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Abstract

Data sharing remains a major hindering factor when it comes to adopting emerg-

ing AI technologies in general, but particularly in the agri-food sector. Protec-

tiveness of data is natural in this setting: data is a precious commodity for

data owners, which if used properly can provide them with useful insights on

operations and processes leading to a competitive advantage. Unfortunately,

novel AI technologies often require large amounts of training data in order to

perform well, something that in many scenarios is unrealistic. However, re-

cent machine learning advances, e.g. federated learning and privacy-preserving

technologies, can offer a solution to this issue via providing the infrastructure

and underpinning technologies needed to use data from various sources to train

models without ever sharing the raw data themselves. In this paper, we propose

a technical solution based on federated learning that uses decentralized data,

(i.e. data that are not exchanged or shared but remain with the owners) to

develop a cross-silo machine learning model that facilitates data sharing across

supply chains. We focus our data sharing proposition on improving production

optimization through soybean yield prediction, and provide potential use-cases

that such methods can assist in other problem settings. Our results demonstrate
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that our approach not only performs better than each of the models trained on

an individual data source, but also that data sharing in the agri-food sector

can be enabled via alternatives to data exchange, whilst also helping to adopt

emerging machine learning technologies to boost productivity.
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1. Introduction

The agri-food supply chain is a complex and highly valuable sector in the

world economy, yet the hostility that arises from competitive advantage has

snuffed the possibility of collaboration and openness in data sharing that has

the potential to benefit all parties [1, 2]. Data sharing can help address his-

torical failings related to transparency and traceability of adulterated or unsafe

food vertically through the supply chain [3]. Substantial work has been done to

address the traceability of food and drink with added pressure from consumer

demands [4]. However, in this work we address the data sharing horizontally

across the supply chain, as to assist in production optimization or regulatory

reporting with the aim to contribute towards the recent international commit-

ments and ambitious goals for sustainability imposed throughout the agri-food

supply chain [5]. Specifically, we focus on the implementation of data driven

technologies such as machine learning, to gain a statistical insight into a holistic

view of data from multiple sources. Moreover, we do so via our proposition

for technological methods that facilitate trustworthy data sharing providing a

holistic view of a system for optimization or regulatory purposes.

Many of the thorniest challenges of data sharing within agri-food arise from

social concerns, perhaps foremost concerns around commercial sensitivity and

the resulting reluctance to share, fearing competitive and reputational risks [6].

A reluctance to share data may be preventing sector gains from data analytic

methodologies (e.g. machine learning) that would allow improved production

optimization and environmental data analysis. This fundamental hurdle is the

motivation of our work, asking the question: Can we propose technological so-
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lutions to facilitate confidence in information sharing within the agri-food sec-

tor? Specifically, can we maintain independent ownership of actors’ data whilst

employing data analysis methodologies to improve production optimization be-

tween all actors?

Production optimization across competitors’ activities is an obvious exam-

ple of the potential gains to be made through analyzing shared agri-food data.

Training predictive models on a greater quantity and variety of data from dif-

ferent data owners is likely to produce a more generalizable and better perform-

ing model than separate models produced individually by each data owner on

their own data. Our goal is to consider methods that can improve on sepa-

rate, individual models while still not disclosing individual sensitive data. We

demonstrate our solution to this goal through the task of soybean yield pre-

diction, where individual models refers to a model trained on a specific subset

of the data belonging to that particular organization only, in our case between

US states. The ultimate aim is to move toward the analytic benefits of models

trained on pooled data, while avoiding the data pooling itself.

We focus our investigation around the use of data driven technologies across

the agri-food supply chain (i.e. horizontally, rather than vertically through

the chain given the already vast exploration into this problem setting where the

vertical integration has typically been addressed by blockchain technologies [7]).

We aim to provide technological solutions to enable trustworthy information

sharing among participants across the supply chain that have the ability to

provide optimization improvements to support environmental and regulatory

concerns. In particular, we trial federated learning (FL) approach and ensemble

of models via model sharing to encapsulate many of the established methods in

machine learning for agri-food, while not requiring direct data-pooling between

competitors.

FL is an approach to machine learning [8], which involves training a cen-

tralized model collaboratively through many clients whilst keeping client data

decentralized [9]. Thus, the decentralization of data promotes privacy preserva-

tion between individual client data whilst producing trained models that lever-
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age all data of all participating clients. We argue that this setting, specifically

the ‘cross-silo’ (few clients that each represent a larger repository of data) pro-

vides a potential opportunity to address the challenges faced with distrust in

data sharing, producing cooperatively shared models whilst maintaining data

independence. Federated learning alone does not prevent all malicious attacks,

specifically inference attacks [10] are a significant concern, however to build trust

we explore and subsequently demonstrate how the proven theoretical privacy

can be achieved in the federated setting through the adoption of differential

privacy methods at a participant level. We hope the proposition and initial

empirical demonstration of such technologies in the agri-food setting support-

ing confidence in privacy-preserving methods for information sharing, sparking

change in the perceptions of data sharing to build a more sustainable future for

agri-food.

To showcase the potential of FL, ensembles of shared models and differential

privacy to facilitate trust for data sharing in agri-food setting, we employ well

established open-source datasets for crop yield prediction from both imaging

(remote sensing) [11] and tabular (weather and soil data) [12] data domains. We

demonstrate how data independence and privacy preserving methods perform

compared to their traditional machine learning counterparts, with the aim to

empirically illustrate that under the restricted conditions of independence and

differential privacy these training regimes can produce competitive models. In

summary this work describes the following contributions:

1. We demonstrate the applicability of federated and model sharing machine

learning methodologies to enable training of distributed datasets in the

settings relevant to the agri-food domain.

2. We show that the necessary privacy and security concerns prevalent in

the agri-food sector can be appropriately overcome via privacy preserving

methods, in our case differential privacy.

3. We argue for the potential adoption of the proposed technological methods

to facilitate data sharing, and give key example use cases where such

4



facilitation would benefit all participants.

1.1. Use cases

As our aim is to propose technological solutions to facilitate and subsequently

begin to build confidence in data sharing, as well as to potentially encourage

those in agri-food to participate, we provide example use cases where we see

data sharing in agri-food via distributed training to be most applicable. For this

work we primarily focus on production optimization for collaborative federations

for our empirical demonstration given the accessibility to open-source datasets.

However, the advocated training procedures are directly applicable to the other

use cases. We give two key use case problems observed in the agri-food sector

that we believe data sharing and collaborative training can assist, this list is

not exhaustive.

