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Abstract 117 

Northern peatlands store globally-important amounts of carbon in the form of partly decomposed 118 

plant detritus. Drying associated with climate and land-use change may lead to increased fire 119 

frequency and severity in peatlands and the rapid loss of carbon to the atmosphere. However, our 120 

understanding of the patterns and drivers of peatland burning on an appropriate decadal to millennial 121 

timescale relies heavily on individual site-based reconstructions. For the first time, we synthesise 122 

peatland macrocharcoal records from across North America, Europe, and Patagonia to reveal regional 123 

variation in peatland burning during the Holocene. We used an existing database of proximal 124 

sedimentary charcoal to represent regional burning trends in the wider landscape for each region. 125 

Long-term trends in peatland burning appear to be largely climate driven, with human activities likely 126 

having an increasing influence in the late Holocene. Warmer conditions during the Holocene Thermal 127 

Maximum (~9 to 6 cal. ka BP) were associated with greater peatland burning in North America’s 128 

Atlantic coast, southern Scandinavia and the Baltics, and Patagonia.  Since the Little Ice Age, peatland 129 

burning has declined across North America and in some areas of Europe. This decline is mirrored by a 130 

decrease in wider landscape burning in some, but not all sub-regions, linked to fire-suppression 131 

policies, and landscape fragmentation caused by agricultural expansion. Peatlands demonstrate lower 132 

susceptibility to burning than the wider landscape in several instances, probably because of autogenic 133 

processes that maintain high levels of near-surface wetness even during drought. Nonetheless, 134 

widespread drying and degradation of peatlands, particularly in Europe, has likely increased their 135 

vulnerability to burning in recent centuries. Consequently, peatland restoration efforts are important 136 

to mitigate the risk of peatland fire under a changing climate. Finally, we make recommendations for 137 

future research to improve our understanding of the controls on peatland fires. 138 

Key words (3-10) 139 

Fire, Charcoal, Palaeofire, Palaeoenvironments, Data analysis, North America, Europe, Patagonia, 140 

Carbon balance, Drought  141 
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1. Introduction 142 

Peatlands cover only ~3% of global land area (Xu et al., 2018), but the carbon they store is equivalent 143 

to around twice that of global forests (Pan et al., 2011). Peatlands have accumulated ~600 Gt of carbon 144 

during the Holocene, primarily at mid- to high-latitudes in the Northern Hemisphere (Yu et al., 2010). 145 

Increasingly deeper peatland water tables associated with climate change and human activities (e.g. 146 

agriculture, forestry, peat harvesting or road construction) will likely increase the frequency and 147 

extent of fires (Flannigan et al., 2009; Turetsky et al., 2015). Furthermore, greater incidence of 148 

lightning with warming will increase the frequency of naturally ignited wildfire, particularly in high-149 

latitude ecosystems (He et al., 2022; McCarty et al., 2021). The burning of deep peat releases carbon 150 

into the atmosphere that has been stored for centuries or millennia, and may therefore contribute to 151 

positive feedbacks influencing climate warming (Davies et al., 2013; Lin et al., 2021). Similarly, burning 152 

influences peatland vegetation dynamics, surface moisture and plant productivity – all of which 153 

influence the carbon balance (Nelson et. al. 2021). 154 

Peatlands are subject to both smouldering and flaming combustion. Smouldering combustion has the 155 

potential to cause greater direct carbon losses (Rein, 2013). Smouldering peatland fires can last for 156 

months, even burning throughout the winter under the snow layer (Rein and Huang, 2021). Burning 157 

of surface vegetation may lead to indirect carbon losses via modification of the peatland thermal 158 

regime (Brown et al., 2015) or hydrology (Wilkinson et al., 2020). Peatlands store large amounts of 159 

potential fuel in the form of partially decomposed organic matter, but typically have high surface 160 

moisture content, which limits the chance of ignition and fire propagation (Frandsen, 1997). 161 

Furthermore, wildfire can drive permafrost thaw in boreal peatlands, leading to surface wetting 162 

(Gibson et al., 2018). Drying caused by the aggradation of permafrost during the Holocene has been 163 

shown to have increased the susceptibility of peatlands to fire in North America (Zoltai et al., 1998). 164 

Contemporary climatic warming and human disturbance are thought to be increasing peatland 165 

vulnerability to wildfire (Nelson et al., 2021). The composition of vegetation cover is an important 166 

influence on peatland fire dynamics. Forested peatlands generally burn more frequently than open 167 

peatlands (Kuhry, 1994; Magnan et al., 2012), as these ecosystems have increased above-ground fuel 168 

availability (Thompson et al., 2019).  169 

Patterns in peatland burning vary among biomes and can differ from the fire regime at a landscape 170 

scale. For example, boreal peatlands in Canada exhibit mean fire return intervals of ~600-2950 years 171 

compared to ~200-1150 years in upland forests (Camill et al., 2009). In Europe, a mean fire interval of 172 

~475 years has been estimated from peatland areas in boreal Norway (Ohlson et al., 2006), while a 173 

temperate peatland area in continental Europe showed a frequency of 0-2 fires per 1000 years 174 

(Marcisz et al., 2019). The complex ecohydrological dynamics of peatlands interact with changes in 175 

local and extra-local vegetation composition, climate and human activities to affect the frequency and 176 

severity of peatland fires (Feurdean et al., 2022; Morris et al., 2015; Słowiński et al., 2022).  177 

The long timescales involved in peatland development, climatic change, vegetation dynamics and fire 178 

regimes mean that contemporary monitoring studies may not provide a full picture of peatland fire 179 

dynamics.  Several continental and global syntheses have used sedimentary charcoal records to 180 

reconstruct biomass burning on millennial timescales (Daniau et al., 2012; Marlon et al., 2008, 2016), 181 

but no such studies currently exist specifically for peatlands. Consequently, uncertainties remain 182 

regarding the long-term ecology of peatland fires on a continental scale. Here, we use a 183 

palaeoenvironmental approach to explore regional variability in peatland burning trends at mid- to 184 
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high-latitudes in North America, Europe and Patagonia on a timescale that provides a baseline for 185 

peatland fire dynamics and to better understand the past and present controls on peatland fire. 186 

2. Materials and methods 187 

2.1. Study regions  188 

We compiled and quality checked macrocharcoal records (we defined macrocharcoal as particles with 189 

a diameter >100 µm (Mooney and Tinner, 2011)) spanning 10,000 cal. yr BP to the present day from 190 

mid- to high-latitude peatlands in North America (sites = 68, records = 108), Europe (sites = 95, records 191 

= 103), and Patagonia (sites = 9, records = 10). The Patagonian region also includes a record from the 192 

Falkland Islands (Malvinas).  Chronological quality control criteria are outlined in Section 2.3. These 193 

data provide good spatial coverage of peatland areas in North America and Europe (Figure 1; Table 194 

S1). We divided North America and Europe into sub-regions to account for spatial differences in 195 

modern climate, human occupation and key peatland areas. Only basic analyses were possible for 196 

