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ABSTRACT 19 

Adopting Regenerative Agriculture (RA) practices on temperate arable land can increase soil 20 

organic carbon (SOC) concentration without reducing crop yields. RA is therefore receiving 21 

much attention as a climate change mitigation strategy. However, estimating the potential 22 

change in national soil carbon stocks following adoption of RA practices is required to 23 

determine its suitability for this. Here, we use a well-validated model of soil carbon turnover 24 
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(RothC) to simulate adoption of three regenerative practices (cover cropping, reduced 25 

tillage intensity and incorporation of a grass-based ley phase into arable rotations) across 26 

arable land in Great Britain (GB). We develop a modelling framework which calibrates RothC 27 

using studies of these measures from a recent systematic review, estimating the 28 

proportional increase in carbon inputs to the soil compared to conventional practice, before 29 

simulating adoption across GB. We find that cover cropping would on average increase SOC 30 

stocks by 10 t.ha-1 within 30 years of adoption across GB, potentially sequestering 6.5 31 

megatonnes of carbon dioxide per year (MtCO2.y-1). Ley-arable systems could increase SOC 32 

stocks by 3 or 16 t.ha-1, potentially providing 2.2. or 10.6 MtCO2.y-1 of sequestration over 30 33 

years, depending on the length of the ley-phase (one and four years, respectively, in these 34 

scenarios). In contrast, our modelling approach finds little change in soil carbon stocks when 35 

practising reduced tillage intensity. Our results indicate that adopting RA practices could 36 

make a meaningful contribution to GB agriculture reaching net zero greenhouse gas 37 

emissions despite practical constraints to their uptake. 38 

 39 

Keywords: soil carbon sequestration, soil organic matter, Rothamsted carbon model, 40 

greenhouse gas abatement, United Kingdom (UK) 41 
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Abbreviations 43 

CEH - Centre for Ecology & Hydrology (UK) 44 

GB – Great Britain 45 

GHG – greenhouse gas 46 

MtCO2 – megatonnes of carbon dioxide 47 

PRI – plant residue input 48 
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RA – Regenerative Agriculture 49 

RothC – Rothamsted carbon model (version 26.3) 50 

SOC – soil organic carbon 51 

TRM – tillage rate modifier 52 

 53 

1. INTRODUCTION 54 

Increasing terrestrial carbon sequestration is currently of global interest in efforts to 55 

mitigate anthropogenic greenhouse gas (GHG) emissions (IPCC, 2019). It has been 56 

demonstrated that there is substantial potential to increase soil carbon stocks on 57 

agricultural land (Griscom et al., 2017, Bossio et al., 2020, Kampf et al., 2016, Lal, 2004); a 58 

preferred setting since use for food production can continue, in contrast to interventions on 59 

natural and semi-natural habitats which can compromise biodiversity and ecosystem service 60 

delivery (Veldman, 2019, Veldman et al., 2015). Building soil organic carbon (SOC) through 61 

changes in agricultural land management practices is also important in mitigating 62 

widespread and costly soil degradation (Graves et al., 2015, Prout et al., 2020), thus 63 

safeguarding crop yields and promoting other ecosystem services such as water flow 64 

regulation and nutrient retention (Bradford et al., 2019, Smith et al., 2021). However, 65 

limitations of soil carbon sequestration for climate change mitigation include sink 66 

saturation, non-permanence following discontinuation of beneficial management, risk of 67 

displacement of emissions through compensatory cultivation elsewhere, and difficulties in 68 

verifying sequestration (Smith, 2012). 69 

 70 

The Regenerative Agriculture (RA) paradigm is receiving increasing attention from land 71 

managers and policy makers due to its proposed ability to simultaneously contribute to 72 
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climate change mitigation and ameliorate degraded soils by sequestering SOC through 73 

changes in management practices (Moyer et al., 2020, Newton et al., 2020, Giller et al., 74 

2021). Although multiple definitions exist, RA can best be defined as “an approach to 75 

farming that uses soil conservation as the entry point to regenerate and contribute to 76 

multiple ecosystem services” (Schreefel et al., 2020). 77 

 78 

A recent meta-analysis of RA practices in temperate regions demonstrated the potential to 79 

increase soil carbon concentration without any yield reduction in cropping years through 80 

reducing tillage intensity and incorporating a ley-phase into arable rotations (Jordon et al., 81 

2021). However, evaluating the potential contribution of RA to climate change mitigation 82 

requires regional-scale simulation of the total potential change in soil carbon stocks 83 

following adoption.  84 

 85 

Models of soil carbon turnover enable simulation of the effect of changes in land 86 

management on SOC stocks, while accounting for regional variation in climate and soils. The 87 

Rothamsted carbon model (RothC) version 26.3 is a process-based five-compartment model 88 

(Figure 1) with monthly timesteps, developed under temperate agricultural conditions and 89 

validated across climates and biomes (Smith et al., 1997b, FAO, 2019, Jenkinson, 1990, 90 

