
LINEAR INTERFACE CRACK UNDER HARMONIC SHEAR:  

EFFECTS OF CRACK’S FACES CLOSURE AND FRICTION  

 

OLEKSANDR V. MENSHYKOV1*, VASYL A. MENSHYKOV2, IGOR A. GUZ1 AND 

MARINA V. MENSHYKOVA1 

 1Centre for Micro- and Nanomechanics, School of Engineering, University of 
Aberdeen, AB24 3UE Aberdeen, Scotland, UK 

 
² National Aerospace University – "Kharkiv Aviation Institute"  

Chkalova St, 17, Kharkiv 61000, Ukraine 
 

 

Key words: Interface Crack, Boundary Integrals, Harmonic Shear, Crack Closure 

and Friction. 

 

Summary. The linear crack between two dissimilar elastic isotropic half-spaces under 

normal harmonic shear loading is considered taking the crack’s faces contact 

interaction and friction into account. The problem is solved by the boundary integral 

equations method and the components of the solution are represented by the Fourier 

series. The numerical convergence of the method is analysed. The results are 

validated through the comparison with the classical model solutions obtained for the 

static problems with and without friction. The effects of material properties and values 

of the friction coefficient on the distribution of the stress intensity factors (normal 

opening and transverse shear modes) are presented and analysed.  

 

*Corresponding author. Tel.: +44 1224 273326; fax: +43 1224 272519;  

e-mail: o.menshykov@abdn.ac.uk 

mailto:o.menshykov@abdn.ac.uk


 2 

1 INTRODUCTION 

The understanding of the fracture mechanisms and deterioration of the material 

properties are the questions of great interest for engineering science and industry. As 

all materials have crack-like defects, the problems of stress concentrations and cracks’ 

propagations are of high attention [1–6].  

Nowadays the use of composite materials is continuously increasing, the fracture 

mechanics problems for interlaminar cracks under different types of loading are very 

important, as, for example, it was underlined by Comninou in the overview of interface 

cracks under static loading [2]. In the previous studies the interface cracks under shear 

loading [3, 4], and combined tension-compression and shear [5] allowing the partial 

closure of the crack faces were considered. Linear cracks between homogeneous 

isotropic materials under static loading were also considered in [7], where the new 

algorithm for Jk-integrals evaluation, which can be used for stress intensity factors’ 

estimation, was presented. The suggested method may also be extended for the case 

of curvilinear interface cracks.  

The boundary element method was employed for the stress intensity factors’ 

evaluation in [8], where the crack between two anisotropic materials under static 

loading was considered and the recommendations on the choice of the optimal 

boundary element analysis approach were given.   

Paper [9] presented the use of Galerkin method to solve the dynamic loading 

problems. In the solution the crack faces contact interaction was taken into account 

and the results for the linear crack under normal tension-compression loading were 

obtained. The use of boundary integral equations to solve the interface cracks’ contact 

problems were considered in a number of publications [10–15]. In [10] the multi-

parametric iterative algorithm for the solution of interface crack problems was 
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presented, the investigation of the algorithm convergence was carried out, and the 

effects of frequency for the linear interface crack under tension-compression load were 

also studied. The numerical solutions of two- and three-dimensional interface crack 

dynamic problems were presented in [11–15].  

Advanced boundary integral equations method may also be used for the wave 

propagation problem solution. Using this method the problem for layered piezoelectric 

phononic crystals with cracks was solved in [16].  Integral equations with hypersingular 

kernels were applied for the solution of fracture mechanics problems in [17].  A semi-

analytical approach, namely the scaled boundary finite element method, was used to 

model crack face contact and propagation problems in [18–20]. The high-order 

completeness analysis of the method was provided in [21].  

Problems for the penny-shaped crack in between the half-space and thin top layer 

under static and dynamic time-harmonic horizontal loading were investigated in [22]. 

Coupled dual integral equations were solved analytically for the case of static loading 

and numerically for the dynamic loading. In the static case, transversely isotropic linear 

elastic materials were considered, when for the dynamic case the problem was solved 

for the isotropic materials only. The influence of the degree of anisotropy and the 

thickness of the top layer on the problem solution was studied in details. Array of 

penny-shaped cracks under time-harmonic loading was considered in [23, 24]. 

Improved boundary integral equation method was used for the investigation of the 

wave propagation [23] and computation of the dynamic stress distrubutions [24]. 

Cracks in Functionally Graded Materials (FGMs) were considered in [25–29]. In-

plane harmonic load of the FGM with multiple cracks was investigated in [25], where 

the influence of different parameters on the dynamic stress intensity factors was 

analysed. The problems for the cracks located on the interface of two dissimilar half-
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planes were solved in [26–29]. Functionally graded magnetoelastic solid with cracks 

under time-harmonic SH-waves was considered in [30], where the problems for 

arbitrary direction of wave propagation were solved and the effects of  the 

inhomogeneity of the material were analysed using boundary integral equations 

method. 

Two-dimensional decagonal quasicrystal bimaterial with the interface crack was 

studied in [31]. The general solution and Fourier transition were used to obtain the 

fundamental solution for the extended displacement discontinuity method. Using the 

proposed method the extended stress intensity factors were obtained. The verification 

of the method was done by comparing the obtained results for phonon and phason 

stresses with the ones received for the numerical COMSOL model.  

Interface cracks in one-dimensional hexagonal quasi-crystal coating under in-plane 

loading were considered in [32]. For the numerical simulation the authors used the 

displacement discontinuity boundary element method, presenting the comprehensive 

analysis of the influence of coating thickness, material properties and crack length on 

the fracture behaviour, distribution of stress intensity factors and energy release rates.  