Patagonia due to the low number of sites. We characterised the average modern climatic space of 197 

peatland sites and sub-regions using monthly climate data from the CRU TS 4.04 dataset for the 1981-198 

2010 CE period (Harris et al., 2020). These data have been interpolated from climate stations to a 0.5° 199 

latitude by 0.5° longitude spatial resolution.  200 
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 201 

Figure 1. Site map of peatland record locations and their sub-region. Symbols with a white fill indicate that no 202 
charcoal was present throughout a record. Grey shading denotes peatland areas sourced from PEATMAP (Xu et 203 
al., 2018).  204 
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2.2. Charcoal data 205 

Theoretical models suggest that the dispersal distance of charcoal decreases with particle size (Clark, 206 

1988; Clark et al., 1998; Clark and Patterson, 1997; Higuera et al., 2007; Peters and Higuera, 2007). 207 

There is evidence that suggests macrocharcoal records (>100-200 µm) represent local scale fires 208 

within a few hundred meters (Carcaillet et al., 2001; Clark and Royall, 1996, 1995) or within several 209 

kilometres of a coring location (Feurdean et al., 2022, 2020a; Tinner et al., 2006). Source areas of 210 

macrocharcoal across Europe may be up to 40 km, but these findings are in relatively open landscapes 211 

and specifically for lacustrine settings (Adolf et al., 2018). Peatlands are thought to provide a more 212 

localised record of past fire occurrences than lakes because they experience limited secondary 213 

deposition by fluvial transport (Florescu et al., 2018; Remy et al., 2018). Furthermore, the peatland 214 

records may provide higher resolution information because they are not subjected to the same 215 

sediment reworking as in lakes (Clark and Patterson, 1997; Conedera et al., 2009; Oswald et al., 2005).  216 

For these reasons, we assume that our peatland macrocharcoal records (>100 µm) are primarily a 217 

proxy for burning of peatland aboveground vegetation or burning of the peat itself. However, we 218 

cannot rule out the influence of some charcoal input from vegetation in immediate vicinity of the 219 

peatland and in some instances from a regional source – especially from intense crown fires or those 220 

occurring during high winds (Gardner and Whitlock, 2001; Peters and Higuera, 2007). There is 221 

evidence of fine-scale variation in the quantity of charcoal within a peatland relating to topography, 222 

fuel type and land-use history (Cui et al., 2020; Kasin et al., 2013) that we cannot account for in this 223 

study. Similarly, particularly severe in-situ smouldering fires can consume much of the charcoal they 224 

produce and cause some loss of the peatland archive (Zaccone et al., 2014). 225 

To enable a comparison of localised peatland burning to that in the wider regional landscape, we 226 

selected records that were proximal to our peatland sites (see Figure S1) from the Global Charcoal 227 

Database (GCD) v.4.0.7 using the Paleofire package v.1.2.4 (Blarquez et al., 2014) in R v.4.0.5 (R Core 228 

Team, 2021). These records from the GCD include microcharcoal and macrocharcoal and are from a 229 

variety of sedimentary archives, excluding those listed as a bog, fen or mire. These records are 230 

assumed to provide a record of regional biomass burning (Marlon et al., 2016). We ensured that the 231 

wider landscape sites that pertained to each sub-region were within a convex hull defined by the loci 232 

of the peatland sites in that sub-region, or no more than 200 km outside it (150 km in central Europe 233 

to avoid duplication of sites). Further details of the wider landscape records selected from the GCD 234 

can be found in Figure S1 and Table S2.  Where peatland macrocharcoal records from the GCD met 235 

our quality control criteria, we included them in our peatland burning dataset (see Table S1). 236 

2.3. Age-depth modelling 237 

In order to standardise the methodology used for age-depth modelling, we produced new Bayesian 238 

age-depth models (Figures S2-S38) for each peatland record from chronological information such as 239 
14C, 210Pb, tephra layers and spheroidal carbonaceous particles (SCPs), using the rbacon package 240 

v.2.5.7 (Blaauw et al., 2021) in R (R Core Team, 2021).  We established quality control criteria that 241 

required cores to comprise at least ten sample depths, to have a chronology spanning at least 500 242 

years, and to have a date (e.g. 210Pb, 14C or tephra) at least every 2500 years on average. Prior 243 

information on accumulation rate and its memory or variability can be found for each age-depth 244 

model in Figures S2-S38. 245 

2.4. Resampling and transformation 246 
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The peatland macrocharcoal records that we used have been compiled using a variety of methods 247 

(e.g. particle counts, area measurements and relative abundances) and a range of particle size 248 

fractions (e.g. >125 µm, >150 µm and >0.5 mm). This variability in measurement approach can result 249 

in values that differ by orders of magnitude and therefore data standardisation is required to compare 250 

relative changes between records over time (Power et al., 2010). Furthermore, owing to varying 251 

accumulation rates within and among cores, standardisation of temporal resolution via binning or 252 

smoothing is required to avoid an inflated influence of high-resolution samples on any subsequent 253 

analyses. Macrocharcoal occurs in 47.8% (12,321 out of 25,758) of pre-binned peat samples. We used 254 

proportional relative scaling (PRS) - developed specifically for systems where fire is rare (McMichael 255 

et al., 2021) - and presence/absence analyses to standardise our peatland records (see below).  256 

2.4.1. Proportional relative scaling and presence/absence 257 

For the PRS and presence/absence analyses, we developed a new method to resample the temporal 258 

resolution of raw charcoal data proportionally into equal 50-year time bins using depth intervals 259 

calculated from age-depth models (Figure S39). This approach minimises potential distortion from 260 

non-contiguous sampling, particularly for records with infrequent sampling (Figure S40). The 261 

proportion of samples containing charcoal is important for calculating both PRS and 262 

presence/absence; therefore, we applied the depth binning approach to resample the data prior to 263 

calculation of PRS and presence/absence. We calculated presence/absence for each resampled 264 

record, and the percentage of sites containing charcoal for each 50-year period in North America, 265 

Europe, Patagonia and sub-regions of interest. To calculate PRS for each record, we divided individual 266 

resampled charcoal values (Ci) by the maximum resampled charcoal value from that record (Cmax) and 267 

multiplied by 100. We then scaled this value by the proportion of resampled values containing 268 

charcoal. The PRS formula applied to our resampled charcoal data is as follows: 269 

𝑐ℎ𝑎𝑟𝑝𝑠𝑐𝑎𝑙𝑒𝑑 = (
𝑐𝑖

𝑐𝑚𝑎𝑥
 × 100)

𝑓

𝑁
 270 

Where charpscaled is proportionally relatively scaled charcoal values, Ci is a singular resampled charcoal 271 

value within a record, Cmax is the maximum resampled charcoal value within that same record, f is the 272 

number of resampled values containing charcoal (value > 0) within that same record and N is the total 273 

number of resampled values within that same record. We subsequently applied a cubic root 274 

transformation to PRS values to aid data visualisation and reduce positive skew. 275 