• Soft fruit production optimization for collaborative federations.

The addition of more data from a variety of sources and multiple farms

vastly improves performance of data driven technologies. In the agri-food

sector, soft fruit growers for example, can in some cases be limited by their

data collection resources, yet they may wish to employ data analytic to

improve not only profits but also their sustainability (net-zero targets).

Another angle to this relates to contractual agreements between growers

and large retail supermarkets for instance; over- or under- estimating the

amount of produce can lead to fruit waste or fruit shortages respectively,

that can have both financial and environmental repercussions for growers

and the whole sector. The concept of federations like that explored in [2]

facilitated through our proposed federated learning procedure can enable

multiple growers to share data in a trustworthy manner to improve their

own production systems.

• Analysis of client production from a distribution source - fresh food distri-

bution centre.

In many cases statistical analysis of a product distributed to clients is
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beneficial to the supplier. This in turn benefits all participants as data

analytical approaches can lead to product improvement tailored to the

clients. Like with production optimization, a federated learning setting

can allow the central sever (i.e. distribution source) to coordinate train-

ing to produce a global statistical model of all their clients so as to gain

insights from a holistic view of the data. In the fresh food industry, such

an approach can optimize food availability, reduce transport costs, reduce

food waste, and contribute to the financial prosperity of all actors involved.

2. Related Work

Data sharing has not been as widespread in the agri-food sector as in other

domains, such as medical and genomic research, where the realization of how

data sharing can improve and accelerate scientific research [13] has outweighed

commercial gain of maintaining local data [14]. While work has taken place

in tackling issues of transparency and traceability through technologies such as

blockchain [15], true sharing (direct sharing of raw, unprocessed data between

parties) of data between actors is typically uncommon within organizational

settings. Despite continued support from EU governments for data sharing

in agriculture [6], recent studies examining the regulatory framework of agri-

cultural data sharing have highlighted the significant extent of the social and

technological challenges [2].

The use of machine learning within agri-food has seen successful application

in yield prediction [16], crop disease detection [17], and production safety [18].

We suggest that many of these already impactful advancements can be replicated

(or at least approximated) without direct data pooling, thus making them much

more widely usable. To demonstrate our intuition under the setting of multiple,

independent data silos, we give an example of model sharing and decentralized

training via federated learning, which has not yet seen widespread application

in agri-food.

FL trains machine learning algorithms in a decentralized manner, main-
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taining principles of focused collection, data minimization, and mitigation of

systemic privacy risks associated from traditional centralized methods [19]. In-

troduced in 2017 [9], FL has since seen adoption in mobile device infrastruc-

ture from tech giants[20] and IoT networks. Recently, federated approaches

have moved into the mainstream with primary research on extremely large

scale ‘cross-device’ settings with millions of edge devices (clients), and con-

tinued privacy-preserving implementations. In contrast, our work focuses on

the ‘cross-silo’ setting where there are few clients each of which represents a

larger data store - this setting is more representative of individual companies or

organizations [19].

At the core of FL, privacy preserving mechanisms enable the facilitation of

confident and trustworthy data mining between independent and decentralized

data stores. Under the cross-silo setting there is typically less interest in pro-

tecting data from the public domain given the models are generally only released

to those who participate in training, and as such more emphasis is placed on

inter-client privacy. Although many of the privacy preservation schemes ex-

plored defend from such public attacks, while secure communication pipelines

like secure aggregation [21] can help reduce such risks. One extensively explored

approach is differential privacy [22], a methodology introducing uncertainty into

the released models as to sufficiently mask the contributions of individual data

and as such, limit the information disclosure about individual clients. Lately,

more emphasis has been placed on more theoretically secure methods of privacy

preserving, such as fully homomorphic encryption (FHE), performing computa-

tional operations on encrypted data without first decrypting it [23, 24].

3. Problem Setting

Traditionally, training large statistical models to provide a holistic analysis

of data requires the collection of many data points typically originating from

various independent collections. Informally, this can be considered as bringing

the data to the model for training, pooling multiple data silos (independent
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datasets/databases belonging to an single client or participant e.g. organiza-

tion, county, nation) into a centralized data store. However, as mentioned this

unification and direct data sharing is deemed impractical in the agri-food sector

due to privacy concerns, distrust and subsequent risk to commercial sensitivity

[2]. One particular example implication being addressed by distributed training

is the direct analysis of yield information and the subsequent inference of sensi-

tive financial information. Removing the ability of participants to access other

participant data mitigates such trivial attacks. Following such an example we

ask, can we train machine learning models that leverage data from many indi-

vidual data silos without explicitly sharing or centralizing data? This in-turn

focuses our investigation to first undertake the task of distributed training on

multiple independent data silos, and secondly ensure data privacy is maintained

through appropriate mechanisms to elicit trust.

To tackle distributed training we explore model sharing, transferring in-

dependently trained models rather than data itself (Section 4), and federated

learning for training an aggregated model on multiple independent data silos

simultaneously (Section 5). This scenario represents the case whereby clients

want to protect their own data, hence being reluctant to share them with other

growers. The current availability of real-world data belonging to many different

organizations or groups of the same type is limited within the agri-food setting,

and thus we simulate the case of multiple, independent, distributed data-stores

by partitioning two well established, open-source datasets comprised of five sub-

sets [25, 26, 27, 28] into sub-sets each representing a separate data silo.

To adequately compare the performance of our proposed approaches, and

to empirically support our agenda of augmenting traditional machine learning

with distributed learning algorithms in agri-food, we employ the two benchmark

datasets aforementioned to measure performance. Both datasets address the

task of yield prediction of soybean production in the US corn belt region, one

utilizing remote sensing data from satellite imagery and the other with more

traditional tabular data corresponding to soil conditions, weather, etc. County-

level predictions are made given this is the granularity of the dataset in question.
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3.1. Remote Sensing Yield Prediction

The first of our datasets for empirical analysis focuses on the well established

problem of average yield prediction of soybean from sequences of remote satel-

lite images taken before harvest [11]. More concretely, we focus on prediction

of the average yield per unit area within specific geographic boundaries, i.e.

counties of 11 US states in the corn belt. The sequence of remote images in

question are multi-spectral images taken by the Terra satellite, with each im-

age (I(1), . . . , I(T )) corresponding to a county region. The sequence is temporal

with readings taken at equally-spaced intervals 30 times throughout the year

(T = 30), I(t) represents the image at time t within a year.