Mode III interface crack problems were considered in [33], where the overview of 

the problems’ solutions was given. In the study the dependencies of the stress intensity 

factors and energy release rates on the bimaterial constants were discussed. In 

particular, the problem of the interaction between the interface linear crack and internal 

micro-cracks under anti-plane shear loading was solved using singular integral 

equations. Using the suggested solution the conditions under which internal micro-

cracks do not influence the distribution of the stress intensity factors for the interface 

crack can be found.  

The problem of semi-infinite interface crack in poroelastic strip under shear wave 
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was investigated in [34]. To obtain the stress intensity factors the Fourier integral 

transform and the Wiener-Hopf method were used. The detailed study of thickness 

ratio, porosity, stress amplitude ratio and inhomogeneity parameters influence on 

stress intensity factors was conducted. The semi-strip with a longitudinal crack was 

considered in [35], using two different approaches and comparing the stress intensity 

factors computed for both models. Crack on the interface of dissimilar orthotropic strips 

was investigated in [36]. The problem for the crack under dynamic anti-plane shear 

traction was solved analytically, using separation of variables technique and reducing 

the problem to a singular integral equation. 

Interfacial crack under impact loading was considered in [37–42]. Comparison of 

two hypersingular time domain boundary element methods for 2-D cracks under 

transient dynamic loading was done by Wuensche et al. [37]. Sawtooth shock pulse 

problem was solved by Zhang et al. [38]. A crack on the interface of orthotropic 

materials under impact loading was considered in [39]. The problems of penny-shaped 

cracks (within the layer and on the layers’ interface) under impact of torsional load were 

solved in [40, 41]. In [42] the problem for three parallel cracks under normal impact 

loading was investigated. 

The interface linear and penny-shaped cracks under harmonic shear loading were 

considered in [43, 44]. The problems were solved by boundary element method using 

the system of boundary singular integral equations. Displacements and tractions 

distributions on the bimaterial interface were analysed. Also, the stress intensity factors 

for different wave numbers were obtained. We must note that these problems were 

solved neglecting the crack faces contact interaction. Despite that under some 

conditions the problem may be solved correctly with this assumption (for example, for 

cracks with considerable initial opening), in the general case the crack faces contact 
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interaction must be taken into account to obtain the realistic stress-strain state.  

In the conference proceeding [45] the analysis of the size of the contact zone was 

presented for a linear interface crack under the normal harmonic shear loading. The 

problem was solved using the iterative correction algorithm in order to take the crack 

closure and the friction of the crack’s faces into account. The displacements and 

contact forces at the crack faces were presented and analysed for a fixed value of the 

wave number and a fixed value of the friction coefficient, but the stress intensity factors 

were not computed.  

The current study is devoted to the parametric analysis of the effects of the crack 

closure and friction on stress intensity factors (normal opening and transverse shear 

modes) for a linear interface crack under normal harmonic shear. The numerical 

convergence of the iterative solution algorithm is analysed for various iterative 

coefficients. The results are validated through the comparison with the classical model 

solutions by Comninou and Dundurs obtained for the static problems with and without 

friction [4]. The effects of material’s properties and values of the friction coefficient on 

the distribution of the stress intensity factors for the first time are presented and 

analysed for various bi-materials. It was noted that the changes in material’s properties 

led to the significant changes in the magnitudes of the stress intensity factors and the 

frequencies at which the maximums are achieved. Furthermore, the effects of the 

friction become more important (in particular, for the transverse shear mode) for higher 

ratios between elastic properties of the bi-material constituents.  

 

2 STATEMENT OF THE PROBLEM 

Let us consider an elastic bimaterial consisting of two homogeneous isotropic half-

spaces, Ω(1) and Ω(2), with the crack of finite length 2L located at the interface between 
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half-spaces. The crack has no initial opening, and the normal mono-harmonic shear 

loading with the frequency of  𝜔 = 2𝜋/𝑇 is applied to the material [43, 45] (Figure 1). 

In both half-spaces the equation of motion and the generalized Hooke’s law lead to 

the linear Lamé equations of elastodynamics for the displacement field with the 

standard initial and boundary conditions for displacements and stresses (namely, no 

initial deformations of the material; the Sommerfeld radiation-type condition at the 

infinity; continuity conditions for stresses and displacements at the bonding interface, 

𝛤∗ = 𝛤(1) ∩ 𝛤(2); and known initial tractions at the crack opposite faces, 𝛤(1)𝑐𝑟 and  

𝛤(2)𝑐𝑟 , caused by the incident external loading, 𝐠(𝐱, 𝑡)).  

The components of the displacement field could be represented by the 

displacements 𝐮(𝐱, 𝑡) and tractions 𝐩(𝐱, 𝑡) at the half-spaces’ boundaries, 𝛤(1) and  

𝛤(2), using the Somigliana dynamic identity with the appropriate fundamental solutions 

𝑈𝑖𝑗
(𝑚)

(𝐱, 𝐲, 𝑡 − 𝜏) and 𝑊𝑖𝑗
(𝑚)

(𝐱, 𝐲, 𝑡 − 𝜏) [1, 10, 46–48]: 

𝑢𝑗
(𝑚)(𝐱, 𝑡) = ∫ ∫ (𝑝𝑖

(𝑚)(𝐲, 𝜏)𝑈𝑖𝑗
(𝑚)(𝐱, 𝐲, 𝑡 − 𝜏)

𝛤(𝑚)𝑇

− 𝑢𝑖
(𝑚)(𝐲, 𝜏)𝑊𝑖𝑗

(𝑚)(𝐱, 𝐲, 𝑡 − 𝜏))𝑑𝐲𝑑𝜏, 

𝐱 ∈ Ω(𝑚),   t ∈ T,   j=1,2, 

 

 

(1) 

where 𝑇 = 0; +∞ is the time interval (period of the harmonic loading for the case of 

harmonic incident wave). 

