothstein, 2019; Symons & Johnson, 1997). Most strongly 86 

associated with the self-reference effect (SRE) in memory (Kelley et al., 2002; Maki & McCaul, 87 

1985; Rogers et al., 1977) — whereby material enjoys a recollective benefit when processed in the 88 

context of the self compared to other people (e.g., family members, friends, celebrities) — 89 

comparable advantages also emerge when attention and decision-making are probed (e.g., 90 

Alexopoulos et al., 2012; Bargh & Pratto, 1986; Constable et al., 2019; Falbén et al., 2020; Gray et 91 

al., 2004; Golubickis et al., 2018; Shapiro et al., 1997; Sui et al., 2012, 2015). Indeed, such is the 92 

potency of self-prioritization (i.e., the self-prioritization effect [SPE], Sui et al., 2012), benefits 93 

accrue even when the stimuli paired with the self (vs. other people) are arbitrary and meaningless, 94 
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such as geometric shapes, abstract symbols, and colors/sounds (Golubickis et al., 2017, 2020; 95 

Schäfer et al., 2015, 2016; Sui et al., 2012; Wang et al., 2016; Woźniak & Knoblich, 2019; Yin et 96 

al., 2019).  97 

Despite an extensive literature cataloguing the effects of self-relevance on core components 98 

of social cognition, important issues nevertheless remain. In particular, aside from a few notable 99 

exceptions, research has largely overlooked the extent to which the personal significance of stimuli 100 

influences a fundamental and crucial facet of daily life, the rate at which information is learned 101 

(Liao et al., 2021; Lockwood et al., 2018). That is, just as self-relevance facilitates the detection, 102 

appraisal, and memorability of stimuli (Humphreys & Sui, 2016; Sui & Humphreys, 2015, 2017; 103 

Symons & Johnson, 1997), so too it may enhance how rapidly this material is acquired. In one of 104 

the few studies to explore this matter, Lockwood et al. (2018) adopted a deterministic associative-105 

learning task in which participants had to learn, from a pool of fractals (i.e., abstract, unfamiliar 106 

stimuli), which items belonged to various social targets (Brovelli et al., 2008; Schultz et al., 1997).1 107 

Specifically, a single fractal appeared on each experimental trial and participants had to report (i.e., 108 

learn) whether the stimulus was owned by the self, a friend, or a stranger. Feedback was then 109 

provided indicating if the response was correct or incorrect, and the task was deterministic in that 110 

participants were told each target always possessed the same fractals. To establish the respective 111 

target-related learning rates, data were submitted to an associative learning (AL) algorithm (Sutton 112 

& Barto, 1998). 113 

Lockwood et al.’s (2018) findings were revealing. Reflecting the operation of an egocentric 114 

decisional strategy (Epley & Gilovich, 2004; Golubickis et al., 2018, 2019), participants tended to 115 

report that the fractal presented on the first trial belonged to them, when in reality it was just as 116 

likely to be owned by either of the other targets. In addition, responses were faster and more 117 

accurate when learning about fractals owned-by-self compared to those that belonged to others. 118 

 
1 Forming (and probing) target-object associations through ownership is a common methodology to explore self-

prioritization (Constable et al., 2011, 2014; 2019; Falbén et al., 2019, 2020; Golubickis et al., 2018, 2019, 2021).  
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Finally, learning rates were higher when acquiring knowledge about the self, although this effect 119 

was only significant when stranger comprised the target of comparison — learning rates for self and 120 

friend were comparable. The absence of a reliable difference in learning rates between self and 121 

friend is interesting as while a self-advantage has frequently been reported when the target of 122 

comparison is best friend (e.g., Ma & Han, 2010;  Sui & Han, 2007; Sui et al., 2012, 2013; Zhu et 123 

al., 2007), some research has indicated that the benefits of personal-relevance can be attenuated, or 124 

even eliminated, when the self is compared with an intimate (i.e., highly familiar) other (Bower & 125 

Gilligan, 1979; Kuiper & Rogers, 1979; Symons & Johnson, 1997). Notwithstanding this 126 

observation, Lockwood et al. (2018) provided initial evidence for the biasing effects of self-127 

relevance on aspects of associative learning.2 128 

Building upon and extending prior research, here we also explored the extent to which the 129 

personal relevance (or otherwise) of material impacts learning. Our overarching objectives were to 130 

probe the characteristics of self-learning effects in a different task context (i.e., learning 131 

environment) and to establish the pathway through which these effects arise. In so doing, rather 132 

than adopting a deterministic learning paradigm, a probabilistic selection task (PST) was employed 133 

(Frank et al., 2004, 2007). We used this task for a couple of reasons. First, the PST explores 134 

reinforcement learning (RL) in uncertain (vs. certain) task environments (cf. Lockwood et al., 135 

2018), thus examines the impact of self-relevance when knowledge is acquired under demanding 136 

decision-making conditions. It is possible, for example, that basic components of self-representation 137 

and self-function may prompt learning effects to diverge when studied in uncertain (i.e., 138 

probabilistic) compared to certain (i.e., deterministic) task settings (Gershman & Daw, 2017). 139 

