Antenatal Corticosteroids and Neonatal Outcomes in Twins: A Systematic Review and Meta-analysis

Peter SOCHA¹, BSc; Alice MCGEE², MBCHB, PgDip; Sohinee BHATTACHARYA², MBBS, PhD; Catriona YOUNG³; Rui WANG⁴, MD, PhD

- 1. Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
- 2. Aberdeen Centre for Women's Health Research, University of Aberdeen, Aberdeen, Scotland
- 3. University of Aberdeen, Aberdeen, Scotland
- 4. Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia

Corresponding author:

Peter Socha, BSc Department of Epidemiology, Biostatistics and Occupational Health, McGill University Montreal, Quebec, Canada

Financial Disclosure

Sohinee Bhattacharya reports money was paid to their institution from Tenovus Scotland, Medical Research Scotland, and MRC. They are a collaborator on the Co-Opt project funded by Wellcome trust and led by the University of Edinburgh. This project aims to look at the effects of antenatal corticosteroids on neonatal outcomes using IPD meta-analysis. The other authors did not report any potential conflicts of interest.

Each author has confirmed compliance with the journal's requirements for authorship.

Acknowledgements: Peter Socha is supported by a graduate training award from the *Fonds de recherche du Québec – Santé*. Rui Wang is supported by a National Health and Medical Research Council Emerging Leadership Investigator Grant (2009767).

Presented at the Annual Meeting of Obstetrics and Gynaecology Scottish Trainees (AMOnGST) Conference, November 26, 2021 (online) and to be presented at the Royal College of Obstetricians and Gynecologists World Congress, June 13-15, 2022, in London, UK.

Short title: Antenatal Corticosteroids in Twins

Precis: Evidence from nonrandomized studies suggests antenatal corticosteroid treatment is

associated with lower incidence of neonatal mortality and respiratory distress syndrome in twins.

1

Abstract

Objective: To assess whether antenatal corticosteroid treatment is associated with improved
neonatal outcomes in twins.

4 Data sources: We searched MEDLINE, PubMed, Embase, and the Cochrane library, from
5 inception through August 12, 2021.

Methods of study selection: Records (n=7,802) were screened in Rayyan by two independent
reviewers. We included all nonrandomized studies that compared antenatal corticosteroid
treatment vs. no treatment in twins. Our outcomes of interest were neonatal mortality, respiratory
distress syndrome, intraventricular hemorrhage, bronchopulmonary dysplasia, necrotizing

10 enterocolitis, periventricular leukomalacia, and retinopathy of prematurity.

11 Tabulation, integration, and results: We used the ROBINS-I to assess risk of bias. We performed random-effects meta-analyses of estimates from studies without critical risk of bias 12 13 due to confounding, and reported summary adjusted odds ratios (ORs) and 95% confidence 14 intervals (CIs). Eighteen cohort studies (reporting on 33,152 neonates) met inclusion criteria. 15 Sixteen studies restricted to preterm gestational ages and 11 defined exposed neonates based on 16 an optimal corticosteroid administration-to-birth interval. Limitations due to confounding and selection bias were common concerns for the risk of bias assessments (n=14 at critical or higher), 17 18 and 11 studies did not account for clustering within twin-pairs in their analyses. All included 19 studies had at least moderate risk of bias. Meta-analysis showed that antenatal corticosteroid 20 administration was associated with lower odds of neonatal mortality (adjusted OR = 0.59, 95%CI = 0.43 to 0.80, $I^2 = 69\%$, five studies, 20,312 neonates) and respiratory distress syndrome 21

- 22 (adjusted OR = 0.70, 95% CI = 0.57 to 0.86, I² = 67%, seven studies, 20,628 neonates) in twins.
- 23 Results were inconclusive for the other outcomes.
- 24 Conclusion: Evidence from nonrandomized studies suggests antenatal corticosteroids are
- 25 associated with lower incidence of neonatal mortality and respiratory distress syndrome in twins.
- 26 Systematic Review Registration: PROSPERO, CRD42020205302.

2	7
L	/

Introduction

28 Antenatal corticosteroid treatment reduces the incidence of neonatal mortality, respiratory morbidity, and other complications in preterm singleton infants.¹ While twins and higher order 29 multiples are as much as ten times more likely than singletons to be born prematurely,² they have 30 routinely been under-represented in randomized trials on antenatal corticosteroids.¹ The most 31 32 recent Cochrane review of randomized trials on antenatal corticosteroids found subgroup data on 33 multiple gestations from only five trials (884 neonates) and, though effect estimates in multiples 34 were consistent with those in singletons, lacked sufficient power to convincingly demonstrate the effect of antenatal corticosteroids in this group.¹ 35 36 Current clinical practice guidelines in the United States and internationally recommend 37 all pregnancies at risk of imminent early-preterm delivery receive antenatal corticosteroids, while also calling for more research focused on multiples.^{3–6} However, healthcare practitioners may be 38 39 more cautious when deciding whether to administer antenatal corticosteroids in multiples. 40 Future randomized trials on the effect of antenatal corticosteroids in early-preterm twin 41 pregnancies are unfeasible, as practice guidelines recommend treatment at these gestational ages.^{3–6} Instead, practitioners may rely on non-randomized studies to inform their 42 43 recommendations in twin pregnancies at risk of early-preterm delivery. Indeed, in their most 44 recent recommendation, the American College of Obstetricians and Gynecologists cited a 2016 45 non-randomized study that found an association between antenatal corticosteroids and improved outcomes in twins.^{4,7} At the same time, not all non-randomized studies have found an association 46 between antenatal corticosteroids and beneficial outcomes in twins,^{8,9} highlighting the need for a 47 comprehensive review of the literature. 48

49	We performed a systematic review and meta-analysis of non-randomized studies
50	examining the association between antenatal corticosteroid treatment and adverse neonatal
51	outcomes in preterm twins.
52	Sources
53	This study was reported in accordance with PRISMA guidelines. ¹⁰ The study protocol was
54	registered prospectively on PROSPERO. ¹¹ Changes to the initial protocol are described in the
55	Appendix 1.
56	We searched MEDLINE, PubMed, Embase, and the Cochrane library using search terms
57	related to twin pregnancies and antenatal corticosteroids (Appendix 2). We did not search
58	databases of clinical trials (e.g., ClinicalTrials.gov) because our inclusion criteria restricted to
59	non-randomized studies. We included all publications from database inception through August
60	12, 2021. No language restrictions were applied, non-English abstracts were translated for
61	screening using Google Translate.
62	Search results were imported into Rayyan (www.rayyan.ai) and duplicates were
63	identified using Rayyan's detect-duplicate feature. Detected duplicates were individually verified
64	by a single reviewer (PS). Titles and abstracts were screened by two independent reviewers
65	(AMG and PS). Full-text of potentially eligible studies were then evaluated by both reviewers
66	independently. Disagreements were resolved by consensus or consultation with a third reviewer
67	(SB).
68	Study Selection
69	We included non-randomized studies that compared outcomes among twin neonates that had or
70	had not been exposed to antenatal corticosteroids. No restriction was applied to drug type,
71	dosage, or number of doses.

72	Our primary outcomes of interest were neonatal mortality and respiratory distress
73	syndrome (RDS), which are strongly linked to antenatal corticosteroid treatment in singletons. ¹
74	Secondary outcomes of interest were other severe neonatal morbidities that have shown a
75	reduction with antenatal corticosteroid treatment in singletons: intraventricular hemorrhage
76	(IVH; grade III or higher), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC;
77	stage II or higher), periventricular leukomalacia (PVL), and retinopathy of prematurity (ROP;
78	grade III or higher). ¹ We also included studies that did not specify or stratify based on severity,
79	but used the high-severity definitions of IVH, NEC, and ROP when possible.
80	We excluded studies that grouped twins with singletons or higher-order multiple
81	gestations unless the data on twins were reported separately.
82	Data were extracted in duplicate by two independent reviewers (from AMG, CY, PS,
83	RW) using a standardized data-extraction template. A single reviewer (PS) validated the data by
84	comparing the two independent data extractions and disagreements were resolved by a third
85	review of the data. In the event of missing numerical data (e.g., missing denominators), we
86	contacted the corresponding author by email.
87	We used the Risk Of Bias In Non-randomised Studies – of Interventions (ROBINS-I) ¹² to
88	determine the risk of bias in each study across seven domains: confounding, selection of
89	participants into the study, (mis)classification, deviations from intended treatment, missing data,
90	measurement error, and reporting. The "overall" risk of bias (low, moderate, serious, or critical)
91	was assigned based on the highest risk category across all domains. Two reviewers (AMG and
92	PS) independently assessed each study, and any disagreements were resolved by consensus or
93	consultation with a third reviewer (SB). We visualised the risk of bias assessments using Risk-
94	of-bias VISualization (robvis) tool (mcguinlu.shinyapps.io/robvis). In order to not be rated

95 critical risk of bias due to confounding, we required that estimates be adjusted for a minimum of 96 a week- or day-based estimate of gestational age at delivery (e.g., using a regression-based 97 adjustment). Studies that only performed a crude adjustment for gestational age, by restricting to 98 infants born before a certain gestational age (e.g., infants born at <34 weeks gestation), were 99 rated as critical risk due to residual confounding (see directed acyclic graph [DAG] in Appendix 100 3). We recognize that adjusting for gestational age at birth could bias results under certain 101 scenarios (DAG in Appendix 4).¹³ However, we propose the risk of bias from adjusting for 102 gestational age at birth is minimal compared with the risk of bias from not adjusting on any 103 measure of gestational age, as gestational age at birth has such a strong influence on infant 104 outcomes.

We synthesized adjusted summary estimates of studies without critical risk of bias in confounding (i.e., studies that adjusted for at least gestational age) as the main analysis. When studies included data from the same source, we excluded the smaller study. We reported summary adjusted odds ratios (ORs) and corresponding 95% CIs for all outcomes in forest plots. We performed all meta-analyses with random-effects models using restricted maximum likelihood method and assessed heterogeneity using I². Larger weights were given to more precise (larger) studies.

112 To further explore the sources of heterogeneity, we performed subgroup analysis 113 stratifying by whether clustering between twin pairs from the same pregnancy was considered, as 114 failure to account for non-independence between twin pairs can cause variance estimates to be 115 artificially low.¹⁴ In addition, we also reported crude ORs for our two primary outcomes 116 (neonatal mortality and RDS) as a sensitivity analysis, using odds (vs. measures of risk) for 117 consistency with the adjusted analyses. To explore treatment effect over time, we performed

118	post-hoc cumulative meta-analyses for the primary outcomes based on the median value of study
119	period. For all outcomes with five or more studies, we created contour-enhanced funnel plots to
120	assess potential publication bias. ¹⁵
121	All analyses were performed in Stata version 16.1.
122	Results
123	Of the 7,802 records screened, 18 studies (reporting on 33,152 neonates) met our inclusion
124	criteria (Appendix 5). ^{7–9,16–30} Study characteristics are summarized in Table 1. Detailed
125	characteristics are presented in the Supplement (Appendix 6.1-8).
126	All but one study restricted their analyses to preterm infants (Table 1). Other common
127	inclusion criteria included: admission to the NICU, low birthweight, no chorioamnionitis, no
128	major anomalies, and no twin-to-twin transfusion syndrome (Appendix 6.2). Of the studies that
129	specified the type of drug, six studies reported on betamethasone only, three on dexamethasone
130	only, and five on both betamethasone and dexamethasone (Appendix 6.3). The most common
131	treatment regimens were two doses, 12mg, 24 hours apart for betamethasone; and four doses,
132	6mg, 12 hours apart for dexamethasone (Appendix 6.3). In ten studies, pregnancies or infants
133	were considered "exposed" if they had experienced an ideal treatment-to-birth interval (e.g., first
134	dose more than 48 hours and less than seven days before delivery) and in seven studies no timing
135	was specified (Table 1).
136	Risk of bias assessments are presented in Figure 1. For bias due to confounding, eight
137	studies ^{16,17,19,20,22,23,26,29} were considered at critical risk of bias because of no confounder
138	adjustment (beyond restricting the analysis to preterm births, which was applied in all but one
139	study) ²⁶ . Two additional studies ^{18,24} appropriately adjusted for confounding for RDS (moderate
140	risk of bias) but did not adjust for confounding for other outcomes of interest (critical risk of