Due to the crack’s faces closure the traction vector at the crack’s surface is the 

superposition of the known initial traction caused by the external loading and the 

contact force, 𝐪(𝐱, 𝑡), that appears in the contact zone, thus 𝐩(𝐱, 𝑡) = 𝐠(𝐱, 𝑡) + 𝐪(𝐱, 𝑡). 

The size and shape of the contact zone in time are unknown beforehand, depend on 

the parameters of the external loading (type of the loading, direction, magnitude, 
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frequency, etc.), mechanical properties of the bi-material and the friction coefficient at 

the crack’s surface and must be determined during the solution process.  

To include the contact interaction into account, the Signorini unilateral constraints 

and the Coulomb friction law with the friction coefficient 𝑘𝜏 must be imposed for the 

normal and tangential components of the displacement discontinuity, [𝐮(𝐱, 𝑡)] =

𝐮(1)(𝐱, 𝑡) − 𝐮(2)(𝐱, 𝑡), and contact forces [47, 48]: 

[𝑢𝑛(𝐱, 𝑡)] ≥ 0, 𝑞𝑛(𝐱, 𝑡) ≥ 0,  [𝑢𝑛(𝐱, 𝑡)]𝑞𝑛(𝐱, 𝑡) = 0, (2) 

| 𝑞𝜏(𝐱, 𝑡) | < 𝑘𝜏𝑞𝑛(𝐱, 𝑡) ⇒
𝜕[𝑢𝜏(𝐱, 𝑡)]

𝜕𝑡
= 0, (3) 

| 𝑞𝜏(𝐱, 𝑡) | = 𝑘𝜏𝑞𝑛(𝐱, 𝑡) ⇒
𝜕[𝑢𝜏(𝐱, 𝑡)]

𝜕𝑡
= −

𝑞𝜏(𝐱, 𝑡)

|𝑞𝜏(𝐱, 𝑡)|
|
𝜕[𝑢𝜏(𝐱, 𝑡)]

𝜕𝑡
| . (4) 

The contact constraints (2)–(4) ensure that there is no interpenetration of the 

opposite crack faces, the normal component of the contact force is unilateral and 

present in the contact zone only; and the opposite crack faces do not move in the 

tangential plane while they are held by the friction force before the slipping happens 

[10, 12, 45, 47].  

Contact interaction makes the problem highly non-linear and the solution is cyclic 

multi-harmonic even for the considered case of mono-harmonic loading. That is why 

the normal and tangential components of the displacement discontinuity and the 

traction at the crack surface can be approximated by the following exponential Fourier 

series with respect to time [10, 12, 45, 47]:  

𝑓(•, 𝑡) = 𝑅𝑒 {∑ 𝑓𝑘(•)𝑒𝐼𝜔𝑘𝑡
+∞

𝑘=−∞
},    𝑓𝑘(•) =

𝜔

2𝜋
∫ 𝑓(•, 𝑡)𝑒−𝐼𝜔𝑘𝑡

𝑇

0

𝑑𝑡, (5) 

where 𝜔𝑘 = 2𝜋𝑘/𝑇 and 𝐼 is the imaginary unit. 

Assuming that the distributions of the boundary displacements and tractions are 

smooth enough, after the limiting transition to the interface the Somigliana integral 
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identity in time domain (1) may be transformed into the following system of boundary 

integral equations in the frequency domain [10, 12, 45]:  

− ∫ 𝑝̃𝑖
𝑘,(1)(𝒚)𝑈𝑖𝑗

(1)(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲
𝛤(1)cr

= −
1

2
𝑢𝑖

𝑘,(1)(𝐱) − ∫ 𝑢𝑖
𝑘,(1)(𝐲)𝑊𝑖𝑗

(1)(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲
𝛤(1)cr

+ 

∫ 𝑢𝑖
𝑘,∗(𝒚)𝑊𝑖𝑗

(1)
(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲

𝛤∗

− ∫ 𝑝𝑖
𝑘,∗(𝐲)𝑈𝑖𝑗

(1)
(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲,     𝐱 ∈ 𝛤(1)cr,

𝛤∗

 

 

(6) 

− ∫ 𝑝̃𝑖
𝑘,(2)(𝒚)𝑈𝑖𝑗

(2)(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲
𝛤(2)cr

= −
1

2
𝑢𝑖

𝑘,(2)(𝐱) − ∫ 𝑢𝑖
𝑘,(2)(𝒚)𝑊𝑖𝑗

(2)(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲
𝛤(2)cr

− 

∫ 𝑢𝑖
𝑘,∗(𝒚)𝑊𝑖𝑗

(2)
(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲

𝛤∗

+ ∫ 𝑝𝑖
𝑘,∗(𝐲)𝑈𝑖𝑗

(2)
(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲,     𝐱 ∈ 𝛤(2)cr,

𝛤∗

 

 

  (7) 

− ∫ 𝑝̃𝑖
𝑘,(1)(𝐲)𝑈𝑖𝑗

(1)(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲
𝛤(1)cr

= −
1

2
𝑢𝑖

𝑘,∗(𝐱) − ∫ 𝑢𝑖
𝑘,(1)(𝐲)𝑊𝑖𝑗

(1)(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲
𝛤(1)cr

+ 

∫ 𝑢𝑖
𝑘,∗(𝐲)𝑊𝑖𝑗

(1)
(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲

𝛤∗

− ∫ 𝑝𝑖
𝑘,∗(𝐲)𝑈𝑖𝑗

(1)
(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲,    𝐱 ∈ 𝛤∗,

𝛤∗

 