Second, in combination with recent developments in computational modeling (i.e., Reinforcement 140 

Learning Drift Diffusion Model (RL-DDM) analysis), adoption of the PST enables identification of 141 

 
2 As Lockwood et al.’s (2018) neural findings are beyond the scope of the current investigation, here we focus only on 

their behavioral results.  
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the latent psychological processes that underpin RL (Fontanesi et al., 2019; Pedersen & Frank, 142 

2020; Pedersen et al., 2017).   143 

In the current PST, participants were presented with three different stimulus pairs (i.e., AB, 144 

CD, EF) — comprising symbols (i.e., Japanese Hiragana characters; see Frank et al., 2004, 2007) 145 

with an item in each pairing (i.e., A, C, E) representing either the self or a friend — and they were 146 

required to learn, following a series of choice selections, which of the symbols was most likely to 147 

denote each target based on feedback that was provided (see Figure 1). Critically, the feedback was 148 

probabilistic and varied for each stimulus pair (i.e., AB = 80% - 20%, CD = 70% - 30%, EF = 60% 149 

- 40%). For example, in AB trials, a choice of stimulus A led to positive feedback on 80% of the 150 

trials, whereas selecting stimulus B resulted in positive reinforcement on 20% of the trials. Thus, in 151 

this PST, learning was accomplished via choice-related feedback. Over numerous choice selections, 152 

participants learned which item in each pairing was more likely to be correct (i.e., represent self or 153 

friend; A, C, E rather than B, D, F) and the task was completed when sufficient levels of accuracy 154 

were achieved for each stimulus pair (Frank et al., 2004, 2007). 155 

To identify the mechanisms underpinning learning, computational modeling was undertaken 156 

on the data. Specifically, based on recent developments, a Reinforcement Learning Drift Diffusion 157 

Model (RL-DDM) analysis was adopted (Fontanesi et al., 2019; Pedersen & Frank, 2020; Pedersen 158 

et al., 2017). Integrating sequential sampling and RL models, the RL-DDM pinpoints the 159 

psychological operations that underpin decision-making (i.e., choice selection) and how these are 160 

adjusted as learning progresses (Miletić et al., 2020; Pedersen & Frank, 2020; Ratcliff et al., 2016). 161 

This is realized through the simultaneous hierarchical Bayesian modeling of response time (RT) and 162 

choice data. A drift rate scaling parameter (vscaling) measures sensitivity to feedback and the 163 

exploration-exploitation trade-off (Cohen et al., 2007), such that higher values indicate more 164 

confident learning based on current knowledge (Pedersen et al., 2017). A learning rate parameter 165 

(η) — ranging from zero to one — quantifies how quickly individuals learn, with larger values 166 

indicating utilization of current feedback (i.e., fast learning), and smaller values reflecting reduced 167 
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updating from recently experienced outcomes (i.e., slow learning). In this respect, either a single 168 

learning rate (η) that captures all learning, or separate learning rates for negative and positive 169 

prediction errors (η- & η+ respectively) can be estimated (Miletić et al., 2020; Pedersen et al., 2017). 170 

Finally, the model also establishes how much evidence is needed to make a decision (i.e., threshold 171 

separation, a) and the efficiency of non-decisional processes (e.g., stimulus encoding, response 172 

execution, t0). 173 

Central to the current inquiry is the classic exploration-exploitation trade-off that underlies 174 

learning (Cohen et al., 2007; Daw et al., 2006; Sutton & Barto, 1998). Confronted with a decision-175 

making dilemma, learning can entail either the exploitation of options that have been optimal in the 176 

past or the exploration of alternatives that, in the long run, may prove to be more rewarding (Cohen 177 

et al., 2007). That is, one can either stick with existing knowledge or try something new. Critically, 178 

whereas exploration generally facilitates the acquisition of information, exploitation yields 179 

immediate decisional rewards, but it may impair learning (Sutton & Barto, 1998). As such, whether 180 

self-relevance enhances or reduces learning relative to a target of comparison (e.g., friend) should 181 

be reflected in decisions to explore or exploit the choice selections during RL. In this regard, an 182 

interesting possibility is that, in complex (i.e., probabilistic) task settings, people may prefer to stick 183 

(i.e., exploit) rather than switch (i.e., explore) when to-be-learned material is self-relevant, thereby 184 

prompting a slower learning rate for information pertaining to the self compared to others (cf. 185 

Lockwood et al., 2018). Several strands of evidence suggest such an outcome.   186 