141	bias). One study ³⁰ was at critical and two studies ^{9,28} were at serious risk of bias due to
142	confounding for improper confounding control (adjusting for mediator or collider). See
143	Appendix 7 for DAGs illustrating examples of bias from adjusting on mediators or colliders.
144	For bias due to selection of participants, six studies ^{7–9,19,20,27} were at serious risk from
145	restricting to infants admitted to NICUs (as admission to NICU is related to antenatal
146	corticosteroids and adverse neonatal outcomes). One study ²⁶ included infants admitted to NICUs
147	and restricted to very low birthweight infants (<1500 grams), which we rated as moderate risk of
148	selections bias, as the proportion of very low birthweight infants that are admitted to NICUs is
149	close to 1. See Appendix 8 for DAGs illustrating examples of selection bias.
150	Risk of bias due to classification and risk of bias due to deviations were low for all
151	studies (Figure 1). The degree of missing data was often not reported, or low (Figure 1). Bias due
152	to measurement and reporting was moderate in most studies (Figure 1). Risk of bias due to
153	reporting was serious in two studies, one with inconsistencies in outcomes between methods and
154	results sections, ³⁰ and one which did not report data on mortality because they were not
155	statistically significant. ¹⁷
156	One study ²¹ showed results for gestational ages <34 weeks and gestational ages <37
157	weeks; where applicable, we used the larger group (\leq 37 weeks) in our analysis. Another study ²⁸
158	stratified their analysis into subgroups of small for gestational age (in Figures: Riskin-Mashiah
159	2018a ²⁸) and not small for gestational age (in Figures: Riskin-Mashiah 2018b ²⁸). We contacted
160	the authors of two studies, to ask for adjusted ORs in order to pool with all other studies ²⁵ and to
161	clarify the proportion of deaths in the control group. ³⁰ At the time of submission, we had not
162	received new data for either study.

163	Five studies (three at moderate ^{7,8,27} and two at serious risk of bias ^{9,28}) reported adjusted
164	ORs for neonatal mortality and were included in the main analysis for neonatal mortality. Meta-
165	analysis showed antenatal corticosteroid administration was associated with lower odds of
166	neonatal mortality (adjusted OR = 0.59, 95% CI = 0.43 to 0.80; $I^2 = 69\%$; five studies, 20,312
167	neonates; Figure 2). Subgroup analysis showed that antenatal corticosteroid administration had a
168	larger association with a reduction in neonatal mortality in studies accounting for clustering
169	within twins, compared to those not accounting for clustering (adjusted $OR = 0.51$, 95% $CI =$
170	0.41 to 0.63 vs. adjusted OR = 0.89, 95% CI = 0.69 to 1.14; p for interaction < 0.01). We did not
171	stratify by timing of doses or risk of bias because the number of included studies was small.
172	Sensitivity analyses based on crude ORs from studies reporting on mortality are shown in
173	Appendix 9. The summary crude OR for mortality was similar to the summary adjusted OR in
174	our main analysis, with wider confidence intervals and higher heterogeneity between studies
175	(crude OR=0.65, 95% CI = 0.39 to 1.06, I^2 = 95%, 11 studies, 26,669 neonates). Studies that
176	restricted to early gestational ages resulted in odds ratios that were similar to our main findings
177	(crude $OR = 0.54$, 95% $CI = 0.44$ to 0.67; Appendix 9), while the study that did not restrict on
178	gestational age at birth was conflicting (5.61, 95% CI = 3.16 to 9.96; p for interaction <0.001;
179	Appendix 9). Cumulative meta-analysis did not reveal changes of treatment effect over time
180	(Appendix 10).
181	Seven studies reported adjusted ORs for RDS (five at moderate ^{7,8,18,21,24} and two at
182	serious risk of bias ^{9,28}), and one study ²⁵ (moderate risk of bias) reported an adjusted RR. Meta-
183	analysis on adjusted ORs showed antenatal corticosteroid administration was associated with
184	lower odds of RDS (adjusted OR = 0.70, 95% CI = 0.57 to 0.86; $I^2 = 67\%$; seven studies, 20,628
185	neonates; Figure 3). Results from the study that used RRs conflicted with the summary estimate

186	for RDS: antenatal corticosteroids were not associated with RDS among infants born at 34
187	weeks' gestation (RR = 1.01, 95% CI = 0.76 to 1.34) and were associated with greater risk of
188	RDS among infants born through 37 weeks' gestation (RR = $1.22, 95\%$ CI = 1.09 to 1.36). ²⁵
189	Summary crude ORs did not convincingly demonstrate an association between antenatal
190	corticosteroid treatment and RDS (crude OR = 0.87 , 95% CI = 0.68 to 1.10 ; I ² = 90%; 14 studies,
191	24,459 neonates) (Appendix 11). Cumulative meta-analysis did not reveal changes of treatment
192	effect over time (Appendix 12).
193	For the other outcomes, antenatal corticosteroid administration was not convincingly
194	associated with any of our secondary outcome of interest: IVH (adjusted OR = 0.78 , 95% CI =
195	0.55 to 1.13; $I^2 = 80\%$; three studies, 12,497 neonates; Appendix 13), BPD (adjusted OR = 1.08,
196	95% CI = 0.96 to 1.21; $I^2 = 0\%$; five studies, 19,106 neonates; Appendix 14), NEC (adjusted OR
197	= 1.02, 95% CI = 0.83 to 1.25; I2 = 0%; four studies, 19,773 neonates; Appendix 15), PVL
198	(adjusted OR = 0.77, 95% CI = 0.57 to 1.03; $I^2 = 56\%$; three studies, 11,411 neonates; Appendix
199	16), or ROP (adjusted OR = 0.96, 95% CI = 0.84 to 1.09; $I^2 = 0\%$; four studies, 18,514 neonates;
200	Appendix 17). While heterogeneity was low for BPD, NEC, and ROP (Appendices 14, 15, 17),
201	this was influenced by a single large study ⁸ contributing the majority of the weight.
202	There were no obvious indications of publication bias among outcomes with five or more
203	studies, though the low number of studies limited interpretability (Appendices 18-22).
204	Discussion
205	Meta-analyses of non-randomized studies showed that antenatal corticosteroid treatment was
206	associated with decreased odds of neonatal mortality and RDS in preterm twins. The number of
207	studies reporting adjusted estimates was small and findings were inconclusive for IVH, BPD,
208	NEC, PVL, and ROP.

Our findings were in agreement with the 2020 Cochrane meta-analyses of randomized trials in multiples (for neonatal mortality, RR = 0.76, 95% CI = 0.57 to 1.02; for RDS, RR =0.85, 95% CI = 0.61 to 1.20), but with more precise estimates due to a much larger sample size (e.g., for neonatal mortality, 20,312 vs. 813 neonates).¹ Although studies included in the primary analyses involved participant data spanning from 1990s to 2010s, we did not observe changes in treatment effect over time (Appendices 10, 12).

215 Our results have several limitations. First, included studies were at risk of residual 216 confounding. While adjusting for confounders was more common in more recent studies, there 217 was a general lack of reporting on why specific confounders were selected, and some studies 218 adjusted for mediators and colliders. There was also disagreement between studies on which 219 confounders to adjust for (other than gestational age at birth). Second, some included studies 220 were at risk of selection bias due restricting to infants that were admitted to NICUs. Third, 221 heterogeneity was moderate to high for neonatal mortality and RDS, though studies were generally in agreement on the direction of the effect (protective). One study²⁵ (that reported RRs) 222 223 found that exposure to antenatal corticosteroids was associated with increased risk of RDS 224 among infants >37 weeks gestational age, and, had this study been included in the meta-analysis, 225 would have increased between-study heterogeneity. If outcomes among twins from the same 226 pregnancy are not independent, not accounting for this clustering in the analysis will underestimate the study variance.¹⁴ Including studies with underestimated variance in our meta-227 228 analysis may partly explain the high heterogeneity, as the individual studies look more dissimilar 229 than they actually are (increasing between-study variance). There were also slight between-study 230 variations in how some outcomes were assessed and defined (Appendix 6.5-7), but not so 231 different that we expected major heterogeneity in the associations. Fourth, timing, dosage, and

number of dosages likely affect the association between antenatal corticosteroids and our

outcomes of interest. We did not stratify by specific intervention type or by risk of bias, becausethe number of studies in each category was small.

235 Future randomized trials (such as trials in late-preterm pregnancies) should include twins 236 and, importantly, should provide disaggregated estimates in twins. As multiple gestations are 237 relatively uncommon in the general population, they are often under-presented in clinical 238 research. In addition, given the biological differences in singleton and multiple pregnancies, 239 some clinical research only includes singleton pregnancies and excludes multiple pregnancies. 240 As a result, evidence in multiple gestations is sometimes limited and clinical management in 241 these scenarios often relies on evidence from singletons. However, such a translation may not be 242 always appropriate. For instance, evidence on the effectiveness of progesterone on preterm birth 243 prevention has been demonstrated in high-risk singleton pregnancies, but not in twin pregnancies.³¹ While randomized trials on the effect of antenatal corticosteroids may not be 244 245 justifiable in early-preterm twin pregnancies (when guidelines recommend treatment, and the 246 benefit in singletons is strong), there is currently at least one trial underway to assess the impact 247 of antenatal corticosteroids in late-preterm twins (34 weeks through 36 weeks gestation).³² 248 Though this trial is insufficiently powered to detect a plausible effect size (i.e., one similar to late-preterm singletons³³), it may be sufficient when synthesized with other trials that include 249 250 disaggregated data on late-preterm twins.

Future analyses, including those of randomised trials and subsequent meta-analyses, should consider clustering within twins, since antenatal corticosteroids are delivered at the pregnancy-level and outcomes within twin pairs are not independent. Non-randomized studies would also benefit from transparent rationale for selection of study population and confounders.

255 Quasi-experimental designs may be particularly useful in addressing the effects of

256 confounding.³⁴ Future reviews could benefit from a systematic search of non-randomized studies

that include higher order multiples, as we identified several studies in multiples that did not

258 provide disaggregated data on twins during our search.^{35–40}

259 Existing guidelines and consensus recommending antenatal corticosteroid administration

260 in twins are based on limited evidence from randomised trials, select observational studies, and

261 extrapolation from studies on singletons. This review showed general agreement among non-

262 randomized studies that antenatal corticosteroids are associated with lower incidence of neonatal

263 mortality and RDS. Pending evidence from randomized trials in late-preterm twins, findings

264 from this review of non-randomized studies may help provide evidence supporting the use of

antenatal corticosteroids in twin pregnancies at risk of preterm delivery.

