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Geography of Australia 

 

  

Figure S1; Maps of Australia with state and territory boundaries featuring remoteness categories (top) and each area’s 
IRSAD percentile (bottom), with insets of the largest state capitals. Grey areas have small populations and the IRSAD for 
these areas cannot be published for privacy reasons. These areas are parkland, military or industrial areas. 



Australia is spatially diverse, with extremely low population density over most of the land area, with 

regions of high density at the coast, near state capitals. This is reflected in the remoteness categories 

shown in the Supplementary material in Figure S1, with the state and territory boundaries for 

Western Australia (WA), the Northern Territory (NT), South Australia (SA), Queensland (Qld), New 

South Wales (NSW), the Australian Capital Territory (ACT), Victoria (Vic) and Tasmania (Tas). 

Socioeconomic status, shown by percentile of Index for Relative Socioeconomic Advantage and 

Disadvantage (IRSAD) for small areas in Figure S1, is associated with remoteness, however there are 

considerable differences within metropolitan areas. The insets show the IRSAD percentiles for 

metropolitan areas around Brisbane in Queensland, Sydney in NSW, Melbourne in Victoria and Perth 

in WA. The Australian Capital Territory (ACT) is the only state or territory without a sea border but is 

classified as major city or inner regional and has very high socioeconomic status as the population 

has a large proportion of professionals. Hospitals and health systems are largely administered by the 

states and territories and pathology services tend to be state based. 



Maps of SIRs and EHRs for persons, females and males 

 

 

Figure S2; Maps of the standardised incidence ratios (SIRs) for classic myeloproliferative neoplasms by geographic area for 
persons (top), females (middle) and males (bottom) for all Australia (left) and insets of the major metropolitan areas (right). 
An SIR with value 1 indicates incidence is equal to the Australian average. 



 

 

Figure S3; Maps of the excess hazard ratios (EHRs) for classic myeloproliferative neoplasms by geographic area for persons 
(top), females (middle) and males (bottom) for all Australia (left) and insets of the major metropolitan areas (right). An EHR 
of 1 indicates survival is equal to the Australian average. 



CrIs for EHRs: no evidence of a spatial difference in hazard 

 

 

Figure S4; The 80% credible intervals for the excess hazard ratios (EHRs) for classic myeloproliferative neoplasms by sex and 
state, with a horizontal line indicating an EHR of 1 (representing the Australian average). The states and territories include 
New South Wales (NSW), Western Australia (WA), South Australia (SA), Australian Capital Territory (ACT) and the Northern 
Territory (NT).  

  



Testing rates for mutations in genes associated with classic MPNs 

The following Table and Figure use data from the Australian Medicare Benefits Schedule (MBS). MBS 

Item 73325 provides funding for the characterization of mutations in the Janus Kinase 2 (JAK2) and 

myeloproliferative leukemia (MPL) for the diagnosis of patients with clinical and laboratory evidence 

of PV and ET.1 Data were obtained from the Medicare Item Reports released by Services Australia.2 

State is based on the patient’s residential address at time of testing. 

Table S1; Number of tests per 100,000 population for mutations in the JAK2 and MPL genes by state or territory, between 
2012 and 2016, inclusive. 

State Number of tests  

(per 100,000 persons) 

NSW 179 

Victoria 167 

Queensland 256 

WA 130 

SA 162 

Tasmania 144 

ACT 118 

NT 43 

Total 182 

 

 
1 Medicare Benefits Schedule – Item 73325. Retrieved December 16, 2020. 
http://www9.health.gov.au/mbs/fullDisplay.cfm?type=item&q=73325 
2 Medicare Statistics, Medicare Item Reports. Services Australia, Australian Government. Retrieved December 
16, 2020. http://medicarestatistics.humanservices.gov.au/statistics/mbs_item.jsp 



 

Figure S5; Rates of government-subsidised tests for mutations in the JAK2 and MPL genes by state plotted against financial 
year. The dashed vertical line indicates the limit of the study period, after which cancer incidence data were not available. 

  



Most valid basis for diagnosis by state or territory 

Table S2; Percentage of individuals whose most valid basis for diagnosis was histology by state or territory. 

State Histology (%) 

NSW 49 

Victoria 34 

Queensland 63 

WA 46 

SA 43 

Tasmania 64 

ACT 79 

NT 45 

Total 48 
 

 



 

Figure S6; Modelled probabilities of having histologic evidence for diagnosis by MPN subtype and state or territory, area-level socioeconomic quintile or remoteness category. The states and 
territories include New South Wales (NSW), Western Australia (WA), South Australia (SA), Australian Capital Territory (ACT) and the Northern Territory (NT). 

 



Calculating marginal survival 

The model is: 

𝑑𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇) 

log(𝜇 − 𝑑∗) = log(𝑦) + 𝑥𝛽 

ℎ(𝑡, 𝑥, 𝛽) + ℎ∗(𝑡) =
𝜇 − 𝑑∗

𝑦
= 𝑒𝑥𝛽 

Where ℎ is the excess mortality and ℎ∗ is the age- and sex-matched population mortality. 