PRS adjusts the magnitude of charcoal records by the frequency of charcoal occurrence, down-276 

weighting records with infrequent charcoal. This scaling is based on observations from tropical lake 277 

records collected using the same method, where a low frequency of samples containing charcoal was 278 

related to a lower maximum abundance of charcoal (McMichael et al., 2021). We assessed the effect 279 

of PRS on our data by comparing records from the three most common particle sizes (>150 µm, >0.5 280 

mm and >1 mm) that expressed charcoal quantity as a concentration (particles cm-3). This comparison 281 

tested whether, for peatland records analysed in a similar fashion, a greater maximum charcoal value 282 

was associated with a higher proportion of samples containing charcoal. We found that the maximum 283 

charcoal value (Cmax) of a record increased across the three particle sizes when a greater proportion 284 

of resampled values contained charcoal (Figure S41). This relationship suggests the down-weighting 285 

in PRS of sites exhibiting a low proportion of total samples containing charcoal is an appropriate 286 

approach for inter-site comparisons of peatland macrocharcoal data. 287 
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2.4.2. Comparison of peatland burning to the wider landscape 288 

The wider landscape charcoal records represent the regional fire signal proximal to our peatland 289 

records, while excluding data specifically from peatlands (see Section 2.2 for further details). Sufficient 290 

chronological information was not available from the GCD to apply our depth binning approach to 291 

sites representing biomass burning in the wider landscape. Therefore, we used an established method 292 

from major composite analyses of sedimentary charcoal records from the GCD that involves a Box-293 

Cox, a min-max and a z-score transformation (Daniau et al., 2012; Marlon et al., 2016, 2008). We 294 

applied the Box-Cox, min-max and z-score transformations to our peatland dataset (Table S1) and the 295 

wider landscape dataset from the GCD (Table S2) using the Paleofire package (Blarquez et al., 2014) 296 

in R. The Paleofire package cannot analyse records with a complete absence of charcoal, so these were 297 

excluded from this part of the analysis. We pre-binned the data in 50-year non-overlapping bins and 298 

used a 500-year smoothing window to produce charcoal composite curves for North America, Europe 299 

and sub-regions of interest. There were too few sites in the GCD to produce a robust z-score 300 

reconstruction for Patagonia. Similarly, there were too few peatland records to produce sub-region 301 

composite curves for Alaska, the Pacific Coast, the East European Plain and Northern Fennoscandia – 302 

although these data are included in the continental scale composite curves.  303 

3. Results and discussion 304 

3.1. Overview of findings 305 

North America, Europe and Patagonia exhibited distinct spatiotemporal patterns of peatland burning 306 

from 10 ka (with ka meaning calibrated thousands of years before 1950 CE) to the present (Figure 2). 307 

In North America, there was a general increase in peatland burning from 10 to ~0.5 ka (Figure 2A-B), 308 

but there is a high degree of regional variability (Figure 3). These burning trends largely correspond 309 

with changing climatic conditions and/or vegetation dynamics in the wider landscape, but where these 310 

trends diverge peatland autogenic processes may be important. From ~0.5 ka to the present we see a 311 

widespread decrease in peatland burning that may have been initiated by the Little Ice Age (LIA) 312 

cooling. The tendency of peatlands to retain high surface moisture content even during drought 313 

(Kettridge and Waddington, 2014; Morris and Waddington, 2011), and a general policy of fire 314 

suppression since the early-twentieth century, may be in part responsible for this recent downturn in 315 

burning. We must also consider the possibility that researchers may have avoided disturbed peatland 316 

areas affected by recent fires when collecting cores, but this is unlikely to be the sole factor at play 317 

here. Our European composite record shows more peatland burning in the early Holocene from 10 to 318 

8 ka, a period during which our database is composed primarily of records from central Europe and 319 

southern Scandinavia and the Baltics (Figure 2). Relatively constant levels of peatland burning are 320 

observed after 8 ka, but with marked increases at ~5 ka and from 1.5 to 0.5 ka (Figure 2). Burning in 321 

the wider landscape increases conspicuously from 6.5 to 5.5 ka and, unlike the peat record, shows an 322 

overall increase in the last four centuries. 323 



11 
 

 324 

Figure 2. Peatland and wider landscape burning trends by region. The distribution of proportionally relatively 325 
scaled (PRS) charcoal values (cubic root transformed) in 500-year bins for A) North America and D) Europe; box 326 
heights represent the upper and lower quartiles, centrelines indicate medians, hollow triangles represent 327 
means, whiskers extend to 1.5 times the interquartile range beyond the upper and lower quartiles, and hollow 328 
circles represent any values outside the range of these whiskers. Trends in the proportion of records (%) with 329 
charcoal present within 50-year bins indicated by the red line. Biomass burning trends for peatlands in B) North 330 
America and E) Europe and wider landscape biomass burning for C) North America and F) Europe – all with a 331 
500-year smoothing window and showing 95% bootstrap confidence intervals (1000 cycles). The x-axis units (cal. 332 
yr BP) represent years before 1950 CE. For each panel the number of sites corresponds to 50-year time steps. 333 

3.2. Regional analyses 334 

3.2.1. North America335 
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 336 

337 
Figure 3. Peatland and wider landscape burning trends by North American sub-region. The distribution of proportionally relatively scaled (PRS) charcoal values (cubic root 338 
transformed) in 500-year bins for A) Central Canada, D) West Hudson Bay, G) East Hudson Bay and J) Atlantic coast; box heights represent the upper and lower quartiles, 339 
centrelines indicate medians, hollow triangles represent means, whiskers extend to 1.5 times the interquartile range beyond the upper and lower quartiles, and hollow circles 340 
represent any values outside the range of these whiskers. Trends in the proportion of records (%) with charcoal present within 50-year bins indicated by the red line. Biomass 341 
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burning trends for peatlands in B) Central Canada, E) West Hudson Bay, H) East Hudson Bay and K) Atlantic coast and wider landscape biomass burning for C) Central Canada, 342 
F) West Hudson Bay, I) East Hudson Bay and L) Atlantic coast – all with a 500-year smoothing window and showing 95% bootstrap confidence intervals (1000 cycles). The x-343 
axis units (cal. yr BP) represent years before 1950 CE. For each panel the number of sites corresponds to 50-year time steps. 344 
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From 10 to 8 ka our records from North America show a slight increase in burning in both peatlands 345 

and the wider landscape (Figure 2) that is coincident with rising summer temperatures at a continental 346 

scale (Viau et al., 2006). However, we have a dearth of records in the early Holocene from 10 to 8 ka 347 

in North America and therefore cannot make detailed inferences about burning trends for that time. 348 

During the early Holocene, growing seasons became gradually longer and warmer in driving 349 

widespread peatland initiation in western and eastern North America from ~14.5 ka, with initiation in 350 

central Canada and the Hudson Bay lowlands from ~8.5 ka onwards following increasing temperatures 351 

and ice sheet retreat (Gorham et al., 2007; Morris et al., 2018; Ruppel et al., 2013). 352 