Our goal remains the same as described in [11], to map the raw multi-spectral

image sequences that capture features related to plant growth to predict average

observed yield, the difference here relates to the training setting and dataset

structure to allow for fair comparisons and evaluation of our training procedures.

In our case we aim to learn a model trained on multiple, independent data silos,

synthetically generated by splitting the dataset D per US state as to produce

11 data silos. The resulting dataset per state silo k is given by

Dk =

{(
(I

(1)
k , . . . , I

(T )
k , glock , gyeark )[1], y

[1]
k

)
, . . . ,(

(I
(1)
k , . . . , I

(T )
k , glock , gyeark )[N ], y

[N ]
k

)}
(1)

where gloc and gyeark are the geographic location and harvest year respec-

tively, y ∈ R+ is the ground truth crop yields, and N is the number of data

samples in Dk. Statistics are given in Table 1 outlining the split samples fol-

lowing this procedure and the average yield for the test set given the prediction

year of 2016.

Furthermore, the images I are transformed into histograms of discrete pixel

counts to reduce the dimensional of the satellite images that make training

machine learning systems with a relatively small dataset challenging. A separate

histogram is constructed from each imaging band (in our case d = 9 bands) and

these are concatenated to form H = (h1, · · · ,hd), where for each time step
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H(t) ∈ Rb×d, this is the input into our networks.

State / Silo
Number of Train Valid Test Average Test Yield

Counties Samples Samples Samples (Bushels/Acre)

Arkansas 29 404 27 44 39.20

Illinois 97 1151 93 127 49.01

Indiana 86 1012 82 112 48.55

Iowa 99 1157 99 128 49.93

Kansas 68 912 59 101 35.97

Minnesota 73 859 71 95 41.86

Missouri 75 981 66 108 38.41

Nebraska 70 857 66 95 51.87

North Dakota 41 383 35 42 30.79

Ohio 78 901 34 100 46.59

South Dakota 45 537 41 58 37.49

Combined / Pooled 9154 713 1010 42.71

Table 1: Remote Sensing data sample breakdown for the silo-ed setting where the silos coincide

to each state. The validation set corresponds to the year before the prediction year, and the

test set corresponds to the prediction year, 2016.

3.2. Tabular Yield Prediction

To further demonstrate the performance of the proposed methods under

different modalities other than images, we also employ tabular data for the

same task of soybean yield prediction, although for a smaller geographical area

comprising of 9 US states and their counties. As with the remote sensing data,

this dataset also aims to predict the observed average yield of soybean. The

features used to map to the average yield are as follows:

• Crop Management: In addition to the yield performance (our prediction

target) we also use the weekly cumulative percentage of planted fields

within each state, starting from April each year, as indication of planting

time. The crop management data were obtained from the public domain

from the National Agricultural Statistics Service of the United States [26].

• Weather Components: Weather data have been acquired from the Daymet

service [27], providing daily records of weather variables including: pre-
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cipitation, solar radiation, snow water equivalent, maximum temperature,

minimum temperature, and vapor pressure. The resolution of each data

variable is 1 km2.

• Soil Components: 11 soil variables are measures for 6 depths 0-5, 5-10,

10-15, 15-30, 30-45, 45-60, 60-80, 80-100, and 100-120 cm at a spatial

resolution of 250 m2. The 11 soil components are: soil bulk density,

cation exchange capacity at pH7, percentage of coarse fragments, clay

percentage, total nitrogen, organic carbon density, organic carbon stock,

water pH, sand percentage, silt percentage, and soil organic carbon. This

data is provided by Gridded Soil Survey Geographic Database for the

United States [28], measured at a spatial resolution of 250 km2.

The data is organized by year, per county for the years 1980 to 2018, with

each county’s average yield being given alongside the planting date, soil com-

ponents, and the weather variables measured weekly for that year. The data

had been collected, cleaned and provided kindly by the authors of [12], please

refer to their work for further processing and cleaning details. Lastly, to appro-

priately simulate the setting of multiple, independent data silos, we follow the

same procedure as described for the remote sensing data, dividing the complete

dataset into 9 subsets, each representing an individual data silo of a US state

and their corresponding counties. As with the remote sensing data, statistics

are given in Table 2 outlining the split samples per state silo and the average

yield for the test set given the prediction year of 2018.

4. Model Sharing

In the pursuit of data independence, we first ask the question if data sharing

is even necessary at all, and instead consider the possibility of sharing only

trained models among participants. This concept that we term ‘model sharing’

enables each participant k to train a machine learning model on their own data

silo Dk independently and distribute these trained models. The fundamental
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State / Silo
Number of Train Valid Test Average Test Yield

Counties Samples Samples Samples (Bushels/Acre)

Illinois 100 3480 91 75 56.76

Indiana 92 3151 81 74 53.74

Iowa 98 3622 94 91 56.41

Kansas 105 3245 51 39 40.74

Minnesota 84 2605 66 50 48.17

Missouri 113 2973 61 39 48.67

Nebraska 89 2787 33 51 57.50

North Dakota 49 943 28 20 34.49

South Dakota 62 1524 35 33 44.71

Combined / Pooled 792 24330 540 472 55.33

Table 2: Tabular data sample breakdown for the silo-ed setting where the silos coincide to

each state. The validation set corresponds to the year before the prediction year, and the test

set corresponds to the prediction year, 2018.

principles of this concept have historically found great success in deep learning,

with transfer learning [29] and domain adaptation [30] enabling the transfer of

learned knowledge in one setting to be exploited to improve generalization in

another setting. Yet in the setting of many models transfer learning becomes

impractical due to fine-tuning and training difficulties.

From this notion and focusing on our problem setting of yield prediction,

we first explore how to leverage each model trained on a particular participants

data, to enable a prediction under a holistic view of the data. The problem

of how to leverage multiple statistical models is a well studied one [31], yet is

vastly dependent on task, setting, data, and model architecture. Inspired by

works such as [32] we explore how the use of ensemble predictors of multiple

models can be used to leverage the features across all independent models as a

collective.

Fundamentally, ensembles allow for improved generalization to unseen data

by removing the need for complex human designed heuristics to choose which

model may be most appropriate for a given prediction on unseen data. Specif-

ically in our case, each model Fk and its parameters θk is trained on a unique

subset of dataDk that contains its own feature distributions, and as such there is
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no guarantee that a single model prediction will perform well. The aggregation

of multiple model predictions ensures that this single poor model performance

is not the sole prediction rather the predictions from all feature distributions

and data domains is employed. Formally, the aggregation procedure for the

prediction y on data point x can be written as follows

P (y|x) = 1

|K|
∑

∀k∈K

P (y|x; θk) (2)

where θk is the parameters of the machine learning model trained on the data

Dk from participant k, and |K| represent the number of participants/models in

the ensemble. Moreover, this process is visually depicted in Figure 1.

