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Abstract

Flow-induced vibrations of a cantilevered circular cylinder are measured in sinusoidal, oscillatory, water flows with

amplitude of reduced velocity in the range 1.9 ≤ Ur ≤ 4.4 and Keulegan-Carpenter number in the range 120 ≤

KC ≤ 900 respectively. Flow velocities are measured using laser Doppler anemometry, and forces and moments

are measured using a 6-axis load cell; the two-degree-of-freedom (2-DOF) cylinder motions are determined from

the measured moments. The dominant type of vibration occurring within the flow half-period is shown to depend

mainly on Ur, with predominantly in-line vibration occurring for Ur / 2.7, figure-8 vibration occurring for 2.7 /

Ur / 4, and transverse vibration occurring for Ur ' 4. In-line vibration frequency, fx, is close to, or slightly higher

than the cylinder’s natural frequency in still-water, while transverse vibration frequency, fy, is generally close to the

vortex shedding frequency given by Strouhal number St = 0.2. Some unsteadiness is seen in the transverse vibration

frequency in that accelerating flow fy is consistently higher than decelerating flow fy for the same instantaneous

reduced velocity ur. The most notable unsteady effect is seen in the in-line vibration amplitude, Ax, which is much

higher during flow deceleration than during flow acceleration; maximum Ax occurs at decelerating ur ≈ 2 for all three

vibration types. Transverse vibration amplitude, Ay, increases with increasing ur and shows only slight asymmetry

between accelerating and decelerating flow. Experiments with the cylinder placed within a large array of similar

cylinders with a spacing between cylinders of six cylinder diameters, show that cylinder vibrations within the array

are more variable than those of the isolated cylinder, but exhibit similar average vibration amplitudes and frequencies

as the isolated cylinder. An empirical model for unsteady in-line vibration based on theoretical considerations and

the experimental data is presented. Model-predicted and measured in-line vibration amplitudes through the flow

half-period show good agreement for in-line, figure-8 and transverse vibrations.
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1. Introduction

Flow-induced vibrations (FIV) of cylinders are important in engineering applications ranging from the small-

scale vibrations of heat exchanger tubes to the large-scale vibrations of risers in the marine environment. Reviews of
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the topic have been presented by Naudascher (1987), Blevins (1990), Sarpkaya (2004), Williamson and Govardhan

(2004) and Sumer and Fredsøe (2006). The majority of studies have investigated FIV under steady flow conditions,

for which the vibrations have near-constant amplitude and frequency, governed by the cylinder mass ratio m∗ (mass of

the vibrating cylinder/mass of the displaced fluid), the reduced velocity ur = u/ fnd, the Reynolds number Re = ud/ν,

the aspect ratio (AR = cylinder length/diameter) and the damping characteristics of the cylinder, where u is flow

velocity, fn is cylinder natural frequency in still fluid, d is cylinder diameter and ν is the fluid kinematic viscosity. For

102 < Re < 105 (Schlichting and Gersten, 2017), vortex shedding occurs with frequency fvs ≈ 0.2u/d (i.e. Strouhal

number St = fvsd/u ≈ 0.2). The shedding induces a fluctuating transverse force on the cylinder with frequency fvs

and a fluctuating in-line force with frequency 2 fvs; a cylinder with two degrees of freedom (2-DOF) can therefore

undergo resonant flow-induced vibrations in both in-line and transverse directions.

Steady-flow experiments involving 2-DOF FIV of rigid, flexibly-mounted cylinders (Jauvtis and Williamson,

2003), rigid, pivoted cylinders (Flemming and Williamson, 2005; Cagney and Balabani, 2014), and flexible, can-

tilevered cylinders, vibrating in the first structural mode, with no coupling between x and y motions, (King et al.,

1973; Pesce and Fujarra, 2000) have shown that FIV occurs when 1 < ur < 10. For 1 / ur / 2.5 (the “first insta-

bility region”), large-amplitude in-line vibrations can occur due to symmetric vortex shedding from the cylinder, a

phenomenon termed “wake breathing” (Naudascher, 1987). Symmetric vortex shedding does not occur for flow past

a stationary cylinder: it only occurs once the cylinder has already been set in motion by asymmetric shedding. Similar

symmetric vortex-shedding phenomena have been observed in experiments involving forced, in-line oscillation of a

cylinder in steady flow by Nishihara et al. (2005), and in experiments involving steady plus low-amplitude oscillatory

flow past a stationary cylinder by Konstantinidis and Balabani (2007). The occurrence of large-amplitude in-line

FIV due to wake breathing in the first instability region depends on Re. No wake breathing was observed in Kon-

stantinidis et al.’s (2021) numerical simulations of in-line FIV of a flexibly-mounted cylinder for ur = 1.5 − 4.5 and

Re ≤ 250. Similarly, no wake breathing was observed by Flemming and Williamson (2005) during FIV experiments

for a pivoted cylinder, conducted with constant Re/ur = 110 (i.e. Re < 300 for ur < 2.5), while Gurian et al. (2019),

who conducted experiments with constant Re/ur = 770, only observed wake-breathing if the cylinder oscillation was

initiated manually. The vibration amplitude typically reduces to a minimum around ur ≈ 2.5, and for 2.5 / ur / 4

(the “second instability region”), the motions are characterised by large-amplitude vibration in both the in-line and

transverse directions, resulting in the cylinder following a “figure-8” trajectory. Konstantinidis (2014) described how

the reduction in vibration amplitude between the first and second instability region is a consequence of asymmetric

vortex shedding, as the timing of asymmetric vortex shedding relative to the cylinder motion can result in negative

energy transfer from the fluid to the structure when ur ≈ 2.5. Experiments conducted by Aguirre (1978), summarised

by Naudascher (1987), in which a splitter plate was placed in the wake of the cylinder in order to prevent asymmetric

vortex-shedding, have shown that the plate prevents the amplitude reduction at ur ≈ 2.5. Instead, amplitudes remain

high up to ur ≈ 3, after which the streamwise vibrations occur at lower amplitudes compared to those measured with-

out a plate. Similar splitter-plate observations have been made by Okajima et al. (2004), who also investigated in-line
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FIV of pivoted cylinders with a range of different aspect ratios. Okajima et al. (2004) showed that in-line FIV for

cylinders with low aspect ratio (AR <= 10) form a single instability region in the range 1 < ur < 4, with no reduction

in vibration amplitude at ur ≈ 2.5. For 4 / ur / 10, vibrations occur primarily in the transverse direction, often

reaching amplitudes much higher than those observed for ur < 4; FIV within this region has been explored by e.g.

Jauvtis and Williamson (2003) for rigid, flexibly-mounted cylinders, and Pesce and Fujarra (2000) for cantilevered

cylinders.

Comparatively less literature exists for FIV in oscillatory flow, defined by u(t) = U sin(2πt/T ), where U is velocity

amplitude and T is the flow period. The parameters that govern flow behaviour and FIV in oscillatory flow are

the same as for steady flow with the addition of the Keulegan-Carpenter number KC = UT/d. Oscillatory flow

Reynolds number is given by Re = Ud/ν, while the reduced velocity is time-varying, ur(t) = u(t)/ fnd, with amplitude

Ur = U/ fnd. Other relevant parameters are the frequency ratio fr = fn/ f , where f = 1/T is the flow frequency,

the number of lift oscillations per flow period n = fL/ f , where fL is the fundamental lift frequency (obtained as

the peak frequency in the power spectrum of measured lift force, see Sumer and Fredsøe, 2006), and the so-called

Stokes or frequency parameter β = Re/KC = d2/νT (Sarpkaya, 2005). Vortex-shedding from a stationary cylinder

in oscillatory flow is a function of KC: in flow visualisations conducted for β = 255 and β = 730, Williamson and

Roshko (1988) observed distinct regimes of vortex-shedding, with no shedding below KC = 7, one pair of vortices

shed when 7 < KC < 15, two vortex-pairs when 15 < KC < 24, and so on. Sumer and Fredsøe (2006) show that the

increase of one in the number of vortex pairs for an increase of 8 in KC is consistent with St = 0.2 for oscillatory flow.

Experimental studies of FIV in oscillatory flow are reviewed by Sumer and Fredsøe (2006); most involve 1-DOF,

transverse-only oscillation of a flexibly-mounted cylinder, and results are generally presented as a function of KC,

with vibration amplitudes and frequencies becoming similar to steady-flow FIV amplitudes and frequencies at high

KC. A few studies have investigated 2-DOF FIV of flexibly-mounted cylinders in oscillatory flow, including Lipsett

and Williamson (1994), who conducted 2-DOF FIV tests for 2 < KC < 60 and 1 < fr < 9. Lipsett and Williamson

proposed three mathematical models for predicting 2-DOF vibrations: two uncoupled x and y models and a coupled

model. Their models perform fairly well for low fr; however, for fr > 4, their experiments show increasingly complex

2-D vibration trajectories, as well as significant variations in FIV for different flow periods, neither of which are

captured by their models. Similar observations were made in numerical simulations by Zhao (2013) for 10 < KC < 40

and 0.5 < fr < 10, where trajectories become increasingly complex for fr > 2. To the authors’ knowledge, only Fu

et al. (2013) have conducted FIV experiments for high KC and reported vibration amplitudes through the flow period.

Their experiments focused on the transverse (y) vibrations of a slender cylinder that was forced to oscillate in the

x direction in still water, with 26 ≤ KC ≤ 178 and 4 ≤ Ur ≤ 7.9 (for these experiments U and T are velocity

amplitude and period of the imposed streamwise harmonic cylinder motion). Results from Fu et al. (2013) show

that FIV in oscillatory flow differs significantly from that in steady flow. Even for very high KC, for which a quasi-

steady behaviour might be expected, unsteady behaviour was observed, including a hysteresis effect whereby vibration

amplitudes observed during cylinder deceleration are significantly higher than vibration amplitudes during cylinder
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Figure 1: The Aberdeen Oscillatory Flow Tunnel

acceleration. Their results have been reproduced in subsequent numerical simulations by Thorsen et al. (2016) and by

Fu et al. (2018), who were able to reproduce the time-dependent response characteristics of the cylinder.