Warmer and drier conditions during the Holocene Thermal Maximum (HTM) were likely responsible 353 

for greater peatland burning from 8 to 7 ka in central Canada (Edwards et al., 1996; Kuhry, 1994). 354 

Similarly, increased burning in the wider landscape from 8 to 7 ka (Figure 3C) coincides with the 355 

northward expansion of conifer forests (Williams, 2003) and this may also be a factor in increased 356 

peatland burning. Expansion of peatland area in central Canada from ~6 ka onwards suggests reduced 357 

aridity (Ruppel et al., 2013; Zoltai and Vitt, 1990), loosely corresponding to lower peatland burning ~7 358 

to ~3 ka although burning in the wider landscape remains elevated until ~5 ka (Figure 3A-C).  359 

Nevertheless, our findings from central Canada prior to ~3 ka for peatlands should be treated with a 360 

degree of caution because only a small number of records span this time. Between 3 and 0 ka summer 361 

cooling and higher annual precipitation (Viau and Gajewski, 2009) correspond with decreased burning 362 

in the wider landscape, while peatland burning begins to decrease at ~1 ka with this trend continuing 363 

until present (Figure 3A-C). Around one fifth of our peatland records from central Canada (22.2%) 364 

show local evidence of permafrost aggradation linked to late-Holocene cooling, particularly during the 365 

LIA (see Magnan et al., 2018; Pelletier et al., 2017). Drier peatland conditions caused by surface uplift 366 

during permafrost aggradation may have contributed to sustained levels of peatland burning until 0.5 367 

ka. Similarly, permafrost thaw driven by twentieth century warming (Pelletier et al., 2017) offers a 368 

plausible explanation for a recent decrease in peatland burning, although wetting from permafrost 369 

thaw can be short-lived (Magnan et al., 2018).  370 

During the mid-Holocene, warm and moist climatic conditions existed across the Hudson Bay region, 371 

prior to cooler and generally moist conditions during the Neoglacial from around 2.5 ka onwards 372 

(Camill et al., 2012; Hargan et al., 2020; Hobbs et al., 2017). These warmer conditions in the mid-373 

Holocene were associated with less frequent intrusions of cool, dry Pacific or Arctic air masses, 374 

resulting in fewer periods of late-spring or summer drought that are conducive to fire activity 375 

(Carcaillet and Richard, 2000; Edwards et al., 1996). We observe increasing levels of peatland burning 376 

from 8 to 4.5 ka in the western Hudson Bay, along with increased burning in peatlands and the wider 377 

landscape in the eastern Hudson Bay from 7 to 4.5 ka (Figure 3). However, it should be noted that 378 

there are spatial gaps in our dataset with few records from Hudson Bay Lowlands and to the west of 379 

James Bay (Figure 1). During the mid-Holocene many peatlands in the Hudson Bay region were 380 

transitioning from wet fens to drier bogs and this reduction in surface wetness and increased potential 381 

for the build-up of woody biomass likely made peatlands more susceptible to fire, especially if the 382 

sites became forested (Camill et al., 2009; Davies et al., 2023, 2021; Hokanson et al., 2016; Magnan et 383 

al., 2020, 2012; van Bellen et al., 2012). The timing of fen to bog transitions in the Hudson Bay region 384 

exhibits a spatial gradient that mirrors the patterns of isostatic uplift (Glaser et al., 2004). However, 385 

the records in this study are generally beyond the margin of marine limit at 8 ka (Figure 1), so links 386 

between fire and isostatic changes remain largely untested for this region. Peatland productivity may 387 

have decreased during the Neoglacial, leading to increased surface wetness, and in some instances 388 

bog to fen transitions (van Bellen et al., 2013). A clear decline in peatland burning occurred from 0.5 389 

ka to present across the Hudson Bay region, probably initiated by LIA cooling. 390 
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On the Atlantic coast of Canada and the northeastern United States, high levels of burning in the wider 391 

landscape and peatlands from 8 to 7 ka (Figure 3J-L) is associated with dry summers during a period 392 

of low annual precipitation (Carcaillet and Richard, 2000; Viau and Gajewski, 2009). Increases in 393 

peatland and wider landscape burning from around 2 to 0.5 ka are at odds with cooling summer 394 

temperatures and increasing annual precipitation in northern Quebec (Viau and Gajewski, 2009). From 395 

~4 ka (and especially from 2 ka) a reduction in broadleaf tree species and a shift to more flammable 396 

conifers have been linked to summer cooling (Blarquez et al., 2015), which appears to have driven 397 

increased landscape burning (Figure 3L). Similarly in southern Quebec, a shift to less regular and more 398 

intense biomass burning from ~1.5 ka has been linked to indigenous burning practices (Blarquez et al., 399 

2018), but the extent of these practices is widely contested (Barrett et al., 2005). Nonetheless, despite 400 

increased burning in the wider landscape from ~4 ka onwards, fire in peatlands only increased 401 

modestly from 2 to 0.5 ka (Figure 3J-K). This greater peatland burning 2 to 0.5 ka is largely driven by 402 

increases at two forested peatland sites (Innu and Gaillard 1; see Supplementary Table 1 and 403 

Supplementary data) and an open peatland (Baltic Bog) experiencing a coincident increase in ligneous 404 

vegetation (Peros et al., 2016). The typically more open and Sphagnum-dominated maritime bogs of 405 

the Atlantic coast rarely experience fire (Lavoie et al., 2009; Magnan et al., 2014) and fire frequencies 406 

in open peatlands are lower than those with greater tree density (Camill et al., 2009; Kuhry, 1994). 407 

The fire regime in southern Quebec shifted to less frequent but more severe fires in the last 1000 408 

years following the spread of native agriculture and particularly following European colonisation 409 

(Blarquez et al., 2018; Shiller et al., 2014). These human impacts likely explain the increase in wider 410 

landscape burning from 0.5 ka to present. Distance to forest and the presence of conifer trees have 411 

been linked to fire susceptibility and intensity in ombrotrophic peatlands (Magnan et al., 2012). 412 

Therefore, the contrasting decrease in peatland burning from 0.5 ka to present may be related to the 413 

reduced susceptibility of open peatlands to fire as they increased in spatial extent (Payette et al., 414 

2013). 415 

Records from Great Dismal Swamp located on the mid-Atlantic Coastal Plain in the United States, differ 416 

in the timing of peak burning from boreal peatlands farther north. Minimal burning occurred prior to 417 

~6.5 ka, but frequent mid-Holocene fires from 6.5 to ~3.7 ka coincided with warm and dry conditions 418 

in the region and marsh hydroperiods shortened due in part to slowing rates of sea-level rise (Willard 419 

et al., in review). Low levels of fire characterize the late Holocene, when mid-Atlantic winters were 420 

cooler and wetter (Watts, 1979; Webb III et al., 1987) and most of the Great Dismal Swamp landscape 421 

had transitioned from a marsh to a forested wetland at ~3.7 ka (Willard et al., in review). Since 422 

European colonisation, drainage of the peatland and logging activities resulted in periodic severe fires 423 

