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Abstract 15 

A generic integrated configuration-size optimisation formulation for design of hybrid 16 

renewable energy systems (HRES) is presented in this paper. This formulation allows 17 

identifying the optimum configuration for a given site and the optimum size of each 18 

component in that configuration by solving only one optimisation problem. Single and 19 

multiobjective case studies are defined for both on-grid and standalone systems using wind 20 

turbine, PV panel, battery bank, fuel cell, electrolyser and diesel generator as potential 21 

components. To solve the optimisation problems a genetic algorithm (GA) and a 22 

nondominated sorting GA (NSGA-II) are developed, in which the reproduction operators are 23 

designed carefully for robust exploration and exploitation at both size and configuration 24 

levels. Eight single and multiobjective case studies for a variety of renewable resources, 25 

objectives and constraints are conducted. The results show the versatility of the problem 26 

formulation in defining different HRES design problems and the robustness of the developed 27 

GA and NSGA-II in search within the design space at both configuration and size levels and 28 

finding the optimum size and configuration simultaneously.  29 

 30 

Keywords: integrated design; hybrid renewable energy systems; GA; NSGA-II; optimisation; 31 

MOHRES  32 

 33 

1 Introduction 34 

Size optimisation of hybrid renewable energy systems (HRES) is one of the branches of 35 

research on HRES, which has received significant attention from the research community. A 36 

review of the recently published literature in this field shows that researchers have taken 37 

different approaches and methods in (i) problem formulation, (ii) HRES analysis, and (iii) 38 

optimisation method. 39 

 40 

Problem formulation depends on the type and the number of design variables, objectives and 41 

constraints included in the optimisation problem. In the context of size optimisation of 42 

HRES, design variables are the size of components in the configuration. Almost all 43 

technologically feasible configurations have been the subject of recent studies for power and 44 

combined heat and power generation. While the majority of the publications have reported a 45 

single objective optimisation, there is an increasing trend for adopting multiobjective 46 

optimisation approach in more recent publications. Optimisation method adapted for size 47 

optimisation of HRES has been under the influence of the analysis method and the problem 48 

formulation. Genetic Algorithm (GA) and Particle Swarm (PS), and their multiobjective 49 

variations seem to be the most popular metaheuristic methods for this field.  50 
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 51 

Analysis of HRES varies from one study to another, depending on the methodological 52 

approach in system characterisation, the level of details of cost and power models, and the 53 

performance measures of interest. In terms of handling the uncertainties in the demand load, 54 

renewable resources, and models, the reported studies have taken two approaches, namely, 55 

deterministic or nondeterministic. While the majority of the published works are based on 56 

deterministic approaches, some researchers have adopted a nondeterministic approach more 57 

recently. 58 

 59 

Atieh et al [1] included PV, battery bank, and diesel generator in their study. They used a GA 60 

to find the optimum size of these components by considering the total lifespan cost (TLSC) 61 

as the objective. Ismail et al [2] also used GA to solve their PV-Battery-Diesel size 62 

optimisation problem, but with levelised cost of energy (LCE) as the optimisation objective. 63 

Samy et al [3] conducted size optimisation for PV-Fuel cell configuration using PS, Flower 64 

Pollination, and Artificial Bee Colony as their single-objective optimisation methods. They 65 

used total annual cost (TAC) and loss of power supply probability (LPSP) as objectives. 66 

Senthil Kumar et al [4] also reported a size optimisation of PV-Fuel cell configuration by 67 

using Nelder-Mead algorithm and a hybrid method as their optimisation algorithm. 68 

Mahmoudimehr and Shabani conducted a multiobjective size optimisation for a PV- Pumped 69 

hydro configuration [5]. They considered net present value (NPV) and LPSP as the 70 

optimisation objectives and used a Nondominated Sorting Genetic Algorithm (NSGA) as the 71 

search method. Mohamed et al [6] used a GA with TAC as the objective to solve the size 72 

optimisation of a PV-Wind configuration. PV-Wind-Battery is one of the most studied 73 

configurations [7-16]. Acuna et al [7] conducted a multiobjective size optimisation, with 74 

NPV, LPSP, and LCE as objectives. They used NSGA as their optimisation method. Ahmadi 75 

and Abdi conducted a single objective size optimisation of PV-Wind-Battery system with 76 

LCE as the objective using big-bang big- crunch method [8]. Fetanatand Khorasaninejad [9] 77 

used an Ant Colony algorithm for size optimization of PV-Wind-Battery configuration in a 78 

continuous domain with the objective of LCE. They used a continuous domain. Another 79 

example of multiobjective size optimisation of PV-Wind-Battery systems with NPV, LPSP, 80 

and LCE as objectives, is reported in Ghorbani et al [10]. They used multiobjective PS to 81 

solve the problem.  [11] conducted single objective size optimisation using the tool DER-82 

CAM for LCE and CO2 emission. Kamjoo et al [12] used deficiency of power supply 83 

probability (DPSP) and system cost as two objectives of their multiobjective size 84 

optimisation. The works reported in [13, 14, 15, and 16] are other examples of single 85 

objective size optimisation of PV-Wind-Battery configuration, in which LCE is used as the 86 

optimisation objective. The optimisation methods, however, are different: Bee Swarm  87 

algorithm [13], built-in optimiser in HOMER [14], PS and Harmony Search algorithms [15], 88 

and a hybrid GA-exhaustive search method [16]. PV-Wind-Battery-Diesel is another well-89 

studied configuration, mainly as a standalone HRES [17-25]. In [17], a hybrid Harmony 90 

Search-Simulated Annealing optimisation algorithm is used to minimise the LCE of the 91 

system with bio-diesel.  TLSC is the optimisation objective for PV-Wind-Battery-Diesel size 92 

optimisations reported in [18, 19, and 20] using different optimisation methods: response 93 

surface [18], PS [19], and GA [20]. Ogunjuyigbe et al [21] used a single objective GA to find 94 

the optimal size of a PV-Wind-Battery-Diesel system which satisfies a set of constraints on 95 

TLSC, CO2 emission, and the excess power.  LCE and renewable penetration are the 96 

objectives of the PV-Wind-Battery-Diesel multiobjective size optimisations reported in [22]. 97 

References [23, 24, and 25] also report the results of multiobjective size optimisation of PV-98 

Wind-Battery-Diesel configuration with LCE and LPSP [23]; LCE, NPV, and LPSP [24]; and 99 

LCE, LPSP, and renewable penetration [25] as objectives. Maheri [26], Sharafi and 100 
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ELMekkawy [27], and Maleki and Pourfayaz [28] considered PV-Wind-Battery-Diesel-Fuel 101 

cell configuration in their studies. In [26] using a GA with the objectives of TLSC and unmet 102 

load, the effect of dispatch strategy on the performance of hybrid wind-PV-battery-diesel-fuel 103 

cell systems was studied. In [27], a combination of TLSC, unmet load, and emission serves as 104 

an aggregate objective function for the PS algorithm to find the optimum size of each 105 

component in the HRES. Maleki and Pourfayaz used LCE as the objective and used a 106 

harmony search algorithm in their study reported in [28]. Other system configurations which 107 

have been studied include PV-Wind-Battery- Fuel cell [29], PV-Wind-Biomass [30], PV-108 

Wind-Biomass-Biodiesel [31], PV-Wind-Battery-Thermal storage [32], PV-Wind-Diesel 109 

[33], PV-Wind-Fuel cell [34], PV-Wind-Pumped hydro [35], PV-Wind-Solar heat collector-110 

Biomass-Heat pump-Thermal storage [36], Wind-Battery-Diesel [37], Wind-Fuel cell [38], 111 

PV-Wind-Electric vehicle [39], Wind-PV- Thermal storage tank [40], and PV-Hydrogen 112 

storage-Fuel cell -Solar Thermal [41]. Besides power and combined heat and power 113 

generation, size optimisation of renewable and storage systems can be defined in the context 114 

of energy transition and system integration scenarios, for instance, renewable-based heating 115 

sector [42], cross-sectoral integration of HRES [43], smart energy integration [44], and 116 

energy planning [45]. Besides the cost and reliability-rated objectives, CO2 emission and 117 

renewable penetration are commonly used objectives in size optimisation of hybrid 118 

renewable-nonrenewable systems [46-49]. 119 

 120 

In all reported research dealing with the optimisation of HRES, the configuration of the 121 

system is decided prior to the size optimisation. In other words, design of a HRES takes place 122 

in two sequential stages. First the configuration of the system and the type of renewable, non-123 

renewable and storage/auxiliary components are decided. In the second stage, the optimum 124 

size of each component in the system is found. A sequential design optimisation has a major 125 

drawback. In many cases the decision on the configuration cannot be made unless a detailed 126 

cost-benefit analysis is carried out. In such cases, for each possible configuration a size 127 

optimisation problem must be solved to determine the optimal cost-related and reliability-128 

related performance measures for that configuration. Once the optimal design of all possible 129 

configurations is done, the best configuration can be identified.  This, however, can be a 130 

cumbersome task. For instance, there are 21 possible configurations with at least one 131 

renewable and one auxiliary/storage component which can be made with wind turbine, PV 132 

panel, battery bank, fuel cell/electrolyser and diesel generator as potential components.  133 

 134 

On the other hand, an integrated configuration-size optimisation formulation has a clear 135 

advantage to the current practice, in which the size optimisation is conducted for a pre-136 

defined and not-necessarily optimum configuration or all potential configurations. This paper 137 

presents an integrated configuration-size optimisation formulation, which allows finding the 138 

optimum configuration for a given site and application, and the optimum size of each 139 

component in that configuration by solving only one optimisation problem.  140 

 141 

All the optimisation methods reported in the literature are designed and tested for size 142 

optimisation problems only and therefore are not robust enough for solving an integrated 143 

configuration-size optimisation problem. In an integrated configuration-size optimisation 144 

problem the search in the design space must take place at both configuration and size levels. 145 

Novel genetic reproduction operators which are designed specifically for simultaneous 146 

exploration and exploitation at both levels are also developed and presented in this paper.   147 

 148 



4 

 

2 Integrated Configuration-Size Formulation 149 

Following common practice in formulating an optimisation problem, this section starts by 150 

defining the design variables in Section 2.1 and then in Section 2.2 elaborates on the design 151 

space, or in other words, the realistic bounds for design variables in which we search for 152 

optimum solution(s). The basis of the proposed integrated configuration-size optimisation 153 

formulation is explained in this section. In Section 2.3 the design qualities of the problem at 154 

hand, here, the performance measure of hybrid renewable energy systems, are defined. The 155 

system model, correlating the design variables to the design qualities are also given in this 156 

section after defining each performance measure. Finally, in Section 2.4 the optimisation 157 

problem is formulated in standard format and is reported. 158 

 159 

2.1 Design Variables 160 

In integrated configuration-size optimisation, starting from a generic configuration (in this 161 

study wind-PV-fuel cell-electrolyser-diesel-battery bank configuration), the vector of design 162 

variables is defined as: 163 

 164 

𝑋⃑ = {𝑛𝑊𝑇 , 𝑅𝑊𝑇 , 𝐴𝑃𝑉 , 𝑛𝐵, 𝑃𝐷,𝑛𝑜𝑚, 𝑃𝐹𝐶,𝑛𝑜𝑚, 𝑃𝐸𝐿,𝑛𝑜𝑚}      (1) 165 

 166 

where, 𝑛𝑊𝑇 stands for the number of wind turbines, 𝑅𝑊𝑇 is the wind turbine rotor radius 167 

(representing the size of the wind turbine), 𝐴𝑃𝑉 is the total size of the PV panels,  𝑛𝐵 stands 168 

for the number of batteries, and 𝑃𝐷,𝑛𝑜𝑚, 𝑃𝐹𝐶,𝑛𝑜𝑚 and 𝑃𝐸𝐿,𝑛𝑜𝑚, respectively, are the nominal 169 

power of the diesel generator, fuel cell and electrolyser.  170 

 171 

It should be noted that, as explained below, there are cases that one of the design variables 172 

associated to wind energy (𝑛𝑊𝑇 , 𝑅𝑊𝑇) is excluded from the vector of design variables. If the 173 

wind turbine to be used in the system is known, then 𝑅𝑊𝑇 is known and fixed, leaving 𝑛𝑊𝑇 ≥174 