The present paper reports on experiments conducted as part of a study of the hydrodynamic interactions between

sea waves and submerged vegetation. Experiments were conducted in a large oscillatory water tunnel in which os-

cillatory flows with periods and amplitudes similar to the periods and amplitudes of oscillatory flows under full-scale

waves can be generated. To build understanding of fundamental mechanisms, vegetation was represented by an array

of small-diameter solid circular cylinders. The cylinders are mounted vertically in the tunnel, with one end fixed to the

tunnel floor and the other end free. The combination of cylinder diameter, set-up and flow conditions results in a set

of experiments in which cantilevered circular cylinders vibrate in the in-line and transverse directions in oscillatory

flows under high-KC conditions. Section 2 describes the experimental set-up, test conditions and and data processing.

Detailed experimental results for a single, isolated cylinder are presented and discussed in Section 3. Measurements

of vibrations when the cylinder is contained within a uniform array of cylinders (representing a vegetation canopy)

are presented in Section 4. In Section 5, an empirical model describing the unsteady characteristics of the in-line

vibrations is presented and compared to the experimental results for the isolated cylinder. The main conclusions are

presented in Section 6.

2. Experiments

2.1. Experimental conditions

The experiments were conducted in the Aberdeen Oscillatory Flow Tunnel (AOFT, Figure 1), which is capable

of generating horizontal oscillatory flows with velocity amplitudes up to 1.5 m/s for periods of 5-10 s. The facility

is a U-tube construction with a total length of 16 m, 10 m of which is a rectangular glass-sided test section, 0.75 m

high and 0.3 m wide. For the present experiments a raised floor was present in the tunnel test section, consisting of a

stainless steel frame covered with 25 mm thick PVC boards. The height of the raised floor was 0.25 m, reducing the

internal height of the test section to 0.5 m. The 7 m long raised floor consisted of 12 separate boards, perforated with

8.5 mm-diameter holes to accommodate an array of cylinders. A load cell was built into one of the central boards
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Figure 2: (a) Diagram of the load cell (LC) arrangement. (b) Definition sketch for axes, forces and moments.

for direct measurement of forces acting on a single cylinder. For the experiments discussed within the majority of

this paper, a single, isolated cantilever cylinder was mounted on the load cell, and the rest of the test section bed was

covered with acrylic tape, covering all the other holes to create a smooth bed. Results from subsequent experiments

involving a full array of cantilever cylinders will be discussed in Section 4. The test cylinder consisted of solid PVC

with a diameter of 8.3 mm and length of 205 mm. At its base, the cylinder was fitted with an M4 threaded stainless

steel rod for attaching to the load cell. When installed, the height of the cylinder above the bed was measured to be

200.5 mm. A number of static-deflection tests were conducted on the cylinder, as well as free-vibration tests in air

and in still water. Based on these tests, the Young’s modulus E was determined to be 3.55-3.75 GPa. The cylinder

natural frequency and damping ratio in air were fair = 45.3 Hz and ζair = 0.01. The corresponding values in still

water were fn = 33.9 Hz and ζ0 = 0.023. The load cell was mounted on a stainless steel support located below the

bed (Figure 2(a)), with a small steel bracket mounted to the front of the load cell, where the test cylinder can be

attached. The whole installation was hidden underneath a 2 mm thick PVC lid to minimise water motion around the

load cell. The test cylinder protruded through a hole in this lid with a 1 mm clearance around the cylinder, ensuring

that the cylinder was solely supported by the load cell. Figure 2(b) shows the x, y, z coordinate system and the force

and moment convention.

Forces and moments acting on the test cylinder were recorded using an ATI F/T Nano17 IP68 6-axis load cell,

measuring at 1000 Hz. The load cell is used in three calibration settings with force sensing ranges of 12 N, 25 N

and 50 N and moment sensing ranges of 120 N·mm, 250 N·mm and 500 N·mm, respectively; the corresponding force

sensing resolutions are 1/320 N, 1/160 N and 1/80 N, and the moment sensing resolutions are 1/64 N·mm, 1/32 N·mm

and 1/16 N·mm. Flow velocities were measured using a Dantec FibreFlow 2-component Laser Doppler Anemometer

(LDA), operated in back-scatter mode. Velocities were recorded at a variable sampling rate, typically averaging

between 100 - 200 Hz The LDA probe was mounted on a 3-axis computer-controlled traverse, allowing the x, y,

and z-location of the measurement volume to be controlled with a resolution of 12.5 µm. For all test cases, the flow

velocities were measured in the ‘free-stream’ approximately 100 mm above the top of the test cylinder.
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Table 1: Experimental conditions. T = 6 s for all experiments; the last column indicates the dominant observed FIV regime (see Section 3.2).

U (m/s) Ur Re KC FIV regime

0.16 0.57 1326 120 No FIV

0.22 0.79 1838 166 No FIV

0.28 1.01 2359 212 No FIV

0.35 1.23 2865 259 No FIV

0.41 1.45 3387 305 No FIV

0.47 1.67 3911 352 No FIV

0.53 1.90 4431 398 In-line

0.60 2.12 4940 444 In-line

0.66 2.34 5472 491 In-line

0.72 2.57 6010 538 In-line

0.79 2.80 6548 585 Figure-8

0.85 3.03 7080 631 Figure-8

0.92 3.26 7608 679 Figure-8

0.98 3.48 8129 725 Figure-8

1.04 3.71 8660 772 Figure-8

1.11 3.93 9183 819 Figure-8

1.17 4.16 9705 865 Transverse

1.23 4.39 10248 913 Transverse
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Experiments were conducted for 18 flow amplitudes ranging between 0.57 ≤ Ur ≤ 4.39 (Table 1), all involving

sinusoidal flow with a constant flow period of T = 6 s, corresponding to a constant frequency ratio of fr = fnT = 203.4

and a constant frequency parameter β = Re/KC = 11.5. This value is much lower than β-values of previous oscillatory

flow experiments (Kühtz, 1996) because of the small-diameter cylinder and relatively large flow period in the present

study. For each flow amplitude, the load cell calibration setting was selected to achieve optimal resolution while

remaining within the moment sensing range; the 12 N setting was used for 0.57 ≤ Ur ≤ 2.34, the 25 N setting was

used for 2.57 ≤ Ur ≤ 3.48 and the 50 N setting was used for 3.71 ≤ Ur ≤ 4.39. For experiments involving a single,

isolated cylinder in the centre of the tunnel test section, flow velocities are spatially uniform, with the exception of the

low-velocity region in the wake of the cylinder and the boundary layers at the tunnel floor, walls and ceiling. Fredsøe

and Deigaard (1992) give the following empirical relation for estimating the boundary layer thickness in sinusoidal

flow over a smooth bed:

δ

aw
= 0.086Re−0.11

w , (1)

where aw = UT/2π is the flow orbital amplitude, and Rew = Uaw/ν is the orbital amplitude based Reynolds number.

For the present experiments, this indicates a near-bed boundary layer thickness between 10-20 mm, and, since the

lower part of the cantilever cylinder is stationary, the flow is considered to be both vertically and horizontally uniform.

To verify the boundary layer estimate, a vertical profile of u(z, t) was measured for U = 0.53 m/s and showed vertically

uniform velocities down to z = 10 mm, below which the velocity magnitude decayed to zero with proximity to the

bed. Root-mean-square (RMS) turbulent fluctuations in the free-stream were between 1-1.5% of the flow amplitude.

2.2. Data processing

LDA and load cell data was collected for a duration of 50-100 flow periods. Measurements were separated into

individual flow periods based on a once-per-cycle digital trigger signal, sent from the piston control software at

the start of each flow period, and recorded by the LDA and load cell data acquisition systems. Ensemble-averaged

quantities are calculated using:

〈θ(t)〉 =

∑N
n=1 θ(t + (n − 1)T )w(t + (n − 1)T )∑N

n=1 w(t + (n − 1)T )
0 ≤ t < T, (2)

where θ is any variable to be averaged, angle brackets denote the ensemble-average, t is time within the flow period

and N is the total number of flow periods recorded. θ(t) is the value of the variable at time t, and w(t) is a weighting

factor applied to θ at time t. The irregularly-sampled LDA data were averaged by applying a ‘binning’ method, where

each 6 s flow period was divided into 300 bins of duration ∆t = 1/50 s, and each velocity measurement is assigned

to its given bin. Within each bin, velocity samples are weighted by the particle residence time (Buchhave et al.,

1979). Since the LDA sample rate is proportional to the number of seeding particles passing through the measurement

volume, sample rates are high at high velocity and low at the flow zero-crossings. The regularly-sampled load cell

data are uniformly weighted, i.e. w = 1 for all t.

7



The forces acting on the test cylinder can be separated into low-frequency and high-frequency components. The

low-frequency forces are associated with the fundamental frequency of the oscillatory flow ( f = 0.167 Hz), while

the high-frequency forces related to FIV are within 10-50 Hz. Due to the large difference between f and fn, the

low-frequency forces are easily isolated by applying a low-pass filter with a 5 Hz cut-off. The ensemble-averaged

forces and moments are calculated from the low-pass filtered data using Equation (2). Analysis of the high-frequency

vibrations was performed by applying a continuous wavelet transform (CWT) to the measured moment data. While

the high-frequency vibrations can be detected by both the force and moment measurements, only the moment data are

used here because of the better signal-to-noise ratio. The CWT of a time-varying function θ(t) is given by:

Wψ(θ, a, b) =
1

a1/2

∫ ∞

−∞

θ(t) · conj.
[
ψ

(
t − b

a

)]
dt, (3)

where a is a series of scale factors, each of which is mapped to an ‘equivalent’ frequency, b is the translation of the

wavelet along t, and ‘conj.’ denotes the complex conjugate. The mother wavelet ψ used in the present analysis is a

Morse wavelet with parameters (γ, P) = (3, 120), and calculations were performed using the built-in cwt function

in MATLAB R2018a. For each experiment, the CWTs of Mx and My were evaluated for each flow period. For a

given translation b, the scale factor a which produces a peak value of
∣∣∣Wψ

∣∣∣ corresponds to the approximate vibration

frequency at time t = b, and the corresponding value of Wψ contains the vibration amplitude and phase. The sequence

connecting successive peaks of
∣∣∣Wψ

∣∣∣ at each b forms the ‘wavelet ridge’, and a better-resolution estimate of the

instantaneous vibration frequency is obtained by measuring the rate of change in phase along the wavelet ridge (Wang

et al., 2013). Instantaneous frequency is evaluated through the following forward-difference expression based on

Feldman (2011):

f (t) =
1
∆t

arctan
[
WψR(t) · conj.