The simple average aggregations shown in Equation 2 gives equal weight

to every model prediction, however, in reality some models may be trained on

data that is relevant to the unseen test data. In our case we have differences in

geographic location that can have significant impact on performance [11], and as

such the aggregation should to take this into account. Therefore we introduce a

weighted averaging scheme that simply weights the predictions by geographical

location (furthest distance, lowest weight). This extends Equation 2 and weights

each prediction by its distance ranking from the location of the prediction data

to the location of the data that model has been trained on. The weights are

defined as follows

Wk = d(glocx , glock ) (3)

where d(·, ·) is the location distance ranking between the test time data x and

the training data k (shortest geographical distanceWk = 1, longest geographical

distance Wk = |K|).

Ensemble methods for model sharing provide a mechanism to leverage the

knowledge learned from independent machine learning training without the need

to share raw data, all whilst enabling prediction with a holistic view of the

data supporting our potential use cases in Section 1.1. This method although

simple addresses the concern of data sharing and trust with the idea of data

independence and the sharing of less interpretable information. We empirically
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Figure 1: Visual depiction of the ensemble model sharing methodology. Each client trains

a model on their own local data, then this model is evaluated on some prediction data, the

resulting predictions are aggregated to produce a global prediction.

demonstrate the performance of such a method to showcase its potential in agri-

food in Section 7. Yet security and privacy concerns still exist in the transfer

of models due to malicious attempts to extract raw data via methods such as

inference attacks [10]. We later explore a potential mitigation to these attacks

in Section 6 with deferentially private learning of the individual models, and

also discuss the implication introduced with sharing information such as trust

in a central organisation party in Section 8.

5. Federated Learning

The overarching principles presented by model sharing and the ensemble-

based training regime demonstrate the potential for information sharing with-
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out disclosing raw data. Although these methods show adequate performance

(Section 7.2), there exists more appropriate methods to leverage the distributed,

independent datasets attributed to our problem setting. We focus now on a nat-

ural extension to sharing trained models among participants, instead, training a

single model via the simultaneous communication of individual model updates

by each participant. Known as federated learning, we aim to solve our machine

learning problem defined in Section 3 collaboratively via multiple participants

under the coordination of a central server [19] without disclosing or sharing raw

data rather sharing model updates (i.e. weights and biases).

Typically, federated learning is described in a cross-device setting where

there are potentially millions of participants each with an unique dataset (i.e.

IoT [33] and mobile phones [21]), however there are also many settings where fed-

erated learning can be applicable to a relatively few number of participants [34].

The latter is known as cross-silo federated learning and specifically differs from

cross-device by the quantity, size and availability of the participants data. As al-

luded to in the name, cross-silo federated learning collaboratively trains a shared

model on siloed data — data is partitioned by example and also by features,

where in our problem setting the features are independent among participants

— that tends to be almost always available, typical of our problem setting where

individual organization’s data can be reasonably considered as data silos. We

will refer to the cross-silo setting when discussing federated learning throughout

this work.

Formally each participant, known as a client, contributes to the training of

a single global model coordinated by a central server that minimizes the error

over the entire dataset, where this dataset is the union of the data across clients.

The process of training a model via federated learning is given as follows, where

we describe the FederatedAvgeraging algorithm [9]:

1. The central server initializes the global model architecture and parameters

w0.

2. Start of Round: C fraction of client silos K are selected, S, for the round t.
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The global model is sent via private communication to each of the chosen

client silos in St.

3. Once received by the client k, the global model is trained on the local

subset of data belonging to that client silo only. This is a standard gradient

descent optimization procedure that results in an updated model referred

to as the local model. Each local model per client is an unique model

representing that individual silos data.

4. Following local training, the local model weights are privately communi-

cated back to the central server where they are aggregated and averaged

over the individual clients k to produce a new global model wt+1.

5. Steps 2-4 are repeated for the number of communication rounds T .

This process is formally defined in Algorithm 1 and visually depicted in

Figure 2.
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Algorithm 1: DP-FederatedAveraging. The K

silos are indexed by k; C is the fraction of silos

used per round, B is the local minibatch size, E is

the number of local epochs, and η is the learning

rate. M is the local differential privacy-compliant

algorithm.

Central Server Executes:

initialize w0

foreach round t = {1, 2, . . . } do
m← max(C ·K, 1)

St ← (random set of m silos)

foreach silo k ∈ St in parallel do

wk
t+1 ← SiloUpdate(k,wt)

wt+1 ←
∑K

k=1
nk
n
wk

t+1

end

end

SiloUpdate(k,w): // On silo k

B ← (split Dk into batches of size B)

foreach local epoch i = {1, . . . , E} do

for batch b ∈ B do

w ← w − η · M(▽ℓ(w; b))

end

end

As inferred from the previous definition and description of the federated

learning training procedure, explicit privacy advantages can be observed in com-

parison to traditional machine learning training on centralized and persisted

data. Most obvious is the distributed nature of the data held by the clients,

maintaining data independence and subsequently addressing issues related to

trust and commercial sensitivity of the agri-food sector identified and discussed

in [2]. In addition, it has been well understood how such methods fit into legisla-

tive limitations regarding GDPR [35] further introducing regulatory confidence

in such a methodology to maintain data privacy between clients.

17



Focusing further on our particular problem setting of the agri-food sector, the

concept of a central communication server could potentially introduce obstacles

that relate to malicious information retrieval. One such approach to address this

is to consider the concept of data trusts as presented in [2, 36]. This introduces

a trusted party to maintain and facilitate the central server communication.

Additionally, methods such as differential privacy can further alleviate concerns

of malicious attacks on the global and local models obtained via interception

of communications or through legitimate means during the sharing procedure

between all participants, this is elaborated on in Section 8.

(a) Central node initializes the model

paramters.

(b) Each client receives the initialized

global model from the central server.

(c) Each client trains its copy of the

global model on its own local data to

produce an updated local model. In

the local deferentially private setting

this involves some addition of noise.

(d) The clients send their local models

to the central server where they are ag-

gregated to produce an updated global

model. Steps b-d repeat for a number

of communication rounds.