According to Humphreys and Sui (2015), via enhanced binding, self-reference serves as a 187 

form of associative glue for perception, attention, and memory (Cunningham et al., 2008; Rogers et 188 

al., 1977; Sui et al., 2012; Wang et al., 2016). While generally facilitating information processing 189 

and response selection, these potent self-object associations can also impede performance in certain 190 

task contexts. For example, participants find it difficult to overcome prior self-shape (vs. friend-191 

shape) associations when given the task of forming new relations (Wang et al., 2016) and display a 192 

stubborn preference for self-relevant (vs. other-relevant) items during decision-making (Constable 193 
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et al., 2019; Golubickis et al., 2018, 2019; Lockwood et al., 2018). Although such sticky learning 194 

undoubtedly supports the maintenance of a stable self-concept — an essential component of social-195 

cognitive functioning (Greenwald, 1980; Markus, 1977) — it also suggests that exploitation rather 196 

than exploration may be the preferred strategy when acquiring information pertaining to the self in 197 

uncertain (i.e., probabilistic) learning environments. That is, previously rewarded self-object 198 

associations may be selected more often than novel (but riskier) options, thereby reducing the 199 

learning rate for the acquisition of personally meaningful material. Accordingly, using a PST in 200 

conjunction with computational modeling, here we explored the possibility that self-relevance may 201 

slow RL relative to an optimal target of comparison (e.g., best friend). 202 

 203 

2. Experiment 1 204 

2.1 Method 205 

2.1.1 Participants and Design  206 

Fifty participants (33 females, 17 males, 3 others; Mage = 23.04, SD = 3.06), with normal or 207 

corrected-to-normal visual acuity, took part in the research. Data collection was conducted online 208 

using Prolific Academic (www.prolific.co), with each participant receiving compensation at the rate 209 

of £7.50 (~$10) per hour. Informed consent was obtained from participants prior to the 210 

commencement of the experiment and the protocol was reviewed and approved by the Ethics 211 

Committee at the School of Psychology, University of Plymouth. The experiment had a single 212 

factor (Correct Symbol: self or friend) repeated-measures design. To detect a significant effect, a 213 

sample of fifty participants afforded 92% power for a large effect size (i.e., d = .80; PANGEA, 214 

v .0.2). 215 

 216 

2.1.2. Stimulus Materials and Procedure  217 

Participants performed two versions of a PST (Frank et al., 2004, 2007), with each 218 

comprising a learning phase in which three pairs of symbols (denoted as AB, CD, and EF, see 219 
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Figure 1) were presented. Participants were instructed they were required to learn, based on 220 

feedback provided, which symbol in each pair was most likely to represent them (i.e., self) or their 221 

best friend. Following previous research, prior to the task, participants were requested to bring their 222 

best friend (i.e., target of comparison) to mind (Golubickis et al., 2018). After each choice selection, 223 

participants were informed that onscreen information would indicate whether their response was 224 

correct or incorrect. Half of the participants were randomly assigned to perform a version of the 225 

PST in which self-related symbols were more likely to be correct, followed by another version of 226 

the task in which friend-related items were more likely to comprise the correct response. That is, 227 

trial type (i.e., learning) was blocked by target. The order of the PSTs was reversed for the 228 

remaining participants. 229 

 230 

 231 

 232 

Figure 1. Example of the stimulus pairs (i.e., Japanese Hiragana characters) and the probabilities of 233 

correct responses during the probabilistic selection task. 234 
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The probabilities indicating which symbol was more likely to be correct followed the 235 

standard version of the PST (Frank et al., 2004, 2007). Specifically, for the AB pair, A was 80% 236 

likely to be correct (20% for B), for the CD pair, C was 70% likely to be correct (30% for D), and 237 

finally, for the EF pair, E was 60% likely to be correct (40% for F). Over numerous choice 238 

selections, participants learned which item in each pairing was more likely to be correct (i.e., A, C, 239 

E rather than B, D, F) based on the feedback provided. The task was completed when participants 240 

reached sufficient levels of accuracy for each pairing (i.e., AB, 60% or above; CD, 55% or above; 241 

EF, 50% or above; Frank et al., 2004, 2007). 242 

Each trial began with the presentation of a pair of symbols that remained on the screen until 243 

the participant made a response. After the participant selected one of the symbols, feedback (i.e., 244 

the word ‘Correct’ in green or ‘Incorrect’ in red) was presented for 1000 ms, followed by a blank 245 

screen for 500 ms, after which the next trial commenced. Participants had to select a symbol by 246 

pressing the appropriate button on the keyboard (i.e., A for the symbol on the left side of the screen, 247 

L for the symbol on the right side of the screen). The symbols in each pair were equally likely to be 248 

presented on the left or right side of the screen. The experiment was conducted using Inquisit Web. 249 

Participants completed blocks of 60 trials in which each of the three stimulus pairs appeared 250 

randomly, equally often, until accuracy reached a satisfactory level. The maximum number of 251 

learning blocks was set to six (i.e., 360 trials in total) if the participant did not reach satisfactory 252 

levels of accuracy earlier in the task (Frank et al., 2007). On completion of the experiment, 253 

participants were debriefed and thanked. 254 

 255 

2.2 Results and Discussion 256 

2.2.1. Behavioral Analysis 257 

The mean latency and accuracy of choice selections were submitted to a paired-sample 258 

(Correct Symbol: self or friend) t-test (two-tailed). No significant difference emerged on either 259 
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dependent measure (i.e., decision time: Mself = 1203 ms vs. Mfriend = 1148 ms; learning performance: 260 