 

(8) 

− ∫ 𝑝̃𝑖
𝑘,(2)(𝐲)𝑈𝑖𝑗

(2)(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲
𝛤(2)cr

= −
1

2
𝑢𝑖

𝑘,∗(𝐱) − ∫ 𝑢𝑖
𝑘,(2)(𝐲)𝑊𝑖𝑗

(2)(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲
𝛤(2)cr

− 

∫ 𝑢𝑖
𝑘,∗(𝐲)𝑊𝑖𝑗

(2)
(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲

𝛤∗

+ ∫ 𝑝𝑖
𝑘,∗(𝐲)𝑈𝑖𝑗

(2)
(𝐱, 𝐲, 𝜔𝑘)𝑑𝐲,     𝐱 ∈ 𝛤∗

𝛤∗

, 

 

(9) 

where 𝑝̃𝑖
𝑘,(𝑚)

(𝐱), 𝑝𝑖
𝑘,∗(𝐱), 𝑢𝑖

𝑘,(𝑚)
(𝐱) and 𝑢𝑖

𝑘,∗(𝐱) are the Fourier coefficients of the 

tractions and displacements at the crack’s faces and the bonding interface.  

Fundamental solutions in the frequency domain 𝑈𝑖𝑗
(𝑚)

(𝐱, 𝐲, 𝜔𝑘) and 𝑊𝑖𝑗
(𝑚)

(𝐱, 𝐲, 𝜔𝑘) 

have the following form [1, 21, 46, 47]: 

𝑈𝑖𝑗
(𝑚)

(𝐱, 𝐲, 𝜔𝑘) =
1

2𝜋𝜇(𝑚)
(𝜓𝑘

(𝑚)
𝛿𝑖𝑗 − 𝜒𝑘

(𝑚) (𝑦𝑖 − 𝑥𝑖)

𝑟

(𝑦𝑗 − 𝑥𝑗)

𝑟
), (10) 

𝑊𝑖𝑗
(𝑚)(𝐱, 𝐲, 𝜔𝑘) = 𝜆(𝑚)𝑛𝑖

(𝑚)(𝐲)
𝜕

𝜕𝑦𝑘
𝑈𝑘𝑗

(𝑚)(𝐱, 𝐲, 𝜔𝑘) +

𝜇(𝑚)𝑛𝑘
(𝑚)

(𝐲) [
𝜕

𝜕𝑦𝑘
𝑈𝑖𝑗

(𝑚)
(𝐱, 𝐲, 𝜔𝑘) +

𝜕

𝜕𝑦𝑖
𝑈𝑘𝑗

(𝑚)
(𝐱, 𝐲, 𝜔𝑘)]. 

 

(11) 

Here 𝛿𝑖𝑗 is the Kronecker delta, 𝜆(𝑚) and 𝜇(𝑚) are the Lamé coefficients, 𝑟 =

|𝑥1 − 𝑦1| is the distance between the observation and load points (please note that the 
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displacements of the crack faces are negligibly small comparing to the distance 

between observation and load points along the crack length).  

Functions  𝜓𝑘
(𝑚)

 and  𝜒𝑘
(𝑚)

 for the harmonic loading in two-dimensional case are 

given as: 

𝜓𝑘
(𝑚)

= 𝐾0(𝑙2,𝑘
(𝑚)

) +
1

𝑙2,𝑘

(𝑚)
[𝐾1(𝑙2,𝑘

(𝑚)
) −

𝑐2
(𝑚)

𝑐1
(𝑚)

𝐾1(𝑙1,𝑘
(𝑚)

)] ,

𝜒𝑘
(𝑚)

= 𝐾2(𝑙2,𝑘
(𝑚)

) − (
𝑐2

(𝑚)

𝑐1
(𝑚))

2

𝐾2(𝑙1,𝑘
(𝑚)

), 

 

 

(12) 

where  𝑙1,𝑘
(𝑚)

= 𝐼𝜔𝑘 𝑟/𝑐1
(𝑚)

, 𝑙2,𝑘
(𝑚)

= 𝐼𝜔𝑘 𝑟/𝑐2
(𝑚)

;  𝐾𝑛(•) is the modified Bessel function of 

the second kind and order 𝑛; and 𝑐1
(𝑚)

= √(𝜆(𝑚) + 2𝜇(𝑚))/𝜌(𝑚) and 𝑐2
(𝑚)

= √𝜇(𝑚)/𝜌(𝑚) 

are the velocities of the longitudinal and transversal waves in the upper and lower half-

spaces. 

For the considered case the integral kernels 𝑈𝑖𝑗
(𝑚)

(𝐱, 𝐲, 𝜔𝑘) and 𝑊𝑖𝑗
(𝑚)

(𝐱, 𝐲, 𝜔𝑘) have the 

following form: 

𝑈12
(𝑚)(𝐱, 𝐲, 𝜔𝑘) = 𝑈21

(𝑚)(𝐱, 𝐲, 𝜔𝑘) = 0,                                           (13) 

𝑈11
(𝑚)(𝐱, 𝐲, 𝜔𝑘) =

1

2𝜋𝜇(𝑚)
[𝐾0(𝑙2,𝑘

(𝑚)
) +

1

𝑙2,𝑘
(𝑚) (𝐾1(𝑙2,𝑘

(𝑚)
) −

𝑐2
(𝑚)