Jenkinson et al., 1999, Falloon and Smith, 2002). Advantages of RothC include its 91 

requirement for few, readily-available, parameters and its ability to run both in ‘forward’ 92 

(estimate change in SOC for known inputs) and ‘inverse’ (estimate inputs for known change 93 

in SOC) modes (Coleman and Jenkinson, 2014). Previous approaches to simulating the 94 

effects of land management changes on soil carbon include extrapolating an observed SOC 95 

change over a larger area (King et al., 2004, Smith et al., 2000b), a priori adjusting model 96 
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input parameters in an effort to best represent management practices (Smith et al., 2005, 97 

Lugato et al., 2014), deriving soil carbon trends using data from long-term experiments 98 

(Smith et al., 1997a) or using average values from a meta-analysis of published literature 99 

(Poeplau and Don, 2015). However, more exact estimates of soil carbon changes can be 100 

generated by combining inverse and forward runs of a process-based model such as RothC, 101 

publicly available spatial datasets of required climatology and soil inputs, and empirical SOC 102 

measurements from published studies. This enables both the model calibration, using real-103 

world data, and simulation stages to be based on site-specific inputs. Mirroring real-world 104 

dynamics as closely as possible in soil carbon modelling is important to prevent the 105 

contribution of land management changes to climate change mitigation from being 106 

overstated. 107 

 108 

Here, we develop a modelling framework using RothC to estimate the total change in soil 109 

carbon stocks if three constituent practices of RA were adopted at a country-scale for Great 110 

Britain (England, Scotland and Wales, not including Northern Ireland). We use published 111 

SOC data obtained from studies of reduced tillage intensity, cover cropping and 112 

incorporation of grass-based leys into arable rotations conducted in temperate oceanic 113 

regions assembled by Jordon et al. (2021), to maximise generalisability to the context of 114 

interest. We aimed to evaluate the extent to which increased adoption of RA practices on 115 

temperate arable land can sequester carbon to mitigate GHG emissions. 116 

 117 

2. METHODS 118 

Changes in soil carbon are usually driven by one or a combination of changes in i) carbon 119 

entering the soil, most of which will be from plant residue inputs (PRI), or ii) the rate of 120 
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decomposition of carbon pools within the soil. Cover cropping and ley-arable adoption 121 

affect SOC primarily via the former mechanism, while reducing tillage intensity favours the 122 

latter. Our framework comprised two stages: i) estimating the change in either PRI 123 

(following adoption of cover cropping or ley-arable rotations) or rate of SOC decomposition 124 

(following reduced tillage intensity) in the studies assembled by Jordon et al. (2021) then ii) 125 

using the resulting distributions of PRIs or tillage rate modifiers (TRMs) to simulate adoption 126 

of these practices at a 1 km resolution for arable land in Great Britain (GB). 127 

 128 

RothC-26.3 was implemented in R version 4.0.3 using the RothCModel function in the 129 

package SoilR (Sierra et al., 2012, R Core Team, 2020). This function allows PRI, soil carbon 130 

pool sizes, and decomposition rates to be specified by the user. Inverse modelling steps 131 

(detailed below) were conducting via a linear optimisation process using the optim function 132 

with Brent method in base R (R Core Team, 2020). The R code and supporting data 133 

developed for and used here to implement our framework is publicly available online 134 

(Jordon, 2021a). 135 

 136 

2.1. Model calibration 137 

To estimate the change in PRI following adoption of cover crops and ley-arable, we 138 

implemented the first stage of our model framework for all treatments from each relevant 139 

study identified by Jordon et al. (2021). First, we used the baseline (i.e. pre-intervention) 140 

SOC stock reported in the study (assumed to be at equilibrium) to inverse model the PRI 141 

before the study began, using study-site-specific input parameters in RothC (Table 1). This 142 

PRI was used to initialise or ‘spin-up’ the conceptual pools of soil carbon (Figure 1), by 143 

running RothC in ‘forward’ mode for 1000 years, which when summed corresponds to the 144 
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baseline SOC stock. Subsequently, we used these initial pool sizes to run RothC in ‘inverse’ 145 

mode for the duration of the study in years, to estimate the PRI which resulted in the 146 

endline (i.e. last available) SOC measurement for that treatment.  147 

 148 

To propagate deterministic uncertainty (error already present in input data) through our 149 

modelling, we ran 100 model iterations per study treatment, using standard deviations 150 

associated with inputs to generate normally distributed random samples of parameters. 151 

These distributions were created using the rnorm function in base R (R Core Team, 2020), or 152 

the truncnorm function (Mersmann et al., 2018) bounded between zero and infinity, where 153 

negative values for those parameters are not possible (e.g. precipitation). Where clay and 154 

bulk density measurements were presented in studies, these were assumed to have 155 

standard deviations of zero, in order that error was only propagated for WISE30sec values 156 

(Batjes, 2016) to capture the uncertainty inherent in using these estimates rather than site-157 

specific measurements. To derive standard deviations for the required climatology data 158 