266		References
267	1.	McGoldrick E, Stewart F, Parker R, Dalziel SR. Antenatal corticosteroids for accelerating
268		fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev.
269		2020;12:CD004454. doi:10.1002/14651858.CD004454.pub4
270	2.	United States Department of Health and Human Services. Natality public-use data 2016-
271		2019. Accessed December 6, 2020. http://wonder.cdc.gov
272	3.	National Institute for Health and Care Excellence. Preterm labour and birth. NICE Guidel.
273		Accessed December 7, 2021.
274	4.	American College of Obstetricians and Gynecologists. Comittee Opinion No. 713:
275		Antenatal Corticosteroid Therapy for Fetal Maturation. Obstet Gynecol.
276		2017;130(2):e102-e109.
277	5.	Skoll A, Boutin A, Bujold E, Burrows J, Crane J, Geary M, et al. Clincal Practice
278		Guildlines No. 364: Antenatal Corticosteroid Therapy for Improving Neonatal Outcomes.
279		J Obstet Gynaecol Canada. 2018;40(9):P1219-1239.
280		doi:https://doi.org/10.1016/j.jogc.2018.04.018
281	6.	World Health Organization. WHO recommendations on interventions to improve preterm
282		birth outcomes. Accessed December 7, 2021. www.who.int/reproductivehealth
283	7.	Melamed N, Shar J, Yoon E, Pelausa E, Lee S, Shah P, et al. The role of antenatal
284		corticosteroids in twin pregnancies complicated by preterm birth. Am J Obstet Gynecol.
285		2016;215(4):482.e1-482.e9. doi:10.1016/j.ajog.2016.05.037
286	8.	Ushida T, Kotani T, Sadachi R, Hirakawa A, Hayakawa M, Moriyama Y, et al. Antenatal
287		Corticosteroids and Outcomes in Preterm Twins. Obstet Gynecol. 2020;135(6):1387-1397.
288		doi:10.1097/AOG.00000000003881

289	9.	Kong X, Xu F, Wang Z, Zhang S, Feng Z. Antenatal corticosteroids administration on
290		mortality and morbidity in premature twins born at 25~34 gestational weeks: A
291		retrospective multicenter study. Eur J Obstet Gynecol Reprod Biol. 2020;253:259-265.
292		doi:10.1016/j.ejogrb.2020.08.003
293	10.	Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The
294		PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ.
295		2021;372. doi:10.1136/BMJ.N71
296	11.	McGee A, Bhattacharya S, Young C, Socha P. The effects of antenatal corticosteroids on
297		improving outcomes in twin pregnancies. Accessed September 6, 2021.
298		https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020205302
299	12.	Sterne JA, Hernán MA, Reeves BC, Savović, Jelena, Berkman ND, Viswanathan M, et al.
300		ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions.
301		<i>BMJ</i> . 2016;355. doi:10.1136/BMJ.I4919
302	13.	Wilcox AJ, Weinberg CR, Basso O. On the Pitfalls of Adjusting for Gestational Age at
303		Birth. Am J Epidemiol. 2011;174(9):1062. doi:10.1093/AJE/KWR230
304	14.	Ananth C V., Platt RW, Savitz DA. Regression models for clustered binary responses:
305		Implications of ignoring the intracluster correlation in an analysis of perinatal mortality in
306		twin gestations. Ann Epidemiol. 2005;15(4):293-301.
307		doi:10.1016/j.annepidem.2004.08.007
308	15.	Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Contour-enhanced meta-analysis
309		funnel plots help distinguish publication bias from other causes of asymmetry. J Clin
310		Epidemiol. 2008;61(10):991-996. doi:10.1016/j.jclinepi.2007.11.010
311	16.	Caspi E, Schreyer P, Weinraub Z, Lifshitz Y, Goldberg M. Dexamethasone for prevention

312 of respiratory distress syndrome: multiple perinatal factors. Obstet Gynecol. 313 1981;57(1):41-446. 314 Spinillo A, Capuzzo E, Ometto A, Stronati M, Baltaro F, Iasci A. Value of antenatal 17. 315 corticosteroid therapy in preterm birth. Early Hum Dev. 1995;42(1):37-47. 316 doi:10.1016/0378-3782(95)01638-J 317 Turrentine MA, Dupras-Wilson P, Wilkins IA. A retrospective analysis of the effect of 18. 318 antenatal steroid administration on the incidence of respiratory distress syndrome in 319 preterm twin pregnancies. Am J Perinatol. 1996;13(6):351-354. doi:10.1055/s-2007-320 994355 321 19. Al-Yamata M, Al Essa M, Omu A, Al-Shamali I, Egbase P, Rashwan N. Effect of 322 repeated doses of dexamethasone on the incidence and severity of respiratory distress 323 syndrome in multifetal gestation between 24 and 34 weeks. Gynecol Obstet Invest. 324 2001;52:26-33. 325 20. Hacking D, Watkinds A, Fraser S, Wolfe R, Nolan T. Respiratory distress syndrome and 326 antenatal corticosteroid treatment in premature twins. Arch Dis Child Fetal Neonatal Ed. 327 2001;85:F75-F78. 328 21. Murphy DJ, Caukwell S, Joels LA, Wardle P. Cohort study of the neonatal outcome of 329 twin pregnancies that were treated with prophylactic or rescue antenatal corticosteroids. 330 Am J Obstet Gynecol. 2002;187(2):483-488. doi:10.1067/mob.2002.123891 331 22. Blickstein I, Shinwell ES, Lusky A, Reichman B. Plurality-dependent risk of respiratory 332 distress syndrome among very-low-birth-weight infants and antepartum corticosteroid 333 treatment. Am J Obstet Gynecol. 2005;192(2):360-364. doi:10.1016/j.ajog.2004.10.604 334 Blickstein I, Reichman B, Lusky A, Shinwell ES. Plurality-dependent risk of severe 23.

335		intraventricular hemorrhage among very low birth weight infants and antepartum
336		corticosteroid treatment. Am J Obstet Gynecol. 2006;194(5):1329-1333.
337		doi:10.1016/j.ajog.2005.11.046
338	24.	Kuk JY, An JJ, Cha HH, Choi SJ, Vargas JE, Oh SY, et al. Optimal time interval between
339		a single course of antenatal corticosteroids and delivery for reduction of respiratory
340		distress syndrome in preterm twins. Am J Obstet Gynecol. 2013;209(3):256.e1-256.e7.
341		doi:10.1016/j.ajog.2013.06.020
342	25.	Viteri OA, Blackwell SC, Chauhan SP, Refuerzo JS, Pedroza C, Salazar XC, et al.
343		Antenatal Corticosteroids for the Prevention of Respiratory Distress Syndrome in
344		Premature Twins. Obstet Gynecol. 2016;128(3):583-591.
345		doi:10.1097/AOG.00000000001577
346	26.	Braun T, Weichert A, Gil HC, Sloboda DM, Tutschek B, Harder T, et al. Fetal and
347		neonatal outcomes after term and preterm delivery following betamethasone
348		administration in twin pregnancies. Int J Gynecol Obstet. 2016;134(3):329-335.
349		doi:10.1016/j.ijgo.2016.02.016
350	27.	Palas D, Ehlinger V, Alberge C, Truffert P, Kayem G, Goffinet F, et al. Efficacy of
351		antenatal corticosteroids in preterm twins: the EPIPAGE-2 cohort study. BJOG An Int J
352		Obstet Gynaecol. 2018;125(9):1164-1170. doi:10.1111/1471-0528.15014
353	28.	Riskin-Mashiah S, Reichman B, Bader D, Kugelman A, Boyko V, Lerner-Geva L, et al.
354		Population-based study on antenatal corticosteroid treatment in preterm small for
355		gestational age and non-small for gestational age twin infants. J Matern Neonatal Med.
356		2018;31(5):553-559. doi:10.1080/14767058.2017.1292242
357	29.	Ben-David A, Zlatkin R, Bookstein-Peretz S, Meyer R, Mazaki-Tovi S, Yinon Y. Does

358		antenatal steroids treatment in twin pregnancies prior to late preterm birth reduce neonatal
359		morbidity? Evidence from a retrospective cohort study. Arch Gynecol Obstet.
360		2020;302(5):1121-1126. doi:10.1007/s00404-020-05709-w
361	30.	Gonçalves-Ferri WA, Martinez FE, Martins-Celini FP, de Almeida JHCL, Procianoy R,
362		Duarte, JLMB, et al. Evaluation of the effectiveness of antenatal corticoid in preterm twin
363		and single pregnancies: a multicenter cohort study. J Matern Neonatal Med. 2021;0(0):1-
364		7. doi:10.1080/14767058.2020.1822806
365	31.	Stewart LA, Simmonds M, Duley L, Llewellyn A, Sharif S, Walker RAE, et al.
366		Evaluating Progestogens for Preventing Preterm birth International Collaborative
367		(EPPPIC): meta-analysis of individual participant data from randomised controlled trials.
368		Lancet. 2021;397(10280):1183-1194. doi:10.1016/S0140-6736(21)00217-8
369	32.	Hong S, Lee SM, Kwak DW, Lee J, Kim SY, Oh JW, et al. Effects of antenatal
370		corticosteroids in twin neonates with late preterm birth (ACTWIN [Antenatal
371		Corticosteroids in TWIN late preterm neonates] trial): Study protocol for a randomized
372		controlled trial. BMC Pregnancy Childbirth. 2019;19(1). doi:10.1186/s12884-019-2235-5
373	33.	Gyamfi-Bannerman C, Thom EA, Blackwell SC, Spong CY, Peaceman A, Sorokin Y, et
374		al. Antenatal Betamethasone for Women at Risk for Late Preterm Delivery. N Engl J Med.
375		2016;374(14):1311-1320. doi:10.1056/NEJMoa1516783
376	34.	Hutcheon JA, Harper S, Liauw J, Skoll MA, Srour M, Strumpf EC. Antenatal
377		corticosteroid administration and early school age child development: A regression
378		discontinuity study in British Columbia, Canada. Stock SJ, ed. PLOS Med.
379		2020;17(12):e1003435. doi:10.1371/journal.pmed.1003435
380	35.	Boghossian NS, McDonald SA, Bell EF, Carlo WA, Brumbaugh JE, Stoll BJ, et al.

381		Association of antenatal corticosteroids with mortality, morbidity, and
382		neurodevelopmental outcomes in extremely preterm multiple gestation infants. JAMA
383		Pediatr. 2016;170(6):593-601. doi:10.1001/jamapediatrics.2016.0104
384	36.	Herrera TI, Vaz Ferreira MC, Toso A, Villarroel L, Silvera F, Ceriani-Cernadas JM, et al.
385		Neonatal outcomes of antenatal corticosteroids in preterm multiple pregnancies compared
386		to singletons. Early Hum Dev. 2019;130:44-50. doi:10.1016/j.earlhumdev.2019.01.008
387	37.	Claire L, Vieux R. Efficacy of Antenatal Corticosteroids According to Maternal and
388		Perinatal Factors: A Retrospective Cohort Study. Am J Perinatol. 2015;32(11):1070-1077.
389		doi:10.1055/s-0035-1548537
390	38.	Gagliardi L, Lucchini R, Bellù R, Zanini R. Antenatal Corticosteroid Prophylaxis in
391		Singleton and Multiple Pregnancies. Paediatr Perinat Epidemiol. 2017;31(5):394-401.
392		doi:10.1111/ppe.12385
393	39.	Quist-Therson EC, Myhr TL, Ohlsson A. Antenatal steroids to prevent respiratory distress
394		syndrome: Multiple gestation as an effect modifier. Acta Obstet Gynecol Scand.
395		1999;78(5):388-392. doi:10.1080/j.1600-0412.1999.780508.x
396	40.	Hashimoto LN, Hornung RW, Lindsell CJ, Brewer DE, Donovan EF. Effects of antenatal
397		glucocorticoids on outcomes of very low birth weight multifetal gestations. Am J Obstet
398		Gynecol. 2002;187(3):804-810. doi:10.1067/mob.2002.125891
399		

Table 1. Characteristics of included studies

Study	Location	Time	Study	Gestational ages	Treatment timing	Factors adjusted for
		period	design			
Caspi	Israel,* single	1974-	Cohort	Admitted for	Delivered at least 24	-
1981 ¹⁶	hospital	1978		delivery from 28	hours after admission	
				to 36 weeks		
Spinillo	Italy, single	1988-	Cohort	Delivered	First dose more than	-
1995 ¹⁷	tertiary hospital	1993		between 24 to	48 hours and less than	
				34 weeks	seven days before	
					delivery	
Turrentin	USA, single	1990-	Cohort	Delivered	First dose more than	Sex, race, birthweight, gestational age,
e 1996 ¹⁸	tertiary hospital	1994		between 24 to	48 hours and less than	small for gestational age, rupture of
				34 weeks	seven days before	membranes, labor, tocolytics, first twin
					delivery	