Stata outputs 𝑒𝑥𝛽 using the following syntax: 

margins state##sex##end irsad##sex##end, expression(exp(predict(xb 

nooffset))) 

 

This syntax provides the marginal ℎ𝑡 = 𝑒𝑥𝛽 − ℎ𝑡
∗ by state and area-level socioeconomic quintile 

(IRSAD) for each sex and risk interval (𝑡) and the corresponding standard error, 𝑆𝐸(ℎ𝑡). 

 

The interval-specific relative survival ratio (𝑟𝑡) can be calculated as follows: 

𝑟𝑡 = exp(− exp(𝑥𝛽) + ℎ𝑡
∗) = 𝑒−ℎ𝑡  

We can then calculate the 5-year relative survival ratio: 

𝑟5𝑦𝑟 = ∏ 𝑟𝑖

5

𝑖=1
= ∏ 𝑒−ℎ𝑖

5

𝑖=1
= exp (− ∑ ℎ𝑖

5

𝑖=1
) 

We can calculate the variance of the cumulative excess mortality as follows: 

Var (∑ ℎ𝑖

5

𝑖=1
) = ∑ 𝑉𝑎𝑟(ℎ𝑖)

5

𝑖=1
= ∑ (𝑆𝐸(ℎ𝑖))

25

𝑖=1
 

Hence, the 95% confidence interval for the 5-year cumulative excess mortality is: 

∑ ℎ𝑖
5
𝑖=1 ± 1.96 √∑ (𝑆𝐸(ℎ𝑖))

25
𝑖=1   

And the 95% confidence interval of the 5-year relative survival is: 

exp (− ∑ ℎ𝑖
5
𝑖=1 ± 1.96 √∑ (𝑆𝐸(ℎ𝑖))

25
𝑖=1 )  



 

Spatial modelling 

Statistical models 

Bayesian Leroux spatial models were fitted to the incidence and survival data for males, females and 

persons as per the Australian Cancer Atlas.26 Briefly, the number of observed cases, 𝑦𝑖, for each area, 

𝑖, was modelled as a Poisson process, as shown in the equation below, where 𝐸𝑖  was the expected 

number of cases, 𝜃𝑖 was the log standardised incidence rate (SIR), 𝛽0 was the global log SIR and 𝑆𝑖 

was the spatial random effect. 

𝑦𝑖  ~ 𝑃𝑜𝑖𝑠(𝐸𝑖𝑒𝜃𝑖) 

𝜃𝑖 ~ 𝛽0 + 𝑆𝑖 

The expected number of cases was age-standardised as below, where 𝑦𝑘  was the total number 

across Australia of cases in age group 𝑘, 𝑁𝑘  is the population size of age group 𝑘 in Australia and 𝑁𝑖𝑘  

is the size of the population in area 𝑖. 

𝐸𝑖 = ∑
𝑦𝑘

𝑁𝑘
𝑁𝑖𝑘

𝑘

 

The spatial random effect, 𝑆𝑖, was given a Leroux prior, as shown below, where 𝜌 is the proportion 

of the spatial random effect that was autocorrelation between areas, 𝑤𝑖𝑗 is 1 if areas 𝑖 and 𝑗 are 

neighbouring, but otherwise 0 and 𝜎𝑆
2 is a variance. 

𝑆𝑖|𝑆\𝑖 ~ 𝑁 (
𝜌 ∑ 𝑤𝑖𝑗𝑆𝑗𝑗

𝜌 ∑ 𝑤𝑖𝑗𝑗 + 1 − 𝜌
,

𝜎𝑆
2

𝜌 ∑ 𝑤𝑖𝑗𝑗 + 1 − 𝜌
) 

The following prior distributions were applied: 

𝛽0 ~ 𝑁(0, 100 000) 

𝜎𝑆
2 ~ 𝐼𝐺(1, 0.01) 

𝜌 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) 

The survival model was a Bayesian Leroux spatial piecewise relative survival model. Since survival is 

poorer for PMF than ET or PV, the spatial survival model was adjusted for MPN subtype, with an 

indicator variable indicating whether the cancer was PMF or not. The number of deaths for age 

group 𝑘 and area 𝑖 and follow-up interval 𝑗, 𝑑𝑘𝑗𝑖, was Poisson with mean 𝜇𝑘𝑗𝑖: 

𝑑𝑘𝑗𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑘𝑗𝑖) 



The expected number of deaths, 𝑑𝑘𝑗𝑖
∗ , was calculated using population mortality; 𝑦𝑘𝑗𝑖  was the 

person-time at risk; 𝛽0𝑗 was the intercept for each follow-up year; the 𝛽𝑘 were effects for each age 

group, 𝛽𝑠 was the effect for sex, when modelling survival of persons and 𝛽ℎ was the effect for cancer 

subtype, where ℎ had two levels: the first representing cases of PMF and the second ET or PV. The 

spatial random effect, 𝑆𝑖, was given a Leroux prior as above. Then 𝜇𝑘𝑗𝑖 was modelled as follows. 