Figure 2: Depiction of centralized cross-silo federated learning, FederatedAveraging. The

temporal process moves left to right (a-d).
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5.1. Statistical Heterogeneity of Silos

The FederatedAveraging algorithm provides the basis for the implementa-

tion of many federated learning systems. However, in most real-world cases and

including our problem setting, there exist complications regarding data that is

not independently and identically distributed (iid). In our particular setting of

the agri-food sector, it is likely that feature shifts are the most common factor

in non-iid data. Informally, a feature shift may result from a difference in local

measurement devices or sensitivity of measurements used to obtain the data for

each of the local participant data silos. This shift in feature distribution can

lead to significant performance degradation as each local model is trained on a

distribution that is not aligned with other clients. As a result the global model

is averaged across a number of shifted distributions leading to a model that is

not appropriately representative or generalisable to the union of the individual

local datasets. Formally feature shift is defined by two properties of the prob-

ability between features x and labels y on each client: 1) covariate shift: the

marginal distributions Pk(x) varies across clients, even if Pk(y|x) is the same

for all clients; and 2) concept shift: the conditional distribution Pk(x|y) varies

across clients while Pk(y) remains the same.

To overcome statistical heterogeneity due to feature shift we consider the

FedBN (federated batch normalization) algorithm [37] as to extend FederatedAveraging.

FedBN first assumes the model to be trained locally contains batch normalization

layers, for our problem setting replicating the architectures in [12] this assump-

tion holds true. Informally, FedBN extends FederatedAveraging by simply

excluding the batch normalization parameters from the averaging step, instead

maintaining the local parameters for each model. However, the statistical het-

erogeneity demonstrated by each silo results in batch normalization parameters,

that control the standardization of layers, being inappropriate for specific subset

distributions. This is theoretically demonstrated in [37] and empirically shown

in Table 3 and Figure 3 to improve performance by appropriately standardizing

the activations for that data silo’s distribution.

Alternative approaches address issues in non-iid data specifically focusing on
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label distribution skew, specifically FedProx [38], and FedMA [39]. The point

raised in mitigating the effect of statistical heterogeneity in data silos is vastly

important to the implementation and performance of federated learning, and

as such should be considered a key aspect in the adoption of such methods in

practice. Moreover, the adoption of methods to tackle statistical heterogeneity

is dependent on the data itself, and should be considered as important as feature

normalization in machine learning.

Method Imaging Dataset Tabular Dataset

FedAvg 5.679 3.050

FedBN 5.593 2.782

Table 3: Comparison of federated learning aggregation methods under both dataset modalities,

average RMSE (Bushels per Acre) over all prediction years (CNN model for remote sensing

dataset).

Figure 3: RMSE (Bushels per Acre) over all prediction years (CNN model for remote sens-

ing dataset).performance of the federated learning aggregation methods over communication

rounds trained and tested on the remote sensing data for the prediction year 2015, 4 epochs

per round.

6. Local Differential Privacy

The model sharing and distributed training methodologies described address

the primary concern outlined in our problem setting, that alternatives to explicit
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raw data sharing need to be employed to elicit trust in data holders. Both

propositions share trained statistical models rather than the data itself that by

themselves can be seen as less interpretable and less vulnerable to malicious

use. We later discuss in Section 8 potential solutions and procedures to ensure

the models themselves are appropriately maintained and distributed to avoid

misuse. However, it is beneficial to mitigate malicious attempts before the

communication takes place.

Differential privacy [22] operates under the notion of uncertainty within the

shared models to mask the contribution of any individual user, where for ma-

chine learning the ability of what an adversary can learn about the original

training data based on analyzing the parameters is severely limited [9]. For-

mally, a randomized mechanism M : D → R with a domain D (e.g. training

datasets) and range R (e.g. trained models) is (ϵ, δ)-differentially private if for

any two adjacent datasets d, d′ ∈ D and for any subset of outputs S ⊆ R the

following equation holds

Pr[M(d) ∈ S] ≤ eϵPr[M(d′) ∈ S] + δ. (4)

When we apply this definition to a mechanism A that processes a single clients

local dataset D, with aforementioned guarantee holding with respect to any pos-

sible other local dataset D′, we refer to this setting as local model of differential

privacy [40, 41]. The local aspect ensures that differential privacy is employed at

the client level during the training procedure, thus local models communicated

hold a level of privacy. This mechanism differs from more standard approaches,

where in the federated learning setting a central server is trusted to apply the

randomized mechanism, and therefore requires trust in the communication and

in the server itself, a significant social challenge in our setting.

We employ the DP-SGD [42] algorithm for differential privacy in a local

fashion inspired by [41], the process of applying our randomized mechanism M

is visually depicted in Figure 2 and shown in Algorithm 1. Local differential

privacy is employed over its global variant (i.e., applied after the aggregation

on the server side) due to reliance on a trustworthy server, in the agri-food
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setting the preservation of privacy for each model before it leaves the local

client to be aggregated to form the global model is optimal. However, the local

setting typically performs worse that global due to an increased quantity of noise

added to each sample from each client rather than one server side addition.

Subsequently, in practice higher values of ϵ and δ are employed limiting the

privacy guarantee to ensure the quantity of noise added to the samples is not

damaging to the performance. As observed in Equation 4, the value of ϵ is the

absolute privacy guarantee that you cannot gain an eϵ amount of probabilistic

information about a single entry between d and d′, whereas δ is the value which

controls failure of differential privacy guarantee. For each entry there is a δ

probability this failure may happen, so in general this will occur δ · n times,

where n s the number of entries. We therefore aim for both ϵ and δ to be small

if we wish for upmost privacy. However, the value for ϵ increases throughout

training as more passes over the data are made, as such there is a distinct trade-

off between privacy budget ϵ and performance from the number of epochs of

training. We empirically demonstrate this on our problem setting and data, with

the results depicted in Figure 5. We show that as we increase the privacy budget

reducing the privacy guarantee we also increase the performance, subsequently

we empirically decide the performance-privacy trade-off for our problem setting

and data.