Al-	Kuwait, single	1997-	Matche	Admitted for	No information	-
Yatama	hospital	1999	d	delivery from 24		
200119			cohort	to 34 weeks		
Hacking	Australia and	1995	Cohort	Delivered	First dose more than	-
2001 ²⁰	New Zealand			between 23 to	24 hours and less than	
	Neonatal			31 weeks	eight days before	
	Network				delivery	
	Database					
Murphy	UK, single	1990-	Cohort	Delivered	First dose more than	Gestational age, birth weight, sex,
2002 ²¹	hospital	1997		between 24 to	24 hours before	labour, vaginal delivery, infertility,
				37 weeks	delivery	smoker, placental chorionicity
Blickstei	Israeli National	1995-	Cohort	Delivered at 24	First dose more than	-
n 2005 ²²	Very Low Birth	2001		through 32	48 hours and less than	
	Weight			weeks	seven days before	
	Database				delivery	

Blickstei	Israeli National	1995-	Cohort	Delivered at 25	First dose more than	-
n 2006 ²³	Very Low Birth	2002		through 32	48 hours and less than	
	Weight			weeks	seven days before	
	Database				delivery	
Kuk	South Korea,	1995-	Cohort	Delivered	Administration-to-	Gestational age, indication for preterm
2013 ²⁴	single tertiary	2011		between 24 to	delivery intervals: less	birth, chronionicity, gestational
	hospital			34 weeks	than two days, two-	diabetes, hypertension, mode of
					seven days, more than	delivery, sex, birth order
					seven days	
Melamed	Canada,	2010-	Cohort	Delivered at	First dose more than	Gestational age, sex, hypertension,
2016 ⁷	Canadian	2014		24+0 through	48 hours and less than	outborn status, small for gestational
	Neonatal			33+6 weeks	seven days before	age (<10th percentile), parity, and
	Network				delivery	caesarean birth
Viteri	USA, 14	2004-	Cohort	Delivered	Treatment before 34	Gestational age, maternal age, race,
2016 ²⁵	academic sites	2006		between 24 and	weeks	chorionicity, delivery route, birth
				36+6 weeks		order, sex, smoking

Braun	Germany, single	1993-	Matche	Exposed to	Treatment between	-
2016 ²⁶	tertiary hospital	2011	d	treatment	23+5 to 33+6 weeks	
			cohort	between 23+5		
				and 33+6 weeks		
				(unexposed		
				matched on		
				gestational age		
				at birth)		
Palas	France,	2011	Cohort	Delivered	Complete course, first	Mortality: gestational age, small for
2018 ²⁷	nationwide			between 24	dose less than seven	gestational age, hypertensive diseases,
				through 31	days before delivery	gestational diabetes. BPD: gestational
				weeks	(or more than seven	age, small for gestational age,
					days since delivery)	hypertensive diseases, smoking status
Riskin-	Israeli National	1995-	Cohort	Delivered	Any	Maternal age, ethnicity, infertility
Mashiah	Very Low Birth	2012		between 24		treatment, maternal hypertensive
2018 ²⁸						disorder, preterm labor, premature

	Weight			through 31		rupture of membranes, amnionitis,
	Database			weeks		gestational age, delivery mode, birth
						weight z-score, neonatal sex, birth
						order, delivery room resuscitation, year
						of birth
Ushida	Neonatal	2003-	Cohort	Delivered	At least one dose	Maternal age, parity, gestational age,
2020 ⁸	Research	2015		between 24+0		mode of delivery, diabetes mellitus or
	Network of			through 31+6		gestational diabetes mellitus,
	Japan			weeks		hypertensive disorders of pregnancy,
						clinical chorioamnionitis, non-
						reassuring fetal status, neonatal sex,
						birth weight, small for gestational age,
						plurality of pregnancy, chorionicity,
						birth order, year of delivery

Ben-	Israel, single	2016-	Cohort	Delivered	First dose after 33+6	(None for RDS)
David	tertiary hospital	2018		between 34+0	weeks gestational age	
2020 ²⁹				through 36+6		
				weeks		
Kong	China, national	2013-	Cohort	Delivered	One or more doses	Gestational age, birth weight, neonatal
2020 ⁹	multicenter	2014		between 25+0		sex, small for gestational age, delivery
				and 35+6 weeks		mode, Apgar score at 5 min,
						gestational diabetes mellitus,
						premature rupture of membranes,
						Hypertensive disorder complicating
						pregnancy, placenta abruption and
						chorioamnionitis.
Gonçalv	Brazilian	2010-	Cohort	Delivered	Any	RDS: SNAPPE-II and early sepsis.
es-Ferri	Network of	2014		between 23+0		Mortality and BPD: SNAPPE-II, early
2021 ³⁰	Neonatal			and 33+0 weeks		sepsis, surfactant use, mechanical
	Research					ventilation, enterocolitis. IVH:

SNAPPE-II, early sepsis, mechanical

ventilation. NEC: SNAPPE-II.

Note: BPD = bronchopulmonary dysplasia, IVH = intraventricular hemorrhage, NEC = necrotizing enterocolitis, RDS = respiratory distress syndrome. SNAPPE-II calculated from mean blood pressure, temperature, PO2/FIO2 ratio, serum pH, multiple seizures, urine output, birthweight, small for gestational age, Apgar score at 5 minutes.

*Presumed, based on author affiliations.

Figure Legends

Figure 1. Risk of bias assessment (ROBINS-I) for included studies. Turrentine 1996 and Kuk 2013 are at moderate risk of bias for respiratory distress syndrome (reported adjusted estimates) and critical risk of bias for all other outcomes (crude estimates only).

Figure 2. Forest plot showing the odds of mortality among twin infants who were exposed vs. unexposed to antenatal corticosteroids. Studies without critical risk of bias due to confounding were included in the meta-analysis. Note: RoB-confounding = risk of bias due to confounding.

Figure 3. Forest plot showing the odds of respiratory distress syndrome among twin infants who were exposed vs. unexposed to antenatal corticosteroids. Studies without critical risk of bias due to confounding were included in the meta-analysis. Note: RoB-confounding = risk of bias due to confounding.

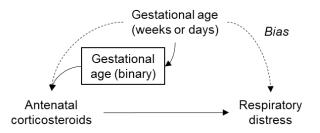
SUPPLEMENTAL INFORMATION

Socha P, McGee A, Bhattacharya S, Young C, Wang R. Antenatal corticosteroids and neonatal outcomes in twins: a systematic review and meta-analysis. 2022.

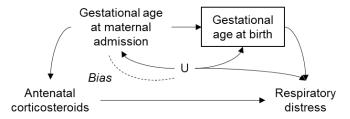
Contents

Appendix 1	
Appendix 2	
Appendix 3-4	
Appendix 5	5
Appendix 6	6
Appendix 7-8	
Appendix 9	
Appendix 10	
Appendix 11	
Appendix 12	
Appendix 13-17	19
Appendix 18-22	
References	

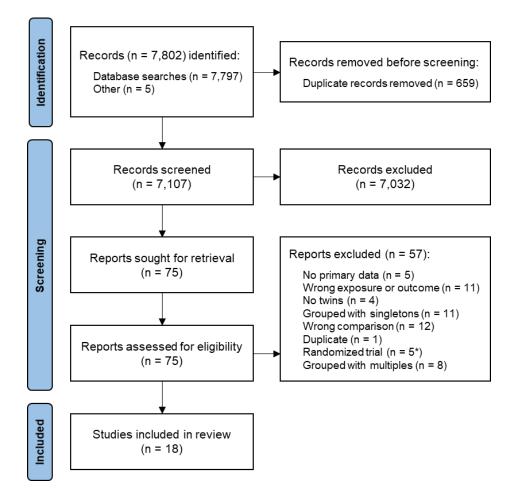
Appendix 1


	and clarifications from the registered prot	
Relevant section	Specification in the protocol ¹	Change or clarification
Inclusion/exclusion criteria	Included studies that compared treatment in twins with other higher order multiple gestations, the number and/or strength of doses, the number and/or timing of courses, or the administration-to-delivery interval	Excluded these studies
Inclusion/exclusion criteria	Excluded studies with low severity intraventricular haemorrhage (less than grade III), necrotising enterocolitis (less than grade II), and retinopathy of prematurity (less than grade III)	Included studies with any severity of intraventricular haemorrhage, necrotising enterocolitis, and retinopathy of prematurity, but used high-severity definitions when possible (i.e., if a study stratified)
Inclusion/exclusion criteria	Included randomized trials	We focused our synthesis on non- randomized studies, as randomized trials of antenatal corticosteroid treatment in multiples have recently been systematically reviewed. ² During screening, we identified a randomized trial of antenatal corticosteroid treatment in twins that was not included in the 2020 Cochrane review. ³ However, the study had issues with randomization and trial registration (including receiving ethics approval after study initiation).
Risk of bias assessment	Downs and Black checklist ⁴	Risk Of Bias In Non-randomised Studies - of Interventions (ROBINS-I) ⁵
Meta-analysis	-	Performed two sensitivity analyses: stratifying by whether studies accounted for clustering within twin pairs and pooling crude ORs for our two primary outcomes (mortality and RDS)

Appendix 1. Changes and clarifications from the registered protocol.


Appendix 2

Search Terms: (corticosteroid* OR steroid* OR adrenal cortex hormone* OR glucocorticoid* OR dexamethasone OR betamethasone) AND (twin pregnancy OR multiple pregnancy OR multiple gestation* OR twin*)



Appendix 3. Directed acyclic graph showing residual confounding (dashed lines) through gestational age, in studies that restrict to premature births (e.g., <37 weeks gestation or <34 weeks gestation) but do not perform any adjustment for week- or day-based gestational age.

Appendix 4. Directed acyclic graph showing risk of bias (dashed line) from adjusting on gestational age at birth. In the presence of an unmeasured variable (U) that confounds the relationship between gestational age at maternal admission and gestational age at birth, and gestational age at birth and respiratory distress, adjusting on gestational age biases the relationship between gestational age at maternal admission and U (opening a backdoor path from antenatal corticosteroids to respiratory distress). There is a trade-off between the strong confounding by gestational age at birth and whether/how strongly U affects gestational age at birth through a "direct" mechanism (i.e., one other than through gestational age at maternal admission). Adjusting on gestational age at maternal admission (where available) should help alleviate this bias; however, this will likely result in residual confounding due to pregnancies that are admitted for delivery, administered corticosteroids, and discharged without delivering (to deliver at a later date).

Appendix 5

Appendix 5. Flow diagram of study search and selection.

Appendix 6

Note: BPD = bronchopulmonary dysplasia, GEE = generalized estimating equations, IVH = intraventricular haemorrhage, NEC = necrotizing enterocolitis, NICU = neonatal intensive care unit, PVL = periventricular leukomalacia, RDS = respiratory distress syndrome, ROP = retinopathy of prematurity.

A 1'	1	D / 1	C' 1	1 1	. 1.		1	1 .
Annendix	61	Defails	of incl	nded	stildles.	setting	and	deston
Appendix	0.1.	Details	or mer	uucu	studies.	setting	ana	ucorgin.