𝑐1
(𝑚) 𝐾1(𝑙1,𝑘

(𝑚)
))],                   (14) 

𝑈22
(𝑚)(𝐱, 𝐲, 𝜔𝑘) =

1

2𝜋𝜇(𝑚)
[(

𝑐2
(𝑚)

𝑐1

(𝑚)
)

2

𝐾2(𝑙1,𝑘
(𝑚)

) − 𝐾2(𝑙2,𝑘
(𝑚)

) + 𝐾0(𝑙2,𝑘
(𝑚)

) + 

1

𝑙2,𝑘
(𝑚) (𝐾1(𝑙2,𝑘

(𝑚)
) −

𝑐2
(𝑚)

𝑐1
(𝑚) 𝐾1(𝑙1,𝑘

(𝑚)
))],                                    (15) 

𝑊11
(𝑚)(𝐱, 𝐲, 𝜔𝑘) = 𝑊22

(𝑚)(𝐱, 𝐲, 𝜔𝑘) = 0,                                         (16) 

𝑊12
(𝑚)(𝐱, 𝐲, 𝜔𝑘) =

1

2𝜋𝑟

𝜕𝑟

𝜕𝑦1
[𝑙2,𝑘

(𝑚)
𝐾1 (𝑙2,𝑘

(𝑚)
) − 2𝐾2 (𝑙2,𝑘

(𝑚)
) + 2 (

𝑐2
(𝑚)

𝑐1
(𝑚))

2

𝐾2 (𝑙1,𝑘
(𝑚)

)],           (17) 

𝑊21
(𝑚)(𝐱, 𝐲, 𝜔𝑘) =

1

2𝜋𝑟

𝜕𝑟

𝜕𝑦1
[−

𝜆(𝑚)𝜇(𝑚)

(𝜆(𝑚)+2𝜇(𝑚))
2 𝑙1,𝑘

(𝑚)
𝐾1 (𝑙1,𝑘

(𝑚)
) − 2𝐾2 (𝑙2,𝑘

(𝑚)
) + 2 (

𝑐2
(𝑚)

𝑐1
(𝑚))

2

𝐾2 (𝑙1,𝑘
(𝑚)

)]. (18) 
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For every Fourier coefficient number, k, the appropriate system of linear algebraic 

equations (similar to the one presented in [13]) can be obtained from the system of 

boundary integral equations (6)–(9) and solved numerically, so the displacements and 

tractions in the form of Fourier exponential series (5) with a finite number of the 

members can be found. Note also that hypersingular, singular and weakly singular 

divergent integrals depending on the type and order of the used space approximation 

shall be regularised and calculated for all integral kernels. In the current study the 

simplest piecewise-constant approximation was used (as it successfully proved its 

efficiency for two-dimensional problems comparing, for example, with the Galerkin 

method [9]).  

In order to take the contact constraints (2)–(4) into account the iterative correction 

algorithm based on the orthogonal projections on the sets of constraints shall be used. 

The detailed description, studies on the numerical convergence and the comparison of 

the iterative algorithms applicable to homogeneous and layered materials are given in 

[10, 47, 48], in the current study the following algorithm presented in [10] is used: 

- the mono-harmonic solution of the problem neglecting the effects of the crack’s 

closure and friction is obtained;  

- the solution is corrected applying the contact constraints (2)–(4) and the Fourier 

coefficients are gradually changed until the multi-harmonic solution satisfying 

the contact constraints is found.  

The detailed investigation of the algorithm’s convergence with respect to the number 

of Fourier coefficients used in series (5), the number of the boundary elements (and 

size of the elements in the vicinity of the crack’s tips) and the number of time intervals 



 12 

has been presented in [10] for linear cracks in bimaterials under the harmonic tension-

compression loading, thus in this study we followed the recommendations given in [10]. 

 

3 VALIDATION OF THE MODEL 

For the validation of the numerical model the interface crack of the length 2𝐿 under 

the normal shear loading of amplitude 𝜎0 and the frequency closed to zero (with the 

normalised wave number 𝑘2
(2)

𝐿 = 𝜔𝐿/𝑐2
(2)

= 0.01) was considered [45]. The 

mechanical properties of the material (𝜈(1) = 0.1, 𝐸(1) = 29 GPa, and 𝜈(2) = 0.49, 

𝐸(2) = 400 GPa) were chosen to satisfy the following ratio [4]: 

𝛽 =
𝜇(2)(𝜅(1) − 1) − 𝜇(1)(𝜅(2) − 1)

𝜇(2)(𝜅(1) + 1) + 𝜇(1)(𝜅(2) + 1)
= 0.5, 

(19) 

where 𝐸(𝑚) is the Young’s modulus,  𝜅(𝑚) = 3 − 4𝜈(𝑚), and 𝜈(𝑚) is the Poisson’s 

coefficient. 

The normal components of the displacement jump, 2𝜇0[𝑢𝑛]/𝜎0𝐿,  and contact forces, 

𝑞𝑛/𝜎0, at the crack surface are presented in Figures 2 and 3 for different values of the 

friction coefficient friction (𝑘𝜏 = 0.0 and 𝑘𝜏 = 1.0), note that [43]: 

 𝜇0 = 𝜇(1) 1−𝛾2

1+𝜅(1) ,   𝛾2 =
𝑎1

2
− 𝑎2,    

 𝑎1 =
𝜇(1) − 𝜇(2)

𝜇(1) + 𝜅(1)𝜇(2)
,   𝑎2 =

𝜅(1)𝜇(2) − 𝜅(2)𝜇(1)

2(𝜇(2) + 𝜅(2)𝜇(1))
. 