(Spieran and Wurster, 2020). 424 

3.2.2. Europe425 
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 426 

427 
Figure 4. Peatland and wider landscape burning trends by European sub-region. The distribution of proportionally relatively scaled (PRS) charcoal values (cubic root 428 
transformed) in 500-year bins for A) Britain and Ireland, D) Central Europe, G) Southern Europe and J) Southern Scandinavia and Baltics; box heights represent the upper and 429 
lower quartiles, centrelines indicate medians, hollow triangles represent means, whiskers extend to 1.5 times the interquartile range beyond the upper and lower quartiles,  430 
and hollow circles represent any values outside the range of these whiskers. Trends in the proportion of records (%) with charcoal present within 50-year bins indicated by 431 
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the red line. Biomass burning trends for peatlands in B) Britain and Ireland, E) Central Europe, H) Southern Europe and K) Southern Scandinavia and Baltics and wider 432 
landscape biomass burning for C) Britain and Ireland, F) Central Europe, I) Southern Europe and L) Southern Scandinavia and Baltics – all with a 500-year smoothing window 433 
and showing 95% bootstrap confidence intervals (1000 cycles). The x-axis units (cal. yr BP) represent years before 1950 CE. For each panel the number of sites corresponds 434 
to 50-year time steps.435 
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Peatlands in Britain and Ireland broadly initiated in the early Holocene, from 10 to 8 ka (Morris et al., 436 

2018), but we were only able to reconstruct peatland burning from 4 ka to present owing to a lack of 437 

data prior to this. Peatland sites showed consistently low PRS and presence/absence values 438 

throughout, despite changes in wider landscape burning (Figure 4A-C). The comparatively humid 439 

climate of Britain and Ireland (Figure 7) likely mitigated peatland fire. From the mid-Holocene, burning 440 

in the wider landscape appears to be primarily influenced by human activity rather than generally 441 

cooling summer temperatures from ~6 ka onwards (Davis et al., 2003; Mauri et al., 2015). Increased 442 

burning in the wider landscape ~5 ka (Figure 4C) may be linked to the human use of fire to clear 443 

woodland (Ryan and Blackford, 2010). Similarly, Neolithic population growth from ~5.5 ka is clear in 444 

the archaeological record and is associated with a trend of reduced forest cover that has continued to 445 

the present (Woodbridge et al., 2014). Decreased burning in the wider landscape from ~2 ka to 0.5 ka 446 

may be linked to the conversion of forest to agricultural land, resulting in landscape fragmentation 447 

and a loss of fuel for wildfires (Fyfe et al., 2003; Marlon et al., 2013). PRS charcoal values decrease 448 

from 0.5 ka to present, whereas z-score and presence/absence values drop initially (0.5-0.2 ka), before 449 

increasing slightly from ~0.2 ka (1750 CE) to present (Figure 4A-B). Cooler, wetter conditions in Britain 450 

and Ireland during the LIA (Swindles et al., 2013; Webb et al., 2022) likely contributed to reduced 451 

burning in peatlands and the wider landscape ~0.5 ka. Shifting land management practices, including 452 

peatland drainage and prescribed burning of moorlands from ~1850 CE (Holden et al., 2007), are 453 

coincident with widespread peatland drying across Britain and Ireland since ~1800 CE (Swindles et al., 454 

2019). These recent human impacts may explain the uptick in the proportion of sites burning in the 455 

last two centuries (Figure 4A).  456 

Central European sites in our database are characterised by greater peatland burning at ~9 ka, before 457 

relatively constant levels of burning until the late Holocene, with decreased burning at ~2 ka and an 458 

increase from 1 ka to present (Figure 4D-E). Burning in the wider landscape during the Holocene 459 

generally showed a slow increase before 1.5 ka, followed by a steeper increase to present (Figure 4F). 460 

Summer temperatures increased until ~8 ka, before stabilising and showing a general decrease from 461 

~6 ka for the majority of the Holocene (Davis et al., 2003; Mauri et al., 2015). The abundance of 462 

flammable conifer species in continental Europe decreases from ~10 ka to ~8 ka and remained 463 

relatively constant until ~1.5 ka before decreasing further to the present (Feurdean et al., 2020b). 464 

These cooler conditions and a stable or decreasing abundance of flammable coniferous trees from the 465 

mid-Holocene onwards, suggest that increased burning in the wider landscape may be because of 466 

changing human activity. Wildfires are naturally ignited by lightning, but there is some evidence of 467 

hunter-gatherer initiated forest fires from as early as 8.5 ka, with human-related fires intensified 468 

during the Bronze Age (~4 to 3 ka) and again from 1 ka to present (Bobek et al., 2018; Dietze et al., 469 

2018). Decreased peatland burning at 1.7 ka coincides with a brief period of more humid conditions 470 

across central Europe (Fohlmeister et al., 2012). Wetter climatic conditions may have both increased 471 

surface wetness in peatlands (Pleskot et al., 2022) and reduced susceptibility to burning in the wider 472 

landscape linked to human activity. However, peatland burning from ~1 ka onwards follows an upward 473 

trend in wider landscape burning at ~1.5 ka (Figure 4E-F), suggesting that human use of fire has 474 

exceeded the ability of peatlands to resist burning. Equally, this trend could be an instance where the 475 

peatland charcoal record has been dominated by charcoal input from intense extra-local or regional 476 

forest burning. Even so, during the LIA from ~1400 CE to 1700 CE, a cool humid maritime climate in 477 

western Europe helped maintain wetter peatlands, but many continental peatlands in central Europe 478 

experienced drying (Marcisz et al., 2020), likely increasing peatland vulnerability to fire. Similarly, 479 

peatland water table reconstructions suggest many peatlands in central Europe have become 480 

significantly drier in the last 400 years due to human and climatic factors (Swindles et al., 2019).  481 
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Summer temperatures in southern Europe have generally increased since ~8 ka until present (Davis 482 

and Brewer, 2009). In addition, summer precipitation decreased throughout the Holocene (Peyron et 483 

al., 2011). The pattern of burning is more complex and cannot be explained by climate change alone. 484 

Burning increased in peatlands and the wider landscape from ~7 ka to a peak at ~5.5 ka (Figure 4G-I), 485 

which coincided with the onset of the Neolithic and may have been driven by increased slash and burn 486 

activities to clear forest for agriculture (Gilck and Poschlod, 2021; Rius et al., 2012, 2011). A peak in 487 

peatland and wider landscape burning at ~1 ka may have been partially linked to increased farming 488 

and settlement following Christian conquest of the Pyrenees (Ejarque et al., 2009), or an increased 489 

build-up of woody biomass with a return to previous fire practices following the Roman period 490 

(Vannière et al., 2016). A marked decrease in peatland and wider landscape burning from ~1 ka until 491 

present is likely linked to landscape fragmentation and reduced fuel for wildfires with the expansion 492 

of agriculture (Marlon et al., 2013), and the onset of cooler conditions ~1400 CE to 1700 CE during the 493 