Author	Location	Time period	Study design	Selection of controls
Caspi 1981 ⁶	Israel, ^a single hospital	1974-1978	Cohort	-
Spinillo 1995 ⁷	Italy, single tertiary hospital	1988-1993	Cohort	-
Turrentine 1996 ⁸	USA, single tertiary hospital	1990-1994	Cohort	-
Al-Yatama 2001 ⁹	Kuwait, single hospital	1997-1999	Matched cohort	No information
Hacking 2001 ¹⁰	Australia, New Zealand, Australia and New Zealand Neonatal Network Database	1995	Cohort	-
Murphy 2002 ¹¹	UK, single hospital	1990-1997	Cohort	-
Blickstein 2005 ¹²	Israel, Israeli National Very Low Birth Weight Database ^b	1995-2001	Cohort	-
Blickstein 2006 ¹³	Israel, Israeli National Very Low Birth Weight Database ^b	1995-2002	Cohort	-
Kuk 2013 ¹⁴	South Korea, single tertiary hospital	1995-2011	Cohort	-
Melamed 2016 ¹⁵	Canada, Canadian Neonatal Network	2010-2014	Cohort	-
Viteri 2016 ¹⁶	USA, 14 academic sites	2004-2006	Cohort	-
Braun 2016 ¹⁷	Germany, single tertiary hospital	1993-2011	Matched cohort	Matched on gestational age at delivery
Palas 2018 ¹⁸	France, nationwide	2011	Cohort	-
Riskin-Mashiah 2018 ¹⁹	Israel, Israeli National Very Low Birth Weight Database ^b	1995-2012	Cohort	-
Ushida 2020 ²⁰	Japan, Neonatal Research Network of Japan	2003-2015	Cohort	-
Ben-David 2020 ²¹	Israel, single tertiary hospital	2016-2018	Cohort	-
Kong 2020 ²²	China, national multicenter	2013-2014	Cohort	-
Gonçalves-Ferri 2021 ²³	Brazil, Brazilian Network of Neonatal Research	2010-2014	Cohort	-

^aPresumed, based on author affiliations.

^bData from Riskin-Mashiah 2018 overlaps with the data from in Blickstein 2005 and 2006.

Author	Gestational ages	Other inclusion/exclusion criteria
Caspi 1981 ⁶	Admitted for delivery from 28 to 36 weeks	Excluded: hypertensive disorders of pregnancy, abruptio placentae, obvious placental insufficiency, diabetes mellitus, Ph isoimmunization, stillbirths, chorioamnionitis, unknown gestational age
Spinillo 1995 ⁷	Delivered between 24 to 34 weeks	Included: planned deliveries for patients with medical complications, undetermined or immature lecithin/sphingomyelin ratio. Excluded: stillborn, malformed, severe abruption, eclampsia
Turrentine 1996 ⁸	Delivered between 24 to 34 weeks	-
Al-Yatama 2001 ⁹	Admitted for delivery from 24 to 34 weeks	Excluded: long-term maternal corticosteroid treatment,
Hacking 2001 ¹⁰	Delivered between 23 to 31 weeks	Included: admitted to NICU
Murphy 2002 ¹¹	Delivered between 24 to 37 weeks	-
Blickstein 2005 ¹²	Delivered at 24 through 32 weeks	Included: admitted to NICU, birthweight less than or equal to 1500g. Excluded: lethal malformations, quadruplets or quintuplets
Blickstein 2006 ¹³	Delivered at 25 through 32 weeks	Included: admitted to NICU, birthweight less than or equal to 1500g. Excluded: lethal malformations, quadruplets or quintuplets
Kuk 2013 ¹⁴	Delivered at 24 to 34 weeks	Excluded: twin-to-twin transfusion syndrome, one or more fetal deaths, fetal chromosomal or non-chromosomal major anomalies, placenta previa, placental abruption, serious maternal medical diseases, multiple courses of antenatal corticosteroids
Melamed 2016 ¹⁵	Delivered at 24+0 through 33+6 weeks	Included: admitted to NICU. Excluded: birthweight below third percentile, clinical chorioamnionitis, major congenital anomaly, stillbirths, multiples courses of antenatal corticosteroids
Viteri 2016 ¹⁶	Delivered between 24 and 36+6 weeks	Excluded: iatrogenic fetal reduction, major fetal anomalies, fetal death of either twin, presumed monoamniotic placenta, suspected twin-to-twin transfusion syndrome, ultrasonographic growth discordance greater that three weeks between fetuses, planned progesterone therapy after 16 weeks gestation, need for cerclage placement, major uterine anomaly, need for anticoagulation, major chronic maternal medical disease
Braun 2016 ¹⁷	Exposed to treatment between 23+5 and 33+6 weeks (unexposed matched on gestational age at birth)	Excluded: twin-to-twin transfusion syndrome, intrauterine death, malformations, chromosomal anomalies, fetal or maternal diseases, pathologic umbilical or uterine Doppler findings
Palas 2018 ¹⁸	Delivered between 24 through 31 weeks	Included: admitted to NICU. Excluded: delivery-room deaths, twin-to-twin transfusion syndrome, co-twin fetal deaths, manor congenital anomalies
Riskin-Mashiah 2018 ¹⁹	Delivered between 24 through 31 weeks	Included: admitted to NICU, birthweight less than or equal to 1500g. Excluded congenital anomalies
Ushida 2020 ²⁰	Delivered between 24+0 through 31+6 weeks	Included: admitted to NICU, birthweight less than or equal to 1500g. Excluded: major congenital anomaly, transfer from other facilities, co-twin fetal death
Ben-David 2020 ²¹	Delivered between 34+0 through 36+6 weeks	Excluded: one or more stillbirths, clinical chorioamnionitis, suspected fetal anomalies, intra-uterine growth restriction, complications from monochorionicity, twin-to-twin transfusion syndrome, anemia polycythemia
Kong 2020 ²²	Delivered between 25+0 and 35+6 weeks	Included: admitted to NICU. Excluded: outborn infants, major congenital anomalies, neonatal death of either twin, monoamniotic placenta, twin-to-twin transfusion syndrome, required discharge for financial reasons
Gonçalves-Ferri 2021 ²³	Delivered between 23+0 and 33+0 weeks	Included: admitted to NICU, birthweight 400 to 1499g. Excluded: congenital malformations, death in delivery room, outborns, quadruplets+

Appendix 6.2. Details of included studies: study population.

Author	Drug	Dosage	Treatment timing	Control
Caspi 1981 ⁶	No information	4mg, every 8 hours, until delivery (maximum seven days)	Delivered at least 24 hours after admission	No antenatal corticosteroids
Spinillo 1995 ⁷	Betamethasone or dexamethasone	Two doses, 12mg, 24 hours apart	First dose more than 48 hours/less than seven days before delivery	No antenatal corticosteroids
Turrentine 1996 ⁸	Betamethasone	Two doses, 12mg, 24 hours apart	First dose more than 48 hours/less than seven days before delivery	No antenatal corticosteroids
Al-Yatama 2001 ⁹	Dexamethasone	Two doses, 12mg, 12 hours apart	No information	No antenatal corticosteroids
Hacking 2001 ¹⁰	No information	Two doses	First dose more than 24 hours/less than eight days before delivery	No antenatal corticosteroids
Murphy 2002 ¹¹	Dexamethasone	Two doses, 12mg, 12 hours apart	First dose more than 24 hours before delivery	No antenatal corticosteroids
Blickstein 2005 ¹²	Betamethasone or dexamethasone	Two doses, 12mg (betamethasone) or four doses, 6mg (dexamethasone)	First dose more than 48 hours/less than seven days before delivery	Partial, or no antenatal corticosteroids
Blickstein 2006 ¹³	Betamethasone or dexamethasone	Two doses, 12mg (betamethasone) or four doses, 6mg (dexamethasone)	First dose more than 48 hours/less than seven days before delivery	Partial, or no antenatal corticosteroids
Kuk 2013 ¹⁴	Betamethasone or dexamethasone	Two doses, 12mg, 24 hours apart (betamethasone) or four doses, 12 hours apart (dexamethasone)	Administration-to-delivery intervals: less than two days, two-seven days, more than seven days	No antenatal corticosteroids
Melamed 2016 ¹⁵	Betamethasone or dexamethasone	Two doses, 12mg, 24 hours apart (betamethasone); or four doses, 6mg, 12 hours apart (dexamethasone)	First dose more than 48 hours/less than seven days before delivery	No antenatal corticosteroids
Viteri 2016 ¹⁶	No information	No information	Treatment before 34 weeks	No antenatal corticosteroids
Braun 2016 ¹⁷	Betamethasone	16mg or less, 24mg, more than 24mg	Treatment between 23+5 to 33+6 weeks	No antenatal corticosteroids
Palas 2018 ¹⁸	Betamethasone	Two doses, 12mg	Complete course, first dose less than seven days before delivery (or more than seven days since delivery)	No antenatal corticosteroids
Riskin-Mashiah 2018 ¹⁹	No information	No information	Any	No antenatal corticosteroids
Ushida 2020 ²⁰	Betamethasone	Two doses, 12mg, 24 hours apart	At least one dose	No antenatal corticosteroids
Ben-David 2020 ²¹	Betamethasone	Two doses, 12mg, 24 hours apart	First dose after 33+6 weeks gestational age	No antenatal corticosteroids
Kong 2020 ²²	Dexamethasone	Four doses, 5-6mg, 12 hours apart	One or more doses	No antenatal corticosteroids
Gonçalves-Ferri 2021 ²³	Betamethasone	Two doses, 12mg, 24 hours apart ^c	Any	No antenatal corticosteroids

Appendix 6.3. Details of included studies: intervention and control groups

^cTreatment that was recommended during the time period, but data on actual practice were unavailable.

Author	Outcomes of interest	Other outcomes
Caspi 1981 ⁶	Mortality, RDS	-
Spinillo 1995 ⁷	RDS, IVH	-
Turrentine 1996 ⁸	RDS, mortality	Fetal deaths
Al-Yatama 20019	RDS	NICU admission
Hacking 2001 ¹⁰	Mortality, RDS	Surfactant use
Murphy 2002 ¹¹	RDS	-
Blickstein 2005 ¹²	RDS	-
Blickstein 2006 ¹³	IVH	-
Kuk 2013 ¹⁴	Mortality, RDS, IVH, BPD, NEC, PVL, ROP	Patent ductus arteriosus, early sepsis, late sepsis
Melamed 2016 ¹⁵	Mortality, RDS, BPD, NEC, ROP	Mechanical ventilation, severe neurological injury
Viteri 2016 ¹⁶	RDS	NICU admission, mechanical ventilation
Braun 2016 ¹⁷	Mortality	RDS or asphyxia, birth weight, body length, head circumference, Ponderal index, Apgar, umbilical artery blood pH, umbilical vein blood pH, base excess, placental weight
Palas 2018 ¹⁸	Mortality, BPD	IVH or PVL
Riskin-Mashiah 2018 ¹⁹	Mortality, RDS, IVH, BPD, NEC, PVL, ROP	-
Ushida 2020 ²⁰	Mortality, RDS, IVH, NEC, PVL, ROP	Chronic lung disease, sepsis
Ben-David 2020 ²¹	RDS	TTN, oxygen requirement, CPAP, mechanical ventilation, NICU admission, hypoglycemia, jaundice
Kong 2020 ²²	Mortality, RDS, IVH, BPD, NEC, PVL, ROP	Patent ductus arteriosus, sepsis
Gonçalves-Ferri 2021 ²³	Mortality, RDS, IVH, BPD, NEC	1 and 5-minute Apgar, need for intubation in delivery room, need for mechanical ventilation, early sepsis, hemodynamic instability

Appendix 6.4. Details of included studies: assessed outcomes.

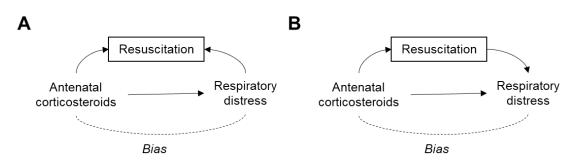
Appendix 6.5. Details of included studies: assessment of primary outcomes of interest.

