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ABSTRACT

Nonsmooth systems are widely encountered in engineering fields. They have abundant dynamical phenomena, including some results on the
complex dynamics in such systems under quasiperiodically forced excitations. In this work, we consider a quasiperiodically forced piecewise
linear oscillator and show that strange nonchaotic attractors (SNAs) do exist in such nonsmooth systems. The generation and evolution mech-
anisms of SNAs are discussed. The torus-doubling, fractal, bubbling, and intermittency routes to SNAs are identified. The strange properties
of SNAs are characterized with the aid of the phase sensitivity function, singular continuous spectrum, rational frequency approximation,
and the path of the partial Fourier sum of state variables in a complex plane. The nonchaotic properties of SNAs are verified by the methods
of maximum Lyapunov exponent and power spectrum.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0096959

Strange nonchaotic attractors (SNAs) can be regarded as a special
class of attractors between quasiperiodic attractors and chaotic
attractors. The word strange means that the dependence of the
dynamical variables to the phase is not given by the smooth rela-
tions but constitutes some fractal ones. The word nonchaotic
means that the maximum Lyapunov exponent is nonpositive.
However, there are few studies on SNAs in nonsmooth dynamical
systems. In this work, we study a quasiperiodically forced piece-
wise linear oscillator. The complicated and interesting strange
nonchaotic dynamics phenomena are revealed via numerical
methods.

I. INTRODUCTION

SNAs have a geometric fractal structure, but the maximum
Lyapunov exponent is nonpositive, which exhibits nonchaotic prop-
erties in a dynamic sense. Since SNAs were uncovered by Grebogi
et al.,1 it was realized that strangeness is not equivalent to chaos.
SNAs have been widely studied experimentally and numerically.
Ding et al.2 confirmed the existence of SNAs from numerical and

analytical methods and illustrated various dynamical behaviors in
a typical quasiperiodically forced system. Pikovsky and Feudel3

described strange properties of such attractors by calculating the
phase sensitivity exponents. With the aid of a function equation
for the invariant curve, Nishikawa and Kaneko4 studied the fractal
structure and chaotic evolution of a class of SNAs in a quasiperi-
odically forced logistic map. Ditto et al.5 observed SNAs in a two-
frequency quasiperiodically driven, buckled, magnetoelastic ribbon
experiment. According to an experiment and numerical simula-
tion, Thamilmaran et al.6 identified chaotic attractors and SNAs in
a circuit system and distinguished these two kinds of attractors by
the Poincaré map, maximum Lyapunov exponents, and their vari-
ance. In addition, Linder et al.7 established the existence of strange
nonchaotic stars through the Kepler space telescope, which further
indicates the presence of strange nonchaotic phenomena in nature.

The mathematical research of SNAs mainly focused on skew
product systems (see, e.g., Refs. 8–10). Keller11 investigated a class of
skew product maps that have monotonically increasing and strictly
concave fiber maps. It was proved that the system has an attract-
ing invariant curve, which is almost everywhere discontinuous and,
thus, an SNA. Ding et al.12 and Fuhrmann et al.13 studied the
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fractal dimension of SNAs in the quasiperiodically forced monotone
interval maps, which are created through nonsmooth saddle-node
bifurcation, and determined that the Hausdorff dimension and box-
counting dimension have different values. Other theoretical results
of SNAs are about discrete Schrödinger equation with quasiperiodic
potential in which the Harper map is a typical example. Haro and
Puig14 proved that the Harper map has SNAs in a set of parameter
values of positive Lebesgue measure. These proofs involved spec-
trum analysis of the Schrödinger operator and the estimate of the
Lyapunov exponent.

Although the existence of SNAs has been studied widely in
quasiperiodically forced systems (cf. Refs. 15–18), there are still
many interesting questions, for instance: how SNAs are generated
and eventually evolve into chaotic attractors? Precisely, what exactly
causes SNAs is somewhat vague since the bifurcation mechanisms
of quasiperiodic driving systems have not been understood in detail.
However, several routes to SNAs have been described in the litera-
ture, such as Heagy–Hammel route,19,20 fractal route,21 intermittency
route,22,23 Blowout bifurcation route,24 and so on. The literature
offers overviews and further references for other routes (see, e.g.,
Refs. 25–29).