0 as the only design variable to be decided. If the wind turbine has not been decided prior to 175 

the optimisation, and if the optimum amount of wind energy can be delivered by one wind 176 

turbine, then 𝑛𝑊𝑇 = 1 and fixed, leaving 𝑅𝑊𝑇 as the remaining design variable to be found. It 177 

is a well-known fact that the levelised cost of wind energy reduces with the size of wind 178 

turbine. That is, one wind turbine with a nominal power of 𝑃 is cheaper than 𝑛 wind turbines, 179 

each with a nominal power of 𝑃/𝑛. If the wind turbine has not been decided prior to the 180 

optimisation, and if the optimum amount of wind energy cannot be delivered by one wind 181 

turbine, then both 𝑛𝑊𝑇 and 𝑅𝑊𝑇 are design variables.  182 

 183 

2.2 Search Space 184 

These design variables are assumed to be bounded between the following ultimate lower and 185 

upper limits: 186 

 187 

𝑋⃗𝑙 = {𝑛𝑊𝑇
𝑙 , 0,0,0,0,0,0}         (2.a) 188 

 189 

where, as explained above: 190 

 191 

𝑛𝑊𝑇
𝑙 = {

0   𝑖𝑓  𝑤𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛        
1   𝑖𝑓  𝑤𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑘𝑛𝑜𝑤𝑛

      (2.b) 192 

 193 

𝑋⃗𝑢 = {𝑛𝑊𝑇
𝑢 , 𝑅𝑊𝑇

𝑢 , 𝐴𝑃𝑉
𝑢 , 𝑛𝐵

𝑢, 𝑃𝐷,𝑛𝑜𝑚
𝑢 , 𝑃𝐹𝐶,𝑛𝑜𝑚

𝑢 , 𝑃𝐸𝐿,𝑛𝑜𝑚
𝑢 }     (3) 194 

 195 
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Using the ultimate upper and lower limits as given by Equations 2 and 3, the optimisation 196 

process explores a generic configuration including all components. However, within the 197 

optimisation process, the size of components which cannot produce/store energy efficiently 198 

approach zero, leading to their exclusion from the configuration. In other words, the 199 

configuration is obtained via a full cost/performance analysis and an integrated configuration-200 

size optimisation rather than just being selected by the designer.  201 

 202 

The upper limits for design variables 𝑋⃗𝑢 must be selected carefully. On one hand, we want to 203 

ensure that the search space is large enough to include all potential optimum solutions, while 204 

on the other hand we want to increase the robustness of the search process by avoiding search 205 

in unrealistic/infeasible part of the search domain.  206 

 207 

In this study, the upper limit for the wind turbine rotor radius 𝑅𝑊𝑇
𝑢  and the upper limit for the 208 

number of wind turbines 𝑛𝑊𝑇
𝑢  are calculated based on the assumption that the wind turbine(s), 209 

by its own, can produce enough power to supply the demand load. This assumption leads to:  210 

 211 

𝑅𝑊𝑇
𝑢 = √

𝐿 𝑚𝑎𝑥

0.5𝜌𝜋𝑉𝑚𝑖𝑛
3 𝐶𝑝𝜂𝐸𝑀

         (4.a) 212 

 213 

and 214 

 215 

𝑛𝑊𝑇
𝑢 = ⟦

𝐿 𝑚𝑎𝑥

0.5𝜌𝜋(𝑅𝑊𝑇
𝑢 )

2
𝑉𝑚𝑖𝑛

3 𝐶𝑝𝜂𝐸𝑀

⟧        (4.b) 216 

 217 

where, 𝜌 is the air density, 𝐶𝑝 stands for the power coefficient, 𝜂𝐸𝑀 is electrical/mechanical 218 

overall efficiency, 𝐿𝑚𝑎𝑥  is the maximum hourly-averaged peak demand throughout the year 219 

and  𝑉𝑚𝑖𝑛 is the minimum hourly-averaged wind speed throughout the whole year at a 220 

conservatively low hub elevation (in this study, ℎℎ𝑢𝑏,0 = 12 𝑚) calculated using the 221 

logarithmic law.  222 

 223 

In Equation 4.a the term 0.5𝜌𝑉𝑚𝑖𝑛
3 𝐶𝑝𝜂𝐸𝑀 is the wind turbine power per unit rotor area,  224 

𝜋𝑅𝑊𝑇
2 . It should be noted that 𝑅𝑊𝑇

𝑢  obtained from Equation 4.a must not exceed the rotor 225 

radius of the largest available wind turbine. For instance, if we assume Vestas V164-8.0 is the 226 

largest available wind turbine, then 𝑅𝑊𝑇
𝑢  is limited to 82m.  In Equation 4.b, ⟦⋯ ⟧ stands for 227 

rounding up to the nearest integer number. The denominator of the right-hand side of 228 

Equation 4.b is the maximum power that can be produced by the largest wind turbine 229 

available. 230 

 231 

Since the rotor power coefficient depends on the wind speed, very conservative (low) value 232 

for the power coefficient is also assumed (𝐶𝑝 = 0.2).  A conservative value for the combined 233 

efficiency of the electrical components and the gear train is also used 𝜂𝐸𝑀 = 80%. 234 

 235 

The upper limit for the PV panel area can be calculated by taking the same approach but 236 

based on daily-average data rather than hourly-averaged data. This is because the peak load 237 

might happen in hours that there is no sunlight and in practice PV panels always are 238 

accompanied by a storage component for standalone systems. The upper limit for the PV 239 

area, 𝐴𝑃𝑉
𝑢 , can be found by: 240 

 241 
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𝐴𝑃𝑉
𝑢 =

𝐿𝑑,𝑚𝑎𝑥

𝐼𝑑,𝑚𝑖𝑛𝜂𝑃𝑉
         (5) 242 

 243 

where, 𝐿𝑑,𝑚𝑎𝑥  is the maximum daily-averaged demand throughout the year, 𝐼𝑑,𝑚𝑖𝑛 is the 244 

minimum daily-averaged solar irradiance throughout the whole year, and  𝜂𝑃𝑉 is a 245 

conservative average value for the PV panel efficiency (for example 10%). The denominator 246 

of the right-hand side of Equation 5 is the PV power per unit area. 247 

 248 

The upper size limit for the nominal power of the diesel generator is obtained based on the 249 

maximum hourly-averaged peak demand throughout the year 𝐿𝑚𝑎𝑥 as follows: 250 

 251 

𝑃𝐷,𝑛𝑜𝑚
𝑢 =

𝐿𝑚𝑎𝑥(1+𝑀𝑂𝑆)

𝜂𝐷
         (6) 252 

 253 

where, 𝜂𝐷 = 0.4, a conservative approximation for the diesel efficiency, and (1 + 𝑀𝑂𝑆) is 254 

the load factor based on a margin of safety (𝑀𝑂𝑆 ). 255 

 256 

Adopting the same approach for the fuel cell, assuming a conservative approximate 257 

efficiency of 𝜂𝐹𝐶 = 0.47, the upper size limit for the nominal power of the fuel cell is 258 

obtained 259 

 260 

𝑃𝐹𝐶,𝑛𝑜𝑚
𝑢 =

𝐿𝑚𝑎𝑥((1+𝑀𝑂𝑆)

𝜂𝐹𝐶
        (7) 261 

 262 

The capacity of the electrolyser should be large enough to produce enough hydrogen for the 263 

fuel cell operation within one hour.  Hence, the upper limit of the electrolyser size 𝑃𝐸𝐿,𝑛𝑜𝑚
𝑢  is 264 

associated to the upper limit of the fuel cell size 𝑃𝐹𝐶,𝑛𝑜𝑚
𝑢 : 265 

 266 

𝑃𝐸𝐿,𝑛𝑜𝑚
𝑢 = 𝑃𝐹𝐶,𝑛𝑜𝑚

𝑢 /𝜂𝐸𝐿        (8) 267 

 268 

where, the efficiency of the electrolyser in this study is taken as 𝜂𝐸𝐿 = 0.74. 269 

 270 

The upper limit for the number of batteries in the battery bank, 𝑛𝐵
𝑢 is calculated based on the 271 

assumption that the battery bank can store enough energy to supply the demand load for an 272 

autonomy period 𝑇𝑎,𝐵, normally taken as 1 day. Therefore, using the maximum daily-273 

averaged demand load through the whole year, 𝐿𝑑,𝑚𝑎𝑥, the upper limit for the number of 274 

batteries can be determined by: 275 

 276 

𝑛𝐵
𝑢 =

𝑇𝑎,𝐵𝐿𝑑,𝑚𝑎𝑥(1+𝑀𝑜𝑆)

(1−𝑆𝑂𝐶𝑚𝑖𝑛)𝑐𝐵𝑉𝐵𝜂𝐵,𝑑
           (9) 277 

 278 

where, 𝜂𝐵,𝑑 is the battery efficiency in discharge, and 𝑆𝑂𝐶𝑚𝑖𝑛 is the permissible minimum 279 

SOC without causing damage to the batteries, and 1 − 𝑆𝑂𝐶𝑚𝑖𝑛 is the proportion of the battery 280 

bank capacity that can be used. In Equation 9, the nominator and denominator of the right-281 

hand side are the required power to supply demand load for the autonomy period of  𝑇𝑎,𝐵 with 282 

a margin of safety 𝑀𝑜𝑆 and the extractable energy stored in a single fully charged battery in 283 

the battery bank respectively. 284 

 285 

The general integrated configuration-size optimisation formulation above allows for 286 

formulation of special cases as well. There are cases that the designer wants to design a 287 
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specific configuration or fix the size of component prior to the optimisation. To do these the 288 

designer needs to use alternative upper and lower limits. By setting both the lower and upper 289 

limits of a component equal to zero, that component is excluded from the configuration. By 290 

doing so, the designer can fix the configuration. The formulation above also allows for pre-291 

sizing of components. Pre-sizing refers to the selection of the size of a component outside the 292 

optimisation process. In order to exclude the size of a component from the set of design 293 

variables but keep the component in the HRES configuration the upper and lower limits are 294 

identical and set as the size of that component.  295 

 296 

2.3 Design Qualities (Performance Measures) 297 

In this study the following design qualities or performance measures are used in evaluating a 298 

HRES. 299 

 300 

Unmet Load-Unmet load, the difference between the available power and the demand load, 301 

is the part of the demand load that is not supplied by the HRES. Using hourly averaged data, 302 

the unmet load 𝑈 and the total annual unmet load 𝑈𝑡 are defined as: 303 

 304 

𝑈 = {
𝐿 − 𝑃𝑎            𝑖𝑓  𝐿 > 𝑃𝑎

0                     𝑖𝑓  𝐿 ≤ 𝑃𝑎  
        (10) 305 

 306 

and 307 

 308 

𝑈𝑡 = ∑ 𝑈𝑖
8760
𝑖=1           (11) 309 

 310 

where, 𝐿 and 𝑃𝑎 , respectively, are the hourly averaged demand load and available power 311 

from the system. For a system with wind, PV, battery, fuel cell and diesel, 𝑃𝑎 is given by: 312 

 313 

𝑃𝑎 = 𝑃𝑊𝑇 + 𝑃𝑃𝑉 + 𝑃𝐵,𝑒 + 𝑃𝐹𝐶,𝑒 + 𝑃𝐷,𝑛𝑜𝑚       (12) 314 

 315 

in which, 𝑃𝑊𝑇 and 𝑃𝑃𝑉 are the power produced by wind turbine(s) and PV panels,  𝑃𝐵,𝑒 and 316 