(Table 1), we downloaded monthly averages for each year in the period 1981-2010 and 159 

calculated the mean and standard deviation across these 30 years.  160 

 161 

Some studies included in the database assembled by Jordon et al. (2021) do not present 162 

error terms for SOC estimates or baseline SOC measurements. Because discarding 163 

incomplete data can bias model estimates (Weir et al., 2018), we used multiple imputation 164 

methods to generate estimates for missing values, which has the advantage of explicitly 165 

representing the uncertainty associated with imputation in the model output (Lajeunesse, 166 

2013). We imputed 30% and 53% of baseline SOC values, and 61% and 88% of error values, 167 

for the data used to estimate proportional changes in PRI following adoption of cover crops 168 
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and ley-arable systems, respectively (Table 2). We used the mice package in R to generate 169 

ten imputed datasets (van Buuren and Groothuis-Oudshoorn, 2011) and extracted ten 170 

random samples using the imputed values from each of these datasets to arrive at the 100 171 

samples per observation required. 172 

 173 

Jordon et al. (2021) present cover cropping and ley-arable treatments as continuous 174 

variables in their dataset, with cover cropping expressed as a proportion of the rotation that 175 

cover crops are present (zero to one), and ley-arable as the duration of the ley-phase in the 176 

rotation (one to six years). We pooled endline PRI estimates across all treatments from all 177 

relevant studies (100 iterations per observation to allow propagation of error) and used the 178 

brms package to fit a Bayesian model to this data (Bürkner, 2018), with endline PRI as the 179 

response variable and a weakly informative normal prior distribution (mean 0, standard 180 

deviation 1). For cover cropping, cover crop proportion was the sole explanatory variable, 181 

but for ley-arable studies both ley and arable durations (years) within the treatment 182 

rotation were included as explanatory variables to allow two rotation types to be simulated: 183 

a three-year rotation with one year ley and two years arable (L1A2), and a six-year rotation 184 

with four years ley and two years arable (L4A2). We then extracted samples from the 185 

posterior distribution to calculate the proportional change in PRI if cover cropping or two 186 

ley-arable rotations were adopted, relative to 1 which represents ‘conventional’ practice 187 

with no cover crops or ley-phase. We do not explicitly represent different cover crop or ley 188 

compositions in our scenarios and therefore differences in quality of organic matter inputs 189 

which could influence the rate of decomposition (e.g. through the presence/absence of 190 

legumes). However, standard deviations of the proportional changes in PRI are used to 191 

capture variability in practices between study treatments used to calibrate our framework 192 
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and are propagated through the GB simulation, reflecting likely diversity in practices if 193 

adopted in real-world conditions.  194 

 195 

Due to our use of imputation for data with missing errors and/or baseline SOC for inclusion 196 

in our model framework we generated four estimates to test the sensitivity of the results to 197 

different data availability and quality (Table 2): 198 

1. Baseline SOC present, errors present (BPEP) 199 

2. Baseline SOC present, missing errors imputed (BPEI) 200 

3. Baseline SOC imputed and/or missing errors imputed (BIEI) 201 

4. Critical appraisal (CA): as in (3), but only observations that have high validity based 202 

on level of spatial replication and experimental design included (see Jordon et al. 203 

(2021) for details) 204 

Note that for (1-3) endline SOC data is always present. We used the values generated from 205 

approach (4) in our GB simulation as a best compromise between input data quantity and 206 

quality (see footnotes of Table 2 for level of data imputation used to generate these 207 

estimates). 208 

 209 

A similar approach was developed by (Jordon and Smith, under review) who estimated 210 

TRMs for adjusting the decomposition rate constants in RothC to account for reduced tillage 211 

intensity using the same dataset from Jordon et al. (2021). Here, we use their TRM 212 

estimates of 0.99 (Standard Deviation 0.02) for reduced tillage, and 1.02 (SD 0.03) for no-213 

tillage, relative to 1 (i.e. default decomposition rate constants) for conventional full-214 

inversion tillage (Jordon, 2021b). 215 

 216 
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2.2. Great Britain simulation 217 

We used the UK Centre for Ecology & Hydrology (CEH) land cover map 1 km dominant target 218 

class raster (Rowland et al., 2017) to identify 1 km2 pixels of GB which are predominantly 219 

arable (i.e. more than 50% of land cover within that pixel classified as arable). We assumed 220 

no current adoption of reduced tillage intensity, cover cropping or ley integration in GB 221 

arable rotations, which, although clearly erroneous, we considered appropriate as we were 222 

seeking to indicate the relative magnitude of SOC stock change by transitioning from no to 223 

complete adoption of these practices, rather than quantify the current unfulfilled potential 224 

for this in GB. Because RothC is not suitable for use with organic or organo-mineral soils 225 

(Falloon et al., 2006), we excluded 92 pixels with a WISE30sec SOC concentration above 100 226 

g.kg-1, and a further 389 pixels with artefact SOC concentrations below 0 g.kg-1, resulting in 227 