Author	Morality	Respiratory distress syndrome
Caspi 1981 ⁶	Early neonatal death	Clinical of Silverman score, typical radiological findings, acid-base balance, and blood gas analysis
Spinillo 1995 ⁷	-	Physical signs of respiratory distress and required ventilatory support for >48 hours, confirmed radiologically
Turrentine 1996 ⁸	Neonatal death	Clinical, radiological, and blood gas findings. Severe RDS: an infant with RDS requiring mechanical ventilation
Al-Yatama 20019		Clinical, radiological, and blood gas results; mild to severe
Hacking 2001 ¹⁰	Mortality	Increasing respiratory distress or oxygen requirements, or the need for ventilator support from the first 6 hours of life together with a chest radiograph showing a generalized reticulogranular pattern, with or without an air bronchogram
Murphy 2002 ¹¹	-	No information
Blickstein 2005 ¹²		Characteristic clinical and radiographic findings together with supplementary oxygen or mechanical ventilation.
Blickstein 2006 ¹³	-	-
Kuk 2013 ¹⁴	Neonatal mortality	Radiographic chest findings plus 1 or more clinical signs of respiratory distress including respiratory grunting, retracting, and increased oxygen requirement (fraction of inspired oxygen of greater than 0.4) or the administration of exogenous pulmonary surfactant
Melamed 2016 ¹⁵	Death prior to discharge from NICU	Respiratory morbidity, including need for and duration of mechanical ventilation, respiratory distress syndrome, and bronchopulmonary dysplasia, defined as the requirement for oxygen at postmenstrual age of 36 weeks or at the time of transfer to a level II facility
Viteri 2016 ¹⁶	-	Clinical diagnosis and oxygen therapy (PiO ₂ ≥0.40) for 24 hours or greater
Braun 2016 ¹⁷	Morality	-
Palas 2018 ¹⁸	Morality	-
Riskin-Mashiah 2018 ¹⁹	Death before discharge to home	No information
Ushida 2020 ²⁰	In-hospital death	Clinical manifestations and chest radiography
Ben-David 2020 ²¹	-	No information
Kong 2020 ²²	Death before discharge from NICU	Clinical evidence of respiratory difficulties (tachypnea, retraction, grunting and cyanosis), radiographic appearance of RDS (low volume lungs with a diffuse reticulogranular pattern and air bronchograms)
Gonçalves-Ferri 2021 ²³	Death before discharge from NICU	No information

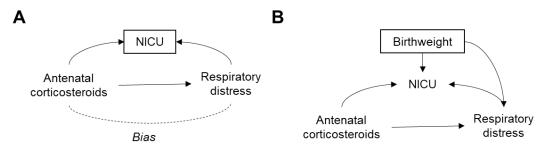
Author	Intraventricular haemorrhage	Bronchopulmonary dysplasia
Caspi 1981 ⁶	-	-
Spinillo 1995 ⁷	Grades I-IV. Diagnosed by serial cranial ultrasound examinations	-
Turrentine 1996 ⁸	-	-
Al-Yatama 20019	-	-
Hacking 2001 ¹⁰	-	-
Murphy 2002 ¹¹	-	
Blickstein 2005 ¹²	-	-
Blickstein 2006 ¹³	Grades III-IV. Diagnosed using the definition from Papile et al. 1978 ²⁴	-
Kuk 2013 ¹⁴	Grades III-IV. Ultrasonographic examination of the neonatal brain, intraventricular bleeding without ventricular dilatation (grade II) or with ventricular dilatation (grade III) or with parenchymal involvement (grade IV)	Need for supplementary oxygen for 28 days or more, or by diagnostic radiographic or histological findings
Melamed 2016 ¹⁵	_d	Oxygen requirement at postmenstrual age of 36 weeks or at the time of transfer to a level II facility
Viteri 2016 ¹⁶	-	-
Braun 2016 ¹⁷	-	-
Palas 2018 ¹⁸	-	Mechanical ventilator support, continuous positive airway pressure, or ≥30% supplementary oxygen at 36 weeks of gestation and supplementary oxygen for at least 28 days
Riskin-Mashiah 2018 ¹⁹	Grades III-IV	No information
Ushida 2020 ²⁰	Grades III-IV. Diagnosed according to Papile et al. 1978 ²⁴	<i>Chronic lung disease</i> : need for supplemental oxygen at 36 weeks of corrected gestational age
Ben-David 2020 ²¹	-	-
Kong 2020 ²²	Grades III-IV for crude OR, any grade for adjusted OR. Diagnosed within 28 days of birth using real-time portable cranial ultrasound, grades III-IV according to the Papile et al. 1978 ²⁴	Required mechanical ventilation or supplemental oxygen 28 days after birth. Moderate to severe BPD: still received supplemental oxygen at 36 weeks' postmenstrual age or discharge
Gonçalves-Ferri 2021 ²³	Grades III-IV	Oxygen at 36 weeks corrected age

Appendix 6.6. Details of included studies: assessment of secondary outcomes of interest 1/2.

 $^{\rm d}\rm{IVH}$ and PVL were aggregated / not reported separately.

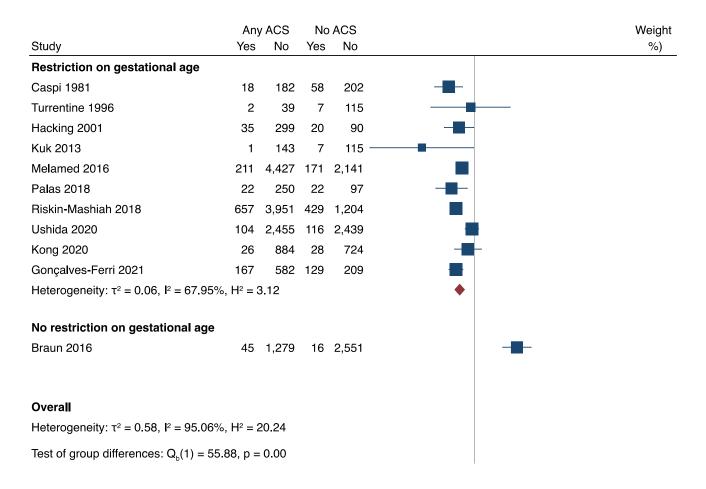

Author	Necrotizing enterocolitis	Periventricular leukomalacia	Retinopathy of prematurity
Caspi 1981 ⁶	-	-	-
Spinillo 1995 ⁷	-	-	-
Turrentine 1996 ⁸	-	-	-
Al-Yatama 2001 ⁹	-	-	-
Hacking 2001 ¹⁰	-	-	-
Murphy 2002 ¹¹	-	-	-
Blickstein 2005 ¹²	-	-	-
Blickstein 2006 ¹³	-	-	-
Kuk 2013 ¹⁴	Stages II-III. Abdominal distention and feeding intolerance for more than 24 hours with radiological evidence of intramural air, perforation, meconium plug syndrome, or definitive surgical findings	Ultrasonographic examination of the neonatal brain, the presence of an obvious hypoechoic cyst in the periventricular white matter	Grades III-IV. Diagnosed by ophthalmologist, grading based on the International Classification of Retinopathy of Prematurity
Melamed 2016 ¹⁵	Stages II-III. According to the criteria of Bell et al. 1978 ²⁵	_d	Grades III-IV. According to the international classification of retinopathy of prematurity, or retinopathy of prematurity requiring treatment
Viteri 2016 ¹⁶	-	-	-
Braun 2016 ¹⁷	-	-	-
Palas 2018 ¹⁸	-	-	-
Riskin-Mashiah 2018 ¹⁹	Stages II-III	Cystic PVL	Grades III-IV
Ushida 2020 ²⁰	Stages II-III. Defined according to the criteria of Bell et al. 1978 ²⁵	Diagnosed with intracranial ultrasonography or magnetic resonance imaging	Treated ROP
Ben-David 2020 ²¹	-	-	-
Kong 2020 ²²	Stages II-III for crude OR, any stage for adjusted OR. One abdominal sign (bilious gastric aspirate or vomiting, abdominal distention or tenderness, gross or occult blood in the stool) and one radiographic finding (pneumatosis intestinalis, hepatobiliary gas, fixed position loop on serial studies). Stage II according to modified Bell et al. 1978 ²⁵	Diagnosed with intracranial ultrasonography or magnetic resonance imaging	Grades III-IV for crude OR, any grade for adjusted OR. Retinal examination before discharge
Gonçalves-Ferri 2021 ²³	Stages II or III	-	-

Appendix 6.7. Details of included studies: assessment of secondary outcomes of interest 2/2.


Factors adjusted for Author Twin clustering Strata Caspi 1981⁶ --Spinillo 1995⁷ -_ Turrentine 1996⁸ Sex, race, birthweight, gestational age, small for gestational age, rupture of membranes, labor, _ tocolytics, first twin Al-Yatama 2001⁹ Hacking 2001¹⁰ _ Unspecified standard error adjustment Murphy 2002¹¹ RDS at <34 weeks. Gestational age, birth weight, sex, labour, vaginal delivery, infertility, smoker, placental Multilevel models RDS at <37 weeks chorionicity Blickstein 2005¹² _ --Blickstein 2006¹³ _ _ Kuk 2013¹⁴ Gestational age, indication for preterm birth, chronionicity, gestational diabetes, hypertension, mode of delivery, sex, birth order Melamed 2016¹⁵ Gestational age, sex, hypertension, outborn status, small for gestational age (<10th percentile), GEE parity, and caesarean birth Viteri 201616 Gestational age, maternal age, race, chorionicity, delivery route, birth order, sex, smoking Random effect for sibling pairs Braun 2016¹⁷ (None for mortality) -Palas 201818 Mortality: gestational age, small for gestational age, hypertensive diseases, gestational diabetes. Robust standard BPD: gestational age, small for gestational age, hypertensive diseases, smoking status errors Maternal age, ethnicity, infertility treatment, maternal hypertensive disorder, preterm labor, Small or not small **Riskin-Mashiah** Potentially, GEE 201819 premature rupture of membranes, amnionitis, gestational age, delivery mode, birth weight zfor gestational age score, gender, birth order, delivery room resuscitation, year of birth Maternal age, parity, gestational age, mode of delivery, diabetes mellitus or gestational diabetes Ushida 2020²⁰ mellitus, hypertensive disorders of pregnancy, clinical chorioamnionitis, non-reassuring fetal status, gender, birth weight, small for gestational age, plurality of pregnancy, chorionicity, birth order, year of delivery Ben-David 2020²¹ (None for RDS) -Kong 2020²² Gestational age, birth weight, gender, small for gestational age, delivery mode, Apgar score at 5 min, gestational diabetes mellitus, premature rupture of membranes, Hypertensive disorder complicating pregnancy, placenta abruption and chorioamnionitis. RDS: SNAPPE-II^e and early sepsis. Mortality and BPD: SNAPPE-II,^e early sepsis, surfactant use, Random effect for Gonçalves-Ferri 2021^{23} mechanical ventilation, enterocolitis. IVH: SNAPPE-II, early sepsis, mechanical ventilation. pregnancy NEC: SNAPPE-II.^e

Appendix 6.8. Details of included studies: analyses.

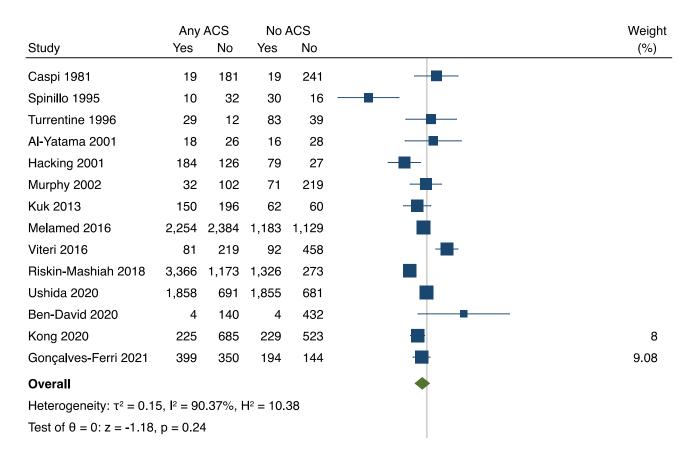
^eCalculated from mean blood pressure, temperature, PO2/FIO2 ratio, serum pH, multiple seizures, urine output, birthweight, small for gestational age, Apgar score at 5 minutes.