(
WψR(t + ∆t)

)]
, (4)

where ∆t is the sampling interval (1000 Hz)−1, and WψR(t) is the complex value of the wavelet ridge at translation

b = t. The forward-difference method introduces some noise spikes, which are removed by applying a median filter of

order 10. The wavelet-obtained frequencies and amplitudes of vibration through each flow period were subsequently

ensemble-averaged by applying Equation (2). Amplitudes were averaged with uniform weighting, while frequencies

were weighted by signal amplitude, and any values below 5 Hz were excluded in order to remove any influence of the

low-frequency signal.

Cylinder tip deflections are calculated from measured moments using Euler-Bernoulli beam theory, with the as-

sumption that deflections remain small and elastic, and contain the linear sum of a quasi-static deflection (related to

the flow frequency) and a FIV-related dynamic deflection. Since vibration amplitudes remain relatively small, and

occur at frequencies close to the first natural frequency, dynamic deflections are assumed to occur solely in the first

flexural mode, with the deflection shape resembling the first eigenmode of a uniform cantilever in free, undamped

vibration (e.g. Strømmen, 2014). Taking into account that the load cell records moments at z = −10 mm, and that

the cylinder is mounted to the top bracket at z = −5 mm, the dynamic tip deflection is calculated from the dynamic
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(high-pass filtered) moment by:

X(t) =
0.2752L2

EI
M′y(t), (5a)

Y(t) = −
0.2752L2

EI
M′x(t), (5b)

where L is the cylinder length (measured from the base at z = −5 mm), E is Young’s modulus, I is second moment

of area, and where M′x, M′y are high-frequency (FIV-related) moments recorded by the load cell. Note that due to the

sign convention used, deflection in the y-direction causes a negative moment Mx (see Figure 2(b)), which is why there

is a minus sign in Equation (5b). Similarly, vibration amplitudes obtained from CWT are converted to tip deflection

amplitudes:

Ax(t) =
0.2752L2

EI

∣∣∣Wψ(My, amax, t)
∣∣∣ , (6a)

Ay(t) =
0.2752L2

EI

∣∣∣Wψ(Mx, amax, t)
∣∣∣ , (6b)

where amax denotes the scale factor where
∣∣∣Wψ

∣∣∣ is highest, equivalent to the frequency of vibration. Calculated deflec-

tions showed good agreement with visual observations and are assumed to be accurate within some small uncertainty.

3. Results

3.1. Force and moment results

Figure 3 shows example measured My and Mx for a single flow oscillation for four velocity amplitudes. The

My results for Ur = 1.45 show low-frequency forcing corresponding to f , while the other three cases show high-

frequency FIV-related moments superimposed on the low-frequency forcing; in Mx, only high-frequency forcing is

present. Force measurements were recorded as well as moments, although measurements of Fx for Ur < 2.34 were

discarded due to poor data quality caused by the low force. For all experiments with Ur ≥ 2.34, the low-pass filtered

and ensemble-averaged Fx closely matched My in shape, and the ratio My,RMS/Fx,RMS was 120±5 mm, slightly higher

than the theoretical ratio of 115 mm for a cantilever with h = 200 mm that is uniformly loaded from its free end to

20 mm from the fixed end (the 20 mm being the sum of an estimated 10 mm boundary layer, where velocities and

loading are very low, and the 10 mm vertical distance from z = 0 to the front of the load cell). Based on the very

consistent My,RMS/Fx,RMS obtained for experiments with Ur ≥ 2.34, the low frequency Fx for all experiments is

determined by dividing the measured low-frequency My by 120 mm.

In the absence of FIV, the instantaneous horizontal force on a cylinder in oscillatory flow is given by the Morison

equation:

Fx =
1
2
ρCDdh · u |u| + (1 + Ca)

ρπd2h
4

u̇, (7)

where CD and Ca are empirical drag and added mass coefficients. Note that the cylinder vibration leads to a separate

added-mass (see Section 5); to differentiate between them, the ‘flow-frequency added-mass’ is written Ca while the

9



Figure 3: Example measured My and Mx for one flow period for four experiments.

‘vibration added-mass’ is written CA. For the present experiments, drag and added-mass coefficients were obtained by

fitting Equation (7) to the low-frequency force (i.e. the low-pass filtered, ensemble-averaged My divided by 120 mm)

and velocity measurements using a least-squares method; the results for CD and Ca are shown in Figure 4. Since KC

is very high for these experiments, the drag force dominates, and, as a result, the least-squares estimate of Ca can

vary significantly with small differences in force or velocity. To quantify this sensitivity, the shaded area in the figures

indicate values of CD and Ca that vary within 10% of the best fit: the results show that the uncertainty in CD is much

less than that for Ca. To the authors’ knowledge, CD and Ca values corresponding to the very high KC and low β

values of the present experiments have not been previously reported. Sarpkaya (1976) measured forces on cylinders

in a wide range of oscillatory flow conditions, reaching KC = 200 for β = 497 (the lowest value tested). Sarpkaya’s

results show CD steadily reducing from 2 to 1.3 for 20 < KC < 200, while Ca ≈ 0.2. While the present measurements

of CD are consistent with Sarpkaya’s results, the measured Ca values are significantly higher. The reason for this

discrepancy, which is present over the full range of test conditions regardless of FIV, is not clear. Possible causes

may include 3-D flow features caused by the cantilever geometry, such as cylinder tip vortices occurring at flow

reversal; future experiments involving flow visualisation are needed to investigate this further. The present low-β,

high-KC results can also be compared to steady-flow results, for which CD ≈ 1 for the range of Re of the experiments

(Schlichting and Gersten, 2017); this is consistent with the present results. The dependence of CD on Ur observed in

Figure 5 correlates with the FIV behaviour described in Section 3.2, as FIV results in increased drag for both in-line

and transverse vibration (e.g. Tanida et al., 1973), especially for 2-DOF vibration (Sarpkaya, 1995). As shown in
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Figure 4: Drag and added-mass coefficients obtained by least-squares fitting.

Section 3.2, there are three main regimes of cylinder vibration: the in-line regime, which occurs for 1.90 ≤ Ur ≤ 2.57;

the figure-8 regime, which occurs for 2.80 ≤ Ur ≤ 3.93; and the transverse regime, which occurs for 4.16 ≤ Ur ≤ 4.39.

The increase in CD at Ur > 1.8 in Figure 4 corresponds to the onset of the in-line vibrations, the highest CD occurs

when the cylinder undergoes fig-8 vibrations, and CD decreases as the cylinder vibrations become transverse.

The cylinder deflection due to low-frequency forcing can be estimated with quasi-static analysis. An approxima-

tion of the tip deflection is obtained by assuming uniform loading over the total cylinder length L, with a distributed

force equal to Fx/h; then, quasi-static tip deflection along x is given by (Budynas and Nisbett, 2015):

X0(t) =
L4

8EI
Fx(t)

h
, (8)

where Fx(t) is given by Equation (7), which closely describes the measured low-frequency forces. Hence, the time-

varying X0(t) for any of the present experiments can be obtained by applying Equations (7) and (8) with CD and Ca

from Figure 4. The amplitude of the low-frequency tip deflection, as a function of Ur, is obtained by combining

Equations (7) and (8) (for high KC, the impact of Ca on the maximum force is negligible):

X0,max

d
=

L4

8EI
1
2
ρCDdU2 ≈ 0.0106CDU2

r , (9)

which can be evaluated directly for each flow amplitude using the Ur and CD-values shown in Figure 4. Amplitudes of

low-frequency deflection for all experiments are shown for comparison in Figure 14, which also shows the amplitudes

of the high-frequency vibrations along x and y, which are the main focus of this work. Amplitudes of low-frequency

and high-frequency motions have similar magnitude and low-frequency amplitudes increase with Ur, as predicted by

Equation (9). The highest quasi-static deflection of X0,max = 0.22d occurs for Ur = 4.39, validating the assumption

that quasi-static deflection remains small at all times, as discussed in Section 2.2.
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Figure 5: Example vibration results for Ur = 3.71: (a) ur(t) for a single example flow period, (b) X(t) and Y(t) for the example flow period, (c)

vibration trajectories throughout the example flow period. Trajectories are shown in 1:1 aspect ratio, at the scale shown in the figure.

3.2. Vibration trajectories

Figure 5 shows the measured dynamic cylinder tip deflections, X(t) and Y(t), for a sample flow period with Ur =

3.71. The flow velocity is shown in Figure 5(a), and X(t) and Y(t) are shown in Figure 5(b). For this experiment,

Figure 5(c) shows Y(t) plotted against X(t) within 18 time intervals of 0.3 s (t/T = 0.05) duration, illustrating the

vibration trajectories occurring throughout the flow period. For this experiment, Figure 5(c) shows figure-8 vibrations

developing gradually as flow velocity increases, transitioning to in-line vibrations around t/T ≈ 0.35, before ceasing to

vibrate at t/T = 0.5; similar behaviour is observed in the subsequent flow half-period (animated vibration trajectories

for three example flow periods at Ur = 2.57, 3.71 and 4.39 are included in the online supplementary material). With

the exception of occasional chaotic fluctuations, the vibrations in the second flow half-period are identical to those of

the first half-period. This was the case for all experiments, and so, measurements from the second half-period were

combined with measurements from the first half-period, effectively doubling the size of the dataset.