61,413 1 km2 pixels for inclusion in our spatially-explicit simulation. RothC was unable to run 228 

for some of these pixels due to unreasonable input parameters; we give the number of 229 

pixels successfully run (n) for each intervention in Table 3. We anticipate these issues with 230 

the input data are due to limitations of the taxotransfer scheme applied in WISE30sec 231 

(Batjes, 2016). However, use of alternative proprietary data products such as the LandIS 232 

National Soil Map would potentially limit the reproducibility of our work and preliminary 233 

studies with soil models show little difference in simulated SOC change in GB when using 234 

either the Harmonised World Soil Database (precursor to WISE30sec) or LandIS Soil Map as 235 

model inputs (Smith, P. pers comm.). We assumed that using the dominant target class 236 

raster provided a good proxy of all arable land through non-arable land area within these 237 

squares being approximately matched by arable land in other squares with a different 238 

dominant target class. However, 61,413 1 km2 pixels implies a total GB arable area of 239 

6,141,300 ha, whereas the area of arable crops in the June 2021 census was 4,339,000 ha 240 



 11 

(Defra, 2021). Therefore, we weighted the estimates of total soil carbon sequestration and 241 

GHG mitigation in Table 3 to reflect this actual arable area (Table S1). 242 

 243 

We used WISE30sec SOC concentration (g.kg-1) and soil bulk density (g.cm-3) values to 244 

calculate SOC stocks (t.ha-1) for 30 cm soil sampling depth at each pixel, which we assumed 245 

to be at equilibrium. We ran RothC in inverse mode using spatially explicit inputs (Table 1) 246 

to estimate the current PRI for each pixel. We then proportionally adjusted this site-specific 247 

PRI by the CA values in Table 2 to simulate adoption of cover cropping (present every year in 248 

arable rotation) or two ley-arable rotations (L1A2 and L4A2). A proportional adjustment 249 

rather than absolute increase was used to account for the inherent differences in Net 250 

Primary Productivity and therefore magnitude of PRI increase possible based on site 251 

pedological and climatic conditions, after Smith et al. (2005). To simulate reduced or no 252 

tillage, we assumed PRI remained constant and multiplied the default decomposition rate 253 

constants in RothC by the TRMs of 0.99 and 1.02, respectively (Jordon and Smith, under 254 

review). We executed this forward run for two time horizons: i) 30 years, to estimate the 255 

potential change in carbon stocks by the year 2050 which could contribute to national net 256 

zero emissions targets (Climate Change Committee, 2019), and ii) 1000 years, to estimate 257 

the total soil carbon change once this has reached a new equilibrium. We used the same 258 

method to propagate deterministic error as in the model calibration step, with 100 259 

modelling iterations per pixel. We simulated interventions implemented in isolation rather 260 

than in combination because most studies used to parametrise our framework consider 261 

single interventions, preventing us from determining potential interactions in their effect on 262 

soil carbon. We ran the model in parallel for multiple pixels simultaneously using the 263 
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foreach package (Microsoft and Weston, 2020), implemented on the University of Oxford’s 264 

Advanced Research Computing facility (Richards, 2015) 265 

 266 

We calculated the SOC stock at baseline, 30 years, and equilibrium (mean and standard 267 

deviation) from the 100 model iterations for each 1 km2 pixel. We estimated mean and 95% 268 

Credible Intervals for average SOC stocks under each intervention by conducting an 269 

intercept-only analysis of pixel means that accounted for their standard error using the brms 270 

package (Bürkner, 2018). To estimate the total carbon sequestration and therefore carbon 271 

dioxide (CO2) emissions abatement possible across all GB arable land (Table 3), we summed 272 

the mean SOC stock across all 1 km2 arable pixels and weighted this by the actual area of GB 273 

arable land (Table S1). To calculate the standard deviation of these summed mean values, 274 

we assumed that pixels were independent of each other such that the variance of the sum 275 

equals the sum of variances. This is likely to be an underestimate because adjacent pixels 276 

are not independent (due to similarity in input parameters) and therefore have positive 277 

covariance. However, we feel this is a necessary approximation given the difficulty of 278 

calculating a covariance matrix for the large number of pixels summed here. We plotted the 279 

results of our simulations using the ggplot and raster packages (Hijmans, 2021, Wickham, 280 

2016, FC and Davis, 2021). To decompose the sources of variation in our outputs, we fit 281 

linear models using the lm function (R Core Team, 2020) that contained different 282 

combinations of model input parameter distributions, and plotted the adjusted R2 as a 283 

measure of the variation in the output explained by different inputs. All R code is available 284 

online (Jordon, 2021a). 285 

 286 

3. RESULTS and DISCUSSION 287 
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3.1. Changes in SOC stocks 288 

We demonstrate substantial increases in soil organic carbon (SOC) stocks across Great 289 

Britain (GB) are possible if Regenerative Agriculture (RA) practices are adopted on arable 290 

land in an illustrative temperate region. Growing over-winter cover crops in every year of an 291 

arable rotation has the potential to increase cropland SOC stocks in GB by an average of 292 