Mself = 68% vs. Mfriend = 66%). 261 

 262 

2.1.2. Modeling Analysis 263 

 To identify the processes underpinning learning, data were submitted to a RL-DDM analysis 264 

(Frank et al., 2015; Pedersen & Frank, 2020; Pedersen et al., 2017). This analysis combines the 265 

strengths of RL and sequential-sampling models (SSMs) to elucidate the operations that support 266 

task performance. Specifically, although RL models account for changes in the relative proportion 267 

of choice probabilities over the course of learning, they do not speak to concurrent differences in 268 

response latencies, a fundamental and important dimension of the available data (e.g., as learning 269 

takes place, decision times decrease). In this respect, SSMs (e.g., drift diffusion model; Ratcliff et 270 

al., 2016; Smith & Radcliff, 2004) are useful as they provide a mechanistic account of binary 271 

decision-making by explaining how choice accuracy and response latencies collectively arise from 272 

a common set of latent cognitive processes (e.g., rate of evidence accumulation, response caution). 273 

Thus, crucially, the RL-DDM extends standard RL models by explicating the processes through 274 

which learning unfolds over time (Fontanesi et al., 2019; Miletic et al., 2020; Pedersen & Frank, 275 

2020; Pedersen et al., 2017).          276 

 Two significant modifications characterize the RL-DDM. First, the typical choice rule for 277 

reinforcement learning (i.e., softmax) is replaced by the drift diffusion model (i.e., Wiener process, 278 

see Miletić et al. 2020; Pedersen et al., 2017). This change is important as it affords the possibility 279 

to model choice and RT data simultaneously. Second, the algorithm that captures the learning of 280 

subjective expectation values from stimuli and actions (i.e., value-based approach) is integrated into 281 

the process of evidence accumulation (i.e., drift rate). Thus, applying the delta learning rule, the 282 

model initially describes the updating of the expected Q-value for a chosen option (e.g., positively 283 

reinforced symbol A) based on the scaled by learning rate (α) reward prediction error (i.e., the 284 
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difference between observed and expected feedback) in the previous trial (Rescorla & Wagner 285 

1972; Watkins & Dayan 1992, see Eq. 1): 286 

 287 

Qchosen-option (t) = Qchosen-option (t-1) + α (Reward (t-1) - Qchosen-option (t-1))                  (1) 288 

 289 

Subsequently, the RL-DDM formulates the drift rate (v) during reinforced decisions based 290 

on the difference between the expected value of positively (Qpositively-reinforced) and negatively 291 

(Qnegatively-reinforced) reinforced choices. To accommodate the manner in which this knowledge is 292 

used, the RL-DDM allows an additional free scaling parameter to be estimated (i.e., drift rate 293 

scaling, vscaling). This scaling parameter is similar to inverse temperature in the softmax choice rule 294 

and reflects the level of exploration/exploitation during learning (Pedersen & Frank, 2020), such 295 

that larger values reflect stronger exploitation of the option with the highest expected value (see Eq. 296 

2). 297 

 298 

v (t) = (Qpositively-reinforced (t) – Qnegatively-reinforced (t)) * vscaling                                                            (2) 299 

 300 

Thus, in essence, the RL-DDM assumes that evidence is gathered for each choice option 301 

(e.g., symbol A vs. symbol B) until a critical evidential threshold is reached, at which point a 302 

response is made. This response threshold is captured by the boundary separation (a) parameter, 303 

and it reflects speed-accuracy trade-offs during decision-making. For example, if a conservative (vs. 304 

liberal) decision-making style (i.e., higher evidential requirements) is adopted, this would yield 305 

slower but more accurate responses. At the start of the PST, participants make slow guesses as the 306 

stimuli have not yet been reinforced, thus the difference in expected values between symbol 307 

pairings is extremely low (i.e., slow evidence accumulation due to high uncertainty). As participants 308 

start to receive feedback, via application of the delta learning rule (Rescorla & Wagner, 1972), the 309 

subjective Q-values of positively/negatively reinforced stimuli increase/decrease. The speed at 310 
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which participants update the expected values is described by the learning rate (η) parameter. On a 311 

trial-by-trial basis, this knowledge (i.e., learning which symbol is correct, Q-value) is integrated 312 

into the drift rate such that over time the difference in expected values between reinforced options 313 

(ACE vs. BDF symbol pairings) increases. The larger the difference between positively and 314 

negatively reinforced options, the easier (i.e., faster and more accurate) choice selection becomes 315 

(i.e., fast information sampling).  316 

 To estimate model parameters, an extension of the Bayesian hierarchical drift diffusion 317 

toolbox was adopted (Wiecki et al., 2013). Models were response-coded, such that the upper 318 

threshold corresponded to responses to stimuli that were positively reinforced (i.e., symbols 319 

corresponding to the letters A, C, & E) and the lower threshold to stimuli that were negatively 320 

reinforced (i.e., symbols corresponding to the letters B, D, & F; Pedersen & Frank, 2020). Bayesian 321 

posterior distributions were modeled using a Markov chain Monte Carlo (MCMC) with 10,000 322 

samples (including 1,000 burn), with outliers (5% of the trials) removed by the HDDM software 323 