The studies of SNAs are mainly limited to smooth systems. The
mechanism of SNA generation is more complicated in nonsmooth
systems since there exist many nontypical bifurcations, such as graz-
ing bifurcation, sliding bifurcation, period-adding bifurcation, and
so on. Li et al.30 studied a piecewise smooth map quasiperiodi-
cally forced and found three routes (Heagy–Hammel route, fractal
route, and type-I intermittency route) to SNAs in the parameter
space. Shen and Zhang31 revealed several types of routes to SNAs in
two critical tongue-type regions in a quasiperiodically forced piece-
wise logistic map. Zhang et al.32 studied a class of quasiperiodically
forced interval maps and showed that smooth quasiperiodic torus
attractors lose their smoothness by grazing bifurcation and even-
tually become SNAs. Li et al.33 discovered that SNAs exist between
two parameter regions corresponding to chaotic motions and fur-
ther discussed the coexistence of SNAs, quasiperiodic attractors, and
chaotic attractors in a nonsmooth mechanical system.

The piecewise linear systems are a class of classical nonsmooth
dynamical systems.34–36 There are still only a few results about the
complex dynamics in such systems with quasiperiodic excitations.
In this work, we identify and analyze the existence of SNAs in a
piecewise linear oscillator with quasiperiodic force, and the dynam-
ics transition of the system is further discussed. The remaining of
this paper is organized as follows. In Sec. II, we briefly describe
the mathematical model of the piecewise linear oscillator and its
Poincaré map. Then, the doubling and period-adding phenomena
of the dynamics are investigated in Sec. III. The generation and exis-
tence mechanisms of SNAs are discussed in Sec. IV. The main results
are summarized in Sec. V.

II. THE PIECEWISE LINEAR OSCILLATOR WITH
QUASIPERIODIC EXCITATION AND ITS POINCARÉ
MAP

Consider a piecewise linear oscillator shown in Fig. 1. The mass
m is attached to a linear spring of stiffness k1 and a damper of
damping coefficient c1. It is being acted upon by a quasiperiodic

FIG. 1. The piecewise linear oscillator.

force p sin(ωt) + ε sin(ξ t). When the displacement x exceeds a cer-
tain value B, the second linear spring with stiffness k2 contacts the
mass m.

The differential equation of motion of the system can be
expressed as

mẍ + c1ẋ + K(x) = p sin(ωt) + ε sin(ξ t), (1)

where

K(x) =
{

k1x if x ≤ B,

k1x + k2(x − B) if x > B.
(2)

Let θ = ωt, φ = ξ t. Then, Eq. (1) can be written in the follow-
ing form:















ẋ = v,
v̇ =

(

−c1v − K(x) + p sin(θ) + ε sin(φ)
)

/m,
φ̇ = ξ ,
θ̇ = ω.

(3)

A stroboscopic section is taken in each period 2π/ξ . We obtain
the following Poincaré map of the system (3), which has the form

xn+1 = f1 (xn, vn, θn),

vn+1 = f2 (xn, vn, θn),

θn+1 = θn +
2π

ξ
mod 2π ,

(4)

where f1 and f2 are determined by (3).

III. THE DOUBLING AND PERIOD-ADDING
PHENOMENA IN THE DYNAMICS

A. The bifurcations in the unperturbed system

In order to understand the dynamical behavior of system (3),
we first consider the unperturbed system, i.e., the case ε = 0. The
bifurcation diagram of the unperturbed system by varying the exter-
nal excitation frequency ω is shown in Figs. 2(a) and 2(b), where
the other parameter values are p = 10, m = 0.5, k1 = 1.0, k2 = 30,
c1 = 0.2, B = 0.0001, and the initial values are (x0, v0, θ0, φ0)

= (0, 0, 0, 0).
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FIG. 2. The bifurcation diagram of the unperturbed system with respect to the parameter ω. (a) Period-doubling bifurcations. (b) Period-adding bifurcations.