𝑃𝐹𝐶,𝑒 are the extractable power from the battery bank and fuel cell and 𝑃𝐷,𝑛𝑜𝑚 is the total 317 

nominal power of the diesel generator(s). 318 

 319 

Wind power 𝑃𝑊𝑇 is given by: 320 

 321 

𝑃𝑊𝑇 = 𝑛𝑊𝑇
1

2
𝜋𝜌𝑉ℎ𝑢𝑏

3𝑅𝑊𝑇
2 𝐶𝑝𝜂𝐸𝑀        (13) 322 

 323 

In case the wind turbine to be used in the system is known, the rotor power coefficient 𝐶𝑝 at 324 

various wind speeds, 𝐶𝑝(𝑉ℎ𝑢𝑏), is given in the turbine specification sheet and hence it is a 325 

known parameter. The same applies for 𝜂𝐸𝑀. The hub hight ℎℎ𝑢𝑏 is also a known parameter 326 

and using either of logarithmic or power laws 𝑉ℎ𝑢𝑏 is found readily.  327 

 328 

In case the wind turbine is not selected/known prior to the optimisation process, model given 329 

in [20], or similar models, can be used for 𝐶𝑝(𝑉ℎ𝑢𝑏). For the overall wind turbine mechanical 330 

and electrical efficiency 𝜂𝐸𝑀, a reasonable value (e.g. 90%) is used. In this case, the height of 331 

the hub depends on the size of the turbine, which is unknown at the start of the design phase. 332 

The following rule of thumb is used to estimate the hub height: 333 

 334 

ℎℎ𝑢𝑏 = max{ℎ𝑐 + 𝑅𝑊𝑇 , 2𝑅𝑊𝑇}        (14) 335 
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 336 

where, ℎ𝑐 is the minimum ground clearance for the blade tip.  337 

 338 

Solar PV power 𝑃𝑃𝑉 is given by: 339 

 340 

𝑃𝑃𝑉 = 𝐼𝐴𝑃𝑉𝜂𝑃𝑉          (15) 341 

 342 

where, 𝐼 is the hourly averaged solar irradiance in 𝑊/𝑚2 , 𝐴𝑃𝑉 is the total area of the solar 343 

panels, and 𝜂𝑃𝑉 is the overall efficiency of the of the PV panels.   344 

 345 

The extractable power from the battery bank 𝑃𝐵,𝑒 is given by: 346 

 347 

𝑃𝐵,𝑒 = (𝑆𝑂𝐶 − 𝑆𝑂𝐶𝑚𝑖𝑛)𝑛𝐵𝑐𝐵𝑉𝐵𝜂𝐵        (16) 348 

 349 

where, 𝑐𝐵 (𝐴ℎ) and 𝜂𝐵 stand for the unit nominal capacity and efficiency of batteries in 350 

discharge; 𝑛𝐵 is the number of batteries in the bank; 𝑆𝑂𝐶 is the state of charge of the battery 351 

bank, and 𝑆𝑂𝐶𝑚𝑖𝑛 is the permissible minimum  state of charge of the batter. 352 

 353 

The extractable power from the hydrogen tank through a fuel cell, depends on the extractable 354 

mass of the hydrogen from the tank 𝑀𝐻2,𝑒 and the fuel cell efficiency 𝜂𝐹𝐶  and it is limited to 355 

the nominal power of fuel cell: 356 

 357 

𝑃𝐹𝐶,𝑒 = 𝑚𝑖𝑛{𝑃𝐹𝐶,𝑛𝑜𝑚, 𝑀𝐻2 ,𝑒𝑚𝐻2
𝐿𝐻𝑉𝜂𝐹𝐶}       (17) 358 

 359 

where,  𝑚𝐻2
= 2.016 × 10−3 𝑘𝑔/𝑚𝑜𝑙 and 𝐿𝐻𝑉 = 33000 Wh/kg are the molar mass and 360 

lower heating value of hydrogen, 𝑃𝐹𝐶,𝑛𝑜𝑚 is the fuel cell nominal power and 𝑀𝐻2,𝑒, the 361 

extractable mass of hydrogen from hydrogen tank is the difference between the mass of 362 

stored hydrogen in the tank, 𝑀𝐻2
 and 𝑀𝐻2,𝑚𝑖𝑛, the unextractable mass from the tank due to 363 

drop in the tank pressure: 364 

 365 

𝑀𝐻2,𝑒 = 𝑀𝐻2
− 𝑀𝐻2,𝑚𝑖𝑛        (18) 366 

 367 

Feed-in and Profit-In standalone systems the renewable power primarily supplies the 368 

demand load and, where applicable, if there is any excess power it is used to charge the 369 

battery bank and the hydrogen tank. Any excess power beyond this will be dumped. In grid 370 

connected systems, this excess power can be sold to the grid instead. The excess power that 371 

can be feed-in to the grid is given by: 372 

 373 

𝑃𝑒𝑥 = 𝑃𝑊𝑇 + 𝑃𝑃𝑉 − 𝐿 − 𝑃𝐵,𝑐  − 𝑃𝐸𝐿,𝑐       (19) 374 

 375 

where, 𝑃𝐵,𝑐 and 𝑃𝐸𝐿,𝑐 are the power required to fully charge the battery bank and hydrogen 376 

tank respectively. 𝑃𝐵,𝑐 is given by: 377 

 378 

𝑃𝐵,𝑐 =
(1−𝑆𝑂𝐶)𝑛𝐵𝑐𝐵𝑉𝐵

𝜂𝐵,𝑐
          (20) 379 

 380 

where, 𝜂𝐵,𝑐 is the battery charging efficiency, and 𝑃𝐸𝐿,𝑐 is given by: 381 

 382 
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𝑃𝐸𝐿,𝑐 = 𝑚𝑖𝑛 {𝑃𝐸𝐿,𝑛𝑜𝑚, (𝑀𝐻2,𝑚𝑎𝑥 − 𝑀𝐻2
)

𝑚𝐻2𝐿𝐻𝑉

𝜂𝐸𝐿
}       (21) 383 

 384 

where, 𝑃𝐸𝐿,𝑛𝑜𝑚 and 𝜂𝐸𝐿 are the electrolyser nominal power and its efficiency, and  𝑀𝐻2,𝑚𝑎𝑥 385 

stands for the mass of the hydrogen in a fully charged hydrogen tank. The size of the 386 

hydrogen tank, 𝑀𝐻2,𝑚𝑎𝑥, can be calculated using the nominal power of the fuel cell and an 387 

autonomy period 𝑇𝑎,𝐻2
 (in days): 388 

 389 

𝑀𝐻2,𝑚𝑎𝑥 =
24𝑃𝐹𝐶,𝑛𝑜𝑚𝑇𝑎,𝐻2

𝐿𝐻𝑉𝜂𝐹𝐶
   `      (22) 390 

 391 

The total annual sellable excess power is given by: 392 

.   393 

𝑓𝑒𝑒𝑑 = ∑ 𝑃𝑒𝑥,𝑖
8760
𝑖=1           (23) 394 

 395 

Or alternatively, the actual annual profit can be calculated if the feed-in tariff 𝑡𝑔𝑟𝑖𝑑 is given. 396 

Since the feed-in tariff could have a variable rate depending on the time of the day (e.g. 397 

cheaper rate at off-pick hours), the profit can be calculated as: 398 

 399 

𝑝𝑟𝑜𝑓𝑖𝑡 = ∑ [𝑃𝑒𝑥𝑡𝑔𝑟𝑖𝑑]
𝑖

8760
𝑖=1         (24) 400 

 401 

 402 

Penetration-System penetration, 𝑝, is defined as the ratio of the annual renewable power to 403 

the annual demand load. 404 

 405 

𝑝 =
𝑃𝑅,𝑡

𝐿𝑡
=

𝑃𝑊𝑇,𝑡+𝑃𝑃𝑉,𝑡 

𝐿𝑡
         (25) 406 

 407 

CO2 Emission-The actual power produced by a diesel generator depends on its nominal 408 

power, the demand load/power deficit and the operational scenarios set in the energy 409 

management system. The hourly averaged diesel power 𝑃𝐷 can get any value between 0 and 410 

𝑃𝐷,𝑛𝑜𝑚. The total annual 𝐶𝑂2 emission (in kg) is given by [46]:  411 

 412 

𝐶𝑂2 =
0.246 ∑ 𝑃𝐷,𝑖+0.08145𝑃𝐷,𝑛𝑜𝑚𝑇𝐷

8760
𝑖=1

1000
 𝑒𝑙       (26) 413 

 414 

where, 𝑇𝐷 is the total number of hours of the operation per year, 𝑃𝐷 is the hourly-averaged 415 

diesel power (in W) and 𝑒𝑙 is the emission of CO2 per litre of diesel consumption. This value 416 

depends on both the diesel generator and the fuel characteristics and normally has a value 417 

between 2.4 − 2.8 𝑘𝑔/𝑙 range [46]. In this study, we assume 𝑒𝑙 = 2.68 𝑘𝑔/𝑙. 418 

 419 

Present Value of Total Life Span Cost (TLSC) - The present value of the system cost over 420 

its lifespan (𝑇𝐿𝑆𝐶) is given by [20]: 421 

 422 

 𝑇𝐿𝑆𝐶 = ∑
𝐶𝑗

(1+𝑑)𝑗
𝑁𝑠
𝑗=0           (27) 423 

 424 

in which, 𝑑 stands for the annual discount rate, 𝑁𝑠 is the lifespan of the system and 𝐶𝑗 is the 425 

cost in year 𝑗. The annual cost 𝐶𝑗 includes the capital cost 𝐶𝑐 for the year 𝑗 = 0 of operation, 426 

the operation and maintenance costs 𝐶𝑂&𝑀 and the replacement cost 𝐶𝑟 for the years 𝑗 =427 
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1, … , 𝑁𝑆 of operation. The capital cost of the system includes the initial cost 𝐶𝑖 for buying the 428 

system components and their installation cost 𝐶𝑖𝑛𝑠𝑡.  The installation cost for each component 429 

is normally estimated as a fraction of the initial cost that component. The capital cost of the 430 

whole system is, the summation of the initial cost 𝐶𝑖 and installation cost 𝐶𝑖𝑛𝑠𝑡, is therefore 431 

given by: 432 

 433 

𝐶𝑐 = ∑ 𝐶𝑢,𝑐𝑜𝑚𝑝𝑆𝑐𝑜𝑚𝑝(1 + 𝛼𝑖𝑛𝑠𝑡,𝑐𝑜𝑚𝑝)𝑐𝑜𝑚𝑝         (28) 434 

 435 

in which, 𝐶𝑢  and 𝑆 are the unit cost and the size of component, and parameter 𝛼𝑖𝑛𝑠𝑡 is the 436 

fraction of the initial cost used for estimating the installation cost. 437 

 438 

In cost analysis of HRES, only the cost of major components is considered and electronic and 439 

energy management system is excluded. There are two reasons behind this: (i) the cost of 440 

these components is much lower than the cost of other components and (ii) the cost of these 441 

components is almost independent of the size of the system, hence, in HRES size 442 

optimisation the inclusion or exclusion of these components does not affect the result of 443 

optimisation.  444 

 445 

The operation and maintenance cost of the system 𝐶𝑂&𝑀 has two parts, namely, fixed 𝐶𝑂&𝑀,𝐹 446 

and variable 𝐶𝑂&𝑀,𝑉 parts. Similar to installation cost the fixed part of O&M cost can be 447 

estimated as a fraction of the initial cost using parameter 𝛼𝑂&𝑀. In HRES, the only variable 448 

part of O&M cost is the fuel cost, in case of having diesel generators in the system 449 

configuration. The overall O&M cost of HRES is therefore given by: 450 

 451 

𝐶𝑂&𝑀 = ∑ 𝛼𝑂&𝑀,𝑐𝑜𝑚𝑝𝐶𝑖,𝑐𝑜𝑚𝑝𝑐𝑜𝑚𝑝  + 𝐶𝑂&𝑀,𝑉,𝐷      (29) 452 

 453 

where, 𝐶𝑂&𝑀,𝑉,𝐷 is the variable O&M cost of the diesel generator given by: 454 

 455 

𝐶𝑂&𝑀,𝑉,𝐷 =
0.246 ∑ 𝑃𝐷𝑖

+0.08145𝑃𝐷,𝑛𝑜𝑚𝑇𝐷
8760
𝑖=1

1000
𝐶𝑓𝑢𝑒𝑙      (30) 456 

 457 

in which, 𝑇𝐷, measured in hours, stands for total duration of operation of diesel generator 458 

annually, 𝑃𝐷𝑖
 is the hourly-averaged diesel power, and 𝐶𝑓𝑢𝑒𝑙 is the fuel price.  459 