(Ratcliff & Tuerlinckx, 2002; Wiecki et al., 2013). Two RL-DDM models were estimated for 324 

comparison (i.e., single vs. dual learning rate model). In the first model, only a single learning rate 325 

(η) was allowed to vary across Correct Symbol (i.e., self vs. friend). This model examined whether 326 

there were differences in the speed of learning across the experimental conditions without taking 327 

the potential influence of different types of prediction error into consideration. In contrast, in the 328 

second model, learning rates for negative and positive prediction errors (η- & η+, respectively) were 329 

allowed to vary by Correct Symbol. As such, this model considered whether learning self-related or 330 

friend-related stimuli was accelerated following negative or positive prediction errors. In both 331 

models, drift rate scaling (vscaling) and boundary separation (a) varied across Correct Symbol.  332 

Model comparison was performed using the Deviance Information Criterion (DIC) as this 333 

approach is routinely adopted when comparing hierarchical Bayesian models (Spiegelhalter et al., 334 

1998, 2002). Lower DIC values favor models with the highest likelihood and least number of 335 

parameters. This revealed better fit for the dual (DIC: 60999) compared to the single (DIC: 61059) 336 
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learning rate model. Examination of the posterior distributions (see Figure 2) revealed differences 337 

in learning rates for negative and positive prediction errors (η-& η+), drift rate scaling (vscaling), and 338 

threshold separation (a). Specifically, comparisons yielded very strong evidence that learning rates 339 

were faster for friend compared to self, both for negative (pBayes(self < friend) = .032, BF10 = 30) 340 

and positive (pBayes(self < friend) < .001, BF10 > 1000) prediction errors.3 In addition, participants 341 

integrated information more efficiently from negative than positive prediction errors, an effect that 342 

was larger for self (pBayes(η+ < η-) = .008, BF10 = 125) than friend (pBayes(η+ < η-) = .162, BF10 = 6). 343 

There was also very strong evidence that drift rate scaling (vscaling) was larger for self- than friend-344 

related symbols (pBayes(self > friend) = .019, BF10 = 52). Finally, for boundary separation (a), there 345 

was extremely strong evidence that more decisional information was required when selecting self- 346 

compared to friend-related responses (pBayes(self > friend) < .001, BF10 > 1000). 347 

 348 

 349 

 350 

 351 

 
3 Bayes Factors were transformed from Bayesian p-values (for details see Marsman & Wagenmakers, 2017). 
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   352 

 353 

 354 
Figure 2. Mean posterior parameter distributions as a function of Correct Symbol for negative (η-) 355 

and positive (η+) learning rates, drift rate scaling (vscaling) and boundary separation (a).  356 

 357 

 358 

These findings reveal that, in a probabilistic task context (Frank et al., 2004, 2007), self-359 

relevance (vs. friend-relevance) reduced the rate of learning. In addition, the RL-DDM analysis also 360 

indicated a difference in the balance between the strategies that drive learning — exploration and 361 

exploitation (Cohen et al., 2007; Sutton & Barto, 1998). Specifically, as indexed by the drift rate 362 

scaling parameter (vscaling), self-relevant (vs. friend-relevant) trials were characterized by the 363 

tendency to exploit previously rewarded outcomes rather than explore new alternatives. In other 364 

words, self-relevance elicited a greater sensitivity to current outcomes (i.e., existing knowledge) 365 

during learning (Pedersen et al., 2017).  366 

 To probe the reproducibility of these effects, in our next experiment we also explored how 367 

self-relevance influenced learning in a PST (Frank et al., 2004, 2007), but with an important 368 
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methodological modification. Rather than blocking the PST (i.e., learning) by target, participants 369 

simultaneously learned about self and friend in an intermixed design as previous research has 370 

demonstrated that self-relevance exerts a greater influence on decisional processing under these 371 

conditions (Golubickis & Macrae, 2021). Replicating Experiment 1, we expected self-relevance (vs. 372 

friend-relevance) to reduce the rate of learning and favor exploitation (vs. exploration) of the choice 373 

selections. 374 

 375 

3. Experiment 2 376 

3.1. Method 377 

3.1.1. Participants and Design 378 

Thirty-four participants (22 females, 10 males, 2 others; Mage = 22.97, SD = 2.62), with 379 

normal or corrected-to-normal visual acuity, took part in the research. Data collection was 380 

conducted online using Prolific Academic (www.prolific.co), with each participant receiving 381 

compensation at the rate of £7.50 (~$10) per hour. Informed consent was obtained from participants 382 

prior to the commencement of the experiment and the protocol was reviewed and approved by the 383 

Ethics Committee at the School of Psychology, University of Plymouth. The experiment had a 384 

single factor (Correct Symbol: self or friend) repeated-measures design. To detect a significant 385 

effect, a sample of thirty-four participants afforded 80% power for a large effect size (i.e., d = .80; 386 