Appendix 7. Directed acyclic graphs showing bias (dashed lines) introduced by adjusting on a collider (A) or mediator (B), as exemplified in Riskin-Mashiah 2018. Here, resuscitation could be conceived as being caused by respiratory distress (A) or the clinical diagnosis of respiratory distress is caused by being resuscitated (B; as is often the case with respiratory distress syndrome). In both cases, conditioning on resuscitation would bias the association between antenatal corticosteroids and respiratory distress.

Appendix 8. Directed acyclic graphs showing examples of bias (dashed line) introduced by only including neonates that are admitted to neonatal intensive care units (NICUs). Exemplified in Kong 2020 (A), conditioning on NICU admission could bias the association between antenatal corticosteroids and respiratory distress. Exemplified in Ushida 2020 (B), restricting to infants with birthweight 1500g or less itself does not bias the association between antenatal corticosteroids and respiratory distress, and (since almost all liveborn neonates weighing 1500g or less are admitted to the NICU) conditioning on NICU *and* birthweight *likely* avoids much of the bias associated with restricting to NICUs. However, even if all 1500g infants are sent to the NICU, conditioning on NICUs could still bias results due to delivery-room mortality. When conditioning on birthweight, the primary issue would be generalizability, from very low birthweight infants to higher birthweight infants.

Appendix 9



Appendix 9. Forest plot showing the crude, unadjusted odds of mortality among twin infants who were exposed vs. unexposed to antenatal corticosteroids. Note: ACS = antenatal corticosteroids; denominator for Gonçalves-Ferri 2021 were back-calculated from numerators and percentages, there was an error in either the numerator or percentage for mortality and "no ACS" (±1 infant).

Study	Year	Year (median)	Adjusted Odds ratio with 95% CI	
Turrentine 1996	1990-1994	1992	0.63 [0.20, 1.97]	· · · · · · · · · · · · · · · · · · ·
Murphy 2002	1990-1997	1993	0.82 [0.49, 1.38]	_
Kuk 2013	1995-2011	2003	0.66 [0.40, 1.10]	
Riskin-Mashiah 2018a	1995-2012	2003	0.76 [0.57, 1.02]	
Riskin-Mashiah 2018b	1995-2012	2003	0.67 [0.53, 0.83]	
Ushida 2020	2003-2015	2009	0.76 [0.59, 0.98]	
Melamed 2016	2010-2014	2012	0.71 [0.55, 0.90]	
Kong 2020	2013-2014	2014	0.70 [0.57, 0.86]	_
			-	1/4 1/2 1

Appendix 10

Appendix 10. Cumulative meta-analysis for neonatal mortality (adjusted).

Appendix 11

Appendix 11. Forest plot showing the crude, unadjusted odds of respiratory distress syndrome among twin infants who were exposed vs. unexposed to antenatal corticosteroids. All studies restricted to preterm gestational ages. Note: ACS = antenatal corticosteroids.

			Adjusted Odds ratio	
Study	Year	Year (median)	with 95% CI	
Riskin-Mashiah 2018a	1995-2012	2003	0.52 [0.31, 0.88]	
Riskin-Mashiah 2018b	1995-2012	2003	0.55 [0.45, 0.68]	-
Ushida 2020	2003-2015	2009	0.65 [0.46, 0.92]	_ _
Palas 2018	2011	2011	0.57 [0.38, 0.86]	_ _
Melamed 2016	2010-2014	2012	0.55 [0.39, 0.77]	
Kong 2020	2013-2014	2013	0.59 [0.43, 0.80]	
			-	0.31 0.92

Appendix 12. Cumulative meta-analysis respiratory distress syndrome (adjusted).

Study	N (ACS)	N (no ACS)	RoB-confounding	Adjusted Odds ratio with 95% Cl			
Clustering considered							
Riskin-Mashiah 2018a	531	159	Serious	0.71 [0.38, 1.33]			
Riskin-Mashiah 2018b	3792	1268	Serious	0.59 [0.47, 0.74]	-		
Heterogeneity: Not applicable				0.60 [0.49, 0.75]	•		
Clustering not considered					_		
Ushida 2020	2549	2536	Moderate	0.70 [0.53, 0.92]			
Kong 2020	910	752	Serious	1.29 [0.94, 1.77]			
Heterogeneity: Not applicable				0.95 [0.52, 1.72]			
Overall 0.78 [0.55, 1.13]							
Heterogeneity: $\tau^2 = 0.10$, $I^2 = 80.37\%$, $H^2 = 5.09$							
Test of group differences: $Q_b(1) = 1.92$, p = 0.17							

Appendix 13-17

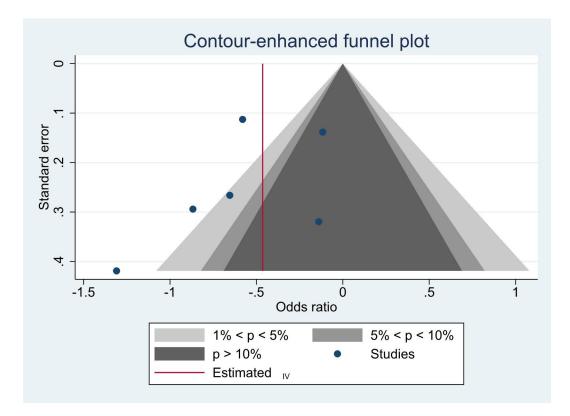
Appendix 13. Forest plot showing the odds of intraventricular haemorrhage among twin infants who were exposed vs. unexposed to antenatal corticosteroids. Studies without critical risk of bias due to confounding were included in the meta-analysis. Note: RoB-confounding = risk of bias due to confounding.

				Adjusted Odds ratio		
Study	N (ACS)	N (no ACS)	RoB-confounding	with 95% CI	1	
Clustering considered						
Melamed 2016	4638	2312	Moderate	0.69 [0.42, 1.12]		
Palas 2018	272	119	Moderate	0.60 [0.21, 1.71]		
Riskin-Mashiah 2018a	453	126	Serious	2.03 [1.02, 4.04]		
Riskin-Mashiah 2018b	3423	1078	Serious	1.11 [0.83, 1.49]		
Heterogeneity: $\tau^2 = 0.14$, $I^2 =$	65 . 09%, H ²	= 2.86		1.02 [0.64, 1.63]	-	
Clustering not considered						
Kong 2020	910	752	Serious	1.45 [0.85, 2.47]		
Ushida 2020	2533	2490	Moderate	1.07 [0.93, 1.23]		
Heterogeneity: Not applicable	1			1.11 [0.92, 1.34]		
Overall				1.08 [0.96, 1.21]		
Heterogeneity: $\tau^2 = 0.00$, $I^2 =$	0.00%, H ² =	= 1.00				
Test of group differences: $Q_b(1) = 0.11$, p = 0.74						

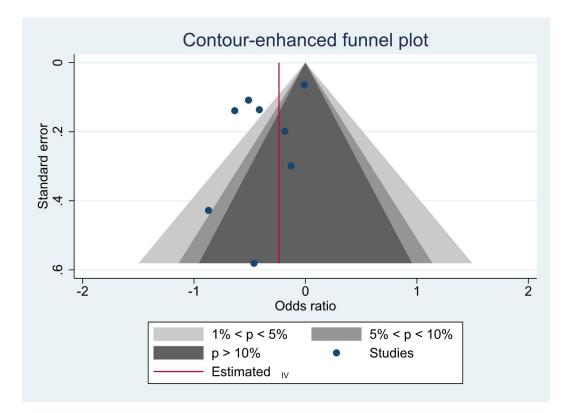
Appendix 14. Forest plot showing the odds of bronchopulmonary dysplasia among twin infants who were exposed vs. unexposed to antenatal corticosteroids. Studies without critical risk of bias due to confounding were included in the meta-analysis. Note: RoB-confounding = risk of bias due to confounding.

Study	N (ACS)	N (no ACS)	RoB-confounding	Adjusted Odds ratio with 95% Cl		Weight (%)
Clustering considered						
Melamed 2016	4638	2312	Moderate	1.24 [0.65, 2.37]		9.73
Riskin-Mashiah 2018a	576	191	Serious	0.62 [0.33, 1.16]		10.52
Riskin-Mashiah 2018b	3962	1408	Serious	1.04 [0.78, 1.38]	-#-	50.35
Heterogeneity: $\tau^2 = 0.01$, I^2	= 8.72%, H ² =	= 1.10		0.98 [0.75, 1.28]	+	
Clustering not considered	d					
Ushida 2020	2493	2531	Moderate	1.00 [0.63, 1.58]		19.66
Kong 2020	910	752	Serious	1.32 [0.69, 2.53]		9.75
Heterogeneity: Not applical	ble			1.10 [0.76, 1.59]		
Overall				1.02 [0.83, 1.25]		
Heterogeneity: $\tau^2 = 0.00$, I^2	= 0.00%, H ² =	= 1.00				
Test of group differences: C	Q _b (1) = 0.24, p	= 0.63			1 2 4	['] 8

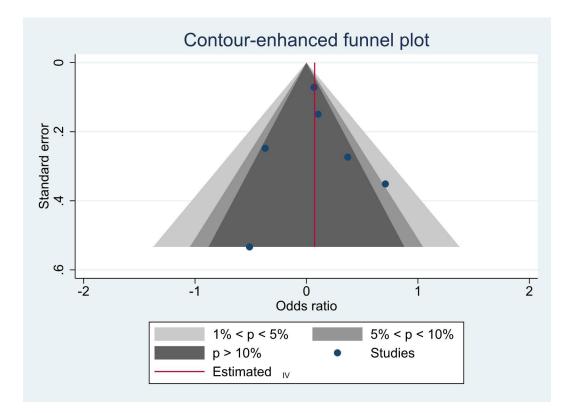
Appendix 15. Forest plot showing the odds of necrotising enterocolitis among twin infants who were exposed vs. unexposed to antenatal corticosteroids. Studies without critical risk of bias due to confounding were included in the meta-analysis. Note: RoB-confounding = risk of bias due to confounding.

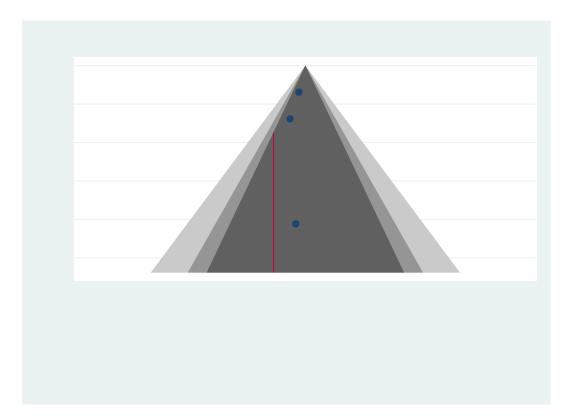

				Adjusted Odds ratio			
Study	N (ACS)	N (no ACS)	RoB-confounding	with 95% Cl			
Clustering considered							
Riskin-Mashiah 2018a	421	117	Serious	0.82 [0.39, 1.74]			
Riskin-Mashiah 2018b	3147	970	Serious	0.65 [0.49, 0.87]			
Heterogeneity: Not applicable				0.67 [0.51, 0.88]	•		
Clustering not considered							
Ushida 2020	2548	2546	Moderate	0.65 [0.50, 0.85]			
Kong 2020	910	752	Serious	1.26 [0.77, 2.09]			
Heterogeneity: Not applicable				0.88 [0.46, 1.67]			
Overall				0.77 [0.57, 1.03]			
Heterogeneity: $\tau^2 = 0.05$, $I^2 = 56.33\%$, $H^2 = 2.29$							
Test of group differences: $Q_b(1) = 0.56$, p = 0.45							

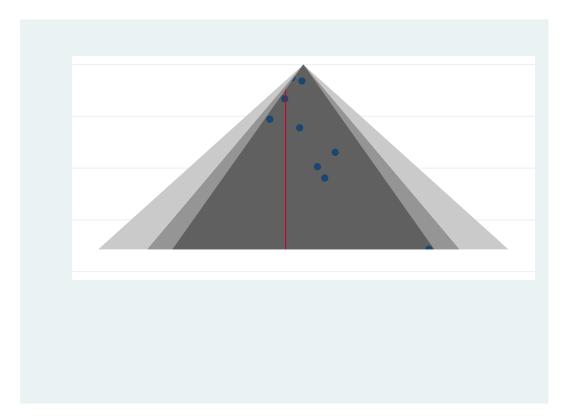
Appendix 16. Forest plot showing the odds of periventricular leukomalacia among twin infants who were exposed vs. unexposed to antenatal corticosteroids. Studies without critical risk of bias due to confounding were included in the meta-analysis. Note: RoB-confounding = risk of bias due to confounding.