20.3% after 30 years, compared with no cover cropping (Figure 2). Including grass-based 293 

leys in an arable rotation with low frequency (one year ley followed by two years arable, 294 

L1A2) increases SOC stocks by 6.9%, or 33.4% if at high frequency (four years ley followed by 295 

two years arable, L4A2) within 30 years compared with continuous arable cropping (Figure 296 

2). We identify less potential for reducing tillage intensity to affect SOC stocks, with an 297 

average increase of 0.36% over 30 years when reduced tillage is adopted, and a decrease of 298 

0.72% when no till is implemented, compared to conventional full-inversion tillage (Figure 299 

2).  300 

 301 

3.2. Sources of uncertainty and limitations 302 

Our results are not directly comparable with the findings of similar studies due to 303 

differences in i) the area of arable land that management changes are modelled over, ii) 304 

assumptions regarding level of adoption of management change (e.g. length of ley phase in 305 

ley-arable rotation or proportion of rotation that cover crops are included), and iii) soil and 306 

climate inputs in other study countries (Dendoncker et al., 2004, Taghizadeh-Toosi and 307 

Olesen, 2016, Smith et al., 2000a, Robertson and Nash, 2013). Furthermore, our estimate of 308 

total baseline (i.e. current) SOC stock in GB arable farmland (Table 3) does not match other 309 

estimates (Bradley et al., 2005, Smith et al., 2000a), in part because, to be conservative, we 310 

used survey data of the area of arable crops grown in 2021 to weight our output, rather 311 
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than total croppable area. However, our baseline per area average of 49.3 t C.ha-1 in the 0-312 

30cm horizon is close to the European average of 53 t C.ha-1 (Smith et al., 2000b). Further, 313 

our estimate of baseline Plant Residue Input (PRI) for GB arable land was 3.30, 95% Credible 314 

Intervals [3.295, 3.298], which is acceptably similar to Falloon et al. (2006)’s estimate of 3.67 315 

(Standard Deviation 1.71). 316 

 317 

Spatial heterogeneity in the magnitude of SOC stock change across GB (Figure 3) is 318 

predominantly due to existing variation in GB soil carbon stocks (Figure S1). In the cover 319 

crop simulation, baseline SOC stock (determined from WISE30sec SOC concentration and 320 

bulk density data) alone explains 99.7% of total variation in SOC stocks after 30 years of 321 

treatment implementation (Figure S2). WISE30sec values are derived from the Harmonised 322 

World Soil Database, and therefore the European Soil Database for GB, using a taxotransfer 323 

scheme (Batjes, 2016) and come with standard deviations that capture the uncertainty in 324 

these estimates, which we propagated through our modelling framework. However, our 325 

large sample size (>61,000 pixels, 100 model iterations per pixel) means the uncertainty 326 

around our overall estimates is acceptably small (Table 3). Our modelling approach used 327 

baseline SOC to calculate initial PRIs, which were then proportionally increased for cover 328 

crops and ley-arable scenarios, resulting in variation within the soils input data being 329 

amplified in our modelling outputs (Figure 3). Although climatology inputs (monthly average 330 

temperature, precipitation, and evapotranspiration (Abatzoglou et al., 2018)) explained 331 

7.25% of variation in GB baseline PRI estimates, these parameters explained only 0.1% of 332 

variation in SOC stock estimates at 2050 (Figure S2). Conversely, in our model calibration 333 

stage, climatology inputs explained 38% and 25% of variation in estimates of study baseline 334 

and endline PRI, respectively (Figure S3). This is likely because studies used for model 335 
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calibration were from across temperate oceanic regions, which have greater variation in 336 

climate than within GB, aligning with previous sensitivity analyses with RothC that have 337 

demonstrated a strong influence of climate variables on predicted SOC (Janik et al., 2002). 338 

Soil carbon concentration (g.100g-1) explained 27% and 35% of variation in baseline and 339 

endline PRIs respectively (Figure S3). 340 

 341 

Using an inverse modelling approach to estimate PRI in RothC assumes that SOC stocks are 342 

at equilibrium. If SOC is in fact increasing or decreasing, then the PRI would be 343 

overestimated or underestimated respectively (Falloon et al., 2006). We use this inverse 344 

modelling step both in our model calibration and spatially explicit simulation. Studies used 345 

to calibrate our model framework ranged in duration from 2 to 70 years (mean 15) (Jordon 346 

et al., 2021) which is insufficient for SOC to reach a new equilibrium following a change in 347 

management (50-150 years for a decrease, 100-750 years for an increase (Falloon et al., 348 

2006)), and therefore the proportional changes in PRI we calculated from studies of cover 349 

crops and ley-arable duration are at risk of being overestimated. Further, there is evidence 350 

that SOC in much of GB’s arable land is still in the process of decline following conversion 351 

from grassland in previous decades (Skinner and Todd, 1998), and therefore our estimates 352 

of baseline PRI for proportional adjustment are possibly underestimates. Conversely, there 353 

are two additional mechanisms by which the baseline PRIs we calculated for GB arable soils 354 

could be overestimates. Firstly, use of 1 km2 resolution soil data means that some squares 355 

may in reality contain a combination of mineral and organic soils. RothC is not suited for use 356 

on organic and organo-mineral soils because it over-predicts the PRI required to maintain 357 

the high SOC concentration in these soils. Although we excluded WISE30sec pixels with a 358 