 

(20) 

 

The contact forces and the size of the contact zone are compared with the model 

static solution by Comninou and Dundurs [4]. As one can see the results are in a very 

good agreement. It should be noted that the friction significantly affected the solution, 

changing the size of the contact zone and the distribution of the displacements and 
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forces even for the “quasi-static” case considered in the present section for the 

validation purposes only.   

Please note that as it was also shown in [45] after the correction the contact 

constraints (2)–(4) are satisfied on the entire surface of the crack (the most importantly, 

there are no interpenetration of the crack’s opposite faces and the friction is 

significantly affected the distribution of displacements and tractions, and the size of the 

contact zone), and the Sommerfeld conditions are satisfied at the infinity (the 

displacements and forces slowly but surely decrease at the bonding interface with the 

increase of the distance from the crack), so the iterative process effectively corrected 

the solution. 

 

4 CASE STUDIES AND CONCLUSIONS 

In order to be consistent with the results presented in [43] the mechanical properties 

of the bimaterial were taken as follows: the Poisson’s coefficient 𝜈(1) = 𝜈(2) = 0.25, 

density 𝜌(1) = 𝜌(2) = 7800 kg/m3, the Young’s modulus 𝐸(1) = 200 GPa and 𝐸(2) =

150 GPa, 𝐸(2) = 100 GPa and, finally, 𝐸(2) = 67 GPa.  

The dynamic stress intensity factors (the opening and the transverse shear modes) 

were computed in the vicinity of the crack’s tip using the following asymptotic formulas 

[1, 43, 47]: 

𝐾𝐼
𝑚𝑎𝑥 = max

𝑡
lim
𝑟→0

𝑝𝑛
∗ (𝑅 + 𝑟, 𝑡)√2𝜋𝑟,                                 (21) 

𝐾𝐼𝐼
𝑚𝑎𝑥 = max

𝑡
lim
𝑟→0

𝑝𝜏
∗(𝑅 + 𝑟, 𝑡)√2𝜋𝑟.                                 (22) 

Here 𝑝𝑛
∗ (𝑅 + 𝑟, 𝑡) and 𝑝𝜏

∗(𝑅 + 𝑟, 𝑡) are the normal and tangential components of the 

traction vector at the bonding interface and 𝑟 is the distance from the crack tip. 

Stress intensity factors (normal opening and transverse shear modes) plotted 

against the iteration number for different wave numbers at 𝜇(2)/𝜇(1) = 0.5 and 𝑘𝜏 = 0.5 
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are presented in Figures 4 and 5. The results are normalised by the appropriate static 

values. One can see a clear numerical convergence of the algorithm for different values 

of the iterative coefficient, 𝐾𝑛, that significantly affects the rate of the convergence.  

Stress intensity factors (normal opening and transverse shear modes) plotted 

against the wave number at 𝜇(2)/𝜇(1) = 0.5 and 𝑘𝜏 = 0.5 are presented in Figures 6 

and 7. It is obvious that the crack closure and friction significantly affect the solution for 

both modes of the stress intensity factor especially for higher wave numbers (higher 

frequencies of the loading). It shall be also noted that, based on the results presented 

in Figures 4–7, in order to achieve a stable convergence of the algorithm the iterative 

coefficient was fixed at 𝐾𝑛 = 2000. 

The effects of the friction coefficient on the distribution of the stress intensity factors 

are presented in Figures 8 and 9 at 𝜇(2)/𝜇(1) = 0.5. It is clear that the change in the 

friction coefficient does not significantly affect the solution (the crack’s faces are mostly 

sliding disregarding the friction coefficient value, because the friction force depending 

on the normal component of the contact force is quite small for the shear load 

considered here), so the correction of the crack’s normal opening according to the 

Signorini unilateral constraints (2) mainly led to the change in both modes of the stress 

intensity factor. Note that this conclusion significantly varies from the ones obtained 

previously for the tension-compression waves where the normal opening for obvious 

reasons was the dominant mode [10, 12, 15]. 

Finally, the distribution of the stress intensity factors for different combinations of the 

materials properties is presented in Figures 10 and 11. It was noted that the changes 

in material’s properties led to the significant changes in the magnitudes of the stress 

intensity factors and the frequencies at which the maximums are achieved. It may be 

also concluded that the discrepancy in the mechanical properties significantly 
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increases the effects of the cracks closure and friction especially for the transverse 

shear mode. 

As a conclusion, it shall be added that the proposed approach may be extended to 

three-dimensional fracture mechanics problems for cracked materials under arbitrary 

dynamic loading, and the special attention shall be paid to the coupling oscillation 

singularities in the vicinity of the crack’s front [2, 5, 49, 50]. 

 

REFERENCES 

[1] Aliabadi MH, Brebbia CA, Parton VZ. (Eds.) Static and Dynamic Fracture 

Mechanics. Computational Mechanics Publications; 1994. 

[2] Comninou M. An overview of interfacial cracks. Eng Fract Mech 1990; 37(1):197–

208. 

[3] Comninou M. The interface crack in a shear field. J App Mech 1978;45:287–290. 

[4] Comninou M, Dundurs J. Effect of friction on the interface crack loaded in shear. 

J Elast 1980; 10:203–212. 

[5] Comninou M, Schmueser D. The interface crack in a combined tension-

compression and shear field. J App Mech 1979; 46:345–348. 

[6] Gross D, Seelig T. Fracture Mechanics with the introduction to Micromechanics. 

Springer Heidelberg Dordrecht, New York; 2001. 

[7] Tafreshi A. Computation of the Jk-integrals for bimaterial interface cracks using 

boundary element crack shape sensitivities. Theor App Fract Mech 2016; 82:77–

87. 