log(𝜇𝑘𝑗𝑖 − 𝑑𝑘𝑗𝑖
∗ ) = log(𝑦𝑘𝑗𝑖) +  𝛽0𝑗 + 𝛽𝑘 + 𝛽ℎ + 𝛽𝑠 + 𝑆𝑖  

𝛽0𝑗 ~ 𝑁(0, 0.01) 

𝛽𝑘  ~ 𝑁(0, 0.01) 

𝛽𝑠 ~ 𝑁(0, 0.01) 

1

𝜎𝑆
2 =  𝜏𝑆

2 ~ 𝑁(0, 0.2) 

𝜌 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) 

The excess hazard ratio (EHR) for each area was calculated as 𝐸𝐻𝑅𝑖 = exp (𝑆𝑖). 

Model convergence was checked using Geweke diagnostics3 for the parameters and spatial effects 

and inspecting the trace and density plots of the posterior distributions for each parameter. Moran’s 

I was used to test for autocorrelation in the residuals.4 

  

 
3 Geweke, J. Evaluating the accuracy of sampling-based approaches to calculating posterior moments. 
In Bayesian Statistics 4 (ed JM Bernado, JO Berger, AP Dawid and AFM Smith). Clarendon Press, Oxford, UK. 

4 Li, Hongfei; Calder, Catherine A.; Cressie, Noel (2007). Beyond Moran's I: Testing for Spatial Dependence 
Based on the Spatial Autoregressive Model. Geographical Analysis. 39 (4): 357–375. 



Code for the spatial survival model 

The data set consists of a row for each small area, MPN subtype, risk year, age group and sex. 

The WinBUGS code is saved to a file location (this location is specified in the R code below). The R 

code calls the WinBUGS code that runs the model. 

R code 

library(R2WinBUGS) 
  
# Fixed values 
bugs.dat <- list( 
  N = N,               # Number of areas (SA2s) 
 T = T,               # Number of risk years 
 N.d = N.d,           # Number of data rows (N * T * # of covariates) 
 d = d,               # Number of deaths 
 d.star = d.star,     # Expected number of deaths due to causes other than cancer of interest 
 y = y,               # Person-time at risk offset 
 RiskYear = RiskYear, 
 Area = Area, 
 adj = adj$adj, 
 num = adj$num, 
 cum = c(cumsum(adj$num) - adj$num, sum(adj$num)), 
 sumnum = sum(adj$num), 
 agegp2 = x1, 
 agegp3 = x2, 
 agegp4 = x3, 
 subtype = x4, 
 sex = x5, 
 num.covariates = 5) 
  
# Initial values 
inits <- function() {list( 
  alpha = rep(-3, 5), 
  u = rep(0, N), 
  sigma.u2 = 0.2, 
  rho = 0.5, 
  beta = rep(0, num.covariates))} 
  
# Parameters to monitor in WinBUGS 
parameters <- c("alpha", "u", "sigma.u2", "beta", "rho") 
  
# Run WinBUGS 
bugs( 
 data = bugs.dat, 
 inits = inits, 
 parameters.to.save = parameters, 
 model.file = "Leroux.bug", 
 n.chains = 1, 
 n.iter = 150000, 
 n.burnin = 50000, 
 n.thin = 10, 
 debug = FALSE, 
 bugs.directory = "C:/WinBUGS14/", 
 program = "WinBUGS", 
 DIC = FALSE) 



WinBUGS Code 

model{ 
  for(i in 1:N.d){ 
             d[i] ~ dpois(mu[i]) 
           mu[i] <- d.star[i] + d.excess[i] 
          log(d.excess[i]) <- log(y[i]) + alpha[RiskYear[i]] + beta[1] * agegp2[i] + beta[2] * agegp3[i] 
+ beta[3] *  agegp4[i] + beta[4] * subtype[i] + beta[5] * sex[i] + u[Area[i]] 
          } 
   
  # Leroux prior for spatial random effects 
  for(j in 1:N){ 
          u[j] ~ dnorm(mean.u[j], prec.u[j]) 
       A[j] <- (rho * num[j] + 1 - rho) 
       prec.u[j] <- A[j] / sigma.u2 
       mean.u[j] <- rho * sum(W.u[cum[j] + 1:cum[j+1]]) / A[j] 
       } 
 
  for(h in 1:sumnum){ 
    W.u[h] <- u[adj[h]] 
   } 
   
  # Other priors 
  sigma.u2 ~ dnorm(0, 0.2)I(0,) 
  rho ~ dunif(0, 1) 
  for(t in 1:T){ 
           alpha[t] ~ dnorm(0, 0.01) 
      } 
 
  for(k in 1:5){ 
       beta[k] ~ dnorm(0, 0.01) 
       } 
} 