SOC concentration above 100 g.kg-1 from our analysis, pixels with mixed soil types could 359 
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result in a SOC concentration higher than a typical mineral soil but under our 100 g.kg-1 360 

threshold, leading to an overprediction of current PRI for these pixels. This could also 361 

potentially explain the clustered rather than Gaussian distribution of baseline SOC stocks 362 

(Figure 2), although the derivation of WISE30sec soil properties using taxotransfer rules is 363 

also likely responsible for this clustered distribution by reflecting underlying discreet soil 364 

type categories. Secondly, using the CEH dominant land class product means that each 1 365 

km2 could contain large areas of other land uses with typically higher SOC, such as 366 

permanent pasture or woodland, again inflating the SOC concentration used to infer PRIs on 367 

arable land. Because our modelling framework proportionally adjusted baseline PRI to 368 

simulate cover cropping or ley-arable adoption, any overestimation of PRI would in turn 369 

lead to an overestimate in the SOC stock change possible from adopting these interventions 370 

on mineral arable soils alone. Despite this, our estimates of GB baseline SOC stocks and 371 

potential changes following adoption of RA practices are consistent with previous studies 372 

using other approaches and input datasets, and we are confident in our results as indicative 373 

of the trends possible.  374 

 375 

Our modelling framework does not identify significant GHG mitigation potential from 376 

reducing tillage intensity or no till, in contrast with previous estimates (e.g. Smith 2000, 377 

Dendonker 2004). This could be because the tillage rate modifiers (TRM) developed in 378 

Jordon and Smith (under review) were calibrated to empirical data which, when recently 379 

meta-analysed, show only very small increases in SOC concentration when reduced or no 380 

tillage are adopted in temperate oceanic regions compared to conventional full-inversion 381 

tillage (Jordon et al., 2021). Alternatively, although Jordon and Smith (under review) 382 

endeavoured to best represent the mechanism of soil carbon increases following a 383 
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reduction in tillage intensity by developing a TRM rather than adjusting PRI, in reality these 384 

two mechanisms are likely to be confounded in some instances. This is because reduced 385 

tillage or no till are often implemented as part of a broader conservation agriculture 386 

approach where arable stubble is retained instead of removed as straw, thus potentially 387 

increasing carbon inputs to the soil alongside decreasing the rate of decomposition. 388 

Identifying these two mechanisms via an inverse modelling approach would require a 389 

dataset with factorial treatments of tillage intensity and straw retention to establish the PRI 390 

increase from straw retention, tillage rate modifier from reduced tillage intensity, and any 391 

interaction between these. Further, a depth-distributed model would likely better account 392 

for SOC dynamics following reduced tillage intensity (Angers and Eriksen-Hamel, 2008), but 393 

would similarly require calibration from depth-distributed studies. 394 

 395 

We do not include scenarios to account for the impact of near-future climate change on soil 396 

carbon stocks and the way this could interact with the efficacy of land management changes 397 

to sequester soil carbon. We would expect increases in average temperature and/or 398 

precipitation to increase the rate of decomposition of carbon inputs to the soil, resulting in 399 

a modest decline in soil carbon for a given PRI (Zhong and Xu, 2014, Sakrabani and Hollis, 400 

2018, Smith, 2012) and any increase in PRI following adoption of cover crops or ley-arable 401 

system to deliver less of an increase in SOC stocks.  402 

 403 

3.3. Greenhouse gas mitigation potential 404 

We identify GHG mitigation potential for Great Britain (GB) in the next 30 years of 6.48 405 

million tonnes of carbon dioxide equivalent per year (MtCO2e.y-1) if cover crops were grown 406 

on arable land (Table 3), assuming no prior adoption. A scenario of low ley-arable 407 
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integration (L1A2) would deliver 2.19 MtCO2e.y-1 over 30 years, or 10.6 MtCO2e.y-1 if higher 408 

adoption (L4A2) (Table 3). In contrast, our results imply that adopting no till could result in 409 

net GHG emissions of 0.234 MtCO2e.y-1 due to decreases in SOC stocks, and reduced tillage 410 

only limited sequestration of 0.11 MtCO2e.y-1, over 30 years (Table 3). Although SOC 411 

changes would continue for longer than 30 years for all interventions until a new 412 

equilibrium is reached, we focus on a 30-year time horizon to assess the potential climate 413 

change mitigation potential of these RA practices due to the significance of the year 2050 414 

for meeting domestic and international net zero GHG emission targets (IPCC, 2018, Climate 415 