 460 

Components with a lifespan shorter than the desired lifespan of the system need to be 461 

replaced throughout the duration of the system operation. The replacement cost of a 462 

component 𝐶𝑟,𝑐𝑜𝑚𝑝 depends on the number of replacements 𝑛𝑟,𝑐𝑜𝑚𝑝 during the lifespan of the 463 

system and the capital cost of that component 𝐶𝑐,𝑐𝑜𝑚𝑝. The overall replacement cost of a 464 

HRES is therefore given by: 465 

 466 

𝐶𝑟 = ∑ 𝑛𝑟,𝑐𝑜𝑚𝑝𝐶𝑐,𝑐𝑜𝑚𝑝𝑐𝑜𝑚𝑝          (31) 467 

 468 

The number of replacements of PV panels and wind turbines and are calculated based on 469 

their nominal lifespan using the following equation:    470 

 471 

𝑛𝑟,𝑐𝑜𝑚𝑝 = [
𝑁𝑠

𝑁𝑛𝑜𝑚,𝑐𝑜𝑚𝑝
]         (32) 472 

 473 
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where, 𝑁𝑛𝑜𝑚,𝑐𝑜𝑚𝑝 is the nominal lifespan of PV panel 𝑁𝑛𝑜𝑚,𝑃𝑉 or wind turbine 𝑁𝑛𝑜𝑚,𝑊𝑇. 474 

Both of them, similar to the system lifespan 𝑁𝑆, are measured in years. 475 

 476 

The number of replacements of fuel cell, electrolyser and diesel generator are calculated 477 

based on the actual usage of these components and is given by: 478 

 479 

𝑛𝑟,𝑐𝑜𝑚𝑝 = [
𝑁𝑠𝑇𝑐𝑜𝑚𝑝

𝑁𝑐𝑜𝑚𝑝,𝑛𝑜𝑚
]         (33) 480 

 481 

where 𝑁𝑐𝑜𝑚𝑝,𝑛𝑜𝑚 and 𝑇𝑐𝑜𝑚𝑝 are, respectively, the nominal lifespan and the operating time, 482 

both in hours.  483 

 484 

The number of replacements for batteries, 𝑛𝑟,𝐵, is calculated using the nominal lifespan of the 485 

batteries and the equivalent life of the battery in years, whichever is shorter as given by [20]:  486 

 487 

𝑛𝑟,𝐵 = [max {
𝑁𝑠

𝑁𝑛𝑜𝑚,𝐵
,

𝑁𝑠

𝑁𝑒𝑞,𝐵
}]         (34) 488 

 489 

where, 𝑁𝑒𝑞,𝐵 stands for the equivalent life of the battery and 𝑁𝑛𝑜𝑚,𝐵 is the nominal life of the 490 

battery, both measured in years. The nominal life of lead-acid batteries is about 4 years. The 491 

equivalent life of the battery depends on the number and depth of charge-discharge cycles, as 492 

given by: 493 

 494 

𝑁𝑒𝑞,𝐵 =
1

∑
1

[𝑛𝑐𝑦𝑐𝑙𝑒 𝑡𝑜 𝑓𝑎𝑖𝑙]
𝑘

𝑛𝑑
𝑘=1

         (35) 495 

 496 

where, 𝑛𝑑 is the total number of charge-discharge cycles per year, and [𝑛𝑐𝑦𝑐𝑙𝑒 𝑡𝑜 𝑓𝑎𝑖𝑙]𝑘
, the 497 

number of cycles to failure, for lead-acid batteries is given by [20] as a function of depth of 498 

discharge DOD: 499 

 500 

[𝑛𝑐𝑦𝑐𝑙𝑒 𝑡𝑜 𝑓𝑎𝑖𝑙]𝑘
= 540.1𝐷𝑂𝐷𝑘

−0.991        (36) 501 

 502 

Table 1 summarises the value of cost modelling parameters required for cost analysis of 503 

HRES as reported in [46, 50, 51]. 504 

 505 

Table 1-Cost modelling parameters used in this study 506 
 Wind turbine PV panel Battery Diesel generator Fuel cell Electrolyser  

S  
Rotor area 
𝐴𝑊𝑇 (𝑚2) 

Panel area 
𝐴𝑃𝑉  (𝑚2)  

Battery bank 
capacity (Ah) 

Nominal 
power𝑃𝐷,𝑛𝑜𝑚 (𝑊) 

Nominal power  
𝑃𝐹𝐶,𝑛𝑜𝑚 (𝑊) 

Nominal power  
𝑃𝐸𝐿,𝑛𝑜𝑚 (𝑊) 

𝐶𝑢  Eq. 37 Eq. 38 Eq. 39 Eq. 40 4.08$/𝑊𝑛𝑜𝑚 2$/𝑊𝑛𝑜𝑚  

𝛼𝑖𝑛𝑠𝑡  0.2 0.4 0 0 0 0 

𝛼𝑂&𝑀  0.03 0.01 0.01 0.15 0.1 0.1 

𝑁𝑛𝑜𝑚 25 years 20 years 4 years  10,000 hours 5,000 hours 60,000 hours 

 507 

For wind turbine:  508 

𝐶𝑢($/𝑚2) = {
480                                                  𝐴𝑊𝑇 > 1180 𝑚2

−207 × 𝑙𝑜𝑔(𝐴𝑊𝑇) + 1944          𝐴𝑊𝑇 ≤ 1180 𝑚2    (37) 509 
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 510 

For PV panel:  511 

 512 

𝐶𝑢($/𝑚2) = {
220                                                  𝐴𝑃𝑉 > 1000 𝑚2

−51.64 × 𝑙𝑜𝑔(𝐴𝑃𝑉) + 580         𝐴𝑃𝑉 ≤ 1000 𝑚2    (38) 513 

 514 

For battery bank, the unit cost depends on the battery capacity, 𝑐𝐵, and a discount rate for 515 

bulk purchase: 516 

 517 

𝐶𝑢($/𝐴ℎ) = 163𝑐𝐵
−1.14 × {

0.8                                                  𝑛𝐵 > 100
−0.0015𝑛𝐵 + 0.95                       𝑛𝐵 ≤ 100

   (39) 518 

 519 

For diesel generator: 520 

 521 

𝐶𝑢($/𝑊) = {
0.4                                                                             𝑃𝐷,𝑛𝑜𝑚 >  50000 𝑊

1.7 × 10−10𝑃𝐷,𝑛𝑜𝑚
2 − 1.84 × 10−5𝑃𝐷,𝑛𝑜𝑚 + 0.8971        𝑃𝐷,𝑛𝑜𝑚 ≤  50000 𝑊

  (40) 522 

 523 

 524 

Levelised Cost of Energy-Levelised cost of energy is calculated based on the usable power 525 

produced by the system and the cost of production within a year. The annualised cost of the 526 

system, 𝐶𝑎, is determined by:  527 

 528 

𝐶𝑎 = 𝑇𝐿𝑆𝐶
𝑑(1+𝑑)𝑁𝑠

(1+𝑑)𝑁𝑠−1
         (41) 529 

 530 

where, the fraction in this equation is the uniform capital recovery factor. For standalone 531 

HRES, the LCE of a system, 𝐶𝑙 is given by: 532 

 533 

𝐶𝑙 =
𝐶𝑎

𝑃𝑡
           (42) 534 

 535 

where, 𝑃𝑡 is the annual usable power output of the system. It should be noted that for 536 

standalone HRES the output power is not necessarily entirely usable. The produced power 537 

excess to the load is used for charging the battery bank and hydrogen tank. However, if the 538 

excess power is more than the required power for charging the battery bank and hydrogen 539 

tank, the difference will be dumped. Hence, the usable annual output for standalone HRES is: 540 

 541 

𝑃𝑡 = 𝐿𝑡 − 𝑈𝑡          (43) 542 

 543 

in which, 𝐿𝑡 and 𝑈𝑡 are the total annual demand load and the total annual unmet load 544 

respectively. 545 

 546 

For on-grid HRES, the unmet load is compensated by the grid. Therefore, the LCE has two 547 

terms, namely the cost of producing energy by the HRES and the cost of buying electricity 548 

from the grid to compensate for the unmet load: 549 

 550 

𝐶𝑙 =
𝐶𝑎

𝑃𝑡
 +

𝐶𝑢,𝑡

𝑃𝑢,𝑡
          (44) 551 

 552 

The cost of electricity from grid depends on the unmet load and, in the case of variable rates, 553 

the time of the day. The total cost of electricity from the grid is therefore given by:   554 



13 

 

 555 

𝐶𝑢,𝑡 = ∑ [𝑃𝑢𝐶𝑔𝑟𝑖𝑑]
𝑖

8760
𝑖=1         (45) 556 

 557 

2.4 Optimisation Formulation 558 

In view of the design variables and design qualities defined in the previous two subsections, 559 

the optimisation problem can be formulated as: 560 

 561 

𝑚𝑖𝑛 𝑌⃗⃗1( 𝑋⃑) and 𝑚𝑎𝑥 𝑌⃗⃗2( 𝑋⃑)        (46.a) 562 

𝑠. 𝑡. 563 

𝑌⃗⃗3 ≤ 𝑌⃗⃗3,𝑐          (46.b) 564 

𝑌⃗⃗4 ≥ 𝑌⃗⃗4,𝑐          (46.c) 565 

𝑋⃗𝑙 ≤ 𝑋⃗ ≤ 𝑋⃗𝑢          (46.d) 566 

 567 

where, 𝑋⃑ = {𝑛𝑊𝑇 , 𝐴𝑊𝑇 , 𝐴𝑃𝑉, 𝑛𝐵, 𝑃𝐷,𝑛𝑜𝑚, 𝑃𝐹𝐶,𝑛𝑜𝑚, 𝑃𝐸𝐿,𝑛𝑜𝑚} is the vector of design variables, 568 

with 𝑋⃗𝑙 and 𝑋⃗𝑢 as given by Equations 2 through 9 for the generic configuration, or as 569 

explained above for special cases of retrofitting, fixed configuration and pre-sized 570 

components. Vectors 𝑌⃗⃗1 and 𝑌⃗⃗2 , respectively, contain the objectives to be minimised and 571 

maximised. Vectors 𝑌⃗⃗3 and 𝑌⃗⃗4  contains those design qualities which are subjected to the 572 

constraints 𝑌⃗⃗3,𝑐 and 𝑌⃗⃗4,𝑐.  573 

 574 

These four vectors are disjoint subsets of design qualities:  575 

 576 

𝑌⃗⃗1 ∪ 𝑌⃗⃗2 ∪ 𝑌⃗⃗3 ∪ 𝑌⃗⃗4 ⊆ {𝑇𝐿𝑆𝐶, 𝐿𝐶𝐸, 𝑈𝑡, 𝐶𝑂2, 𝑝, 𝑓𝑒𝑒𝑑, 𝑝𝑟𝑜𝑓𝑖𝑡}     (47.a) 577 

 578 

𝑌⃗⃗1 ∪ 𝑌⃗⃗3 ⊆ {𝑇𝐿𝑆𝐶, 𝐿𝐶𝐸, 𝑈𝑡 , 𝐶𝑂2}        (47.b) 579 

 580 

𝑌⃗⃗2 ∪ 𝑌⃗⃗4 ⊆ {𝑝, 𝑓𝑒𝑒𝑑, 𝑝𝑟𝑜𝑓𝑖𝑡}         (47.c) 581 

 582 

3 Optimisation Method 583 

The optimisation methods must be able to search the design space at two levels, namely, 584 

configuration level and size level. In this study, we use a GA and a nondominated sorting GA 585 

(NSGA-II) for single and multiobjective optimisation respectively. The integrated 586 

configuration-size formulation and the single and multiobjective optimisation algorithms 587 

have been implemented in the software tool MOHRES (Multiobjective Optimisation of 588 

Hybrid Renewable Energy Systems) [52, 53].  Figure 1 shows the dataflow in MOHRES. 589 

 590 



14 

 