LIA (Mann et al., 2009). Fire suppression policies have been widespread across southern Europe in 494 

recent decades (Brotons et al., 2013; Moreira et al., 2011). However, peatland burning remains 495 

relatively high in comparison to other regions, which may be attributed to comparatively warm and 496 

dry summer conditions (Figures 6 and 7).  Similarly, burning in southern European peatlands shows 497 

good correspondence with burning in the wider landscape from 8 ka until present. This 498 

correspondence in burning trends suggests that these typically smaller peatlands (Payne, 2018) are 499 

either more vulnerable to burning or that they are influenced to a greater extent by non-peatland 500 

charcoal originating from the wider landscape. 501 

Southern Scandinavia and the Baltics exhibit more peatland burning from 10 ka to ~7.5 ka in terms of 502 

PRS, presences/absence and z-score values (Figure 4J-K). This early Holocene trend is more subtle in 503 

burning of the wider landscape, with slightly elevated burning 10 to ~8.5 ka (Figure 4L). These higher 504 

levels of burning are likely linked to climate and perhaps changes in vegetation. Pollen reconstructions 505 

suggest this region was warming during this period, with the HTM between ~8 to 6 ka (Davis et al., 506 

2003; Mauri et al., 2015). However, aquatic plant macrofossil evidence suggests that early Holocene 507 

(11.7 to 7.5 ka) summer temperatures in Fennoscandia were ~2°C higher than is suggested by pollen 508 

reconstructions (Väliranta et al., 2015). In terms of vegetation, an increased abundance of flammable 509 

coniferous taxa at ~9 ka – as evidenced at Iso Lehmalampi and Etu-Mustajarvi in southern Finland 510 

(Supplementary Table 2; see Sarmaja-Korjonen, 1998) – may have contributed to greater burning at 511 

that time. Similarly, a regional transition to broadleaf dominance from ~8 to 6 ka may have mitigated 512 

burning during warm conditions (Brown and Giesecke, 2014; Feurdean et al., 2020b). An increase in 513 

peatland burning from 5 to 4 ka may have been influenced by a brief warm, dry phase prior to a general 514 

cooling trend from 4 to 2.6 ka in the Baltic region (Hammarlund et al., 2003; Heikkilä and Seppä, 2010), 515 

but there is no corresponding increase in burning of the wider landscape. Therefore, the peak in 516 

peatland burning around 4.5 ka may have been driven by increasing abundance of woody plants (e.g. 517 

Calluna vulgaris) under drier conditions, as at Kontolanrahka and Männikjärve bogs – both included in 518 

this analysis (Sillasoo et al., 2011). Increased burning from 1 to 0.5 ka in peatlands and the wider 519 

landscape may be linked to warmer conditions during the Medieval Climate Anomaly (MCA) (Mann et 520 

al., 2009), alongside increasing intensity of agricultural grazing and burning practices (Olsson et al., 521 

2010). However, from 0.5 ka to present peatland burning decreased, perhaps initiated by LIA cooling 522 

initially and in some instances peatland wetting, e.g. at Kontolanrahka bog in southern Finland 523 

(Väliranta et al., 2007). However, peatland surface moisture trends in recent centuries are inconsistent 524 

across southern Scandinavia and the Baltics (Swindles et al., 2019). In contrast to reduced peatland 525 

burning, wider landscape burning continued to increase (Figure 4J-L). This divergent burning trend 526 

may be explained by slash-and-burn agricultural practices that were widespread in southern 527 

Scandinavia and the Baltics from ~1650 CE to 1850 CE (Jääts et al., 2010; Lehtonen and Huttunen, 528 
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1997). These burning practices were typically low intensity and small scale (Parviainen, 2015) and may 529 

have kept fuel loads low in the wider landscape and allowed peatlands to be less susceptible to 530 

ignition. 531 

3.2.3. Patagonia 532 

In Patagonia, biomass burning in lowland peatland sites appears to be strongly linked to climate. From 533 

10.5 to 7.5 ka, southern Patagonia experienced a warm and dry period during a time of weaker South 534 

Westerly Winds (SWWs) (Moreno et al., 2018). This warm, dry period corresponds to greater burning 535 

of lowland peatlands from 10 to 6 ka (Figure 5). From ~6 ka onwards there was a general wetting and 536 

cooling of climate due to the equatorial migration of the SWWs and a reduction in summer drought 537 

(Markgraf and Huber, 2010; McCulloch et al., 2020). These cooler, wetter conditions in the mid to late 538 

Holocene may explain the extremely low levels of burning in southern Patagonian peatlands from 6 539 

ka to present (Figure 5). Similarly, there is evidence of persistent Sphagnum communities in lowland 540 

peatlands from ~5.5 ka coincident with reduced summer drought and fire activity (Markgraf and 541 

Huber, 2010). The absence of high severity peatland fires was probably favourable to Sphagnum 542 

mosses in this region (Nelson et al., 2021). Huber and Markgraf (2003) suggest that increased fire 543 

activity in a southern Patagonian peatland from ~1600 CE onwards may be linked to changing 544 

indigenous hunting practices, following the introduction of horses upon European contact. However, 545 

any such increases in recent centuries are not well represented in our regional analysis, suggesting 546 

that climate remains the main control on lowland peatland burning in southern Patagonia. 547 

  548 

Figure 5. Peatland burning trends in Patagonia. The distribution of proportionally relatively scaled (PRS) charcoal 549 
values (cubic root transformed) in 500-year bins. Box heights represent the upper and lower quartiles, 550 
centrelines indicate medians, hollow triangles represent the mean, whiskers extend to 1.5 times the 551 
interquartile range and hollow circles represent any values outside the range of these whiskers. Trends in the 552 
proportion of samples (%) with charcoal present within 50-year bins indicated by the red line. The x-axis units 553 
(cal. yr BP) represent years before 1950 CE. The number of sites corresponds to 50-year time steps. 554 

3.3. Peatland burning and climatic space 555 

Our sub-regions show some clear differences in the magnitude of burning (Figure 6), which may be 556 

explained in part by regional differences in climate (Figure 7). Gridded modern climate data provide 557 



21 
 

good context for the relative differences between sub-regions. We focused on the last 3 ka to 1 ka 558 

because this period avoids the time of greatest human impact (1 ka to present) and is long enough to 559 

capture meaningful temporal patterns of burning, while maintaining good spatial coverage. 560 

Patagonia, Northern Fennoscandia, and Britain and Ireland demonstrated a median PRS value of zero 561 

from 3 to 1 ka, while southern Europe and the East European Plain exhibited the highest burning 562 

values (Figure 6). Northern Fennoscandia contains a higher proportion of records where no charcoal 563 

was found (Supplementary Table 1), which likely contributes to these low PRS values. The warmest 564 

months in our Patagonian and Northern Fennoscandian sites have relatively low precipitation but are 565 

relatively cool compared to the other sub-regions (Figure 7).  However, an annual precipitation of 566 

~1000 to 1500 mm has been recorded at a number of our Patagonia sites, e.g. at Skyring 1 and Skyring 567 