Change Committee, 2019). Furthermore, because soil carbon dynamics are non-linear and 416 

the time to reach a new equilibrium varies between interventions, expressing the final total 417 

change in SOC stocks as an annualised rate does not best reflect the timescale of SOC 418 

changes. 419 

 420 

To contextualise our results, the total GHG emissions of Great Britain were 433.4 MtCO2e in 421 

2019, of which agriculture comprised ~40 MtCO2e (United Kingdom emissions (BEIS, 2021) 422 

minus Northern Ireland (Daera, 2019)). Full adoption of cover crops from a baseline of zero 423 

adoption could therefore mitigate around 16% of GB agriculture’s emissions between now 424 

and 2050, and high inclusion of leys in arable rotations could mitigate 27% of current 425 

agricultural emissions. This comes with the major caveats that these interventions are in 426 

fact already implemented to some extent in GB and assumes an ability to achieve 427 

immediate adoption across all remaining arable land, which is unrealistic. Nevertheless, we 428 

identify emissions abatement potential from adopting RA practices of a comparable 429 

magnitude to previous scenarios of changes in UK land management, which have estimated 430 

10 MtCO2e.y-1 from soil carbon sequestration (Royal Society and Royal Academy of 431 



 19 

Engineering, 2018) and 10 MtCO2e.y-1 from adoption of low-carbon farming practices 432 

(Climate Change Committee, 2020) for the UK. Alternatively, adopting cover crops and a 433 

high frequency of ley-phase in arable rotations through our ‘land-sharing’ approach to 434 

carbon sequestration would sequester 9 and 14%, respectively, of the ~74 Mt.CO2e.y-1 435 

abatement theoretically possible under an upper-bound scenario of agricultural yield 436 

increases sparing UK land for afforestation with coniferous woodland (Lamb et al., 2016). 437 

Furthermore, our findings concur with previous work that have found limited potential for 438 

carbon sequestered through changes in farm management to mitigate even agricultural 439 

GHG emissions (MacLeod et al., 2010, Franks and Hadingham, 2012), much less provide 440 

carbon offsets to other sectors (Schlesinger and Amundson, 2019). 441 

 442 

In addition to previously characterised barriers to adoption of RA practices by land 443 

managers (Mills et al., 2019), there are key practical limitations to the implementation of 444 

practices considered here for climate change mitigation. Establishing cover crops rather 445 

than leaving bare arable stubbles or cultivated soil over winter benefits water quality and 446 

soil nutrient retention (Abdalla et al., 2019), with this practice already being promoted for 447 

these reasons. However, many crops commonly grow in GB arable rotations are established 448 

in the autumn (e.g. winter wheat or winter oilseed rape) (Defra, 2019) which are less 449 

compatible or incompatible with over-winter cover crops. A shift to spring-sown cultivars 450 

would likely incur a yield penalty e.g. (Vijaya Bhaskar et al., 2013, Cormack, 2006), which is a 451 

disincentive for farmers and risks displacing cultivation elsewhere. Similarly, ley-arable 452 

rotations are already commonplace in organic farming systems due to the fertility-building 453 

properties of the ley phase (particularly if containing legumes) benefiting the following 454 

arable crop and are increasingly being adopted in conventional systems as a tool to control 455 
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crop weeds displaying herbicide resistance, such as blackgrass (Alopecurus myosuroide). 456 

However, each year of ley phase in a rotation has an ‘opportunity cost’, with possible 457 

revenue streams from a ley (e.g. grazing with livestock, harvesting fodder for livestock or as 458 

anaerobic digestor feedstock) typically less profitable than producing an arable crop. 459 

Furthermore, if demand for arable crops did not decrease in proportion to the increase in 460 

ley-phase in arable rotations (e.g. through a restructuring of livestock production away from 461 

indoor rearing or finishing on cereal-based rations to grazing or ranging over temporary leys 462 

in arable systems (Lee et al., 2021, Karlsson and Röös, 2019), this would result in 463 

compensatory cultivation of pasture in GB or displaced land use change overseas, the 464 

emissions from which would likely more than offset any carbon sequestration from ley-465 

arable adoption (Carlton et al., 2011, Ostle et al., 2009). Our modelling approach suggests 466 

that reduced tillage intensity does not substantially build soil carbon stocks, if at all, in this 467 

temperate region. A further limitation of implementing this practice on soils with 468 

compromised structure is the risk of increased soil compaction leading to higher emissions 469 

of nitrous oxide (Huang et al., 2018, Powlson et al., 2014). This could potentially result in a 470 

net increase in GHG emissions, limiting the role of reduced tillage intensity for climate 471 

change mitigation in this context. We do not consider environmental or policy restrictions 472 

on the implementation of these practices or features of current GB farm structure which 473 

have been shown elsewhere in Europe to further limit GHG mitigation potential of these 474 

practices (Dendoncker et al., 2004, Taghizadeh-Toosi and Olesen, 2016). Further work could 475 

combine our approach here with data on current farm management and cropping practices, 476 

in addition to economic and behavioural models, to estimate the likely capacity for further 477 