For each flow condition, the vibrations exhibited a degree of chaotic fluctuations. Unpredictable vibrations were
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Figure 6: Vibration trajectories for three sample flow half-periods for Ur = 4.39.

also observed in oscillatory flow experiments by Lipsett and Williamson (1994). As an example, Figure 6 shows a

comparison of vibrations observed in three sample half-periods for Ur = 4.39. Sequence (i) shows the behaviour most

commonly seen for this velocity, i.e. transverse vibration dominance; sequence (ii) initially develops figure-8 motions,

which transition to matching sequence (i) at t/T > 0.25; and sequence (iii) is dominated by figure-8 motions and only

becomes similar to sequence (i) at t/T > 0.45. The different trajectory sequences observed in different half-periods of

the same experiment can be grouped together in distinct ‘trajectory sequence categories’; for this purpose, a method

of quantifying similarity between two trajectory sequences is applied. The method is based on comparing vibration

amplitudes Ax and Ay through individual half-periods (obtained from the wavelet transform, see Section 2.2), and

defining the similarity of vibrations between two half-periods by the cosine similarity of vibration amplitudes in x, y

(Cha, 2007):

sx(i, j) =

∑Ns
t=1 Ax,i(t)Ax, j(t)√∑Ns

t=1 A2
x,i(t)

∑Ns
t=1 A2

x, j(t)
, i, j = 1, . . . , 2N, (10a)

sy(i, j) =

∑Ns
t=1 Ay,i(t)Ay, j(t)√∑Ns

t=1 A2
y,i(t)

∑Ns
t=1 A2

y, j(t)
, i, j = 1, . . . , 2N, (10b)

where sx(i, j) denotes the cosine similarity between half-periods i and j along the x-direction, Ax,i(t) is the x-amplitude

of vibration through half-period i, Ns is the number of samples within a half-period, and 2N is the total number of

half-periods for the given flow condition. The cosine similarity between two amplitude sequences produces a value

between 0 and 1, where 1 denotes perfect similarity in ‘shape’. By defining a threshold value sc (0.95 was used in the

present analysis), two half-periods i and j can be grouped together in a common ‘sequence category’ if sx(i, j) and

sy(i, j) are both greater than sc. According to this categorisation, for example, case (i) in Figure 6 is representative for

83% of the half-periods for the Ur = 4.39 flow condition, while cases (ii) and (iii) account for only 4% and 1% of

half-periods, respectively. Figure 7 shows results of the classification when applied to all flow half-periods for all 12
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Figure 7: Percentage of half-periods in the largest (black) and second-largest (light grey) trajectory sequence category.

experiments where FIV occurred, showing only the percentages for the two largest sequence categories. The figure

shows that there is always a single, clearly predominant trajectory sequence for a given flow amplitude.

Figure 8 presents an overview of the measured vibration trajectories through the flow half-period for all experi-

ments. For each of the 12 experiments for which significant FIV occurred, the most-common ‘trajectory sequence’

through the flow half-period is shown as a horizontal sequence at the given Ur. The colour shading in the figure

indicates regions of the diagram where the vibration type (in-line, figure-8, transverse) is the same. These regions

are obtained by applying the following criteria to the normalised amplitudes A∗x = Ax/d and A∗y = Ay/d through

each half-period: if A∗x(t) and A∗y(t) are less than 0.03⇒ low vibration; if A∗x(t) ≥ 0.03 and A∗x(t) > 2A∗y(t)⇒ in-line

vibration; if A∗y(t) ≥ 0.03 and A∗y(t) > 4A∗x(t) ⇒ transverse vibration; and for any other case ⇒ figure-8 vibration.

For each (Ur, t/T ), the percentages of half-periods for which low vibration, in-line vibration, figure-8 vibration and

transverse vibration occurred were calculated and denoted ΦLo, ΦIL, ΦF8 and ΦTv respectively. The vibration type

at each (Ur, t/T ) is classified as ‘in-line’, ‘figure-8’ or ‘transverse’ if ΦIL, ΦF8 or ΦTv exceed 60% (note that, while

the threshold is 60%, percentages are often close to 100%); the remaining points are classified as ‘transitional’ where

ΦLo is less than 50%, and classified as ‘low vibration’ otherwise; Φ-values are interpolated along Ur to complete the

shading in Figure 8. Dotted contour lines of constant ur(t) are labelled on the upper x-axis of Figure 8.

The sequences in Figure 8 can be divided into three ‘FIV regimes’ based on Ur: The ‘in-line regime’ (1.90 ≤ Ur ≤

2.57), dominated by in-line vibrations, which develop near maximum velocity, reach a maximum vibration amplitude

near t/T = 0.3, and gradually reduce as flow decelerates; the ‘figure-8 regime’ (2.80 ≤ Ur ≤ 3.93), where figure-8

vibrations first develop, before transitioning to in-line vibration during flow deceleration; and the ‘transverse regime’

(4.16 ≤ Ur ≤ 4.39), where transverse vibrations are dominant, occurring near peak velocity and transitioning to in-

line vibration during flow deceleration. The sequence with Ur = 2.80, at the transition between in-line and figure-8

regimes, involves significantly lower vibration amplitudes than the sequences before and after. This is similar to the

reduction between in-line and figure-8 regions observed in steady-flow studies (e.g. Cagney and Balabani, 2014), and

is likely caused by competition between symmetric and asymmetric vortex-shedding modes (Gurian et al., 2019). The

boundaries of the coloured regions in Figure 8 partially follow the contours of instantaneous reduced velocity ur(t),

and the following approximate delineations can be observed: for 1 < ur(t) < 2.5, vibrations are either low-amplitude

(during flow acceleration) or in-line (at peak velocity and during flow deceleration); for 2.5 < ur(t) < 4, vibrations
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Figure 8: Vibration trajectories through the flow half-cycle at each Ur . Dotted contour lines are labelled on the upper x-axis and show instantaneous

ur(t), and coloured regions indicate the predominant vibration type in accordance with the legend at the top.
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Figure 9: Example wavelet scalograms.

are figure-8 or transitional (and occasionally transverse for Ur > 4); and for ur(t) > 4, vibrations are consistently

transverse. These ranges of ur(t) are similar to the regions of in-line, figure-8 and transverse vibration observed in

steady-flow studies (e.g. Jauvtis and Williamson, 2004, for a flexibly-mounted cylinder), indicating that the vibration

type at a given time mainly depends on ur(t). Figure 8 consistently shows asymmetry between the accelerating flow

(0 < t/T < 0.25) and decelerating flow (0.25 < t/T < 0.5) of the half-period, especially for the regions of in-line

vibration, demonstrating that the characteristics of vibration are unsteady and depend on vibration history as well as

on ur(t).

3.3. Vibration frequencies

Figure 9 shows example wavelet scalograms of the cylinder deflection in the x and y-directions through sample

flow half-periods for Ur = 2.57, 3.71 and 4.39, representative of the in-line, figure-8 and transverse regimes. Each

figure shows the magnitude of the wavelet transform normalised by the standard deviation of X(t) or Y(t) over the

half-period, with frequencies normalised by the still-water natural frequency ( f ∗x = fx/ fn, f ∗y = fy/ fn). For Ur = 2.57

and Ur = 3.71, Figure 9 shows the dominant vibrations occurring with f ∗x ≈ 1.1 and fy ≈ f ∗x /2, while, for Ur = 4.39,

vibrations occur with f ∗x ≈ 1.1 and f ∗x ≈ 0.8; all of these frequencies are consistent with those observed for in-line,

figure-8 and transverse vibration of cylinders in steady flow for 2 < ur < 4.5 (Jauvtis and Williamson, 2004). The

transverse vibrations for Ur = 2.57 exhibit multi-frequency characteristics with two separate ‘wavelet ridges’, with the

primary ridge near f ∗y = 0.5 and a secondary ridge at f ∗y ≈ 1. The location of the secondary ridge coincides with large-
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Figure 10: Ensemble-averaged vibration frequencies f ∗x and f ∗y , with the shaded area showing standard deviations.

Figure 11: Frequency against ur(t) for (a) Ur = 2.57, (b) Ur = 3.71 and (c) Ur = 4.39.

amplitude vibrations in f ∗x , indicating that it represents a small transverse component of the in-line vibration. Figure 10

shows ensemble-averaged f ∗x and f ∗y for three flow cases, with ±1 standard deviation shown as grey areas. Frequency

measurements are generally very consistent, as shown by the narrow standard deviations. For Ur = 2.57, the region of

increased standard deviation occurs when the vibration amplitude is close to zero, and vibration frequency is therefore

uncertain. For Ur = 4.39, fx becomes significantly more uncertain near peak velocity due to the predominantly

transverse vibrations (see Figure 8). Figure 11 shows the same ensemble-averaged frequencies as in Figure 10, now

plotted against ur(t), with arrows added to f ∗y to indicate the path of f ∗y through the flow half-period, and with the

dashed line representing f ∗St = fSt/ fn based on St = 0.2. The results show that f ∗x follows approximately the same path

during flow acceleration and deceleration for the 3 experiments; this was the case for all 12 experiments for which

significant FIV occurred. The results for the transverse vibration frequencies are more complicated: for Ur = 2.57, fy

is higher than fSt during flow acceleration and slightly below fSt during deceleration. For Ur = 3.71, fy is higher than
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Figure 12: Ensemble-averaged vibration amplitudes A∗x and A∗y , with the shaded area showing standard deviations.

fSt until ur(t) ≈ 3, while for higher ur(t), vibrations in x and y are synchronised at f ∗y = f ∗x /2; During flow deceleration,

fy ' fSt for velocities below ur(t) ≈ 3. For Ur = 4.39, fy is again higher than fSt during acceleration until ur(t) ≈ 3.

For ur(t) > 3, f ∗y is close to but slightly lower than fSt, and, as for Ur = 3.71, fy ' fSt during deceleration for velocities

less than ur(t) ≈ 3.