When the bifurcation parameter ω = 3.486, the system has
the first period-doubling bifurcation and the corresponding Flo-
quet multipliers of the system are λ1 = −1 and λ2 = −0.486, where
λ1 = −1 goes through (−1, 0) on the unit circle, and the absolute
value of another eigenvalue |λ2| = 0.486 < 1 is still inside the unit
circle. As ω increases to 3.712, the system has the second period-
doubling bifurcation which converts the attractor from period-2
to period-4. For ω = 3.797, the period-4 attractor evolves into a
period-8 attractor. After a series of period-doubling bifurcations,
the system evolves into chaos. When ω is greater than 3.868, the
system again returns to periodic motion with a period-8 attractor
[see Fig. 2(a)]. In addition, there are period-adding bifurcations in
the unperturbed system [see Fig. 2(b)].

B. The torus-doubling of the system with
quasiperiodic excitation

For system (3), we take ξ = (
√

5 − 1)/2, since ξ is the inverse
of the golden ratio, the dynamics along the θ-axis is ergodic, and
the trajectory for every initial condition uniformly covers the θ-
axis. We take the frequency ω as the control parameter, varying
between 3.45 and 3.6. The amplitude ε = 0.3, the other param-
eter values, and the initial values are the same as in Sec. III A.
The maximum Lyapunov exponent varying with the parameter ω

is shown in Fig. 3, where 1 T, 2 T, and 4 T correspond to torus,
doubled torus, and torus of period-4, respectively. In system (3),
SNAs do exist between quasiperiodic motion and chaotic motion.
With the aid of the maximum Lyapunov exponent, we can distin-
guish the types of attractors in the given parameter interval. When
the parameter ω ∈ [3.45, 3.562], the system exhibits quasiperiodic
motion. We select the interval (3.562, 3.565) as the candidate inter-
val for the existence of SNAs. In Sec. IV, we will further verify
that this interval is corresponding to SNAs through the Lyapunov
exponent, phase diagrams, and phase sensitivity property. When
the parameter ω ∈ [3.565, 3.6], the system exhibits chaotic motion,
namely, the maximum Lyapunov exponent of the system is positive.

IV. STRANGE NONCHAOTIC ATTRACTORS

In this section, we use quantitative and qualitative methods
to verify the existence of SNAs in system (3) and describe four
scenarios for the birth of the SNAs from quasiperiodic behaviors.

We first introduce the power spectrum (Fourier amplitude
spectrum), which is an effective tool to distinguish various types of
attractors. In general, a dynamical system can manifest two types
of power spectrum, namely, continuous and discrete spectrum. Dis-
crete spectrum corresponds to the occurrence of oscillations at
specific frequencies such as that of periodic or quasiperiodic oscil-
lations. In contrast, the broadband nature of the frequency spec-
trum in the case of chaotic oscillations points toward continuous
spectrum. For a special case like SNA, the spectrum exhibits a com-
bination of both continuous and discrete components, known as

FIG. 3. The maximum Lyapunov exponent with the variation of ω for system (3).
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FIG. 4. For ε = 0.3, the phase diagrams of attractors in the (θn, xn)-plane and (vn, xn)-plane: (a) and (b) ω = 3.45, (c) and (d) ω = 3.5, (e) and (f) ω = 3.551,
(g) and (h) ω = 3.5647, (i) and (j) ω = 3.567.
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a singular continuous spectrum (cf. Ref. 37). We take the Fourier
transform of the process {xn},

X(�, T) =
T

∑

n=1

xnei2πn�. (5)

Hence, the power spectrum of the attractor is defined as38

P� = lim
T→∞

|X(�, T)/T|2, (6)

where � is proportional to the frequency ratio of the two excitation
forces in the system.

A. The torus collision route

Torus collision is a generating mechanism of SNAs, which
is closely related to period-doubling bifurcation. With the change
of the control parameter ω, a stable 2n T quasiperiodic attractor
appears by torus-doubling bifurcation. The parent torus becomes
unstable in the quasiperiodically driven system (the pitchfork bifur-
cation can take place in the system without driving force, that is, the
unstable periodic 2n orbit can form the periodic 2n+1 orbit). Hence,
the stable 2n T quasiperiodic attractor collides with its unstable
parent torus to generate SNAs.