 591 
Figure 1-Interated configuration-size optimisation dataflow in MOHRES 592 

 593 

The upper and lower limits of the design variables are set using Equations 2-9 for a full 594 

integrated configuration-size optimisation, and a combination of these equations and fixed 595 

values for special cases of optimisation for retrofitting and fixed configuration. Objectives 596 

and constraints are set according to the optimisation problem 46 and 47. 597 

   598 

In configurations which include more than one storage/auxiliary component different 599 

dispatch strategies can be defined. A dispatch strategy is defined based on the charging and 600 

usage orders of the storage/auxiliary components.  For instance, in a wind-PV-fuel cell-601 

electrolyser-diesel-battery bank configuration, 6 different usage orders can be defined based 602 

on the precedence of the battery bank, diesel generator and fuel cell in compensating the 603 

power deficit. For the same configuration, 2 charging orders can be defined based on the 604 

precedence of the battery bank and hydrogen tank in charging where there is an excess power 605 

[26]. 606 

 607 

Generally speaking, a search mechanism should be able to deliver both exploration and 608 

exploitation at all levels. However, here at the configuration level we are dealing with a 609 

highly discrete and small design space (of around twenty-odd members for the problem at 610 

hand). Therefore, exploitation does not apply at configuration level. The reproduction 611 

operators, crossover and mutation, therefore must be designed in such a way that collectively 612 

provide exploration and exploitation at size level and exploration at configuration level. 613 

 614 

Arithmetic weighted crossover is a natural choice for crossover mechanism in sizing 615 

problems. A weighted arithmetic crossover is therefore used for exploitation of the design 616 

space at size level. Each crossover operation generates two offspring as defined by: 617 

 618 

𝑋⃗𝑐ℎ𝑖𝑙𝑑,1 = 𝜆𝑋⃑𝑝𝑎𝑟𝑒𝑛𝑡,1 + (1 − 𝜆)𝑋⃑𝑝𝑎𝑟𝑒𝑛𝑡,2      (48.a) 619 
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 620 

𝑋⃗𝑐ℎ𝑖𝑙𝑑,2 = 𝜆𝑋⃑𝑝𝑎𝑟𝑒𝑛𝑡,2 + (1 − 𝜆)𝑋⃑𝑝𝑎𝑟𝑒𝑛𝑡,1      (48.b) 621 

 622 

where, 𝜆 ∈ (0,1) is a random number.  623 

 624 

The arithmetic crossover mechanism defined above, has some exploration capability at the 625 

configuration level: by combining two parents of different configurations (combining of two 626 

chromosomes with some zero genes placed at different locations), there is a chance that the 627 

offspring have a configuration with more components (a chromosome with more non-zero 628 

genes) than those of its parents. For example, a crossover between a wind-PV solution and a 629 

PV-battery-diesel solution will lead to at least one wind-PV-battery-diesel solution 630 

(depending on the value of the random number 𝜆 in Equations 48). The exploration at 631 

configuration level due to arithmetic crossover is a one-way ‘upward’ exploration. That is, it 632 

can only produce offspring with similar or more populated configurations than those of 633 

parents. An upward/downward change in configuration refers to adding/removing 634 

components to/from the system configuration.  635 

 636 

The mutation operator is therefore designed in such a way that besides exploration at size 637 

level, conduct a ‘downward’ exploration at configuration level too. At configuration level, a 638 

number of randomly selected genes in a randomly selected solution are set to zero. This is 639 

equivalent to removing the corresponding components from the configuration (downward 640 

exploration). Mutation at configuration level operates as:  641 

 642 

𝑋⃗𝑚𝑢𝑡𝑒 = 𝑀⃗⃗⃗1 ∘ 𝑋⃗𝑝𝑎𝑟𝑒𝑛𝑡         (49) 643 

 644 

where, 𝑀⃗⃗⃗1  is a 1 × 𝑛𝑥 mask vector with randomly generated 0 and 1entries, the operator ‘∘’ 645 

is Hadamard (entry-wise) product and 𝑛𝑥 is the number of design variables in the 646 

chromosome (here 7). As a result of the mutation operation above, the design variables 647 

corresponding to the zero elements of the mask vector 𝑀⃗⃗⃗1 are set to zero. This is equivalent to 648 

the exclusion of the corresponding components from the configuration and therefore a 649 

downward exploration in the configuration. 650 

 651 

At size level, a dynamic mutation operator is designed with two functions of exploration at 652 

earlier generations and exploitation at later generations. Although it is very unusual to use 653 

mutation operator for exploitation, it is shown later that adding exploitatory functionality to 654 

the mutation operator will boost the performance of the search significantly.  A selected 655 

solution is perturbed according to: 656 

 657 

𝑋⃗𝑚𝑢𝑡𝑒 = 𝑋⃗𝑝𝑎𝑟𝑒𝑛𝑡 + 𝛿𝑋⃗        (50) 658 

 659 

where, the perturbation vector 𝛿𝑋⃗ is a randomly generated vector in the neighbourhood of the 660 

parent. The radius of the neighbourhood shrinks with a factor of (1 −
𝑖𝑔𝑒𝑛−1

𝑛𝑔𝑒𝑛−1
), in which, 𝑛𝑔𝑒𝑛 661 

is the total number of generations and 𝑖𝑔𝑒𝑛 (1 ≤ 𝑖𝑔𝑒𝑛 ≤ 𝑛𝑔𝑒𝑛) is the current generation 662 

number. This allows fine-tuning (exploitation) at higher generations. 663 

 664 

The 𝑖 − 𝑡ℎ  element of the perturbation vector 𝛿𝑋⃗, 𝛿𝑋𝑖, is a random value selected from the 665 

𝑖 − 𝑡ℎ  row of the neighbourhood matrix 𝑁𝑚𝑢𝑡𝑒 defined as: 666 
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 667 

𝑁𝑚𝑢𝑡𝑒 = 𝑀2 ∘ 𝐼𝑚𝑢𝑡𝑒          (51) 668 

 669 

in which, 𝑀2  is an 𝑛𝑥 × 2 mask matrix with randomly generated 0 and 1entries and 𝐼𝑚𝑢𝑡𝑒 is 670 

the shrinking mutation neighbourhood:   671 

 672 

[𝐼𝑚𝑢𝑡𝑒]𝑛𝑥×2 = (1 −
𝑖𝑔𝑒𝑛−1

𝑁𝑔𝑒𝑛−1
) [

𝑋⃗𝑙 − 𝑋⃗𝑝𝑎𝑟𝑒𝑛𝑡

𝑋⃗𝑢 − 𝑋⃗𝑝𝑎𝑟𝑒𝑛𝑡

]

𝑇

      (52) 673 

 674 

The mask matrix 𝑀2 is responsible for selecting the genes going through mutation at size 675 

level and the direction of the perturbation. For instance, a randomly generated matrix 𝑀2 =676 

[
0 0 1 1 0 1
0 1 1 0 0 0

0
0

]
𝑇

excludes 𝑋1 , 𝑋5 and 𝑋7 (the number of wind turbines, and the 677 

size of diesel generator and electrolyser) from mutation (no perturbation for these design 678 

variables), allows a positive perturbation for 𝑋2 (the size of wind turbine), a positive or 679 

negative perturbation for 𝑋3 (the size of PV panels), and a negative perturbation for 𝑋4 and 680 

𝑋6 (the size of battery bank and fuel cell). 681 

 682 

While the parent selection for the mutation at configuration level takes place randomly, the 683 

parent selection at the size level is based on a combination of a random selection and a 684 

fitness-based selection. The classical random selection is used where the population is 685 

diverse. The parent selection will be switched to a fitness based, where a roulette wheel is 686 

used to give higher chance of fine-tuning to the fitter solutions, as the diversity of the 687 

population decreases towards the end of the search (where the average fitness 𝑓𝑖𝑡𝑎𝑣 688 

approaches the maximum fitness 𝑓𝑖𝑡𝑚𝑎𝑥 ).  In this study the limit of 
𝑓𝑖𝑡𝑎𝑣

𝑓𝑖𝑡𝑚𝑎𝑥
≥ 0.9 is used as 689 

the limit for fine-tuning (switching the parent selection from random to roulette wheel based). 690 

 691 

Another uncommon feature of the mutation operator designed for the problem at hand is 692 

related to the probability of mutation 𝑃𝑚. A dynamic 𝑃𝑚 is defined as follows: 693 

 694 

𝑃𝑚 = 𝑃𝑚,𝑐𝑜𝑛𝑓𝑖𝑔 + 𝑃𝑚,𝑠𝑖𝑧𝑒        (53) 695 

 696 

where, 𝑃𝑚, 𝑃𝑚,𝑐𝑜𝑛𝑓𝑖𝑔 and 𝑃𝑚,𝑠𝑖𝑧𝑒, respectively, represent the total mutation rate, the fraction 697 

of the mutations applied at the configuration level (Equation 49), and the fraction of the 698 

mutations applied at the size level (Equation  50): 699 

 700 

𝑃𝑚,𝑐𝑜𝑛𝑓𝑖𝑔 = 0.5𝑃𝑚,0 (1 −
𝑖𝑔𝑒𝑛−1

𝑛𝑔𝑒𝑛−1
)        (54) 701 

 702 

𝑃𝑚,𝑠𝑖𝑧𝑒 = 0.5𝑃𝑚,0          (55) 703 

 704 

The total mutation rate 𝑃𝑚 (0.5𝑃𝑚,0 ≤ 𝑃𝑚 ≤ 𝑃𝑚,0) decreases as the generation number 𝑖𝑔𝑒𝑛 705 

increases.  The limits 𝑃𝑚,0 and 0.5𝑃𝑚,0 are associated to 𝑖𝑔𝑒𝑛 = 1 and 𝑖𝑔𝑒𝑛 = 𝑛𝑔𝑒𝑛 706 

respectively. A relatively high value for 𝑃𝑚,0~0.5 − 0.9 should be used in order to allow 707 

effective mutation operation at both size and configuration levels.  708 

   709 

It should be noted that, although the design variables are treated as continuous real numbers, 710 

for practicality reasons, the design variables are rounded.  𝐴𝑃𝑉 and 𝑛𝐵 are rounded up to the 711 
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nearest integer number, the nominal powers (diesel, fuel cell and electrolyser) are rounded up 712 

to the nearest 100 watt, and the wind turbine rotor radius 𝑅𝑊𝑇 is rounded up to the nearest 10 713 

cm.  714 

 715 

In the problem formulation of (46) and (47) above, there is no limitation on the number of 716 

constraints.  Hence, the initial population generation for highly constrained optimisation 717 

problems may take a very long time if infeasible solutions are rejected. In such cases, the 718 

crossover and mutation may also become ineffective due to generating solutions with high 719 

chance of being rejected due to infeasibility. Hence, penalising infeasible solutions is the best 720 

approach in these cases. On the other hand, for flexible design spaces, adopting a rejection 721 

method leads to starting from a feasible set of solutions which is more likely to get to the 722 

global optima in a smaller number of generations. Therefore, two methods of rejection and 723 

penalising infeasible solutions are used for different cases, depending on the number of 724 

constraints and the rigidity of the design space.  725 

 726 

Equation 56 shows a generalised fitness function with a great flexibility, which is developed 727 

for single objective optimisation using GA.  This form can be used for both maximisation and 728 

minimisation cases and can take the form of a raw fitness as well as the form of a penalised 729 

fitness, by setting some coefficients by the user. 730 

 731 

𝑓𝑖𝑡 = (𝑓𝑖𝑡𝑟 ∏ 𝑃𝑖)(1 − 𝑓𝑖𝑡0) +  𝑓𝑖𝑡0
𝑛𝑐
𝑖=1                                  (56) 732 

 733 

In this equation, 𝑓𝑖𝑡 stands for the fitness, 𝑓𝑖𝑡𝑟 is the normalised raw fitness, 𝑛𝑐 is the number 734 

of constraints, 𝑓𝑖𝑡0 is the worst possible normalised fitness (set by the designer), and 735 