PANGEA, v .0.2). 387 

 388 

3.1.2. Stimulus Materials and Procedure  389 

A modified version of the PST from Experiment 1 was adopted. Specifically, on a trial-by-390 

trial basis, participants were required to learn which symbol in each pairing was more likely to 391 

represent self or best friend. Before the presentation of each stimulus pair, a cue (i.e., the labels 392 

“YOU” or “FRIEND”) appeared on the screen indicating the target to which the symbols pertained 393 

(see Figure 3). The cue appeared 500 ms before the symbols and remained on the screen, above the 394 
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stimuli, until a response was made. Participants completed blocks of 120 trials (i.e., 60 self and 60 395 

friend) in which each stimulus pair appeared randomly, equally often, until accuracy reached a 396 

satisfactory level. The maximum number of learning blocks was set to three (i.e., 360 trials in total) 397 

if the participant did not reach satisfactory levels of accuracy earlier in the task (Frank et al., 2007). 398 

In all other respects, the procedure was identical to Experiment 1. 399 

 400 

 401 

 402 

Figure 3. Examples of the experimental trials.  403 

 404 

 405 

3.2. Results and Discussion 406 

3.2.1. Behavioral Analysis 407 

Four participants (3 females) failed to learn the probabilities associated with the symbols, 408 

thus were excluded from the analyses. The mean latency and accuracy of choice selections were 409 

submitted to a paired-sample (Correct Symbol: self or friend) t-test (two-tailed). The analysis of 410 

choice latencies revealed faster responses to self-related compared to friend-related symbols, t(29) = 411 
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2.77, p = .010, d = .51; respective Ms: 1546 ms vs. 1689 ms). In addition, accuracy was greater for 412 

self-related than friend-related stimuli, t(29) = 3.39, p = .002, d = .62; respective Ms: 70% vs. 63%).  413 

 414 

3.2.2. Modeling Analysis 415 

To identify the processes underpinning learning, data were submitted to a RL-DDM analysis 416 

following the same modeling procedure as Experiment 1. As previously, fit was better for the dual 417 

(DIC: 43524) compared to the single (DIC: 43541) learning rate model. Examination of the 418 

posterior distributions (see Figure 4) revealed differences in learning rates for negative and positive 419 

prediction errors (η-& η+), drift rate scaling (vscaling), and threshold separation (a). Specifically, 420 

comparisons yielded very strong evidence that learning rates were faster for friend compared to self, 421 

both for negative (pBayes(self < friend) = .011, BF10 = 90) and positive (pBayes(self < friend) = .005, 422 

BF10 = 199) prediction errors. As in Experiment 1, participants integrated information more 423 

efficiently from negative than positive prediction errors, an effect that was larger for self (pBayes(η+ 424 

< η-) = .03, BF10 = 33) than friend (pBayes(η+ < η-) = .10, BF10 = 10). There was also extremely 425 

strong evidence that drift rate scaling (vscaling) was larger for self-related than friend-related symbols 426 

(pBayes(self > friend) < .001, BF10 > 1000). Finally, for boundary separation (a), there was extremely 427 

strong evidence that more decisional information was required when selecting friend- compared to 428 

self-related responses (pBayes(self < friend) < .001, BF10 > 1000). 429 

 430 

 431 
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432 

 433 
 434 

Figure 4. Mean posterior parameter distributions as a function of Correct Symbol for negative (η-) 435 

and positive (η+) learning rates, drift rate scaling (vscaling) and boundary separation (a). 436 

 437 

 438 

 Using a different experimental design, these findings replicated the effects observed in 439 

Experiment 1. First, for both negative and positive prediction errors, learning rates were slower for 440 

self-related compared to friend-related symbols. Second, reflecting a greater reliance on existing 441 

knowledge (i.e., sensitivity to current outcomes), self-relevant (vs. friend-relevant) trials were 442 

characterized by the tendency to exploit previously rewarded outcomes rather than explore new 443 

choice selections (Pedersen et al., 2017). Interestingly, unlike Experiment 1 in which response 444 

caution was greater for self-relevant compared to friend-relevant symbols, this effect was reversed 445 

in the current experiment. This reversal can likely be traced to task-specific differences in the 446 

presentation of the stimulus trials during the PST (i.e., Expt. 1 - blocked by target; Expt. 2 - 447 

intermixed; Golubickis & Macrae, 2021).    448 

 449 
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4. General Discussion 450 

Notwithstanding the acknowledged benefits that self-relevance exerts on information 451 

processing and response selection (Humphreys & Sui, 2016; Sui & Humphreys, 2015, 2017; 452 

Symons & Johnson, 1997), here we demonstrated a quite different effect. In the context of a PST, 453 

self-relevance (vs. friend-relevance) reduced the rate at which information was acquired. 454 

Specifically, whether stimuli were blocked by target (Expt. 1) or intermixed (Expt. 2), learning rates 455 

were slower for self-related compared to friend-related associations. In addition, self-relevant (vs. 456 

friend-relevant) learning was characterized by the tendency to exploit rather than explore the choice 457 

selections during the task (Cohen et al., 2007; Sutton & Barto, 1998). This indicates that, in a 458 

complex (i.e., probabilistic) decision-making setting, previously rewarded self-related outcomes 459 

were chosen more often than novel — but potentially riskier — choice selections. In other words, 460 

when learning about the self (vs. friend), participants tended to rely on their existing knowledge, 461 

thereby trading enhanced future learning for guaranteed current rewards (Pedersen et al., 2017). 462 