The results presented in Figure 11 are representative of results from all experiments that resulted in significant FIV.

Present observations share similarities with results from flow visualisations by Cagney and Balabani (2014), who, for

a pivoted cylinder undergoing 2-DOF FIV in steady flow, reported that the vortex-shedding frequency fvs follows

St ≈ 0.2 for 0.5 < ur/ f ∗x < 2, where in-line vibrations occur, after which, synchronisation occurs, with fvs = fx/2

for 2 < ur/ f ∗x < 3, where figure-8 vibrations occur, followed by fvs becoming greater than fx/2 for ur/ f ∗x > 3, where

transverse vibrations begin to develop (Cagney and Balabani, 2014, did not report measured values of f ∗x , but stated

that it varies with ur). The main feature that distinguishes the present oscillatory flow FIV from steady flow FIV is

the asymmetry in f ∗y between the accelerating and decelerating stages of the flow half-period for ur(t) < 3, where f ∗y

is consistently higher than fSt during flow acceleration and close to fSt during flow deceleration.

3.4. Vibration amplitudes and phases

Figure 12 shows ensemble-averaged tip vibration amplitudes for the same three experiments shown in Figures 9,

10 and 11, with the grey areas representing ±1 standard deviation. For the examples shown, the peak value of A∗x is

highest for Ur = 2.57 (the in-line vibration regime) and reduces with increasing Ur, whereas the peak value of A∗y

is lowest for Ur = 2.57 and increases with increasing Ur. In general, standard deviations are large when vibrations

are growing and small when vibrations are decaying, as seen most strikingly in A∗x for Ur = 2.57. For the figure-8-

dominant case, Ur = 3.71, the largest variability is seen in A∗y, for which the standard deviation reaches a maximum
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Figure 13: Ensemble-averaged vibration amplitudes for (left) in-line-dominant vibration (1.90 ≤ Ur ≤ 2.57), (middle) figure-8-dominant vibrations

(2.80 ≤ Ur ≤ 3.93), and (right) transverse-dominant vibrations (4.16 ≤ Ur ≤ 4.39)

value of 0.07. Similar to the in-line-dominant case with Ur = 2.57, the variation is greatest as vibrations grow during

flow acceleration and the variation becomes very small later in the flow half-period as the flow decelerates and the

vibrations decay in amplitude. For Ur = 4.39, which has the largest vibration amplitudes, the standard deviations are

slightly lower than for the figure-8 case, with a maximum value of 0.06, indicating that the variability of vibration

amplitude gradually reduces with increasing Ur.

Figure 13 shows the ensemble-averaged A∗x and A∗y plotted against ur(t) for all experiments. The left column

presents the experimental results for which the FIV is inline-dominant; the middle column presents the results for the

figure-8-dominant experiments, and the results for the transverse-dominant experiments are shown in the right column.

The results corresponding to the three ‘representative’ cases - Ur = 2.27, 3.71 and 4.39 - are shown as black and blue

arrowed lines, where black corresponds to the flow acceleration stage of the half-period and blue corresponds to the

deceleration stage. The figure shows that vibration amplitudes along x are very different for the three FIV regimes.

For the inline-dominant cases, the vibration amplitude is very low for much of the accelerating stage of the flow; A∗x

then increases rapidly as ur(t) approaches and passes maximum velocity, before gradually decaying to zero as the flow

further decelerates. For the figure-8 cases, A∗x behaves similarly to the in-line cases, but with a short ‘flat section’ after

peak velocity where A∗x remains nearly constant. When velocity drops below ur(t) = 2.7, the vibration transitions to

in-line vibration, and A∗x increases to a peak at A∗x ≈ 0.12 before decreasing to zero as the flow further decelerates.

For the transverse-dominant cases, A∗x slowly increases with increasing ur(t) until ur ≈ 3.9, after which A∗x reduces
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as purely transverse vibrations develop. After peak velocity, A∗x slowly increases, reaching a peak at ur ≈ 1.9, where

vibration is purely in-line, before reducing to zero as the flow further decelerates. In contrast to the in-line vibration

amplitudes, the transverse vibration amplitudes show similar behaviour for the three FIV regimes: A∗y increases as

ur(t) increases, reaches a peak at maximum ur, and decreases as ur(t) decreases, more-or-less following the same

path as for the accelerating stage. The transverse vibration amplitudes exhibit much less asymmetry than the in-line

amplitudes, which means that A∗y(t) depends primarily on flow velocity. Some transverse asymmetry or ‘hysteresis’

occurs in the figure-8-dominant cases, for which A∗y is higher during deceleration than during acceleration. This

hysteresis occurs over the range of ur(t) where the ‘flat section’ in the A∗x-plot occurs, which is also the range of

ur where frequencies are synchronised at f ∗y = f ∗x /2 (Figure 11), indicating that these three effects are linked and

are related to the figure-8 motion. The most striking feature in Figure 13 is the strong hysteresis in A∗x between

accelerating and decelerating parts of the flow half-period. The hysteresis in A∗x can be related to the ‘wake-breathing’

mechanism described by Naudascher (1987). Wake-breathing is a motion-induced phenomenon, where the in-line

oscillation of the cylinder produces symmetric vortex-shedding as well as the periodic widening and narrowing of

the wake, resulting in an unsteady in-line force which grows in proportion to A∗x. Since A∗x is very small during

flow acceleration, the ‘wake-breathing force’ remains small; however, once large-amplitude oscillations develop, the

wake-breathing force becomes much more significant, and results in much larger A∗x during flow deceleration. It is

worth noting that the asymmetric behaviour in A∗x and near-symmetric behaviour in A∗y are the opposite to what was

observed for the vibration frequencies (Figure 11), with f ∗x being reasonably symmetric and f ∗y showing asymmetry

between the acceleration and deceleration stages of the flow half-period.

Comparing the measured A∗x, A∗y to existing literature poses a challenge, as no previous experiments involving a

cantilevered or pivoted cylinder in horizontal oscillatory flow are known to the authors. Instead, Figure 14 shows

present values of peak amplitude A∗x,max, A∗y,max, plotted against Ur/ f ∗x,max, together with A∗x, A∗y measurements from

two steady-flow studies: Cagney and Balabani (2014), involving 2-DOF FIV of a pivoted cylinder with m∗ = 2.7

and Re/ur = fnd2/ν ≈ 1400 for 0.5 < ur/ f ∗x < 3.5; and Pesce and Fujarra (2000), involving transverse FIV of a

cantilevered cylinder with m∗ = 2.36 and Re/ur ≈ 1900 for 3 < ur < 16 (for the latter, the cylinder was apparently

capable of 2-DOF motion, but only A∗y was reported by the authors). For reference, the present experiments were

conducted with m∗ = 1.4 and Re/Ur = 2335. In Figure 14, A∗x and A∗y represent the oscillation amplitude at the

cylinder tip for pivoted as well as for cantilevered cylinders. Ur in Figure 14 is normalised by f ∗x in order to remove

the effect of differences in m∗, as recommended by Khalak and Williamson (1999); since f ∗x was not reported by Pesce

and Fujarra (2000), estimates of f ∗x are obtained using the model presented in Section 5 (applying Equation 14b with

C2 = 3.5). For comparison purposes, Figure 14(a) includes the amplitude of low-frequency deflection, as previously

discussed in Section 3.1. Figure 14(a) shows that A∗x-values reported by Cagney and Balabani (2014) are similar

in magnitude to the present results, with similar variation in A∗x with ur/ f ∗x . For Ur/ f ∗x,max < 2, measured A∗x,max is

significantly lower than for steady-flow results; this may indicate that for Ur/ f ∗x,max < 2, the rate of increase in A∗x is

too slow to reach ‘steady-state’ A∗x-values within the flow half-period. Above Ur ≈ 2, values of A∗x,max for the present
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Figure 14: Comparison of Ax,max, Ay,max from present experiments with A∗x, A∗y values from steady flow experiments. For comparison, (a) includes

the low-frequency deflection determined from Equation (9).

results are higher than the values reported by Cagney and Balabani (2014). This is a consequence of the unsteady

flow: for these conditions, Figure 13 shows that, regardless of Ur, the peak value of A∗x occurs when ur(t) ≈ 1.9

during deceleration. Hence, all of the present A∗x,max-values shown in Figure 14(a) relate to vibration in the ‘in-line’

range of ur(t). Figure 14(b) shows that results for A∗y by Pesce and Fujarra (2000), for 3 < ur/ f ∗x < 3.6, closely

match the present measurements. Results for A∗y by Cagney and Balabani (2014) closely match the present results for

Ur/ f ∗x,max / 2.6, above which, their results are significantly lower than present measurements and the results of Pesce

and Fujarra (2000); the reason for this difference is unclear, and it may be caused by differences between the pivoted-

cylinder and cantilever set-ups. The difference may also be related to the lower value of Re/ur in the experiments

of Cagney and Balabani (2014): for transverse FIV with ur > 4, Govardhan and Williamson (2006) have shown that

maximum A∗y increases with Re, and a similar increase in A∗y with Re may be expected for ur < 4.

When the cylinder is vibrating in a figure-8 pattern (generally for 2.5 < ur < 4), its motion can be approximated

as a Lissajous curve (Flemming and Williamson, 2005), with displacements given by:

X(t) = Ax sin(2π fxt + φxy), (11a)

Y(t) = Ay sin(π fxt), (11b)

where φxy denotes the phase difference between the x and y displacement, and where, due to synchronisation during

figure-8 motion, we have fy = fx/2. The value of φxy was calculated for each individual flow period from the
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Figure 15: Lissajous phase during figure-8 vibrations.

phase information in the wavelet-transformed moment data, and was subsequently ensemble-averaged (removing

outliers) to produce the average Lissajous phase for each phase in the flow half-period where figure-8 motion occurred.

Ensemble-averaged values of φxy at peak velocity as well as during flow deceleration are shown in Figure 15, where

results are compared to results from the steady-flow pivoted-cylinder experiments by Cagney and Balabani (2014).