0 < 𝑃𝑖 ≤ 1 is the penalty value for the i-th constraints. A value of  𝑓𝑖𝑡0 = 0.1 is used for the 736 

single objective optimisation cases studies in this paper. By doing this, we prevent assigning 737 

very small fitness values to bad solutions, and therefore, any potentially good information 738 

from the worst solution can still be retrieved in crossover operation.  739 

 740 

The raw fitness for a solution is calculated as follows: 741 

 742 

 𝑓𝑖𝑡𝑟 = {

𝑓𝑛

𝑓+𝑓𝑛 
    when 𝑓 is to be minimised

𝑓

2𝑓𝑛 
         when 𝑓 is to be maximised

     (57) 743 

 744 

where 𝑓 is the calculated objective function for that solution, and 𝑓𝑛, the average value of the 745 

objective function of solutions in the initial population, is used to normalise the fitness.  746 

 747 

Here, the infeasibility is measured in terms of both the number of contradicted constraints 748 

and the amount of deviation from the constraint limits. The penalty applied to each 749 

contradicted constraint is calculated by: 750 

 751 

𝑃𝑖 = exp(−𝜇𝑖𝛿𝑖)           (58) 752 

 753 

where, 𝛿𝑖 is the deviation from the constraint limit and 0 ≤ 𝜇𝑖 is the strength of the applied 754 

penalty on the constraint 𝑖. Parameter  𝜇𝑖 = 0 represents the case of no penalty if the 755 

constraint 𝑖  is contradicted. Deviations 𝛿𝑖 are normalised values and given by: 756 

 757 
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𝛿𝑖 = {
0                   𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

|
𝑌𝑖−𝑌𝑐,𝑖 

max {𝑌𝑐,𝑖 ,𝑌𝑖}
|     𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

   (59) 758 

 759 

where, 𝑌𝑖’s are the entries of  𝑌⃗⃗3 ∪ 𝑌⃗⃗4 and 𝑌𝑖,𝑐’s are the entries of  𝑌⃗⃗3,𝑐 ∪ 𝑌⃗⃗4,𝑐 as defined in the 760 

optimisation problem of (46) and (47). The normalisation term max {𝑌𝑐,𝑖 , 𝑌𝑖} is always 761 

nonzero for any contradicted constraint, irrespective of the type of inequality constraint and 762 

the values 𝑌𝑐,𝑖 and 𝑌𝑖. 763 

 764 

The goal of NSGA-II (nondominated sorting genetic algorithm) is to find the best estimation 765 

of the Pareto front solutions. This is done by generating a set of nondominated solutions and 766 

moving it forward towards the actual Pareto front generation by generation. A successful 767 

NSGA-II should be aiming at producing enough and uniformly distributed solutions on the 768 

Pareto front. In order to improve the first front generation by generation, the same 769 

reproduction operators (crossover and mutation) as those defined for single objective GA can 770 

be used. In single objective GA, the parent selection for crossover is solely based on a 771 

roulette wheel, which is formed based on the fitness of the solutions in the population. In 772 

multiobjective NSGA-II, the parent selection for crossover is different. It is based on a 773 

tournament selection mechanism which is based on (i) the rank of a solution (the front that 774 

the solution belongs to) and (ii) the crowding distance. The crowding distance is a measure of 775 

how close a solution is to its neighbours on the same front. Both are important qualities.  The 776 

rank of a solution is important as solutions on the low-rank fronts are more likely to produce 777 

better offspring, if selected as a parent. The crowding distance is also important as those 778 

solutions located in less crowded regions, if selected as a parent for crossover, are more likely 779 

to produce offspring in their own neighbourhood and therefore filling the gaps on the front. 780 

 781 

The common search parameters for both GA and NSGA-II are: 𝑃𝑐, 𝑃𝑚,0,  𝑛𝑝𝑜𝑝 and 𝑛𝑔𝑒𝑛. For 782 

GA, the method of handling of infeasible solutions (rejection or penalty) is also a search 783 

parameter, and so are the penalty weights  𝜇𝑖 in case of using penalty method. For any 784 

generated design candidate within the GA or NSGA-II search (produced either randomly as 785 

in initial population generation or as a result of the mutation and crossover using Equations 786 

48-55), the evaluator takes the system size 𝑋⃗, the demand load and renewables profiles and 787 

uses the power and cost models (Equations 10-45) to find the relevant qualities of the design 788 

candidate 𝑌⃗⃗ (objectives and constrained design qualities as defined in  47). These 𝑌⃗⃗ values 789 

are returned to the search algorithm for assigning fitness and rank for that individual 790 

according to Equations 56-59. 791 

 792 

4 Case Studies 793 

In this section, 8 case studies, denoted by CS1 to CS8, are reported. These case studies are 794 

designed carefully to assess the robustness of the presented problem formulation in solving 795 

different types of HRES optimisation problems and to evaluate the performance of the 796 

developed GA and NSGA-II for integrated configuration-size optimisation.  797 

 798 

Case studies are summarised in Table 2. The first six case studies are single objective and the 799 

last two are multiobjective. Three sites are used for these case studies. The hourly averaged 800 

demand load and the renewable resources for four seasonal typical days of Site 1 are given in 801 

the appendix. Site 2 has similar demand load profile as that of Site 1 but the solar irradiance 802 

and wind speed are, respectively, 20% lower and 50% higher than of those in Site 1. Site 3 is 803 

a low-renewable site. The demand load and wind profiles are identical to Site 1, but the solar 804 
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irradiance is half of that of Site 1. Both standalone (S) and grid connected cases (G) are 805 

considered.  806 

 807 

The purpose of CS1 is to show how the presented problem formulation starts with a generic 808 

all-components-in configuration and ends with an optimum configuration by eliminating cost 809 

intensive components. The optimisation problem of CS2 is identical to that of CS1 but the 810 

renewable resource profile is different. This case study is planned to show how the integrated 811 

configuration-size optimisation problem formulation finds a different optimum configuration 812 

as the renewable resources’ profiles change. CS3 is defined to show how adding a new 813 

constraint influences the optimum configuration. In CS4 the optimum size of components for 814 

a predefined configuration are obtained. This case study is planned to show the flexibility of 815 

the problem formulation in dealing with fixed configurations (reducing from integrated 816 

configuration-size optimisation to size optimisation only). CS5 and CS6 are aimed at 817 

showing the flexibility of the formulation in delivering special cases of retrofitting of an 818 

existing power system by adding new components to an existing system. In CS5, the existing 819 

power system is a 5 𝑘𝑊 (𝑛𝑜𝑚𝑖𝑛𝑎𝑙) diesel generator. This diesel generator produces 37 820 

tonnes of CO2 emission per year when operating continuously. The purpose of the 821 

optimisation is to find the best retrofitted configuration that includes this diesel generator (for 822 

saving) but reduces its CO2 emission to less than 500 kg per year (for environment). CS6 823 

presents another retrofitting case but starts with a different existing power system (a 824 

30𝑘𝑊 @𝑉𝑟𝑎𝑡𝑒𝑑 = 9 𝑚/𝑠 wind turbine with a rotor radius of 6.9 m) and aims at a fixed 825 

retrofitted configuration (wind-PV-battery).  The intention for this retrofitting is to invest in 826 

renewable energy by selling the excess power to the grid.  827 

 828 

Table 2-Summary of Case Studies 829 
Case 
study 

Configuration Obj. Const. Site 
Standalone/ 

on grid 

CS1 Generic; 𝑋⃗𝑙 Eq. 2; 𝑋⃗𝑢 Eq.s 3 to 9  𝐿𝐶𝐸 𝑈𝑡 = 0  1 S 

CS2 Generic; 𝑋⃗𝑙 Eq. 2; 𝑋⃗𝑢 Eq.s 3 to 9 𝐿𝐶𝐸 𝑈𝑡 = 0  2 S 

CS3 Generic; 𝑋⃗𝑙 Eq. 2; 𝑋⃗𝑢 Eq.s 3 to 9 𝐿𝐶𝐸 
𝑈𝑡 = 0  
𝑝 > 200%  

2 S 

CS4 

Fixed: W-FC-EL 

𝑋⃗𝑙 Eq. 2 ;  𝑋⃗𝑢 =
{𝑅𝑊𝑇

𝑢 , 0, 0,0, 𝑃𝐹𝐶,𝑛𝑜𝑚
𝑢 , 𝑃𝐸𝐿,𝑛𝑜𝑚

𝑢 }  & Eq.s 4, 7 and 

8 

𝐿𝐶𝐸 𝑈𝑡 = 0  1 S 

CS5 

Retrofitting: diesel only to generic config. 

𝑋⃗𝑙 = {0,0,0, 𝑃𝐷,𝑛𝑜𝑚, 0,0}  

𝑋⃗𝑢 = {𝑅𝑊𝑇
𝑢 , 𝐴𝑃𝑉

𝑢 , 𝑛𝐵
𝑢 , 𝑃𝐷,𝑛𝑜𝑚, 𝑃𝐹𝐶,𝑛𝑜𝑚

𝑢 , 𝑃𝐸𝐿,𝑛𝑜𝑚
𝑢 } 

& Eq.s 4, 5 and 7 through 9 
𝑃𝐷,𝑛𝑜𝑚 = 5𝑘𝑊  

𝑇𝐿𝑆𝐶 
𝑈𝑡 = 0  
𝐶𝑂2 < 500 𝑘𝑔  

1 S 

CS6 

Retrofitting: wind only to fixed config. W-PV-B  

𝑋⃗𝑙 = {𝑅𝑊𝑇 , 0,0,0,0,0}  

𝑋⃗𝑢 = {𝑅𝑊𝑇 , 𝐴𝑃𝑉
𝑢 , 𝑛𝐵

𝑢 , 0,0,0} & Eq.s 5 and 9 
𝑅𝑊𝑇 = 6.9 𝑚  

𝑝𝑟𝑜𝑓𝑖𝑡 
𝑈𝑡 = 0  
𝑇𝐿𝑆𝐶 ≤ 250, 000  

1 G 

CS7 Generic; 𝑋⃗𝑙 Eq. 2; 𝑋⃗𝑢 Eq.s 3 to 9  
𝐿𝐶𝐸 
𝑈𝑡 

𝑝 ≥ 60%  1 S 

CS8 Generic; 𝑋⃗𝑙 Eq. 2; 𝑋⃗𝑢 Eq.s 3 to 9 

𝐿𝐶𝐸 
𝑈𝑡 

𝐶𝑂2 
 3 S 

 830 
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In single objective optimisation problems, we are looking for a solution with best 831 

performance in terms of one of the design qualities and have ‘hard’ constraints on some other 832 

design qualities. For instance, in CS1 we are looking for the cheapest fully reliable system 833 

(min 𝐿𝐶𝐸 subject to 𝑈𝑡 = 0). From a practical point of view, this is not always the case. We 834 

can often tolerate some inferior performance measures as we know that losing on one quality 835 

leads to a gain on another quality (conflicting objectives). In cases like this conducting a 836 

multiobjective optimisation is the best way to get an insight to the interaction between 837 

different objectives. Once a Pareto front is obtained the designer selects a solution through a 838 

trade-off study.  Case studies CS7 and CS8 are multiobjective problems. In CS7 we deal with 839 

two conflicting cost-related and reliability-related objectives: 𝐿𝐶𝐸 and 𝑈𝑡. CS8 is defined for 840 

a low-renewables site with three conflicting objectives: 𝐿𝐶𝐸, 𝑈𝑡 and the third one related to 841 

the impact of the system on the environment: 𝐶𝑂2 emission. 842 

 843 

In all case studies the usage order is defined as: battery first, then fuel cell (hydrogen), and 844 

then diesel. The charging order is defined as: battery first then hydrogen tank. All power and 845 

cost model parameters which have not been defined within the text are given in Table A1 in 846 

the appendix. 847 

 848 

For consistency the same set of search parameters: 𝑃𝑐 =  0.3, 𝑃𝑚,0  =  0.9 and 𝑛𝑔𝑒𝑛 = 100 849 

are used for both single objective and multiobjective cases. Population size 𝑛𝑝𝑜𝑝 is set to 20 850 

and 40 for GA and NSGA-II respectively.  851 

 852 

4.1 Results and Discussion 853 

 854 

The optimum solutions for the first six case studies are summarised in Table 3, followed by 855 

detailed discussion including the performance of the GA for each case study.  856 

 857 

Table 3-Optimum solutions for single objective case studies CS1 through CS6 858 

Case 
study  

𝑋⃑𝑜𝑝𝑡   𝑌⃑⃗𝑜𝑝𝑡 

𝑛𝑊𝑇 
 

𝑅𝑊𝑇 
(𝑚2) 