We provide an experimental study in Section 7 regarding optimal parame-

ters of the differential privacy mechanism including ϵ, δ, and noise values, as

well as the performance of the yield prediction task under differential privacy

guarantees. Importantly, these values that control privacy such as ϵ are tuneable

and/or flexible to the practitioner conducting the training. Additionally, in the

local differential privacy settings individual participants can control their own

privacy budgets independently thus controlling their privacy to performance

trade-off. The flexibility of these approaches is vastly beneficial in agri-food

where tasks and goals vary so widely.
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7. Experimental Results

The aforementioned paradigms for training machine learning systems in the

setting of independent, distributed data silos promote privacy preservation and

can potentially facilitate trust and cooperation in sharing information. Although

these methods provide strong theoretical and practical guarantees for privacy

[22, 41], the performance of the trained machine learning models must still be

adequate to solve the tasks at hand. The obvious benefit of more data, naturally

improves these data driven optimization procedures, and the view of holistic

data analysis is well defined in this work as a potential use case in the agri-food

sector. Yet, we provide an empirical study to further validate our propositions

in the agri-food sector and demonstrate its applicability to current problems to

establish confidence in performance of distributed data driven computation.

7.1. Model and Data Description

We first define the machine learning models and procedures used to perform

our task of average soybean yield prediction per county of US states in the

corn belt. Specifically we do so under two modalities of data, remote sensing

satellite imagery, and soil, weather, and crop management readings (Tabular).

As described in Section 3, we aim to perform this machine learning training in

a distributed and independent manner where the dataset is comprised of local

subsets of the data belonging to individual states. The training procedures

previously defined utilize the same core machine learning model architectures

throughout all experiments for that modality unless mentioned otherwise.

7.1.1. Imaging with remote sensing data

To most appropriately compare and evaluate the performance of our ma-

chine learning training paradigms we first explore the well established task of

average soybean yield prediction by remote sensing satellite imagery, where the

data itself is described in Section 3. Given our work focuses on the exploration

of methods to facilitate information sharing we instead replicate the models
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described in [11] to provide an established baseline. A convolutional neural net-

work (CNN) consisting of six convolution → batch normalization → ReLU →

dropout blocks and one multi-layer perceptron (MLP) is employed, a recurrent

neural network (RNN) is also experimented, specifically one long short-term

memory layer consisting of 128 units followed by two MLP layers separated

with batch normalization and ReLU. Both of these networks are defined and

described in [11], where for this work we disregard the Gaussian process proce-

dure given its inability to be performed in the distributed manner defined in our

problem setting. We train all networks for 160 epochs (or for federated learning

4 epochs locally with 40 communication rounds) yet this may end prematurely

due to the use of early stopping. Furthermore we use the stochastic gradient

descent (SGD) optimizer with a learning rate of 0.0001 decaying at 60 and 120

epochs by a factor of 0.1, the remainder of hyperparameters are identical to [11].

The performance is reported by the root mean square error (RMSE) of the

county-level bushels per acre yield predictions averaged over 3 runs of 3 seeds,

where we evaluate the test set per state silo. The predictions are made for 7

years (2009-2015) where for the given year the model is trained on all data from

preceding years. We report a baseline performance which refers to the tradi-

tional setting of pooling all the data and training one single model. The model

sharing ensemble and federated learning setting are trained on local datasets

pertaining to the individual states. All models were tuned using a 15% hold out

validation set.

7.1.2. Tabular weather, soil and crop management data

Following the exploration of the remote sensing data we also demonstrate

performance on a more traditional tabular dataset in order to show how differ-

ing data domains perform under the outlined training paradigms. Importantly,

both datasets are employed to perform the same task, although the datasets

vary in features and collection. Nevertheless, we utilize the CNN-RNN defined

in [12] as an established baseline to report the performance in the same manner

as the remote sensing data, root mean square error (RMSE) of the county-level
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bushels per acre yield predictions, evaluated over the test set per state silo.

However we make some slight changes to the implementation provided by [12]

such as the addition of batch normalization, removal of the MLP layers and we

maintain that the CNN layers only operate on a single time-step before being

fed to the RNN. This resulted in our adjusted network outperforming that in

[12] on the same data whilst maintaining the core concept presented in their

work. We train for 60 epochs (or for federated learning 4 epochs locally with

15 communication rounds) with early stopping via SGD optimization with a

learning rate of 0.001 decaying at 20 and 40 epochs by a factor of 0.1, the re-

mainder of hyperparameters are identical to [12]. Predictions are made for 3

years (2016-2018) where as with the remote sensing data, reporting the RMSE

averaged over 3 runs of 3 seeds, the baseline performance refers to traditional

training of a single global dataset, whilst the model sharing ensemble and fed-

erated learning procedures are trained on the local subsets of data belonging to

each state.

7.2. Model Sharing Performance

The model sharing ensemble procedure defined in Section 4 trains a model

locally on a single silo of data pertaining to a single state. At test time, inference

is performed on the models from each state computing a prediction of yield for

that state, these predictions are averaged over all the individual models trained

on each local data silo. This methodology follows our initial proposition most

simply as to share information captured by the machine learning models rather

than the data itself. Such an approach is empirically shown in Table 5, 6 and

7 to perform well across all modalities in the task of crop yield prediction with

an approximate 1.32% and 9.09% increase in RMSE for the image and tabular

modalities respectively from local baselines.

To improve the ensemble method extending from a simple average we im-

plement a simple distance rank to introduce a weighted average of models as

to most appropriately leverage models trained on data that originate in geo-

graphical proximity. As defined in [11] the influence on geographic location
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(a) Baseline. (b) Ensemble of Models.

(c) Federated Learning (FedBN). (d) Federated Learning + LDP.

Figure 4: State-level visualization of the CNN network under each training procedure for the

remote sensing data, RMSE (Bushels per Acre) per county prediction for year 2015. Color

bar represents difference in RMSE (Bushels per Acre) from ground truth value.
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between the data plays significant impact on performance due to climate, soil

and weather changes, as such our distance weighting scheme aims to contribute

to the same problem. Although a small improvement, Table 4 shows how an

approximately 0.2 and 1.5 RMSE reduction for the image and tabular modali-

ties respectively can be found on average across all years with the addition of

a simple weighting scheme. All results given for the model sharing ensembles

utilize this weighting scheme unless stated otherwise.