adoption of these practices in a GB context.   478 

 479 
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4. CONCLUSIONS 480 

Adopting the Regenerative Agriculture practices of cover cropping and ley-arable rotations 481 

on cropland in Great Britain has potential to substantially increase carbon stocks within 30 482 

years, mitigating up to a quarter of agricultural GHG emissions. Although the modelling 483 

uncertainty within our estimates is acceptably small, there are clear practical barriers to 484 

achieving complete adoption of these practices across all GB arable land. While gains in SOC 485 

stocks from adopting such practices are worth pursuing where trade-offs with current 486 

management systems and rotations can be minimised, our results demonstrate the 487 

challenges of relying on boosting soil carbon sequestration to abate ongoing agricultural 488 

emissions.  489 

 490 

FIGURE LEGENDS 491 

Figure 1. Conceptual soil carbon pools in RothC-26.3. DPM: decomposable plant material, 492 

RPM: resistant plant material, BIO: microbial biomass, HUM: humified organic matter, IOM: 493 

inert organic matter, after Coleman and Jenkinson (2014). Decay of pools determined by 494 

first-order kinetics with decomposition rate constant, apart from small inert pool resistant 495 

to decomposition. 496 

 497 

Figure 2. Distribution of Great Britain arable soil organic carbon (SOC) stocks (t.ha-1). 498 

Baseline (assumed current, using WISE30sec values) (Batjes, 2016) and following 499 

implementation of cover crops, ley-arable rotations and reduced tillage intensity after 30 500 

years (i.e. around the year 2050) and once a new equilibrium is reached, to 30 cm depth. 501 

Violin plots show distribution of mean values from each 1 km2 model run for in Great 502 

Britain. Two ley-arable systems are modelled: L1A2, one year ley-phase and two years 503 
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arable cropping, and L4A2, four years ley-phase and two years arable cropping. Simulations 504 

for two ley-arable scenarios and two reduced tillage scenarios were run together, 505 

respectively, hence shared baselines. 506 

 507 

Figure 3. Great Britain arable soil organic carbon (SOC) stocks (t.ha-1) at 1 km2 resolution. 508 

Colour indicates difference from baseline (0-30 cm), following implementation of cover 509 

crops, ley-arable rotations and reduced tillage intensity after 30 years and once a new 510 

equilibrium is reached. The two scenarios for ley-arable rotations are one year ley-phase 511 

and two years arable cropping (L1A2), and four years ley-phase and two years arable 512 

cropping (L4A2). 1 km2 resolution for arable land in Great Britain identified using the CEH 513 

land cover map (Rowland et al., 2017). Scale bar in km. 514 

 515 

5. ACKNOWLEDGMENTS 516 

We would like to thank Dr Andrew C. Martin for advice on our modelling framework. The 517 

authors would like to acknowledge the use of the University of Oxford Advanced Research 518 

Computing facility in carrying out this work. http://dx.doi.org/10.5281/zenodo.22558 519 

 520 

This work was supported by funding from the Biotechnology and Biological Sciences 521 

Research Council (BBSRC) [grant number BB/M011224/1]. PCB would like to acknowledge 522 

funding by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under 523 

Germany’s Excellence Strategy [EXC 2075 – 390740016]. 524 

 525 

The authors declare that they have no known competing financial interests or personal 526 

relationships that could have appeared to influence the work reported in this paper. 527 

http://dx.doi.org/10.5281/zenodo.22558


 23 

 528 

6. SUPPLEMENTARY MATERIAL 529 

Table S1. Calculations used to convert SOC stocks summed across all 1 km2 pixels run for 530 

each intervention to results presented in Table 3. 531 

 532 

Figure S1. Baseline Great Britain arable soil organic carbon (SOC) stocks (t.ha-1) at 1 km2 533 

resolution. Averaged across simulations for each intervention for 0-30 cm. Calculated from 534 

SOC concentration (g.100g-1) and bulk density data from the WISE30sec dataset (Batjes, 535 

2016), for all GB arable land at 1 km2 resolution identified through the CEH land cover map 536 

(Rowland et al., 2017). Scale bar in km. 537 

 538 

Figure S2. Proportion of uncertainty in RothC model output for Great Britain simulation 539 

explained by input parameter variation. Estimated from 6,137,400 observations (61,374 1 540 

km2 pixels) from the cover crop simulation. Adjusted R2 from linear model with (a) baseline 541 

Plant Residue Input, and (b) soil carbon stock after 30 years of intervention, as response 542 

variables, and specified input parameter distributions as explanatory variables. 543 

 544 

Figure S3. Proportion of uncertainty in RothC model output for model calibration 545 

explained by input parameter variation. Estimated using 61 observations from 8 studies 546 

with cover crop treatments identified by Jordon et al. (2021), i.e. CA data (see Table 2 and 547 

Methods text for details). Adjusted R2 from linear model with (a) treatment baseline Plant 548 

Residue Input, and (b) treatment endline Plant Residue Input, as response variables, and 549 

specified input parameter distributions as explanatory variables. 550 

 551 
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