That self-relevance has the capacity to impair performance in certain task contexts is 463 

unsurprising. Forging immediate and powerful target-object associations in working memory, 464 

personal-relevance (vs. friend-relevance) yields substantial processing benefits when responding is 465 

driven by the enhanced accessibility of these relations (Humphreys & Sui, 2016; Sui & Humphreys, 466 

2015, 2017). That is, highly accessible self-object associations — even when the stimuli in question 467 

are unfamiliar and trivial — give rise to rapid and accurate responses (e.g., Golubickis et al., 2017, 468 

2020; Schäffer et al., 2016, 2017; Stein et al., 2016; Sui et al., 2012, 2013; Woźniak & Knoblich, 469 

2019). The strength of these sticky associations, however, can also hinder performance, particularly 470 

when participants must override previous learning experiences and acquire new target-object 471 

relations (Constable & Knoblich, 2020; Wang et al., 2016). For example, Wang et al. (2016) 472 

reported that, once self-shape associations were formed, participants found it difficult to break (i.e., 473 

undo) these relations and associate the shapes with a new target (e.g., friend). As they reported (p. 474 
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255), “…self-association can either enhance or disrupt processing, depending on whether new 475 

associations are assessed or whether old associations have to be discarded.”  476 

By enhancing the binding of target-object relations, self-relevance has obvious implications 477 

for decision-making and learning, at least in settings in which these associations are a task-relevant 478 

component of the methodology (Caughey et al., 2021; Constable et al., 2019; Falbén et al., 2019; 479 

Woźniak & Knoblich, 2021). As demonstrated here, in a PST (Frank et al., 2004, 2007), learning 480 

rates were slower when material was self-relevant (vs. friend-relevant). Several factors probably 481 

contributed to the emergence of this effect. Most notably, by shifting the balance toward 482 

exploitation rather than exploration during RL, choice selections served both to bolster the stability 483 

of the self-concept and optimize response-related rewards. A basic component of social-cognitive 484 

functioning is the possession (and maintenance) of a stable self-concept (Greenwald, 1980; Markus, 485 

1977). In this respect, favoring choice selections that previously were (correctly) associated with the 486 

self would unquestionably service this objective.  487 

In addition, the reward value of self-relevant (vs. friend-relevant) outcomes would similarly 488 

encourage exploitation over exploration (Cohen et al., 2007). According to Northhoff and Hayes 489 

(2011), self-referential processing is underpinned by the intrinsic reward-related properties of self-490 

relevant stimuli (Northhoff & Hayes, 2011). Given the pivotal role of reward value during learning 491 

(Dayan & Belleine, 2002; Schultz, 1998; Sutton & Barto, 1998), exploiting formerly successful 492 

self-related outcomes would be particularly appealing (i.e., dopamine uptake), much more so than 493 

comparable friend-related responses or the exploration of novel choice selections. As such, 494 

although the precise relationship between self and reward remains a matter of continued scrutiny 495 

and debate (Sui et al., 2015; Stolte et al., 2015), during probabilistic learning this connection is 496 

likely intimate. Interestingly, in each of the reported experiments, learning was more effective 497 

following negative than positive prediction errors, an effect that was most pronounced for the self 498 

(vs. friend). It is possible that the tendency to exploit rather explore choice selections during self-499 
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related learning (i.e., sticky self-symbol associations) may underpin this asymmetry. Future 500 

research should explore this possibility.   501 

Although, in the current investigation, the rate of learning was slower for self-relevant 502 

compared to friend-relevant stimuli, it is unlikely this effect is immutable. Indeed, as noted earlier, 503 

Lockwood and colleagues (2018) reported that, during deterministic learning, personal (vs. other) 504 

associations were formed most rapidly, albeit only when stranger comprised the target of 505 

comparison. For a familiar target of comparison (i.e., friend), self-other learning rates did not differ 506 

significantly. These inconsistent findings potentially derive from differences in self-function across 507 

probabilistic and deterministic learning environments (Gershman & Daw, 2017). In a fully certain 508 

(i.e., deterministic) world, exploration is not a viable strategy as pursuing new choice selections 509 

following positive feedback would impair performance. In contrast, in probabilistic settings (e.g., 510 

PSTs) feedback is accompanied by uncertainty (Frank et al., 2004, 2007), thereby moderating the 511 

balance between the competing strategies that drive choice selections (i.e., exploration-exploitation 512 

trade-off). As was observed in the current experiments, self-relevant (vs. friend-relevant) learning 513 

was characterized by the tendency to exploit rather than explore the response-related outcomes, 514 

such that potentially enhanced knowledge acquisition was traded for the certainty of immediate 515 

rewards (Cohen et al., 2007). This suggests that, depending on the characteristics of the learning 516 

environment (i.e., deterministic vs. probabilistic), self-relevance can exert quite different effects on 517 