Figure 15 does not include any values of φxy during flow acceleration, as the φxy-values during flow acceleration were

highly variable, and consistent ensemble-averages could not be obtained. At peak velocity, φxy becomes more stable

and consistent between flow periods, and it remains reasonably consistent during flow deceleration until vibrations

transition to in-line motion. As Figure 15 shows, average values of φxy fall along a common curve, indicating φxy to

be mainly velocity dependent. The dependence of φxy on ur from the present experiments is in reasonable agreement

with results from Cagney and Balabani; the differences in magnitude of φxy may be due to the differences between the

present cantilevered-cylinder set-up and their pivoted-cylinder set-up.

4. Flow-induced vibration of a cylinder within an array

An additional experiment was conducted in which the test cylinder was placed within an array of cylinders. In

addition to load-cell measurements and free-stream flow velocity measurements, vertical profiles of flow velocity were

also measured with the LDA for selected flow velocity amplitudes. FIV for steady flow through an array has been

the subject of significant investigation due to its importance in the design of nuclear reactor components (Paı̈doussis,

1983). FIV in an array is influenced by the relative array spacings S x/d and S y/d (illustrated in Figure 16(b)). Vortex-

shedding within staggered arrays with S x/S y = 0.87 was investigated by Oengören and Ziada (1998), who reported

that St ≈ 0.2 for S y/d > 5, with St increasing as S y/d reduces. More recently, Zhao et al. (2015) performed 2-D

simulations of transverse FIV of an array of 36 cylinders in a square, 6-by-6 arrangement with S/d = 1.5 − 5. They

found that FIV depends on the position of a cylinder within the array: for S/d = 5, ‘upstream’ cylinders exhibited

FIV similar to an isolated cylinder, while the cylinders at the end of the array had higher peak vibration amplitudes,

occurring at higher ur compared to the isolated cylinder case. Jiang et al. (2016) performed experiments involving
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Figure 16: (a) Cylinder array within the AOFT test section. (b) Overview of x, y coordinates where velocity profiles were measured (plan view).

The dashed line at the bottom indicates symmetry, and the dotted lines at the sides and top indicate periodic boundaries.

2-DOF FIV of a flexibly-mounted cylinder in a uniform, staggered array of stationary cylinders with S x/S y = 0.87

and S y/d = 2.5, and observed FIV occurring for 1.5 < ur < 10, with several general similarities to FIV of an isolated

cylinder. Each of these studies involved steady flow through cylinders spanning the full height of the water column; to

the authors’ knowledge, no previous studies have investigated FIV of submerged arrays of cantilevers, in either steady

or oscillatory flow.

The array used in the present experiments is shown in Figure 16(a). The cylinders were of the same PVC material

used for the test cylinder, had height h ≈ 205 mm and diameter d = 8 mm, and were arranged in a staggered pattern

with a centre-to-centre spacing of S x = S y = 48 mm (S x/d = S y/d = 6). The periodic geometry is illustrated in

Figure 16(b), which also shows the four x, y locations where vertical profiles of flow velocity were measured. With

the exception of the test cylinder, all other cylinders in the array were mounted by inserting with tight fit into 24 mm-

deep holes drilled into the raised floor. All cylinders in the array vibrated under flow conditions, but only the vibrations

of the test cylinder were measured. The array had a length of 7 m, and the test cylinder was located approximately in

the middle. Initial flow velocity measurements in the wider region around the test cylinder showed that flow near the

cylinder is fully-developed and minimally influenced by the side walls, indicating that the cylinder can be modelled as

being positioned within an infinite, uniform array. Measurements of forces, moments and free-stream velocities were

recorded for 18 flow conditions (T = 6 s, 0.16 m/s< U∞ < 1.56 m/s, where U∞ is ‘free-stream’ flow amplitude), and

detailed flow velocity profiles were recorded for 5 selected flow conditions. Due to the geometric symmetry of the

array and the symmetry between the two half-periods of the oscillatory flow, the measurements at the four positions

represented by the black dots in Figure 16(b) can be mirrored to give measurements at the four mirrored positions

represented by the blue x’s in the figure; the vertical profile of horizontal velocity can then be averaged over the height

of the array to produce the spatially-averaged in-array horizontal velocity 〈u〉(x = S x/2, z, t).

A ‘2-layer’ model for predicting vertically-averaged in-array flow velocities û(t) from the known above-array
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Figure 17: Measured and model-predicted in-array velocity for three experiments, Ur,∞/Ûr = (a) 1.24/1.03, (b) 2.26/1.59, and (c) 3.58/2.07.

free-stream velocity, u∞(t), is given by Lowe et al. (2005):

∂ (û − u∞)
∂t

=
|u∞|u∞

Ls
−
|û|û
Ld
−

(
(1 + Ca)λp

1 − λp

)
∂û
∂t

(12)

where Ls = 2h/C f and Ld = 2h(1 − λp)/(CDλ f ) are characteristic length scales of shear and drag, CD and Ca are

cylinder drag and added-mass coefficients, and C f is a friction coefficient parameterising the shear force at the top

of the array. Array geometry is parameterised using λ f = A f /AT and λp = Ap/AT , where A f is the frontal area of a

cylinder (d×h), Ap is the plan area of a cylinder and AT is floor area per cylinder (overall floor area divided by number

of cylinders). Equation (12) is a nonlinear ordinary differential equation (ODE) that is solved for û(t) using the ode45

function in MATLAB R2018a. Equation (12) assumes that velocities within the array are vertically uniform, and that

forces acting on each cylinder are governed by the Morison equation (Equation 7). The value of CD for array flow

differs from the isolated-cylinder value (Lowe et al., 2005); for the five experiments in which the detailed in-array

velocities were measured, taking Ca = 1, CD was determined by a least-squares fit between the ensemble-averaged

measured moments and the ‘reconstructed moment’ My,r, obtained from the numerically integrated Morison equation:

My,r(t) =
1
2
ρCDd

∫ h

0
〈u〉 |〈u〉| · (z + z0)dz + (1 + Ca)

ρπd2

4

∫ h

0
〈u̇〉 · (z + z0)dz (13)

where z0 = 10 mm is the distance from the load cell to z = 0. The result was CD ' 1.75 ± 0.1 for all five experiments.

The in-array velocities, û(t), for all 18 experimental cases were then determined from Equation 12 with CD = 1.75,

Ca = 1 and C f = 0.02 (Lowe et al., 2005), and the in-array reduced velocities were calculated as ûr(t) = û(t)/ fnd.

Figure 17 shows examples of the measured and Equation (12)-predicted in-array velocities, showing excellent agree-

ment in terms of velocity amplitude, phase and shape. Experiments were conducted for ‘free-stream’ reduced velocity

amplitudes of 0.58 < Ur,∞ < 5.46, resulting in ‘in-array’ reduced velocity amplitudes of 0.53 < Ûr < 2.74.

Figure 18 shows examples of the vibration trajectories through four individual flow periods for the cylinder within

the array for Ûr = 2.62. While the general vibration behaviour resemble that observed for the isolated cylinder case

(Section 3.2), including in-line motions as well as figure-8 motion, the trajectories appear more chaotic and can differ
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Figure 18: Cylinder vibration through four individual flow-periods in full-array tests for Ûr = 2.62.

substantially between flow periods. Similar chaotic variations were observed for all Ûr ≥ 1.47, with no FIV observed

for Ûr < 1.47. However, due to the chaotic nature of the trajectories, well-defined regions of each vibration type cannot

be clearly identified. Figure 19(a,b) shows the ensemble-averaged vibration amplitudes from the experiments with

Ûr = 1.47− 2.74, with the results for Ûr = 2.62 highlighted as the ‘representative’ case. Comparing Figure 19(a,b) to

Figure 13 shows that the vibration amplitudes from the in-array tests are quite similar those of the isolated cylinder;

x-direction vibration amplitudes exhibit strong asymmetry, with much higher amplitudes during flow deceleration

than during flow acceleration, while the y-direction amplitudes show little or no asymmetry. For each ûr(t), A∗x for

the in-array cylinder is slightly lower compared to the isolated cylinder for the same ur(t), while A∗y is slightly higher

compared to the isolated cylinder. This can be explained by the more chaotic incident flow for the in-array cylinder

compared to the isolated cylinder, including the influence of vortex-shedding from upstream cylinders. Small changes

in the incident flow direction causes ‘off-axis’ in-line and transverse motions; since for the present results A∗x > A∗y for

most cases, this results in a reduction of A∗x and an increase in A∗y.

Figure 19(c) shows ensemble-averaged f ∗x and f ∗y for the full array experiments with Ûr = 1.84 and 2.62, with

the dashed line again representing St = 0.2. Due to the chaotic in-array vibrations, consistent frequency estimates

can only be obtained within a small section of the flow half-period. When frequency estimates are obtained, they are

nearly identical to the frequencies observed for the isolated cylinder (Figure 11). Overall, the results show that, for

the set-up with S x/d = S y/d = 6, FIV of a submerged cylinder within an array can be more chaotic than that for an

isolated cylinder, but the average amplitudes and frequencies are similar.
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Figure 19: (a,b) Vibration amplitudes in the full-array experiment, with results for Ûr = 2.62 shown in black during flow acceleration and blue

during flow deceleration, and all other experiments shown in grey. (c) Vibration frequencies in the full-array experiments for Ûr = 1.84 (black) and

2.62 (blue), with the dashed line representing St = 0.2.