[8] Shiah YC, Hwu C, Yao JJ. Boundary element analysis of the stress intensity 

factors of plane interface cracks between dissimilarly adjoined anisotropic 

materials. Eng Anal Bound Elem 2019; 106:68–74. 



 16 

[9] Menshykov OV, Menshykova MV, Wendland WL. On use of the Galerkin method 

to solve the fracture mechanics problem for a linear crack under normal loading. 

Int App Mech 2005; 41(11):1324–1329. 

[10] Menshykova MV, Menshykov OV, Guz IA. An iterative BEM for the dynamic 

analysis of interface crack contact problems. Eng Anal Bound Elem 2011; 35(5): 

735–749. 

[11] Menshykov OV, Guz IA, Menshykov VA. Boundary integral equations in 

elastodynamics of interface cracks. Phil Trans R Soc A 2008;366(1871):1835–

1839. 

[12] Menshykova MV, Menshykov OV, Guz IA. Modelling crack closure for an 

interface crack under harmonic loading. Int J Fract 2010; 165(1):127–134. 

[13] Menshykov OV, Menshykov VA, Guz IA. Elastodynamics of a crack on the 

bimaterial interface. Eng Anal Bound Elem 2009; 33(3):294–301.  

[14] Men’shikov VA, Men’shykov AV, Guz IA. Interfacial crack between elastic half-

spaces under harmonic loading. Int App Mech 2007; 43(8):865–873. 

[15] Menshykov OV, Menshykova MV, Guz IA. 3-D elastodynamic contact problem 

for an interface crack under harmonic loading. Eng Fract Mech 2012; 80:52–59. 

[16] Fomenko SI, Golub MV, Doroshenko OV, Wang Y, Zhang C. An advanced 

boundary integral equation method for wave propagation analysis in a layered 

piezoelectric phononic crystal with a crack or an electrode. J Comput Phys 

2021;447:110669. 

[17] Chan Y-S, Fannjiang AC, Paulino GH. Integral equations with hypersingular 

kernels – theory and applications to fracture mechanics. Int J Eng Sci 2003; 

41:683–720. 



 17 

[18] Zhang P, Du C, Zhao W, Sun L. Dynamic crack face contact and propagation 

simulation based on the scaled boundary finite element method. Comput 

Methods Appl Mech Eng 2021; 385:114044. 

[19] Zhang P, Du C, Tian X, Jiang S. A scaled boundary finite element method for 

modelling crack face contact problems. Comput Methods Appl Mech Eng 2018; 

328:431–451. 

[20] Zhang P, Du C, Birk C, Zhao W. A scaled boundary finite element method for 

modelling wing crack propagation problems. Eng Fract Mech 2019; 216:106466. 

[21] Jia Y-M, Li C-J ,Zhang Y, Chen J. The high-order completeness analysis of the 

scaled boundary finite element method. Comput Methods Appl Mech Eng 2020; 

362:112867. 

[22] Eskandari-Ghadi M, Ardeshir-Behrestaghi A, Pak RYS. Bi-material transversely 

isotropic half-space containing penny-shaped crack under time-harmonic 

horizontal loads. Eng Fract Mech 2017; 172:152–180. 

[23] Mykhaskiv VV, Zhbadynskyi IYa, Zhang Ch. On propagation of time-harmonic 

elastic waves through a double-periodic array of penny-shaped cracks. Eur L 

Mech a Solids 2019; 73:306–317. 

[24] Mykhaskiv VV, Zhbadynskyi IYa, Zhang Ch. Dynamic stresses due to time-

harmonic elastic wave incidence on doubly periodic array of penny-shaped 

cracks. J Math Sci 2014; 203:114–122. 

[25] Forsat M, Musharavati F, Eyvazian A, Demiral M, Khan A, Talebizadehsardari P, 

Babaei Mahani R, Mobayen S, Sebaey T. In-plane stress analysis of multiple 

parallel cracks in an orthotropic FGM medium under time-harmonic loading. 

Theor Appl Fract Mech 2021; 113:102936. 



 18 

[26] Bagheri R, Enjilela V. Time-harmonic analysis of multiple interface cracks in two 

dissimilar FGM half-planes: In-plane problem. Theor Appl Fract Mech 2021; 

116:103094. 

[27] Bagheri R, Monfared MM. In-plane transient analysis of two dissimilar 

nonhomogeneous half-planes containing several interface cracks. Acta Mech 

2020; 231:3779–3797. 

[28] Bagheri R, Monfared MM. Mixed-mode fracture analysis for two dissimilar half-

planes with multiple interface moving cracks. Waves Random Complex Media 

2021; DOI: 10.1080/17455030.2021.1948147 

[29] Jafari A, Monfared MM, Bagheri R. Mixed-mode computation of the transient 

dynamic stress intensity factor for multiple interface cracks. J Braz Soc Mech Sci 

2019; 41:573. 

[30] Rangelov T, Stoynov Y, Dineva P. Dynamic fracture behaviour of functionally 

graded magnetoelectroelastic solids by BIEM. Int J Solids Struct 2011; 48:2987–

2999. 

[31] Fan CY, Lv SY, Dang HY, Yuan YP, Zhao MH. Fundamental solutions and 

analysis of the interface crack for two-dimensional decagonal quasicrystal 

bimaterial via the displacement discontinuity method. Eng Anal Bound Elem 

2019;106:462–472. 

[32] Zhao MH, Fan CY, Lu C, Dang HY. Analysis of interface cracks in one-

dimensional hexagonal quasi-crystal coating under in-plane loads. Eng Fract 

Mech 2021;243:107534. 