To clearly indicate the geometrically smooth or complicated
structure of attractors, we can draw the phase diagrams of Poincaré
section in the (θn, xn)-plane with θ mod 2π , and in (vn, xn)-plane,
respectively. Figure 4 shows the evolution of typical attractors as
ω varies and we can depict the creation of the SNAs by the torus-
doubling. When ω = 3.45, the attractor is quasiperiodic in the
Poincaré sections, and the system exhibits an invariant torus in
the (vn, xn)-plane, namely, a 1 T quasiperiodic attractor occurs [see
Figs. 4(a) and 4(b)]. As ω increases, for example, ω = 3.5, the
attractor becomes a two-tori (2T) quasiperiodic attractor and the
invariant curve becomes two smooth curves, which are created by a
torus-doubling bifurcation from the period-1 repellor [see Figs. 4(c)
and 4(d)]. When ω passes through 3.548, the torus-doubling bifur-
cation occurs again, and the 2 T quasiperiodic attractor evolves into
a 4 T quasiperiodic attractor [see Figs. 4(e) and 4(f)]. In general,

FIG. 5. The phase sensitivity exponent τ N

1 vs N, the 4T for ω = 3.551 (red line)
and SNA for ω = 3.5647 (blue line).

the torus-doubling continues indefinitely until a critical point is
reached beyond which the system exhibits chaotic motion. How-
ever, as ω increases further to 3.5647, the 4 T quasiperiodic attractor
collides with its unstable parent torus; hence, the attractor becomes
extremely wrinkled, loses its smoothness, and results in a strange
attractor. This is reflected in Figs. 4(g) and 4(h), which indicate
the apparent discontinuity in the Poincaré map and the doubling
of the torus is interrupted. During this process, the maximum Lya-
punov exponent remains negative (λ ≈ −0.002 03), which is shown
in Fig. 3. Therefore, we conclude that the system is in the strange
nonchaotic state for ω = 3.5647. Finally, the attractor deforms
and the SNA becomes larger and forms a chaotic attractor with
ω = 3.567 [see Figs. 4(i) and 4(j)].

FIG. 6. For ω = 3.5647. (a) The singular continuous spectrum. (b) The finite-time Fourier spectrum X(�, T) vs T in logarithmic scale. (c) The fractal walk in the complex
plane (ReX , ImX).
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B. Check the strange properties of attractors

In Secs. I–III, we studied the evolution of the attractors with
the help of phase diagram and power spectrum and verified the
nonchaotic characteristics of SNAs by the maximum Lyapunov
exponent. To further illustrate the strange properties of the attrac-
tor, we will use the phase sensitivity function, singular continuous
spectrum, and rational approximation method.

1. Phase sensitivity property

If the attractor is regarded as a fractal curve, then its nondif-
ferentiability can be detected by the phase sensitivity. This method
is based on the sensitivity of the attractor to the phase of the exter-
nal excitation. There are some special tangent bifurcation points in
SNAs, where the derivative of these bifurcation points with respect
to the phase is infinite, and the tangent is orthogonal to the θ-axis,
showing that the attractor is nonsmooth. The derivative with respect

to the external phase can be denoted as (cf. Ref. 3)

Si(N) =
∂fi

∂θ
(i = 1, 2), (7)

where N is the number of iterations. If Si(N) tends to be infinite as
N → ∞, the attractor is nonsmooth, which means that the attractor
is strange.

The phase sensitivity can be calculated from the time series in
the attractors. For any small ε, we can find n0 to satisfy the phase
difference ε0 =

∣

∣θn0 − θ0

∣

∣ < ε, and the Si(N) can be approximately
expressed as

Si(N) =
∂fi

∂θ
≈

N−n0
∑

k=1

∣

∣

∣

∣

∣

fi
(

k + n0

)

− fi(k)

θ
(

k + n0

)

− θ(k)

∣

∣

∣

∣

∣

=
N−n0
∑

k=1

∣

∣

∣

∣

∣

fi
(

k + n0

)

− fi(k)

ε0

∣

∣

∣

∣

∣

(i = 1, 2), (8)