2 (Broder et al., 2012; Schneider et al., 2003), suggesting our gridded climate data may not be 568 

capturing some local variation in rainfall.  Nevertheless, low summer temperatures may be allowing 569 

peatlands – especially those dominated by Sphagnum – to retain surface moisture and to avoid the 570 

desiccated conditions that promote fire propagation (Turetsky et al., 2011; Waddington et al., 2015). 571 

The high levels of precipitation during the warmest month in Britain and Ireland may prevent 572 

conditions favourable to fire. In contrast, southern Europe is characterised by sites with high 573 

temperatures and low precipitation for the warmest month, which likely contribute to greater burning 574 

(Figure 7). The East European Plain does not have the hottest or driest summers, on average, yet 575 

experiences greater burning than other sub-regions. In this instance, the summary variables presented 576 

in Figure 7 may be less important than short-term climatic and weather variability that may foster 577 

peatland fire in the East European Plain. Additionally, the relatively few peatland sites from the East 578 

European Plain in comparison to other sub-regions appear to have undergone changes in vegetation 579 

structure related to recent slash-and-burn agriculture (Barhoumi et al., 2019) and shifts from 580 

minerotrophic to ombrotrophic conditions (Mazei et al., 2020). There are some clear links between 581 

burning and climatic extremes, but our findings suggest that peatland fire regimes are influenced by 582 

a combination of factors. Our dataset contained 11 peatland records with a complete lack of charcoal, 583 

but these are not representative across all sub-regions. To explore the differences in the magnitude 584 

of burning more fully, records with a complete absence of charcoal need to be considered across all 585 

regions and sub-regions.  586 

 587 

588 
Figure 6. Distribution of proportional relatively scaled (PRS) charcoal values (cubic root transformed) for 3 to 1 589 
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ka, presented by region and sub-region. PRS values are cubic root transformed owing to the skewed distribution 590 
of the data. Box heights represent the upper and lower quartiles, centrelines indicate medians, whiskers extend 591 
to 1.5 times the interquartile range and black circles show the remaining observations. Box width is proportional 592 
to the square root of the number of samples per sub-region. 593 

 594 

Figure 7. Climatic space by sub-region and charcoal values. Modern climatic space for peatland records averaged 595 
for 1981-2010 CE (Harris et al., 2020) by sub-region for average temperature (°C) and total precipitation (mm) 596 
A) annually and B) for the warmest month. Median proportionally relatively scaled (PRS) charcoal values (cubic 597 
root transformed) for each record (3 to 1 ka) in modern climatic space for average temperature (°C) and total 598 
precipitation (mm) C) annually and D) for the warmest month.  599 

3.4. Controls on peatland burning and wider implications  600 

Our composite analysis of peatland macrocharcoal records from mid- to high-latitude peatlands in 601 

North America, Europe and Patagonia highlights regional variability in peatland burning during the 602 

Holocene. Warmer and drier climatic conditions during the HTM were associated with greater 603 

peatland burning in Europe – especially in southern Scandinavia and the Baltics, North America’s 604 

Atlantic coast, and Patagonia (Figures 2, 3, 4 and 5). Cooler or wetter climatic conditions during the 605 

Neoglacial coincided with reduced peatland burning in central Canada and the western Hudson Bay 606 

(Figure 3). Similarly, there were widespread decreases in burning linked to the LIA across Europe and 607 

North America (Figures 3 and 4).  Therefore, climate appears to be  an important control on peatland 608 

fire until the late Holocene in Europe and perhaps until the present day in North America and 609 

Patagonia. This echoes findings by Marlon et al. (2013), who suggested that climate is the main 610 

influence on global biomass burning for most of the Holocene. However, frequent divergence of 611 
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peatland burning trends from those of the wider landscape at a regional and sub-regional scale is 612 

probably due to local autogenic or human factors – as discussed further below. 613 

Human impacts upon the landscape appears to become more prevalent from the Neolithic onwards 614 

in Europe, and increased burning was generally associated with clearance of land for agriculture 615 

(Dietze et al., 2018; Gilck and Poschlod, 2021; Olsson et al., 2010; Rösch et al., 2017; Ryan and 616 

Blackford, 2010). In particular, human-induced fire may have led to increased peatland burning from 617 

7 to 5.5 ka in southern Europe, and from 1 to 0.5 ka in southern Scandinavia and the Baltics (Figure 4). 618 

Paradoxically, there have been widespread reductions in global biomass burning from the late 619 

nineteenth century onwards, associated with fire suppression policies and the expansion of 620 

agriculture, despite increasing temperatures and rising global population (Marlon et al., 2008). The 621 

conversion of land to agricultural uses has reduced fuel for wildfires and decreased landscape 622 

connectivity (Arora and Melton, 2018). These processes are probably responsible for recent decreases 623 

in burning in the wider landscape in central Canada, eastern Hudson Bay and southern Europe (Figures 624 

3 and 4). A key uncertainty is whether land-use and fire-suppression policies in the 21st century will be 625 

able to offset the influence of warming. A modelling study by Kloster et al., (2012) suggests that 626 

management could largely mitigate future carbon emissions from fire, although important 627 

uncertainties remain, partly because they did not account for peatland ecosystems.  628 

Differences in burning trends between peatlands and the wider landscape may be a result of autogenic 629 

processes that are specific to peatlands, including retention of near-surface moisture even during 630 

drought (Waddington et al., 2015), peatland vegetation composition (Magnan et al., 2014) and 631 

ecosystem state shifts such as fen-bog transitions (Väliranta et al., 2017). Incidence of peatland fire 632 

has been linked to past hydrological disturbances and surface drying in site-specific studies (Feurdean 633 

et al., 2022; Gałka et al., 2022). Nonetheless, there are a number of occasions when peatland burning 634 

has remained stable or even decreased, while burning in the wider landscape has increased. This trend 635 

is in line with the finding that hydrologically connected, unaltered peatlands are resistant to wildland 636 

fires owing to a thick layer of surface mosses that keeps moisture retention high (Nelson et al., 2021). 637 

The most prominent examples of lower peatland burning than that in the wider landscape, are from 638 

~0.5 ka to present in the Atlantic coast area of North America, and in southern Scandinavia and the 639 

Baltics (Figures 3 and 4). In both instances, increased burning in the wider landscape was likely driven 640 

by human activities (Blarquez et al., 2018; Parviainen, 2015). These clear differences suggest a minimal 641 

influence of regional charcoal on these peatland macrocharcoal records. However, there are some 642 

cores (e.g. Baie and Morts; see Figures S2 and S4) with an apparent decrease in recent peat 643 

accumulation rate (0.5 ka to present) where intense smouldering fires may have consumed peat but 644 

left little charcoal (Zaccone et al., 2014). Nevertheless, higher resolution dating is required to 645 

corroborate these apparent recent decreases in accumulation rate and the majority of records show 646 

no such trend (Figures S2-S38). The lower susceptibility of peatlands to burning may be linked to cooler 647 

conditions during the LIA ~1400 CE to 1700 CE (Mann et al., 2009) in combination with internal 648 

mechanisms. More specifically, the mostly extensive, open and Sphagnum-dominated peatlands of 649 

the Atlantic coast region of North America are generally resistant to fire (Lavoie et al., 2009; Magnan 650 

et al., 2014). Here, a lower peatland edge-to-area ratio reduces rates of subsurface losses of water to 651 

adjacent forests and lowers the risk of deep burning of peat (Hokanson et al., 2016; Nelson et al., 652 