RL.   518 

Operating in this flexible way, learning mirrors the other domains in which the effects of 519 

self-relevance have been explored (e.g., attention, memory, decision-making). Inspection of a 520 

rapidly developing literature reveals the inherent malleability of self-prioritization and the divergent 521 

cognitive origins of self-bias. Specifically, whether self-prioritization facilitates or impedes 522 

performance — or indeed arises at all — is highly contingent upon the way in which self-object 523 

associations are operationalized, established, and probed (Caughey et al., 2021; Constable et al., 524 

2019; Falbén et al., 2019, 2020; Golubickis et al., 2020, 2021; Macrae et al., 2017, 2018; Siebold et 525 
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al., 2015; Stein et al., 2016; Svensson et al., 2021; Wang et al., 2016; Woźniak & Knoblich, 2021). 526 

Moreover, whereas in some task contexts self-relevance influences the efficiency of stimulus 527 

processing (Golubickis et al., 2017, 2020), in others it impacts response-related operations 528 

(Constable et al., 2019; Falbén et al., 2020; Golubickis et al., 2018, 2019). A useful task for future 529 

research will therefore be to establish how this contextual-dependency modulates the acquisition of 530 

self-knowledge across learning environments that vary in important ways; including the identity 531 

and number of targets of comparison, the characteristics of the to-be-learned material, and the 532 

distribution of rewards (Haruno & Kawato, 2006; Lockwood et al., 2018; Knowlton et al., 1994). 533 

Attention should also be directed to the task context in which information pertaining to the 534 

self and others is encountered. Here differences in response caution were observed across two 535 

instrumental learning experiments that differed in task structure. Specifically, whereas response 536 

caution was greater on self-relevant compared to friend-relevant trials when stimuli were blocked 537 

by target (i.e., Experiment 1), this effect was reversed when the trial types were intermixed (i.e., 538 

Experiment 2). Relatedly, both Golubickis and Macrae (2021) and Desebrock et al. (in press) have 539 

similarly demonstrated the sensitivity of self-referential processing to the characteristics of the task 540 

environment. For example, using a shape-label matching task, Golubickis and Macrae (2021) 541 

observed a reduction in self-prioritization when stimuli were intermixed compared to blocked by 542 

target. Extending this finding, again in a shape-label matching task but using unisensory and 543 

multisensory stimuli, Desebrock et al. (in press) found that self-prioritization was greatest when 544 

trials were blocked by sensory modality. Collectively, these findings highlight the contextual 545 

dependence of self-bias, a factor that has largely been overlooked in research to date.           546 

Consideration should also be given to the neural mechanisms that support the learning of 547 

material pertaining to the self and others. For example, is the acquisition of person-related 548 

knowledge underpinned by the same associative operations that drive reward-based learning in non-549 

social contexts? Given the established role of the pre-frontal cortex (PFC) during self-referential 550 

processing (Kelley et al., 2002; Mitchell et al., 2002, 2006; Sui et al., 2013), it is interesting to note 551 
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that resolution of the exploration-exploitation dilemma is also associated with activation in this 552 

region (Blanchard & Gershman, 2018; Domenech et al., 2020). Specifically, whereas activity in the 553 

ventromedial PFC (vmPFC) indexes the subjective value of outcomes given the action plan that is 554 

currently in place, modulation in dorsomedial PFC (dmPFC) reflects a reduction in these values and 555 

the generation of new response-related strategies (Donoso et al., 2014). In their investigation of the 556 

neural correlates of self-learning, Lockwood et al. (2018) reported that no brain area tracked 557 

exclusively with self-bias (i.e., self-ownership effect) during a deterministic learning task. 558 

Nevertheless, vmPFC responded more strongly to self- compared to stranger-related (but not friend-559 

related) associations. As the current experiments yielded differences in both learning rates and the 560 

drift-rate scaling parameter (i.e., exploration-exploitation trade-off) for self and friend, it would 561 

therefore be interesting to explore the neural mechanisms that underlie self/other learning during a 562 

PST. In such a task setting, distinct patterns of activation may emerge in the mPFC and other 563 

cortical regions that support learning (e.g., anterior cingulate cortex [ACC]; Kennerley et al., 2006; 564 

Holroyd & McClure, 2015).                                      565 

 566 

5. Conclusion 567 

Using a PST in combination with a RL-DDM analysis, here we considered how self-568 

relevance influences instrumental learning. Across two experiments, learning rates were slower for 569 

self-related compared to friend-related associations and self-relevant (vs. friend-relevant) learning 570 

was characterized by exploitation (vs. exploration) of the choice selections. Together with related 571 

research (Lockwood et al., 2018), these findings affirm the utility of computational approaches in 572 

the investigation of core social-cognitive topics (Hackel & Amodio, 2018; Lockwood & Klein-573 

Flügge, 2020). Continuing in this way, further research should clarify exactly when, how, and for 574 

whom self-relevance influences associative learning.  575 

    576 

 577 
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