FIG. 7. The rational approximations of the SNA for ω = 3.5647 in the (θn, xn)-plane. (a) ξ5 = 5/8, (b) ξ12 = 89/144, (c) ξ17 = 1597/2584, (d) ξ19 = 4181/6765.
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FIG. 8. For ε = 3.1, the phase diagrams of
attractors in the (θn, xn)-plane and (vn, xn)-plane:
(a) and (b) ω = 3.2, (c) and (d) ω = 3.38, (e) and
(f) ω = 3.43, (g) and (h) ω = 3.44.
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where k + n0 6 N, and fi(k) denotes the kth iteration of fi. The
maximum value of Si(N) after N times iterations is denoted as

τN
i = max {Si(N)} . (9)

If the number of iterations increases, the value of τN
i increases grad-

ually. Then, Si(N) tends to infinite as N → ∞, which means that the
attractor is strange.

We take two groups of parameter values to verify strange
properties by phase sensitivity function. Let n0 = 4182, then
∣

∣θ
(

k + n0

)

− θ(k)
∣

∣ ≡ 0.000 672, when ω = 3.5647, the value of τN
1

tends to infinity as the number of iterations increases, which indi-
cates that the attractor is strange. On the contrary, when ω = 3.551,
the value of τN

1 does not increase with the increase of iterations,
which indicates that the attractor is smooth (see Fig. 5).

2. Singular continuous spectrum

The strange properties of the attractor can be examined by
means of the singular continuous spectrum. For ω = 3.5647, the
spectrum shows singular continuity [see Fig. 6(a)]. In general,
X(�, T) and T have a power-law relationship (see Ref. 39 for details).

Let

|X(�, T)|2 ∼ Tρ , (10)

where ρ is a scaling exponent. If an SNA exists, then 1 < ρ < 2.
When the system exhibits periodic or quasiperiodic motion, the cor-
responding scaling exponent is ρ = 2. If the system exhibits chaotic
motion, the scaling exponent is ρ = 1. For the SNA in Fig. 4(g), the
corresponding finite-time Fourier spectrum X(�, T) vs T in loga-
rithmic scale is exhibited in Fig. 6(b), where we detect a relatively
robust power-law behavior with ρ = 1.2564. In addition, X(�, T)

defines a path in a complex plane (Re X, Im X) when T is regarded
as time and a fractal self-similar path corresponds to |X(�, T)|2
∼ T1.2564 [see Fig. 6(c)].

3. The rational approximation

The rational approximation is also an important method to
determine the strange properties of SNAs, which is based on the
fact that all irrational numbers can be approximated by appropri-
ate rational numbers (cf. Ref. 3). When the approximation order is
low, only some periodic points can be observed and the shape of

FIG. 9. For ω = 3.43. (a) The maximum Lyapunov exponent. (b) The phase sensitivity exponent τ N

1 vs N, the 1 T for ω = 3.2 (red line) and SNA for ω = 3.43 (blue line).
(c) The finite-time Fourier spectrum X(�, T) vs T in logarithmic scale. (d) The fractal walk in the complex plane (ReX , ImX).
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SNAs cannot be presented. As the order of approximation increases,
the number of periodic points tends to infinite, and the structure of
the attractor is not a finite set of points and is not piecewise dif-
ferentiable, which depicts the strangeness of the attractor. In the
following, we use rational numbers to approximate the frequency
ξ , which is taken as (

√
5 − 1)/2. The ratio ξk of the Fibonacci

sequences can be used to approximate ξ , where ξk = Fk−1/Fk,
Fk = Fk−1 + Fk−2, F1 = 1, F2 = 1, and ξ = limk→∞ ξk. Take the

attractor in Fig. 4(j) as an example. Figures 7(a)–7(d) are the phase
diagrams of the attractor in the (θn, xn)-plane for different approx-
imate orders k. In Fig. 7(a), only some periodic points can be
observed when ξ5 = 5/8. As k gradually increases, the number
of periodic points gradually increases, and the fractal characteris-
tics of the attractor gradually appear [Figs. 7(b) and 7(c)]. When
ξ19 = 4181/6765, the number of periodic points becomes virtually
uncountable, the attractor begins to appear nonsmoothly, and an

FIG. 10. For ε = 1.5, the phase diagrams of attractors in the (θn, xn)-plane and (vn, xn)-plane: (a) and (b) ω = 3.363, (c) and (d) ω = 3.3645, (e) and (f) ω = 3.365,
(g) and (h) ω = 3.37.
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SNA emerges [Fig. 7(d)]. We find that the higher is the order of
the approximation, the more significant is the degree of the fractal
structure of the attractor.