2021). Similarly, larger peatland complexes in northern Poland have been shown to be more resistant 653 

to disturbances (Marcisz et al., 2019). In contrast, fire records from the smaller and more fragmented 654 

peatlands of southern Europe (Payne, 2018) correlated closely with burning in the wider landscape 655 

(Figure 4). This suggests either a greater vulnerability of these ecosystems to burning or that 656 
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macrocharcoal produced from burning of the wider landscape may be more abundant in smaller 657 

peatlands. 658 

Both future climate change and human activities may increase the susceptibility of peatlands to 659 

burning. Increased evapotranspiration associated with warmer temperatures and drainage from 660 

human activities are both expected to increase peatland drying, leading to greater peatland burning 661 

and carbon emissions (Flannigan et al., 2009; Turetsky et al., 2015). However, our results 662 

predominantly show recent decreases in peatland burning from ~0.5 ka to present, especially in North 663 

America (Figures 2, 3 and 4). It is possible that the apparent recent downturn in peatland burning is 664 

influenced by a sampling bias. Researchers may have avoided disturbed areas/sites when sampling 665 

cores, with only 3.8% of records (with data for surface peat type, n = 183) having a clearly decomposed 666 

surface (Supplementary Table 1). Yet, peatland vegetation will typically have recovered within 667 

decades of a burn (Lukenbach et al., 2016), meaning that this potential sampling bias does not fully 668 

explain a downturn in peatland burning during the last ~500 years. Consequently, several other factors 669 

may be contributing to this trend. Extensive peatland drying has already been observed in recent 670 

centuries across temperate Europe (Swindles et al., 2019), while higher latitudes have experienced 671 

wetting and drying linked to local permafrost dynamics (Sim et al., 2021; Zhang et al., 2022). Large 672 

areas of peatlands in North America remain relatively intact – just 1.5% of peatlands there are 673 

estimated to be degraded, in comparison to 18% in Europe (Urák et al., 2017). Therefore, less modified 674 

peatlands in North America may be more resilient to burning (Nelson et al., 2021). Peatland fires 675 

commonly initiate elsewhere in the landscape before spreading onto peatlands (Hokanson et al., 676 

2016). Therefore, a reduction in wider landscape burning from ~0.5 ka in some regions likely reduced 677 

the potential for peatland vegetation to ignite. Furthermore, the resolution of our analyses (50 years 678 

per sample) is unlikely to detect any increased burning in recent decades. The centennial to millennial 679 

timescales of peatland fires means that even if the risk of peatland fire has increased with recent 680 

climate change and human activities, the impact on peatland fire may not yet be manifest in 681 

palaeoenvironmental records. Similarly, peatland ecosystems are generally resilient to disturbance 682 

and often exhibit a delayed response to external forcing (Page and Baird, 2016).  683 

We find ample evidence for increased peatland burning during previous warm periods, and in warmer 684 

and drier regions (e.g. southern Europe). The vulnerability of peatlands to fire is likely to have been 685 

increased by recent climatic warming and anthropogenic management, particularly in Europe where 686 

ecosystems have been more heavily modified. For these reasons, policies are needed to enhance 687 

peatland resistance and resilience to fire. Rewetting of degraded peatlands has been shown to reduce 688 

the risk of deep burns (Granath et al., 2016). Consequently, peatland restoration will be an important 689 

strategy to mitigate the impact of climate change and human activities (Baird et al., 2019). 690 

3.5. Recommendations for future research 691 

This study represents a clear step forward in our understanding of the patterns of peatland fire on a 692 

continental scale and has allowed us to consider the drivers and controls. Nevertheless, to better 693 

quantify the controls on peatland fire, comparison of in-situ peatland charcoal records to datasets of 694 

past climate, human population/density and peatland vegetation and moisture conditions is needed. 695 

This comparison needs to be made at suitable spatial and temporal scales. For example, a study linking 696 

local ecohydrological proxy data (e.g. testate amoebae and plant macrofossils) with accompanying 697 

macrocharcoal data for multiple sites (regionally or globally) would be particularly useful for furthering 698 

our understanding of peatland resilience and long-term fire dynamics. Furthermore, widespread 699 

implementation of methods exploring the relationship between smouldering peatland fires and 700 
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hiatuses in peat accumulation (e.g. Zaccone et al., 2014) or linking charcoal morphotypes with fuel 701 

types and fire intensity (Feurdean et al., 2020a) could offer insights into the conditions conducive to 702 

rapid carbon loss from peatlands. The majority of work quantifying the relationship between source 703 

area and charcoal particle size has been conducted specifically for lacustrine settings (e.g. Adolf et al., 704 

2018; Higuera et al., 2007; Peters and Higuera, 2007); however, the taphonomic processes and spatial 705 

scales involved in peatland fire are fundamentally different to those in lakes (Remy et al., 2018). 706 

Therefore, peatland specific lab and field-based studies would be useful to quantitatively inform 707 

peatland fire related research questions. To better compare the magnitude of burning spatially, 708 

peatlands with a complete lack of charcoal need to be included for all sub-regions. In terms of data 709 

available for inclusion in composite analysis, spatial gaps remain in key peatland areas including: 710 

Alaska, the central Hudson Bay Lowlands, the East European Plain and the Western Siberian lowlands. 711 

However, there is an opportunity to explore trends and drivers of fire in tropical and sub-tropical 712 

peatlands on a continental scale using a similar approach to this study. 713 

4. Conclusions 714 

Our composite analysis of peatland macrocharcoal records from North America, Europe and Patagonia 715 

quantifies regional variability in peatland burning at mid- to high-latitudes during the Holocene. 716 

Climate appears to be an important control on peatland fire until the mid-Holocene in Europe, and 717 

perhaps until the present day in North America and Patagonia. Our analysis suggests that peatland 718 

burning is generally higher during warm or dry periods of the Holocene and the magnitude of burning 719 

is greater in warmer and drier regions, i.e. southern Europe. There is some correspondence between 720 

peatland and wider landscape burning, although peatlands are generally less susceptible to fire, which 721 

could plausibly be explained by the persistence of high surface moisture levels and a lower density of 722 

woody biomass. Further work quantifying the source area of macrocharcoal specifically in peatlands 723 

will help better define these trends. The most prominent example of divergent trends in peatland and 724 

wider landscape burning is a reduction in peatland burning since the Little Ice Age across North 725 

America and Europe, apart from central Europe. Nonetheless, in the face of climatic and land-use 726 

change peatland restoration will be an important tool in reducing the susceptibility of peatlands to 727 

fire. Based on our findings we set out a number of recommendations for future research to better 728 

understand the controls on peatland fire. 729 
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