When making comparisons of the model sharing approach we first look at

the traditional training and local model training baseline. Shown in Table 5, 6

and 7 we observe how the model sharing approach makes improvements over the

local model training procedure (models are trained on a local silo and evaluated

only on local data only, i.e. state 1 model is trained and evaluated on state 1

test data only) with a 0.3 reduction in RMSE in the tabular modality showing

how the introduction of ensembles can improve predictions on local data. We

conjecture this improvement is attributed to the variability in the sources and

as such the average prediction represents a more generalized view across state

conditions. However, when comparing to traditional learning baseline we ob-

serve the expected but significant performance derogation. This can primarily

be attributed to quantity and variability of data present in each data silo, where

overfitting observed for each local model during training with identical model

architecture (to maintain fair experimentation). This is particularly relevant to

the remote sensing data where the datasets per silo are comparatively small, in

the tabular modality we observe a less significant drop in performance due to

the larger dataset size. To further evaluate this hypothesis on the remote sens-

ing dataset, we reduce the number of silos to 4 and therefore increasing the size

of each local silo dataset, subsequently we see some improvement to an average

6.023 RMSE for the CNN model, yet this is still limited by quantity of data.

Although in our test cases the ensemble of shared models performs well but

not ideally, the setting of larger datasets per silos can be a contributing factor

to the success of such a training paradigm in training individual models. We see

the simplicity of ensembles to be a desirable trait in facilitating data sharing,
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whilst settings with larger local datasets performance can be expected to lie

closer to traditionally pooled baselines whilst significantly outperforming local

training.

Weighting Imaging Dataset Tabular Dataset

None 6.716 3.714

Distance Rank 6.544 3.885

Table 4: Comparison of ensemble state distance rank weighting scheme under both dataset

modalities, average RMSE (Bushels per Acre) over all prediction years (CNN model for remote

sensing dataset).

7.3. Cross-Silo Federated Learning Performance

To address the limitations observed in training many local models solely on

local data (e.g. reduced variability, difficulty in training small datasets due to

overfitting, etc.), we proposed the use of federated learning (Section 5) which

trains a single global model via a series of local model updates and aggregations.

Federated learning leverages all data from all silos via the aggregation of model

updates, and resultantly produces a model that is not only effectively trained

on the union of the individual datasets simultaneously, but also captures the

variability in the model from this union. To test the performance we evaluate

the final aggregated global model on each of the individual test sets from each

silo.

Table 5, 6 and 7, including Figure 4 show the performance of the feder-

ated learning training method alongside the baseline approaches of traditional

and local model training. We observe across all prediction years, model ar-

chitectures and data modality how federated learning methods outperform the

local training baseline and ensemble of shared model approaches, demonstrating

an approximate 22.75% and 39.81% improvement in RMSE to local baselines

for the image and tabular modalities respectively. More importantly, we ob-

serve how federated learning training performs nearly identically to traditional

training baseline, with a small but expected disparity in performance, 6.68%.
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The ability to effectively train machine learning models in a distributed and

independent nature without the disclosure of raw data is a vastly important

observation in the agri-food sector and can lead to facilitating collaboration of

multiple parties with reduced concern of performance reduction.

Furthermore, the implementation of federated learning systems can be greatly

scaled to many situations involving a large number of clients or, as demonstrated

here, with few clients (11, and 9 silos). Our work employs the use of the fed-

erated batch normalization aggregation procedure to help reduce the effect of

statistical heterogeneity between local datasets Table 3. Although not applica-

ble in every task, we demonstrate how the careful consideration of algorithmic

choice can not only achieve greater performance ( Table 3 ) but also reduce com-

putational burdens by reducing time to reach convergence as shown in Figure 3.

Although, the nuances displayed by particular model architectures, datasets and

tasks introduce very application specific problems, and must be address case-

by-case, the proposition of federated learning in agri-food provides a empirically

and theoretically sound basis for collaboration.

CNN-RNN

Year
Traditional

Baseline

Local

Baseline

Model

Sharing

Model

Sharing + LDP

Federated

Learning

Federated

Learning + LDP

2009 4.735 5.684 6.774 7.033 5.013 6.862

2010 5.167 7.076 6.667 7.969 5.691 6.970

2011 6.009 6.606 6.915 8.480 5.859 7.103

2012 5.968 7.605 6.747 8.401 6.235 7.345

2013 5.246 6.936 6.251 6.954 5.352 6.256

2014 4.915 6.173 5.960 6.869 5.017 6.561

2015 5.073 6.337 6.495 8.001 5.981 6.683

Avg 5.302 6.631 6.544 7.672 5.592 6.825

Table 5: Remote sensing image dataset: RMSE (Bushels per Acre) of county-level performance

under each training procedure for the CNN model. The values reported are the average of 3

runs of 3 random initialization seeds. For the LDP variants ϵ = 8 and δ = 1× 10−5.

29



CNN

Year
Traditional

Baseline

Local

Baseline

Model

Sharing

Model

Sharing + LDP

Federated

Learning

Federated

Learning + LDP

2009 5.059 6.972 6.972 8.374 6.556 7.077

2010 5.710 7.643 6.768 7.381 6.045 7.721

2011 6.560 7.525 7.402 7.853 6.849 7.123

2012 7.262 8.164 7.512 8.185 6.641 6.564

2013 5.344 8.030 6.831 7.704 5.617 6.650

2014 5.465 7.457 6.571 7.137 5.175 5.708

2015 6.235 7.823 6.894 7.404 5.774 6.631

Avg 5.948 7.659 6.993 7.719 6.094 6.782

Table 6: Remote sensing image dataset: RMSE (Bushels per Acre) of county-level performance

under each training procedure for the LSTM model. The values reported are the average of 3

runs of 3 random initialization seeds. For the LDP variants ϵ = 8 and δ = 1× 10−5.

LSTM

Year
Traditional

Baseline

Local

Baseline

Model

Sharing

Model

Sharing + LDP

Federated

Learning

Federated

Learning + LDP

2016 2.601 4.819 4.325 4.854 2.969 4.044

2017 2.879 4.529 4.283 4.537 2.931 3.561

2018 2.326 3.148 3.048 3.317 2.475 2.572

Avg 2.602 4.165 3.885 4.236 2.782 3.392

Table 7: Tabular weather, soil and crop management dataset: RMSE (Bushels per Acre)

of county-level performance under each training procedure for the CNN-RNN model. The

values reported are the average of 3 runs of 3 random initialization seeds. For the LDP

variants ϵ = 1.5 and δ = 1× 10−7.

7.4. Differential Privacy Performance

The core functionality of our proposed methods to facilitate information

sharing have demonstrated empirically their ability to perform close to the tra-

ditional training baseline and outperform local non-collaborative training. As

described in Section 6, we employ differential privacy at local/client level to

mitigate such attacks. Furthermore, the implementation of differential privacy

is a privacy-performance trade-off defined by the practitioner, where in our LDP

setting we employ (ϵ, δ)-LDP in which ϵ and δ vary for a given task, and dataset.