C. The fractal route

In fractal routes for the creation of SNAs, a torus attractor
gets increasingly wrinkled and transforms into an SNA without the
apparent mediation of any nearby unstable orbit. This generation
mechanism of SNAs is independent of a bifurcation phenomenon.

We fix the parameter ε = 3.1 and let ω vary from 3.2 to 3.44.
The other parameters and the initial values remain the same as
Sec. III A. The attractors for successively larger ω are shown in Fig. 8.
For ω = 3.2, the attractor has one smooth branch, which indicates
that the system is in a single torus state (1 T) [see Fig. 8(b)]. As
ω increases, the attractor does not undergo torus-doubling bifur-
cation as in the last scenario. Instead, the branch of the attractor
becomes irregular as shown in Figs. 8(c) and 8(d), but the attractor
is continuous. In other words, the system is still in a torus state for

ω = 3.38. When ω = 3.43, the attractor becomes extremely wrin-
kled, and ultimately result is a strange attractor [see Figs. 8(e)
and 8(f)]. Meanwhile, its maximum Lyapunov exponent is nonpos-
itive [λ ≈ −0.008 49, see Fig. 9(a)]. Therefore, it is an SNA. For
ω = 3.44, the SNA is transformed into an attractor with a
fractal structure and positive maximum Lyapunov exponent
(λ ≈ 0.004 58), and, thus, the attractor [Fig. 8(g)] is chaotic.

In the fractal route, it is sometimes difficult to decide when
the transition to SNAs occurs since the extremely wrinkled invari-
ant curve looks very similar to an SNA. However, we can give a
strict criterion by the phase sensitivity function. Figure 9(b) shows
the time evolution of the maximum derivative, where the red and
blue curves correspond to attractors as shown in Figs. 8(a) and 8(e),
respectively. As the number of iterations increases, the derivative is
not saturated after the transition to SNA, we infer that the deriva-
tive is not bounded. Therefore, the attractor shown in Fig. 8(e) is
strange. To provide further evidence, the previous methods are also
used to confirm the strange structure of SNA. We compute the scal-
ing exponent ρ and present a reasonable power-law relationship

FIG. 11. For ω = 3.365. (a) The entire Lyapunov spectrum. (b) The phase sensitivity exponent τ N

1 vs N, the 1 T for ω = 3.363 (red line) and SNA for ω = 3.365 (blue line).
(c) The finite-time Fourier spectrum X(�, T) vs T in logarithmic scale. (d) The fractal walk in the complex plane (ReX , ImX).
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|X(�, T)|2 ∼ T1.4540 and this behavior is shown in Fig. 9(c). Mean-
while, Fig. 9(d) demonstrates that the spectral trajectory in the com-
plex plane (ReX, ImX) should exhibit a fractal behavior, as required
for SNAs. To sum up, the attractor is an SNA.

D. The bubbling route

In addition to the route studied above, we also identified an
uncommon route in a piecewise linear oscillator, called bubbling
route (cf. Refs. 25 and 26) for the creation of SNAs. In this route,
the torus quasiperiodic attractor forms local bubble-like structures
in some regions and wrinkling of these under external force. How-
ever, the rest of the strands of the torus outside the bubbles remain
largely unaffected. It is worth noting that this route is quite different
from the well known fractal route, where the entire strands of the
n-period torus continuously deform and become extremely wrin-
kled as the control parameters change.