Study	N (ACS)	N (no ACS)	RoB-confounding	Adjusted Odds ratio with 95% Cl		Weight (%)
Clustering considered						
Melamed 2016	4638	2312	Moderate	2.37 [0.74, 7.59]		- 3
Riskin-Mashiah 2018a	453	122	Serious	1.35 [0.64, 2.84]		3.26
Riskin-Mashiah 2018b	3411	1015	Serious	0.87 [0.61, 1.25]		13.99
Heterogeneity: $\tau^2 = 0.08$, I^2	= 40.06%, H ²	= 1.67	1.15 [0.69, 1.90]	-		
Clustering not considered	d					
Ushida 2020	2487	2414	Moderate	0.92 [0.79, 1.07]		78.24
Kong 2020	910	752	Serious	1.75 [0.82, 3.70]		3.19
Heterogeneity: Not applicat	ole			1.14 [0.63, 2.05]		
Overall				0.96 [0.84, 1.09]		
Heterogeneity: $\tau^2 = 0.00$, I^2	= 0.00%, H ² =	= 1.00				
Test of group differences: C	Q _b (1) = 0.00, p	= 0.98				

Appendix 17. Forest plot showing the odds of retinopathy of prematurity among twin infants who were exposed vs. unexposed to antenatal corticosteroids. Studies without critical risk of bias due to confounding were included in the meta-analysis. Note: RoB-confounding = risk of bias due to confounding.


Appendix 18-22


Appendix 18. Funnel plot for neonatal mortality (adjusted).


Appendix 19. Funnel plot for respiratory distress syndrome (adjusted).

Appendix 20. Funnel plot for bronchopulmonary dysplasia (adjusted).

Appendix 21. Funnel plot for neonatal mortality (crude).

Appendix 22. Funnel plot for respiratory distress syndrome (crude).

References

- [1] McGee A, Bhattacharya S, Young C, Socha P. The effects of antenatal corticosteroids on improving outcomes in twin pregnancies. Published online 2020. https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020205302
- [2] McGoldrick E, Stewart F, Parker R, et al. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane database Syst Rev. 2020;12:CD004454.
- [3] Abbasalizadeh F, Pouya K, Zakeri R, et al. Prenatal Administration of Betamethasone and Neonatal Respiratory Distress Syndrome in Multifetal Pregnancies: A Randomized Controlled Trial. Curr Clin Pharmacol. 2019;15(2):164–9.
- [4] Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Heal. 1998 Jun 1;52(6):377–84.
- [5] Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016 Oct 12;355.
- [6] Caspi E, Schreyer P, Weinraub Z, et al. Dexamethasone for prevention of respiratory distress syndrome: multiple perinatal factors. Obstet Gynecol. 1981;57(1):41–446.
- [7] Spinillo A, Capuzzo E, Ometto A, et al. Value of antenatal corticosteroid therapy in preterm birth. Early Hum Dev. 1995;42(1):37–47.
- [8] Turrentine MA, Dupras-Wilson P, Wilkins IA. A retrospective analysis of the effect of antenatal steroid administration on the incidence of respiratory distress syndrome in preterm twin pregnancies. Am J Perinatol. 1996;13(6):351–4.
- [9] Al-Yamata M, Al Essa M, Omu A, et al. Effect of repeated doses of dexamethasone on the incidence and severity of respiratory distress syndrome in multifetal gestation between 24 and 34 weeks. Gynecol Obstet Invest. 2001;52:26–33.
- [10] Hacking D, Watkinds A, Fraser S, et al. Respiratory distress syndrome and antenatal corticosteroid treatment in premature twins. Arch Dis Child Fetal Neonatal Ed. 2001;85:F75–8.
- [11] Murphy DJ, Caukwell S, Joels LA, et al. Cohort study of the neonatal outcome of twin pregnancies that were treated with prophylactic or rescue antenatal corticosteroids. Am J Obstet Gynecol. 2002;187(2):483–8.
- [12] Blickstein I, Shinwell ES, Lusky A, et al. Plurality-dependent risk of respiratory distress syndrome among very-low-birth-weight infants and antepartum corticosteroid treatment. Am J Obstet Gynecol. 2005;192(2):360–4.
- [13] Blickstein I, Reichman B, Lusky A, et al. Plurality-dependent risk of severe intraventricular hemorrhage among very low birth weight infants and antepartum corticosteroid treatment. Am J Obstet Gynecol. 2006;194(5):1329–33.
- [14] Kuk JY, An JJ, Cha HH, et al. Optimal time interval between a single course of antenatal corticosteroids and delivery for reduction of respiratory distress syndrome in preterm twins. Am J Obstet Gynecol. 2013;209(3):256.e1-256.e7.
- [15] Melamed N, Shar J, Yoon E, et al. The role of antenatal corticosteroids in twin pregnancies complicated by preterm birth. Am J Obstet Gynecol. 2016 Oct 1;215(4):482.e1-482.e9.
- [16] Viteri OA, Blackwell SC, Chauhan SP, et al. Antenatal Corticosteroids for the Prevention of Respiratory Distress Syndrome in Premature Twins. Obstet Gynecol. 2016 Sep 1;128(3):583–91.
- [17] Braun T, Weichert A, Gil HC, et al. Fetal and neonatal outcomes after term and preterm delivery following betamethasone administration in twin pregnancies. Int J Gynecol Obstet. 2016;134(3):329–35.
- [18] Palas D, Ehlinger V, Alberge C, et al. Efficacy of antenatal corticosteroids in preterm twins: the EPIPAGE-2 cohort study. BJOG An Int J Obstet Gynaecol. 2018 Aug 1;125(9):1164–70.

- [19] Riskin-Mashiah S, Reichman B, Bader D, et al. Population-based study on antenatal corticosteroid treatment in preterm small for gestational age and non-small for gestational age twin infants. J Matern Neonatal Med. 2018;31(5):553–9.
- [20] Ushida T, Kotani T, Sadachi R, et al. Antenatal Corticosteroids and Outcomes in Preterm Twins. Obstet Gynecol. 2020 Jun 1;135(6):1387–97.
- [21] Ben-David A, Zlatkin R, Bookstein-Peretz S, et al. Does antenatal steroids treatment in twin pregnancies prior to late preterm birth reduce neonatal morbidity? Evidence from a retrospective cohort study. Arch Gynecol Obstet. 2020 Nov 1;302(5):1121–6.
- [22] Kong X, Xu F, Wang Z, et al. Antenatal corticosteroids administration on mortality and morbidity in premature twins born at 25~34 gestational weeks: A retrospective multicenter study. Eur J Obstet Gynecol Reprod Biol. 2020;253:259–65.
- [23] Assad Gonçalves-Ferri W, Martinez FE, Martins-Celini FP, et al. Evaluation of the effectiveness of antenatal corticoid in preterm twin and single pregnancies: a multicenter cohort study. J Matern Neonatal Med. 2021;0(0):1–7.
- [24] Papile LA, Burstein J, Burstein R, et al. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm. J Pediatr. 1978 Apr 1;92(4):529–34.
- [25] Bell MJ, Ternberg JL, Feigin RD, et al. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg. 1978;187(1):1.

		Risk of bias domains								
		D1	D2	D3	D4	D5	D6	D7	Overall	
	Caspi 1981		+	+	+	+	-	-		
	Spinillo 1995		+	+	+	?	+	X		
	Turrentine 1996		+	+	+	+	-	-		
	Al-Yatama 2001		X	+	+	+	+	-		
	Hacking 2001		X	+	+	?	-	-		
	Murphy 2002	-	+	+	+	+	+	-	-	
	Blickstein 2005		+	+	+	+	-	-		
	Blickstein 2006		+	+	+	+	-	-		
ldy	Kuk 2013		+	+	+	?	+	-		
Study	Melamed 2016	-	X	+	+	+	-	-	X	
	Viteri 2016	-	?	+	+	+	-	-	-	
	Braun 2016		-	+	+	?	-	-		
	Palas 2018	-	X	+	+	-	-	-	X	
	Riskin-Mashiah 2018	X	+	+	+	+	-	-	X	
	Ushida 2020	-	X	+	+	?	-	-	X	
	Ben-David 2020		+	+	+	+	-	-		
	Kong 2020	X	X	+	+	?	-	-	X	
	Gonçalves-Ferri 2021		?	+	+	?	-	X		
		Domains: D1: Bias due to confounding. D2: Bias due to selection of participants. D3: Bias in classification of interventions. D4: Bias due to deviations from intended interventions. D5: Bias due to missing data. D6: Bias in measurement of outcomes. D7: Bias in selection of the reported result.						Judgement Critical Serious Moderate Low No information		

Study	N (ACS)	N (no ACS)	RoB-confounding	Adjusted Odds ratio with 95% CI			
Clustering considered							
Melamed 2016	4638	2312	Moderate	0.42 [0.24, 0.75]			
Palas 2018	272	119	Moderate	0.27 [0.12, 0.61]			
Riskin-Mashiah 2018a	585	199	Serious	0.52 [0.31, 0.88]			
Riskin-Mashiah 2018b	3977	1434	Serious	0.56 [0.45, 0.70]			
Heterogeneity: $\tau^2 = 0.01$, $I^2 = 8$		0.51 [0.41, 0.63]					
Clustering not considered							
Ushida 2020	2559	2555	Moderate	0.89 [0.68, 1.17]			
Kong 2020	910	752	Serious	0.87 [0.47, 1.63]			
Heterogeneity: Not applicable	0.89 [0.69, 1.14]						
Overall				0.59 [0.43, 0.80]			
Heterogeneity: $\tau^2 = 0.09$, $I^2 = 67.10\%$, $H^2 = 3.04$							
Test of group differences: $Q_b(1) = 11.07$, p < 0.001							

1/8

Study	N (ACS)	N (no ACS)	RoB-confounding	Adjusted Odds ratio with 95% CI	
Clustering considered					
Murphy 2002	58	104	Moderate	0.88 [0.49, 1.58]	—
Melamed 2016	4638	2312	Moderate	0.53 [0.40, 0.70]	
Riskin-Mashiah 2018a	576	191	Serious	0.83 [0.56, 1.23]	
Riskin-Mashiah 2018b	3963	1408	Serious	0.60 [0.48, 0.74]	-
Heterogeneity: $\tau^2 = 0.02$, $I^2 =$		0.64 [0.52, 0.79]	•		
Clustering not considered					
Turrentine 1996	41	122	Moderate	0.63 [0.20, 1.97]	
Kuk 2013	346	122	Moderate	0.42 [0.18, 0.97]	
Ushida 2020	2549	2536	Moderate	0.99 [0.87, 1.12]	
Kong 2020	910	752	Serious	0.66 [0.51, 0.86]	
Heterogeneity: $\tau^2 = 0.08$, $I^2 =$	0.74 [0.51, 1.06]	-			
Overall				0.70 [0.57, 0.86]	•
Heterogeneity: $\tau^2 = 0.05$, $I^2 =$	= 69.97%, H ² =	3.33			
Test of group differences: Q_{b}	(1) = 0.41, p =	0.52			

1/8 1/4 1/2