It is important to emphasize that the desired value of ϵ and δ are vastly depen-
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dent on the data and resulting trade-off between privacy and performance for a

given task. The ϵ value — otherwise known as the privacy budget — is defined

as the maximum distance between a query on the dataset d and the same query

on dataset d′. Thus, when the distance is small an adversary may be unable

to determine which dataset a value originated from given the small distance

between the two sets, this is observed mathematically in Equation 4.

Figure 5: Effect of RMSE (Bushels per Acre) for predict year 2015 for the CNN model trained

on the remote sensing dataset as LPD privacy budget ϵ increases.

Regarding the remote sensing dataset, given the aforementioned limitation of

data quantity the privacy guarantee is also reduced [42], we train our federated

and models sharing ensemble networks under the LDP-SGD procedure with a

noise value of 1.4 and gradients clipped that have a norm greater than 12 , this

value had been defined from the median gradients of the network. The training

was terminated once ϵ = 8.0 whilst keeping δ = 1 × 10−5, the results of this

setup are given in Table 5 and Table 6. We select ϵ = 8 empirically as the point

that performance privacy trade-off is roughly converging (Figure 5), and as such

gave strong performance under federated learning with a 19.85% and 10.68%

reduction in RMSE for CNN and LSTM models respectively.

Under the tabular modality dataset we employ an identical noise value and

reduce the gradient clipping to 10 given different median values for the CNN-

RNN network. Furthermore, we utilize a smaller δ = 1× 10−7 given the greater

samples in the dataset, and as a result our value for ϵ is correspondingly lower,
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ϵ = 1.5, which is when we terminate training. As with the remote sensing data

we observe a similar 19.76% reduction in RMSE under the federated learning

procedure with the addition of differential privacy. This is expected due to ϵ

being empirically selected as the initial point before convergence. Across both

datasets we observe that ensemble of model sharing with differential private

mechanisms performs comparatively poorly, this can be mainly attributed to

the observations of model sharing that such a method is limited by dataset size

and feature heterogeneity between local silos given that the reduction in RMSE

is aligned with the reduction in the federated learning case.

8. Discussion

Thus far in this paper, we have conducted an empirical demonstration of

how data sharing can be enabled through distributed and data independent

machine learning training, maintaining an adaptable level of privacy with the

hope to showcase how collaborative learning can be achieved without disclosure

of commercially sensitive information. Our example implementations address

an established and highly sought after problem of production optimization in

a distributed setting for two modalities of data, images and tabular samples.

This is just one potential use case that aims to demonstrate how a federation or

consortium of individual actors can leverage shared data to improve production

optimization, there exist many other potential benefits as described in Section

1.1 that help achieve improved food safety and sustainability to meet a variety

of regulatory requirements [43, 44].

Firstly, our empirical analysis demonstrates the applicability of such meth-

ods for appropriate in agri-food production optimization machine learning tasks.

Specifically, we show that the federated setting under both dataset modalities

performs exceptionally well achieving results that are considered extremely close

to traditional machine learning baselines with a 5.32% and 6.68% reduction in

RMSE for the image and tabular dataset respectively. Significantly, we also

show that our proposed methods outperform the locally trained models further

32



solidifying our proposition that data or information sharing can benefit all par-

ties involved to produce better performing models. We based our comparison

and definition of adequate performance on the original baseline papers for each

corresponding dataset [11, 12], and our replicating baseline models on identi-

cal datasets with some small alterations to the networks defined in Section 7.

Across both datasets we achieve greater performance than reported in both

original works, and our federated setting performs better than or around the re-

ported values. We consider these results to be a great success demonstrating the

potential of these data independent methods for training on complex dataset.

On the other hand, we also observe that our ensemble of shared models in

the remote imaging setting does not perform in a threshold we would consider

ideal, this can be primarily attributed to the dataset size and difficulty of train-

ing small sets with an over parameterized model (model architectures remained

the same for direct comparison of training procedure) as explained previously.

Additionally, we conjecture that the ensemble of shared models’ performance

deficit can also be attributed to the statistical heterogeneity between local data

silos and as such when testing on a different silos test data the trained models

may have difficulty addressing the present feature shift.

Vitally, our methods aim to elicit confidence and trust in participants via pri-

vacy preservation techniques that demonstrate theoretic guarantees to maintain

privacy. Most obviously is the maintenance of data independence and removal of

raw data sharing, whilst still being able to collaboratively train machine learn-

ing models. Moreover, we address the concerns around the malicious attempts

to obtain training data from the shared information, a significant implication

regarding commercial sensitivity among participants. The nature of distributed

training allows for additional technologies to be used in tandem to help introduce

more stringent privacy measures. In practice there exist other privacy preserv-

ing machine learning approaches, such as fully-homomorphic encryption [45],

that could facilitate more confidence in data sharing.

As previously alluded when defining our methods, there still exist social and

political challenges in adoption of distributed training for data sharing. Most
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notably, the coordination of training on individual participant data and distri-

bution of trained models to participants may introduce concerns of competitive

advantage from the coordinating party. Our work provides processes that solve

the core social implications of trust in sharing raw data further removing this

necessity, yet the understanding of the processes by the participants is they

driving factor to changing perspectives.

9. Conclusion

Many of the agri-food sector’s implications involving transparency and holis-

tic data analysis stem from technological lagging, and hostility to data sharing

[3, 46] that can inevitably lead to difficulties meeting many of the mandatory re-

quirements in an efficient manner. We proposed the use of distributed, machine

learning training procedures to overcome the strong social barriers relating to

commercial sensitivity and unwillingness to share raw data. To the best of our

knowledge this is the first time this type of machine learning setting, specifically

federated learning, is explored in the agri-food sector which could potentially

benefit the industry and consumers as a whole.

We give theoretical descriptions and empirical evidence that the proposed

methods will not only provide privacy guarantees supporting the facilitation of

data sharing and collaborative machine learning training, but also perform close

to their traditionally trained machine learning counterparts. The performance

demonstrated gives further credibility to such methods for training machine

learning models in a collaborative setting providing knowledge that performance

can be guaranteed and improved with more data from differing sources.

The field of distributed and privacy preserving machine learning is growing

rapidly, where these methods are becoming evermore relevant in industry, we

believe this work is just the start point for the adoption of large scale distributed

computation in agri-food. Direct future work aims to showcase the implemen-

tation of these propositions in the real-world setting whilst further addressing

the issues regarding statistical heterogeneity as well as addressing the social,
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political challenges present in data sharing. Moving forward we aim to further

develop a more concrete pipeline from data to model output addressing com-

munication, central servers and regulatory implications to achieve a standard in

collaborative and data sharing procedures across the food supply chain.
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