𝐴𝑃𝑉  
(𝑚2) 

𝑛𝐵 
𝑃𝐷,𝑛𝑜𝑚  

(𝑊)  

𝑃𝐹𝐶,𝑛𝑜𝑚 

(𝑊) 

𝑃𝐸𝐿,𝑛𝑜𝑚 

(𝑊) 
𝑇𝐿𝑆𝐶 

(1000$)  
𝐿𝐶𝐸 

(𝑐/𝑘𝑊ℎ) 
𝑈𝑡 

(𝑘𝑊) 
𝑝  

(%)  
𝐶𝑂2  
(𝑘𝑔)  

𝑝𝑟𝑜𝑓𝑖𝑡/𝑓𝑒𝑒𝑑 
 (1000$/𝑀𝑊)  

CS1 1 0 296 232 0 0 0 186 23.0 0 139 0 N/A 

CS2 1 4.7 0 14 8300 0 0 186 23.1 0 134 5700 N/A 

CS3 1 5.7 14 62 0 0 0 192 23.9 0 201 0 N/A 

CS4 1 11.6 0 0 0 8500 4800 694 86.2 0 378 0 N/A 

CS5 1 0 285 232 5000 0 0 192* 23.8* 0 134 400 N/A 

CS6 1 6.9 372 112 0 0 0 250** 31.0** 0 284 0 (12.8/106.7) 

*Excluding the capital cost of the diesel generator 
**Excluding the capital cost of the wind turbine 

 859 

CS1: Configuration-size optimisation-Site 1 860 

A closer look at the renewable resources of the appendix suggests that this site has low-wind 861 

and high-solar irradiance profiles. In view of this, although starting from a generic wind-PV-862 

battery-diesel-Fuel cell/electrolyser, a PV-battery configuration is the optimum configuration 863 

that we expect to see as a result of an integrated configuration-size optimisation for CS1. 864 

Staring from a generic configuration and ending with a PV-battery configuration implies that 865 

wind turbine, diesel generator and fuel cell/electrolyser have been removed from the 866 

configuration at some points during the search process. Figure 2 shows the GA search history 867 

for this case study and Table 4 shows the configuration and components’ size of the best 868 

solution in each generation. The last column of Table 4 shows the change in the 869 



21 

 

configuration, where, as mentioned before downward and upward directions stand for 870 

removing and adding components to the system respectively.  871 

 872 
Figure 2-GA search history for CS1 873 

 874 

The final configuration is due to a combination of a number of downward and upward 875 

changes as shown in Table 4. The best solution of the second generation (𝑖𝑔𝑒𝑛 = 2), is the 876 

result of a downward mutation of one of the solutions in the first generation, which has led to 877 

the removal of the fuel cell (or electrolyser) and consequently the accompanied electrolyser 878 

(fuel cell). A further downward mutation leads to the removal of the wind turbine and diesel 879 

at 𝑖𝑔𝑒𝑛 = 6. An upward mutation or crossover brings back the diesel generator into the 880 

configuration at 𝑖𝑔𝑒𝑛 = 76, which is removed again later as a result of another downward 881 

mutation at 𝑖𝑔𝑒𝑛 = 99. Having both downward and upward changes in the configuration 882 

proves the capability of the developed algorithm in exploring various configurations while 883 

optimising the size of components. Exploration at configuration level at both directions 884 

shows that the algorithm does not get trapped in a local optima. 885 

 886 

Table 4- System configuration in the search history of CS1 887 

𝑖𝑔𝑒𝑛 𝑓𝑖𝑡𝑚𝑎𝑥  𝑓𝑖𝑡𝑎𝑣 
𝑅𝑊𝑇 
(𝑚2) 

𝐴𝑃𝑉  
(𝑚2) 

𝑛𝐵 
𝑃𝐷,𝑛𝑜𝑚 

(𝑊) 

𝑃𝐹𝐶,𝑛𝑜𝑚 

(𝑊) 

𝑃𝐸𝐿,𝑛𝑜𝑚 

(𝑊) 

Direction of change in 
configuration 

1 0.6352 0.5586 2 339 278 43400 47900 52000 no change 

2 0.6876 0.6021 10.9 122 772 32300 0 0 downward 

3 0.7494 0.6288 8 219 734 12800 0 0 no change 
4 0.7992 0.6602 4.5 422 552 6100 0 0 no change 
5 0.7992 0.6751 4.5 422 552 6100 0 0 no change 
6 0.8465 0.6929 0 314 832 0 0 0 downward 

7 0.8815 0.7293 0 356 282 0 0 0 no change 
…                 no change 
75 0.8920 0.8883 0 323 236 0 0 0 no change 
76 0.8967 0.8894 0 297 234 100 0 0 upward 

…                 no change 
98 0.8967 0.8947 0 297 232 100 0 0 no change 
99 0.8968 0.8953 0 296 232 0 0 0 downward 

100 0.8968 0.8960 0 296 232 0 0 0 no change 

 888 

With reference to Table 4, one can observe that in earlier generations, changes in 889 

configuration leads to jumps in 𝑓𝑖𝑡𝑚𝑎𝑥. However, in later generations changes in 890 

configuration are more like fine-tuning of configuration (i.e. adding a very small diesel of 891 

100 W to the system at 𝑖𝑔𝑒𝑛 = 76  and then removing it at 𝑖𝑔𝑒𝑛 = 99) and have smaller effect 892 

on maximum fitness.  893 

 894 
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For this particular case study, in which the optimum solution includes only two components 895 

in the configuration, we can prove the optimality of the obtained sizes by employing a refined 896 

exhaustive search in the neighbourhood of the solution. Using a grid size of 1 for both 𝐴𝑃𝑉  897 

and 𝑛𝐵, within the limits: 200 ≤ 𝐴𝑃𝑉 ≤ 400 and 150 ≤ 𝑛𝐵 ≤ 350, over 40000 system 898 

analyses are required. The results are shown in Figure 3. The solution identified by red circle 899 

has the minimum LCE while satisfying the constraint of 𝑈𝑡 = 0.  This is identical to the 900 

optimum solution obtained by the GA (𝐴𝑃𝑉 = 396 𝑚2; 𝑛𝐵 = 232). 901 

 902 

 903 
Figure 3-Exhuastive search results; top: feasible solutions; bottom: feasible design space  904 

 905 

It should be noted that, although for this case study the optimality of the PV-battery 906 

configuration could be argued with confidence with reference to the renewable resource 907 

profiles, there is no practical means to prove it. If we were to use an exhaustive search, even 908 

by assuming a very course grid of only 100 points for every one of the six design variables, 909 

1012 system evaluations over the entire of the domain would be required. 910 

 911 

CS2: Configuration-size optimisation -Site 2 912 

In comparison to the renewable resources of CS1, in CS2 the wind is 50% stronger but the 913 

solar irradiance is 20% weaker.  This makes, wind energy more cost effective and solar 914 

energy more cost intensive. Therefore, compared to the optimum configuration of CS1, we 915 

expect to see an increase in the share of power production by wind and a reduction of the 916 

contribution of PV. In fact, in this case study, the PV has been eliminated from the generic 917 

configuration. The presence of diesel in the configuration can be explained in view of the fact 918 

that, unless the site has high renewable resource profiles, with the current prices (the cost 919 

parameters used in this study) the LCE produced by diesel generator is still less than the LCE 920 

produced by renewables. Figure 4 shows the GA search history for this case study and Table 921 

5 shows the configuration history. This table shows a number of bidirectional changes in the 922 

configuration (𝑖𝑔𝑒𝑛 = 2, 4, 8 and 16) as well as downward and upward changes (𝑖𝑔𝑒𝑛 = 21, 923 

35 and 36). For instance the configuration of 𝑖𝑔𝑒𝑛 = 21 has simultaneously gone through a 924 

downward mutation, which has led to the removal of the wind turbine, and an upward 925 
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mutation or crossover which has brought back the diesel into the configuration. A closer look 926 

at the configurations obtained by bidirectional changes, one can see that bidirectional changes 927 

correspond to the removal/adding of a renewable component and adding/removal of a storage 928 

component.  929 

 930 
Figure 4-GA search history for CS2 931 

 932 

Table 5- System configuration in the search history of CS2 933 

𝑖𝑔𝑒𝑛 𝑓𝑖𝑡𝑚𝑎𝑥  𝑓𝑖𝑡𝑎𝑣 
𝑅𝑊𝑇 
(𝑚2) 

𝐴𝑃𝑉  
(𝑚2) 

𝑛𝐵 
𝑃𝐷,𝑛𝑜𝑚 

(𝑊) 

𝑃𝐹𝐶,𝑛𝑜𝑚 

(𝑊) 

𝑃𝐸𝐿,𝑛𝑜𝑚  

(𝑊) 

Direction of change in 
configuration 

1 0.681 0.557 3.1 460 446 93600 15900 14600 no change 

2 0.756 0.597 5.6 349 56 102800 0 0 downward 

3 0.756 0.633 5.6 349 56 102800 0 0 no change 

4 0.790 0.681 0 459 260 102800 0 0 downward 

…         no change 
7 0.813 0.730 0 402 236 80400 0 0 no change 
8 0.832 0.749 4.2 277 80 13000 0 0 upward 

…         no change 
15 0.832 0.802 4.2 277 80 13000 0 0 no change 
16 0.835 0.807 6 21 418 0 0 0 downward 

…         no change 
20 0.835 0.814 6 21 418 0 0 0 no change 
21 0.845 0.821 0 385 220 1300 0 0 downward and upward 

...         no change 
34 0.845 0.834 0 385 220 1300 0 0 no change 
35 0.850 0.836 2.3 349 288 0 0 0 downward and upward 

...         no change 
38 0.850 0.838 2.3 349 288 0 0 0 no change 
39 0.854 0.839 5.3 0 150 5800 0 0 downward and upward 

...         no change 
100 0.881 0.874 4.7 0 14 8300 0 0 no change 

 934 

 935 

CS3: Configuration-size optimisation - high renewable penetration 936 

In this case study, we are looking for the optimum HRES with cheapest cost of energy for a 937 

site with similar load and renewable resource profiles as in the previous case study. We also 938 

add a constraint on the penetration, looking for systems with high renewable penetration (𝑝 ≥939 

200%). Here, by adding a constraint on the penetration of the system we force the 940 

optimisation process to reduce the share of the diesel in favour of the share of the renewables. 941 

 942 

The obtained optimum configuration for this case study is in agreement with what we 943 

expected by forcing the optimisation process toward a high penetration configuration. The 944 
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LCE is slightly more than that of CS2 explaining why diesel generator was kept in the 945 

configuration through the optimisation process of CS2.  946 

 947 

Figure 5 shows the GA search history for this case study. Compared to the GA search 948 

histories of CS1 and CS2, a slower convergence rate is observed. This is due to searching 949 

within a more constrained design space and using the method of rejection of infeasible 950 

solutions.  951 

 952 
Figure 5-GA search history for CS3 953 

 954 

CS4: Size optimisation - fixed configuration 955 

In CS4, the configuration of wind-fuel cell/electrolyser is pre-planned by setting the upper 956 

and lower bounds for the size of the other components to zero. This is obviously a non-957 

optimum configuration due to the site’s low wind profile and the relatively high LCE of fuel 958 

cell/electrolyser compared to other renewable systems. The results show how expensive is 959 

this configuration in terms of LCE and TLSC for this site with cost parameters used in this 960 

paper, and in fact, explains why there is no fuel cell/electrolyser included in the optimum 961 

configurations found in the case studies 1 through 3.  962 

 963 

The GA search history is shown in Figure 6. Compared to the search histories of CS1 through 964 

CS3, the search history for this case study has no major jumps in the maximum fitness in 965 

earlier generations. This was expected as in this case study the configuration is fixed and the 966 

major jumps in the earlier generations are due to changes in the configuration (as observed in 967 

Figures 2 and 5, and Tables 4 and 5).  968 

 969 

 970 
Figure 6-GA search history for CS4 971 

 972 

The results of this case study show the flexibility of the problem formulation in dealing with 973 

fixed configurations. 974 
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 975 