5. Empirical model for in-line vibrations

Section 3.4 shows that A∗x through the flow half-period exhibits significant hysteresis, particularly for ur(t) <

2.5. To model this unsteady behaviour, Appendix A presents a model for in-line FIV of a single, isolated cylinder

in unsteady flow, based on the ‘wake-breathing’ model of Naudascher (1987). This section will show how, using

empirically tuned coefficients, the model in Appendix A can reproduce the unsteady behaviour in A∗x for the full range

of Ur (i.e., not only during in-line vibration). The model is based on the following assumptions: (a) the high-frequency

FIV is independent of the low-frequency, quasi-static cylinder deflection; (b) the in-line vibration can be modelled

independently of the transverse motion; (c) the influence of 3-D flow characteristics, such as tip vortices, is negligible;

and (d) empirical coefficients are constant over the height of the cylinder. Based on the stated assumptions, the in-line

vibration is given by:

dA∗x
dτ

= −ζeff f ∗x A∗x, (14a)

where τ = 2π fnt is non-dimensionalised time,

f ∗x =

√
1 +

C2

2π3 (m∗ + CA)
u2

r , (14b)

and where:

ζeff = f ∗x ·
(
ζ0 −

C1 − 2C0

2π2 (m∗ + CA)
ur +

2C3γ1

π (m∗ + CA)
f ∗x A∗x

)
, (14c)

ζeff is the ‘effective damping ratio’, ζ0 is the still-water damping ratio, CA is the ‘vibration added mass’, C0, C1, C2 and

C3 are empirical coefficients, and γ1 = 0.7389 is a modal factor to account for the cantilever geometry (Blevins, 1990).
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Figure 20: Estimates of C2 against ur(t) based on the present data, Gurian et al. (2019) and Nishihara et al. (2005); the dashed line is C2 = 3.5.

Note that the ‘vibration added mass’, CA, differs from the ‘flow frequency added mass’, Ca, discussed in Section 3.1;

CA is a function of the ‘vibration KC number’ KCv = 2πA∗x, and since KCv < 1, CA = 1 is assumed (Sarpkaya, 2004).

C2 can be obtained from known values of ur(t) and f ∗x by rearranging Equation (14b). Figure 20 shows C2 for

0 < ur(t) < 4.4 from the present experiments, calculated using the average f ∗x for each ur(t) (as Figure 11 shows, f ∗x is

determined by ur(t), with no dependence on whether the flow is accelerating or decelerating). Figure 20 shows that C2

is zero for ur(t) < 1.4, then gradually increases with increasing ur(t), reaching a near-constant C2 = 3.5 for ur(t) > 2.5

(the dashed line in the figure). Figure 20 also includes values of C2 inferred from in-line, steady-flow FIV experiments

by Gurian et al. (2019), as well as from in-line, steady-flow, forced-vibration experiments by Nishihara et al. (2005),

both of which produce similar results to the present data (for the forced-oscillation results of Nishihara et al., 2005,

C2 is inferred from the measured ‘effective added-mass’ with f ∗x = 1). For the present model, we assume C2 = 3.5 for

all ur(t); the difference between measured f ∗x and predicted f ∗x with C2 = 3.5 is small, even for ur(t) < 2.5.

To evaluate C0, C1 and C3, we analyse ζeff from the experimental data. First, ζeff is calculated from Equation (14a)

using the ensemble-averaged measurements of f ∗x and A∗x. The results for Ur = 2.57, 3.71, 4.39 are shown in Figure 21,

with the dashed line representing ζ0. A number of interesting features are seen: for ur(t) / 1, all cases show ζeff ≈ ζ0,

implying that vibrations occurring for ur(t) < 1 decay as they would in still water; as ur(t) increases, ζeff becomes

increasingly negative, reaches a maximum negative value at ur(t) ≈ 2, approaches zero with further increase in ur(t),

before looping back towards ζ0 as ur(t) decreases during flow deceleration. We introduce the ‘dynamic reduced

velocity’:

ur,d(t) =
u(t)

fx(d + 2Ax)
=

ur(t)
f ∗x (1 + 2A∗x)

, (15)

which is a reduced velocity defined using dynamic frequency and length scales. The merit of using fx rather than fn

as the characteristic frequency for ur has been demonstrated by Khalak and Williamson (1999), who also used the

‘apparent projected diameter’ (d +2Ay), introduced by Sarpkaya (1978), as a characteristic length scale for transverse-

only vibration; here, for in-line vibrations, we use the corresponding (d + 2Ax). Figure 22 shows ζeff − 0.23A∗x plotted

against ur,d(t) for all experiments; the 0.23 multiplier was obtained by tuning to give the best collapse of the results
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Figure 21: Effective damping for Ur = 2.57, 3.71 and 4.39; the dashed line is the still-water damping ζ0.

Figure 22: Effective damping −0.23A∗x against ur,d(t) for all experiments; black/blue lines correspond to accelerating/decelerating stages of the flow

half-period.
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Figure 23: (C1 − 2C0) against ur,d(t) with C3=1.5 for ur(t) ≥ 1 for all experiments (grey lines); average is shown as the black line.

onto a common curve. The results for accelerating and decelerating flow are shown in black and blue respectively,

and are in good agreement. The good collapse of results in Figure 22 indicates that ζeff may be empirically expressed

as the sum of some function of ur,d(t) and a term proportional to A∗x, i.e.

ζeff = f(ur,d(t)) + C · A∗x, (16)

which has similar form to Equation (14c). Comparing Equations (14c) and (16) indicates that (a) C3 has a constant

value for ur > 1, and (b) that (C1 − 2C0) is a function of ur,d(t). C3 and (C1 − 2C0) are then obtained by empirical

fitting: C3 is constant for ur(t) > 1 and is assumed zero for ur(t) < 0.5 (with a linear transition for 0.5 < ur(t) < 1); C3

is then tuned to give best overlay of (C1 − 2C0) versus ur,d(t) across all experiments. The best overlay, obtained with

C3 = 1.5, is shown in Figure 23.

The model is applied as follows: A∗x is given an initial value of 0.002; f ∗x is calculated from the known ur(t) using

Equation (14b) with C2 = 3.5; ur,d(t) is calculated using Equation (15) and (C1 − 2C0) is obtained using a look-up

based on Figure 23; Equation (14a) and (14c) combine to form a nonlinear ordinary differential equation that is solved

(using a constant C3 = 1.5) for A∗x using the ode45 function in MATLAB R2018a. Figure 24 shows a comparison

between model-predicted and measured vibration amplitudes for the three Ur that represent the three FIV regimes.

The comparison shows good agreement, and demonstrates that the model reproduces the unsteady behaviour in A∗x

over the flow half-period very well.

6. Conclusions

In-line and transverse flow-induced vibrations of a cantilevered circular cylinder were measured in large-amplitude,

sinusoidal oscillatory flows. Eighteen experiments were conducted for a single, isolated cylinder, with the amplitude

of reduced velocity in the range 1.9 ≤ Ur ≤ 4.4; the corresponding Reynolds and Keulegan-Carpenter numbers ranged

1300 ≤ Re ≤ 104 and 120 ≤ KC ≤ 900 respectively. Forces and moments were measured using a 6-axis load cell,

and flow velocities were measured using LDA. The 2-DOF cylinder tip motions were calculated from the measured
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Figure 24: Comparison of model-predicted and measured A∗x for Ur = 2.57, 3.71 and 4.39.

moments and analysed to determine the vibration trajectories, frequencies and amplitudes. A subsequent set of ex-

periments was carried out in which the instrumented cylinder was placed within a staggered array of similar cylinders

with a spacing of six diameters between the cylinders. The following are the main conclusions.

The cylinder undergoes a sequence of vibration responses through a flow half-period. Although the sequence can

vary between individual flow half-periods (Figure 6), cosine similarity analysis has shown that a particular sequence

dominates for each flow condition. These dominant sequences are presented in a regime diagram showing cylinder

tip trajectories for given Ur and given time within the flow period, t/T (Figure 8). The diagram shows that the type of

vibrations occurring within the flow half-period depends mainly on Ur, with predominantly in-line vibration occurring

for Ur / 2.7, figure-8 vibration occurring for 2.7 / Ur / 4, and transverse vibration occurring for Ur ' 4. This

delineation of vibration type by Ur is in general agreement with observations of FIV in steady flow from previous

studies.

Wavelet analysis was used to determine vibration frequencies and amplitudes through the flow half-period. Re-

gardless of vibration type, the in-line vibration frequency, fx, stays close to the still-water natural frequency ( f ∗x ≈ 1)

through the flow half-period, increasing slightly with increasing ur (Figure 11). fx shows no unsteady effect, i.e. accel-

erating flow fx and decelerating flow fx are similar for the same ur. The transverse vibration frequency, fy, increases

as the vortex shedding frequency increases with increasing ur, and is generally close to the vortex shedding frequency

given by St = 0.2. However, here we see some unsteadiness in that, for ur / 3, accelerating flow fy is consistently

higher than fy given by St = 0.2, while the decelerating flow fy is close to fy given by St = 0.2.

The most notable unsteady effect is seen in the in-line vibration amplitude, Ax (Figure 13). As the flow accelerates,

Ax is at first slow to increase, then increases rapidly for ur ' 2. Maximum Ax occurs as the flow decelerates; for all

three vibration types, maximum Ax occurs at decelerating ur ≈ 2. In contrast to Ax, the transverse vibration amplitudes

show little difference between accelerating and decelerating ur: Ay increases with increasing ur, reaches a maximum
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at maximum ur, and decreases as the flow decelerates, following the same Ay − ur dependency as for the accelerating

flow. The maximum in-line and transverse vibration amplitudes are found to be in reasonable agreement with vibration

amplitudes reported for steady flow FIV (Figure 14); the main differences are that measured values of Ax,max are lower

than steady-flow values when Ur/ f ∗x,max < 2 and higher than steady-flow values when Ur/ f ∗x,max > 2, both of which

are consequences of the aforementioned unsteadiness in Ax. Values of the Lissajous phase for figure-8 vibrations are

also found to be in good agreement with steady-flow FIV literature (Figure 15).

For the experiments in which the cylinder is placed within a staggered array with cylinder spacings S x/d = S y/d =

6, the spatially-averaged horizontal velocities (in the horizontal x − y plane) within the array were found to be depth-

uniform and in good agreement with predictions based on Lowe et al. (2005), shown in Figure 17. Cylinder vibrations

within the array are more variable between flow periods than those of the isolated cylinder. Nevertheless, the in-array

cylinder exhibits very similar averaged vibration characteristics as the isolated cylinder, with similar average vibration

amplitudes and frequencies (Figure 19).