[33] Petrova V, Schmaudera S, Ordyanc M, Shashkin A. Revisit of antiplane shear 

problems for an interface crack: Does the stress intensity factor for the interface 



 19 

Mode III crack depend on the bi-material modulus. Eng Fract Mech 2019; 

216:106524. 

[34] Negi A, Singh AK, Yadav RP. Analysis on dynamic interfacial crack impacted by 

SH-wave in bi-material poroelastic strip. Compos Struct 2020; 233:111639. 

[35] Vaysfeld N, Zhuravlova Z. The investigation of semi-strip's stress state with a 

longitudinal crack. ZAMM: Journal of Applied Mathematics and Mechanics 2020; 

DOI:10.1002/zamm.201900289 

[36] Matbuly MS. Analytical solution for an interfacial crack subjected to dynamic anti-

plane shear loading. Acta Mech 2006; 184:77–85. 

[37] Wuensche M, Zhang Ch, Sladek J, Sladek V, Hirose S, Kuna M. Transient 

dynamic analysis of interface cracks in layered anisotropic solids under impact 

loading. Int J Fract 2009; 157:131–147. 

[38] Zhang X, Shi Y, Pan G. Dynamic stress control of bi-material structure subjected 

to sawtooth shock pulse based on interface characteristics. Mech Res Commun 

2020; 107:103558. 

[39] Lira-Vergara E, Rubio-Gonzalez C. Dynamic stress intensity factor of interfacial 

finite cracks in orthotropic materials. Int J Fract 2005; 135:285–309. 

[40] Basu S, Mandal SC. Impact of torsional load on penny-shaped crack in an elastic 

layer sandwiched between two elastic half-spaces. Int J Appl Comput 2016; 

2:533–543. 

[41] Karan S, Basu S, Mandal SC. Impact of a torsional load on a penny-shaped crack 

sandwiched between two elastic layers embedded in an elastic medium. Acta 

Mech 2018; 229:1759–1772. 



 20 

[42] Itou S. Dynamic stress intensity factors around three parallel cracks in an infinite 

medium during a passage of impact normal stress. Acta Mech 2015; 226:2407–

2420. 

[43] Menshykova MV, Menshykov OV, Guz IA. Linear interface crack under plane 

shear wave. Comput Model Eng Sci 2009; 48(2):107–120. 

[44] Guz AN, Guz IA, Men’shikov AV, Men’shikov VA. Penny-shaped crack at the 

interface between elastic half-spaces under the action of a shear wave. Int App 

Mech 2009; 45(5):534–539. 

[45] Menshykov VA, Menshykov O, Guz IA. Contact problems for interface cracks 

under harmonic shear loading. Scipedia, V. 100 – Fracture, Damage and Failure 

Mechanics 2021. DOI:10.23967/wccm-eccomas.2020.104  

[46] Zhang Ch, Gross D. On wave propagation in elastic solids with cracks. 

Computational Mechanics Publications; 1998. 

[47] Guz AN, Zozulya VV. Elastodynamic unilateral contact problems with friction for 

bodies with cracks. Int App Mech 2002; 38:895–932. 

[48] Guz AN. Nonclassical problems of fracture/failure mechanics: on the occasion of 

the 50th anniversary of the research (review). Int App Mech 2019; 55:129–174. 

[49] Chai H, Bao Y, Zhang Z. Numerical solutions of hypersingular integral equations 

for interface circular crack under axisymmetric loadings. Eng Anal Bound Elem 

2021; 122:35–42. 

[50] Ostrik VI. Contact of faces of a rectilinear crack under complex loading and 

various contact conditions. Acta Mech 2019; 230:3741–3758. 

 

 

 



 21 

 

 

 

 

 

 

 

Figure 1: Interface crack under normal loading 
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Figure 2: Normal components of the displacement jump and contact forces without 

friction, 𝑘𝜏 = 0.0, adopted from [23] 

 

 

 

Figure 3: Normal components of the displacement jump and contact forces with 

friction, 𝑘𝜏 = 1.0, adopted from [23] 
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Figure 4: Stress intensity factor (normal opening mode) plotted against the iteration 

number for different wave numbers, 𝜇(2)/𝜇(1) = 0.5, 𝑘𝜏 = 0.5 
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Figure 5: Stress intensity factor (transverse shear mode) plotted against the iteration 

number for different wave numbers, 𝜇(2)/𝜇(1) = 0.5, 𝑘𝜏 = 0.5 

 

 

Figure 6: Stress intensity factor (normal opening mode) plotted against the wave 

number for different iterative coefficients, 𝜇(2)/𝜇(1) = 0.5, 𝑘𝜏 = 0.5 
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Figure 7: Stress intensity factor (transverse shear mode) plotted against the wave 

number for different iterative coefficients, 𝜇(2)/𝜇(1) = 0.5, 𝑘𝜏 = 0.5 

 

 

Figure 8: Stress intensity factor (normal opening mode) plotted against the wave 

number for different friction coefficients, 𝜇(2)/𝜇(1) = 0.5, iterative coefficient 2000 
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Figure 9: Stress intensity factor (transverse shear mode) plotted against the wave 

number for different friction coefficients, 𝜇(2)/𝜇(1) = 0.5, iterative coefficient 2000 

 

 

Figure 10: Stress intensity factor (normal opening mode) plotted against the wave 

number for different materials’ properties, 𝑘𝜏 = 0.5, iterative coefficient 2000 
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Figure 11: Stress intensity factor (transverse shear mode) plotted against the wave 

number for different materials’ properties, 𝑘𝜏 = 0.5, iterative coefficient 2000 
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