To illustrate the emergence of bubbling route to SNAs in sys-
tem (3), we fix the parameter ε = 1.5 and let the frequency ω vary
from 3.36 to 3.37. The other parameters and the initial values remain

the same as Sec. III A. For ω = 3.363, a 1T quasiperiodic attrac-
tor [Figs. 10(a) and 10(b)] occurs. As ω is increased to 3.3645,
in the 1T quasiperiodic attractor appears bubble-like structures in
the strand of the torus [see Figs. 10(c) and 10(d)]. These bubble-
like structures are localized, namely, they occur on partial regions
of the torus while the remaining part of the torus strand remains
unaffected. As ω increases further to 3.365, the bubbles deform
and become extremely wrinkled, which lead to the formation of
an SNA [see Figs. 10(e) and 10(f)]. As ω continues to increase to
3.37, the SNA forms a 1-band chaotic attractor [Fig. 10(g)]. This
transition process from a quasiperiodic attractor to an SNA via
the bubbling route can be further verified by the entire Lyapunov
spectrum [Fig. 11(a)], phase sensitivity function [Fig. 11(b)], and
singular continuous spectrum analysis [Fig. 11(c)]: log10 |X(�, T)|2
vs log10 T, where |X(�, T)|2 ∼ T1.2286 , and fractal trajectory in the
complex plane (ReX, ImX) [Fig. 11(d)].

The mechanism of the bubbling route is that the quasiperi-
odic orbit gets increasingly unstable in its transverse direction as
the control parameter ω changes, resulting in the formation of
the bubble-like structures. This is reflected in Fig. 10(e), in partial
regions of the torus.

FIG. 12. For ε = 0.165 909 5, the phase diagrams of attractors in the (θn, xn)-plane and (vn, xn)-plane: (a) and (b) ω = 9.995, (c)and(d)ω = 10.
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FIG. 13. For ω = 10. (a) The maximum Lyapunov exponent. (b) The phase sensitivity exponent τ N

1 vs N, the 4 T for ω = 9.995 (red line) and SNA for ω = 10 (blue line).
(c) The singular continuous spectrum.

E. The type-I intermittency route

Intermittency routes can be the generation mechanisms for
SNAs. We describe SNAs in terms of 4T torus intermittency, which
is related to the saddle-node bifurcation. Let ε = 0.165 909 5 and the
frequency ω vary from 9.995 to 10. For ω = 9.995 , the attractor
is 4T quasiperiodic, as shown in Figs. 12(a) and 12(b). When ω is
increased to 10, the approximate shape of the quasiperiodic orbit
of the system is still present, but there are many disordered points
near the orbit, which are characteristics of intermittency, as shown
in Figs. 12(c) and 12(d). Here, the attractor is strange nonchaotic
in Fig. 12(c). The nonchaotic property is denoted by the maxi-
mum Lyapunov exponent λ ≈ −0.001 61 [Fig. 13(a)]. The strange
property of the attractor is characterized by the phase sensitivity
[Fig. 13(b)] and the singular continuous spectrum [Fig. 13(c)].

V. CONCLUSIONS

Most of the research on strange nonchaotic dynamics focuses
on smooth systems in different fields. In this work, the dynamics of
a single-degree-of-freedom nonlinear oscillator under quasiperiodic
excitation is considered. The complicated and interesting strange
nonchaotic dynamics phenomena are revealed via the phase dia-
gram, maximum Lyapunov exponent, singular continuous spec-
trum, phase sensitivity function, rational approximation, and so on.
We demonstrate that the first scenario is torus-doubling bifurca-
tion followed by the transition from the torus attractors to SNAs in
such class of nonsmooth systems. The second is that the torus does
not undergo a period-doubling cascade as controlling parameters
vary, instead, the torus becomes extremely wrinkled, loses smooth-
ness, and finally becomes fractal. The third is that the quasiperiodic
attractor gets increasingly unstable in its transverse direction as the
control parameter changes, resulting in the formation of bubble-like
structures in partial regions of the torus, which eventually evolves
into an SNA. The last one is that in the neighborhood of a saddle-
node bifurcation many disordered points abruptly appear during the
transition from 4T torus to SNA. The results of this work offer ideas

for the study of strange nonchaotic dynamics in nonsmooth systems
as well as provide support for the design and optimization of devices
in engineering fields.
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