Finally, an empirical model has been presented for unsteady in-line vibration based on theoretical considerations

and the experimental data. The model assumes that the in-line vibrations are independent of the transverse vibra-

tions and adopts with slight modification the “wake-breathing” forcing proposed by Naudascher (1987). The model

comprises an equation for vibration frequency, fx, for given ur(t) and a non-linear ordinary differential equation for

the vibration amplitude, Ax. The model coefficients are evaluated by fitting to the experimental data, which show

consistent behaviour when coefficients are plotted against ur(t) (for coefficient C2, which determines fx) or ur,d(t) (for

C1 − 2C0, which determines the damping). Predicted and measured vibration amplitudes through the flow half-period

show very good agreement for in-line, figure-8 and transverse vibration types.
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Appendix A. 1-DOF unsteady in-line FIV model

The governing equation describing the motion of the cantilever is obtained from Euler-Bernoulli beam theory:

mr̈x + cṙx + EI
∂4rx

∂z4 = Fx(z, t), (A.1)

where m and c are structural mass and damping per unit length, E is Young’s modulus, I is second moment of

area, rx(z, t) is the cylinder deflection, Fx is forcing along x, and the dot represents a time-derivative. As stated in
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Section 2.2, cylinder deflection is taken as the linear sum of a quasi-static deflection and a dynamic deflection; we

assume that, at a given time, the cylinder motion takes the form:

rx = rx,0(z, t) + r′x(z, t) ' rx,0(z, t) + ax(z, t) sin(ωxt), (A.2a)

where rx,0(z, t) is the quasi-static motion, r′x(z, t) is the dynamic motion, ax(z, t) is the amplitude of vibration at any

z, and ωx = 2π fx is the angular frequency of vibration. Since the flow is unsteady, values of rx,0, ax and ωx can all

vary in time. For the conditions of the present experiments, the frequency of vibration is much higher than the rate of

change in these values, i.e.
∣∣∣ṙx,0

∣∣∣ � ωxax, |ȧx| � ωxax and |ω̇x| � ω2
x. Hence, over short time intervals, rx,0, ax and

ωx can be considered constant, and we have:

ṙx ' ωxax cos(ωxt) (A.2b)

r̈x ' −ω
2
xax sin(ωxt), (A.2c)

Dynamic deflections are assumed to occur solely in the first flexural mode (see Section 2.2), with the deflection shape

resembling the first eigenmode of a uniform cantilever in free, undamped vibration, i.e.:

r′x(z, t) = φ̄1(z)X(t) (A.3a)

ax(z, t) = φ̄1(z)Ax, (A.3b)

where X(t) denotes the dynamic tip deflection, and φ̄1(z) = φ1(z)/φmax
1 is the normalised deflection shape. φ1 denotes

the first eigenmode of a cantilever:

φ1(z̄) =
sinα1 − sinhα1

cosα1 + coshα1
(sinα1z̄ − sinhα1z̄) + cosα1z̄ − coshα1z̄ (A.4)

where α1 = 1.8751, and where z̄ = (z + 5 mm)/L is the non-dimensional vertical coordinate, with L denoting the

cylinder length (measured from the base at z = −5 mm). Force in Equation (A.1) is given by the Morison equation (in

relative-velocity form):

Fx(z, t) =
1
2
ρCDd · (u − ṙx) |u − ṙx| + CA

ρπd2

4
(u̇ − r̈x) +

ρπd2

4
u̇, (A.5)

This can be simplified if (u − ṙx) ≥ 0, which is generally true at all times unless (a) vibration is forced, or (b) flow

velocity has recently reduced, and oscillations are still dissipating. The impact of the latter is minimal, and the drag-

term in Equation (A.5) can therefore be simplified as:

FD =
1
2
ρdu2CD

(
1 −

ṙx

u

)2
(A.6)

Based on Naudascher (1987), we propose the following dynamic CD formulation:

CD = C0 + C1
ṙx

u
−C2

r′x
d

+ C3
ωxax

u
, (A.7)
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where C0 represents the component of CD which is unaffected by the in-line vibration, C1 and C2 represent in-phase

and out-of-phase components of the fluctuating drag, and C3 represents the increase in mean drag with increasing

vibration amplitude. Each term in Equation (A.7) has been non-dimensionalised by the most intuitively relevant

characteristic scales (C1 and C3 are the primary forcing terms, and their normalisation is based on the significance

of the ratio ṙx/u described by Naudascher (1987), whereas the out-of-phase term C2 is simply normalised by d).

Using Equation (A.2c), the C2-term can be re-formulated by substituting r̈x = −ω2
xr′x. Inserting Equation (A.7) into

Equation (A.6) and expanding produces a number of steady terms, some terms oscillating at fx, and some higher-order

terms oscillating at 2 fx and 3 fx which can be neglected, resulting in the following expression for total drag force:

FD =
1
2
ρdu2

(
C0 + C3

ωxax

u
+

(
C0 − 2C1 + C3

ωxax

u

) ω2
xa2

x

2u2

+

((
1 +

3ω2
xa2

x

4u2

)
C1 − 2C0 − 2C3λ

)
ṙx

u
+

(
1 +

ω2
xa2

x

4u2

)
C2

r̈x

ω2
xd

)
(A.8)

By assuming linear stiffness, the quasi-static terms are subtracted from both sides of Equation (A.1), and the governing

equation for the dynamic cylinder motion becomes:

mr̈x + cṙx + EI
∂4r′x
∂z4 =

ρdu
2

(
(C1 − 2C0) − 2C3

ωxax

u
+

3C1ω
2
xa2

x

4u2

)
ṙx −

ρπd2

4

(
Ca −

2C2u2

πω2
xd2

(
1 +

ω2
xa2

x

4u2

))
r̈x (A.9)

Applying principles of modal analysis (Blevins, 1990), all terms in Equation (A.9) are multiplied by φ1 before inte-

grating over z̄ and dividing by
∫ 1

0 φ2
1dz̄, resulting in:

mẌ + cẊ + kX =
ρdu

2

(
(C1 − 2C0) − 2C3γ1λ +

3C1γ2λ
2

4

)
Ẋ −

ρπd2

4

(
Ca −

2C2u2

πω2
xd2

(
1 +

γ2λ
2

4

))
Ẍ (A.10)

where λ is the non-dimensional ratio of cylinder tip velocity amplitude to flow velocity:

λ =
ωxAx

u
, (A.11)

and where the following modal parameters have been introduced:

γ1 =

∫ 1
0 φ3

1dz̄∫ 1
0 φ2

1dz̄
= 0.7389 (A.12a)

γ2 =

∫ 1
0 φ4

1dz̄∫ 1
0 φ2

1dz̄
= 0.5872 (A.12b)

k = EI

∫ 1
0 φ1

d4φ1
dz4 dz̄∫ 1

0 φ2
1dz̄

=
α4

1EI
L4 (A.12c)

Equation (A.10) can also be represented as:

(m + mEA)Ẍ + (c + ca)Ẋ + kX = 0, (A.13)

which resembles the equation for free vibration of a damped harmonic oscillator. The ‘effective added mass’ is

mEA = CEA · ρπd2/4, with the effective added-mass coefficient CEA obtained from Equation (A.10):

CEA = CA −
C2u2

r

2π3 f ∗2x

(
1 +

1
4
γ2λ

2
)
, (A.14)
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The ‘added-damping’ ca is also obtained from Equation (A.10):

ca =
ρdu

2

(
2C0 + 2C3γ1λ −

(
1 +

3
4
γ2λ

2
)

C1

)
(A.15)

Over short intervals, the solution of Equation (A.13) takes the form of an underdamped harmonic oscillator:

X(t + δt) = Ax(t)e−ζeffωxδt sin(ωxδt + θt), (A.16)

where θt is the vibration phase at time t, and where ζeff is the effective damping ratio, given by:

ζeff =
c + ca

2ωx (m + mEA)
(A.17)

Hence, the rate of change in amplitude is given by:

dAx

dt
= −ζeffωxAx(t) (A.18)

Since the natural frequency of a cylinder in still water is ωn =
√

k/(m + mA), while the vibration frequency during

FIV is ωx =
√

k/(m + mEA), the frequency ratio can be found as:

f ∗x =
ωx

ωn
=

√√
m∗ + CA

m∗ + CA −
C2u2

r

2π3 f ∗2x

(
1 + 1

4γ2λ2
) , (A.19)

which can be rewritten as:

f ∗x =

√
1 +

1 + 1
4γ2λ2

2π3 (m∗ + CA)
C2u2

r , (A.20)

Inserting the still-water damping ratio ζ0 = c/2ωn(m + mA) in Equation (A.17), and non-dimensionalising in terms of

ur, m∗ and f ∗x yields the following expression for effective damping:

ζeff

f ∗x
= ζ0 −

C1

(
1 + 3

4γ2λ
2
)
− 2C0

2π2(m∗ + Ca)
ur +

2C3γ1

π(m∗ + Ca)
f ∗x A∗x (A.21)

The terms in Equations (A.20) and (A.21) which are proportional to λ2 are problematic from a modelling per-

spective, as they can create positive-feedback loops. To remove this issue, the model is linearised by substituting

C′1 = C1

(
1 + 3

4γ2λ
2
)

and C′2 = C2

(
1 + 1

4γ2λ
2
)
. Since λ is generally small (λ ≤ 0.4 in the present results for

ur(t) > 0.5), variations in C′1 and C′2 are small, and in most cases, C′1 ≈ C1 and C′2 ≈ C2. The simplified model

equations then become:

f ∗x =

√
1 +

C2

2π3 (m∗ + CA)
u2

r (A.22a)

ζeff

f ∗x
= ζ0 −

C1 − 2C0

2π2 (m∗ + CA)
ur +

2C3γ1

π (m∗ + CA)
f ∗A∗x, (A.22b)

Equation (A.18) is non-dimensionalised by introducing the non-dimensional time τ = 2π fnt:

dA∗x
dτ

= −ζeff f ∗x A∗x (A.22c)
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