CS5: Configuration-size optimisation – retrofitting for saving and environment  976 

In the retrofitting case of CS5 we already have a component with known size and would like 977 

to keep it as it is but add new components. In this case the upper and lower limits for diesel 978 

generator are set as the nominal size of the existing diesel generator (𝑃𝐷,𝑛𝑜𝑚 = 5𝑘𝑊). 979 

Keeping the diesel generator in the configuration as an auxiliary unit reduces the overall cost 980 

of the system. However, the usage of the diesel is limited to an annual emission of 𝐶𝑂2 ≤981 

500 𝑘𝑔.  In this case study, since the diesel generator is already in the system, the capital cost 982 

(initial cost + installation cost) of the diesel is excluded from the cost analysis. 983 

 984 

The search history of Figure 7 shows a slower improvement rate in 𝑓𝑖𝑡𝑚𝑎𝑥 compared to those 985 

of CS1 and CS2. This is due to the presence of the tight constraint on the 𝐶𝑂2 emission.  986 

 987 

 988 
Figure 7-GA search history for CS5 989 

 990 

CS6: Size optimisation – retrofitting for investment 991 

In contrary to CS5, in which we retrofitted a given configuration without any constraint on 992 

the final configuration, here in CS6, the retrofitting aims at changing a given configuration to 993 

a fixed configuration (wind-PV-battery).  994 

 995 

The existing 30kW wind turbine installed on Site 1supplies only 71% of the 59.26 MW 996 

annual demand while the remaining 17.3 MW is supplied by the grid, which costs $2,760 per 997 

year assuming a 16c/kWh flat rate price of electricity from grid. The purpose of retrofitting 998 

here is to eliminate the cost of buying electricity from the grid (reduce the unmet load 𝑈𝑡 to 999 

zero) and to maximise the profit of selling electricity to the grid (assuming a flat rate feed-in 1000 

tariff of 12c/kWh). The investment budget is limited to $250,000 present value of total 1001 

lifespan cost.  1002 

 1003 

Similar to CS5, in this case study the capital cost of the wind turbine, as an existing 1004 

component of the configuration, is excluded from the cost analysis. Unlike the first five case 1005 

studies, in which infeasible solutions are rejected during the search process, here the 1006 

constraint of 𝑇𝐿𝑆𝐶 ≤ 250, 000 makes the design space highly constrained. Therefore, a 1007 

penalisation strategy is adopted instead. For this problem, different penalty weights were tried 1008 

to determine the values that put enough pressure on the search to enter the feasible domain 1009 

before the end of the search. A penalty weight of 𝜇𝑖 = 10  for both constraints was found to 1010 

be strong enough to lead to feasible solutions. The search history is shown in Figure 8. A low 1011 

average fitness is observed at earlier generations, which is due to applying high penalties to 1012 

infeasible solutions. 1013 

 1014 
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 1015 
Figure 8-GA search history for CS6 1016 

 1017 

With reference to Figures 2, and 4 through 8, one can observe that in all search histories a 1018 

good diversity (the distance between 𝑓𝑖𝑡𝑚𝑎𝑥 and 𝑓𝑖𝑡𝑎𝑣 curves) is observed for most of the 1019 

generations (up to about 𝑖𝑔𝑒𝑛~80). However, towards the end of the search the diversity 1020 

starts to decrease rapidly. This is due to the dynamic nature of the designed mutation operator 1021 

at the size level (Equations 50 to 52). The mutation interval shrinks as 𝑖𝑔𝑒𝑛 increases. Hence, 1022 

mutation becomes less effective in exploration and more effective in exploitation. An 1023 

exploitatory mutation together with a crossover, both based on a fitness-based parent 1024 

selection, lead to a rapid increase in the average fitness. This behaviour is an intended 1025 

behaviour with the aim of refining the optimum solution towards the end of the search.   1026 

 1027 

The results of case studies 5 and 6 prove the flexibility of the formulation in delivering 1028 

different cases of retrofitting of existing power systems with adding new constraints or 1029 

objectives. 1030 

 1031 

CS7: Multiobjective integrated configuration-size optimisation 1032 

As mentioned earlier, conducting multiobjective optimisations is the best way to get an 1033 

insight to the interaction between the design qualities that we are interested in and to select a 1034 

suitable solution via an informed decision making process. This case study is a multiobjective 1035 

version of CS1, in which 𝑈𝑡 is treated as an objective instead of a hard constraint. Figure 9 1036 

and Table 6 show the nondominated solutions for this case study. It should be noted that the 1037 

constraint  𝑝 ≥ 60%  here is an arbitrary constraint. The purpose of applying arbitrary 1038 

constraints is to put a focus on part of the design space that we are interested in.  For instance, 1039 

without the constraint 𝑝 ≥ 60%  we would see hundreds of nondominated solutions 1040 

representing very small systems without any practical use due to very high unmet load.  1041 

 1042 
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 1043 
Figure 9-Pareto front of CS7 1044 

 1045 
Table 6-Nondominated solutions of CS7 1046 

Sol #  
𝑅𝑊𝑇 
(𝑚2) 

𝐴𝑃𝑉  
(𝑚2) 

𝑛𝐵 
𝑃𝐷,𝑛𝑜𝑚  

(𝑊)  

𝑃𝐹𝐶,𝑛𝑜𝑚 

(𝑊) 

𝑃𝐸𝐿,𝑛𝑜𝑚 

(𝑊) 
𝑇𝐿𝑆𝐶 

(1000$)  
𝐿𝐶𝐸 

(𝑐/𝑘𝑊ℎ) 
𝑈𝑡 

(𝑀𝑊) 
𝑝  

(%)  
𝐶𝑂2  
(𝑘𝑔)  

1 0 296 232 0 0 0 186 23.0 0.00 139 0 

2 0 289 224 0 0 0 181 22.8 0.83 135 0 

3 0 281 232 0 0 0 180 22.7 0.85 132 0 

4 0 277 232 0 0 0 178 22.5 1.01 130 0 

5 0 271 234 0 0 0 177 22.4 1.34 127 0 

6 0 264 238 0 0 0 175 22.3 1.67 124 0 

7 0 263 234 0 0 0 174 22.2 1.71 123 0 

8 0 254 236 0 0 0 171 22.1 2.43 119 0 

9 0 259 224 0 0 0 170 22 2.46 121 0 

10 0 256 224 0 0 0 169 21.9 2.60 120 0 

11 0 231 214 700 0 0 163 21.4 3.22 108 677 

12 0 235 202 0 0 0 156 21.3 5.35 110 0 

13 0 232 200 0 0 0 154 21.2 5.66 109 0 

14 0 224 196 0 0 0 150 21.1 6.98 105 0 

15 0 216 198 0 0 0 147 21 7.74 101 0 

16 0 208 194 0 0 0 143 20.9 8.92 97 0 

17 0 206 166 0 0 0 136 20.8 11.11 97 0 

18 0 194 176 0 0 0 134 20.7 11.81 91 0 

19 0 189 166 0 0 0 129 20.6 13.13 89 0 

20 0 183 150 0 0 0 123 20.5 14.99 86 0 

21 0 183 138 0 0 0 121 20.4 15.78 86 0 

22 0 173 144 0 0 0 118 20.3 16.59 81 0 

23 0 164 132 0 0 0 112 20.2 18.57 77 0 

24 0 157 126 0 0 0 107 20.1 19.95 74 0 

25 0 158 122 0 0 0 107 20 20.01 74 0 

26 0 148 116 0 0 0 101 19.9 21.88 69 0 

27 0 148 112 0 0 0 100 19.8 22.03 69 0 

28 0 143 102 0 0 0 96 19.7 23.36 67 0 

29 0 136 100 0 0 0 93 19.6 24.56 64 0 

30 0 135 94 0 0 0 91 19.5 25.00 63 0 

31 0 127 86 0 0 0 86 19.4 26.71 60 0 
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  1047 

 1048 

Solutions #1 and #31 are the extreme (far-end/boundary) solutions. In a two-dimensional 1049 

Pareto front, an extreme solution is the best in terms of one objective and the worst in terms 1050 

of the other objective. Solution #1 {𝑈𝑡, 𝐿𝐶𝐸} = {0,23} is the best solution in terms of 𝑈𝑡 and 1051 

the worst in terms of 𝐿𝐶𝐸. Once the Pareto front is obtained, we can conduct a trade-off study 1052 

towards selecting a suitable solution. For instance, comparing Solution #12 with the most 1053 

reliable solution (Solution #1), one can see that $30,000, one sixth of the 𝑇𝐿𝑆𝐶, can be saved, 1054 

if we can tolerate an unmet load of 𝑈𝑡 = 5.35 𝑀𝑊, which is only 9% of the total annual 1055 

demand load  of 59.26 MW.  1056 

 1057 

The performance of a multiobjective optimisation method in producing a good approximation 1058 

of the Pareto front can be assessed by examining two factors: (i) its capability in producing a 1059 

uniformly populated front and (ii) the (global) optimality of the extreme solutions on that 1060 

front. With reference to Figure 9, it is evident that the developed NSGA-II meets the first 1061 

assessment criterion as it produces a fairly uniform and well populated Pareto front. To test 1062 

the NSGA-II performance in terms of the second assessment criterion, we know that 1063 

theoretically, the extreme solutions on the actual Pareto front are the results of single 1064 

objective optimisation problems in which one design quality is considered as objective and 1065 

the other as constraint. All we need to do is to run two single objective optimisation problems 1066 

and compare their results with the extreme solutions on the front.  The accuracy of the 1067 

extreme Solution #1 can be examined by solving the single objective problem:  1068 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝐿𝐶𝐸 subject to 𝑈𝑡 = 0. We already have solved this problem in CS1 and have 1069 

proved (using exhaustive search) that 𝑋⃑𝑜𝑝𝑡 = {0,296,232,0,0,0} (see Table 2) is the global 1070 

optimum, which is identical to the Solution #1 obtained by NSGA-II. This shows that the 1071 

NSGA-II finds accurate extreme solutions and therefore passes the second assessment 1072 

criterion. 1073 

 1074 

CS8: Multiobjective configuration-size optimisation - low renewables sites 1075 

Nowadays most of renewable technologies have competitive prices compared to fuel-based 1076 

power systems. As a result of this, in sites with medium to high renewable resources a 1077 

configuration without diesel generator is probably the optimum solution in terms of the cost 1078 

of produced energy (for instance, see CS1). For sites with low renewable resources we expect 1079 

to see diesel in the optimum system configuration. In such cases the environmental impact 1080 

due to the 𝐶𝑂2 emission needs to be considered alongside the cost and reliability of the 1081 

system. Site 3 is a low renewable site. Here, we are dealing with three conflicting objectives: 1082 

a cost related (𝐿𝐶𝐸), a reliability related (𝑈𝑡), and an environment related (𝐶𝑂2).  1083 

 1084 

The multiobjective optimisation leads to 81 nondominated solutions. The results of the 1085 

optimisation are shown in Figure 10. The extreme solutions are identified with coloured 1086 

circles. In Figure 10 the solution identified with red circle is the best in terms of  𝐿𝐶𝐸 1087 

(𝐿𝐶𝐸 = 29.0 𝑐/𝑘𝑊ℎ), those identified with blue circles are the best in terms of 𝑈𝑡 (𝑈𝑡 = 0), 1088 

and the green ones are those solutions without diesel generator in the configuration and 1089 

therefore the best ones in terms of 𝐶𝑂2emission (𝐶𝑂2 = 0). 1090 
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 1091 
Figure 10-3D Pareto front (top left) and pair-wise fronts of CS8 1092 

 1093 

 1094 

4.2 Summary of the Results of Case Studies 1095 

The results of the case studies prove that the new integrated size-configuration problem 1096 

formulation has the following features: 1097 

 1098 

• Flexibility: It addition to starting from a generic configuration (which includes all 1099 

possible components) and leading to the best configuration for a given site (CS1, CS2, 1100 

CS3, CS7 and CS8), it can also deal with pre-defined (fixed) configurations (CS4), 1101 

retrofitting of an existing system to a generic configuration (CS5), and retrofitting of an 1102 

existing system to a fixed configuration (CS6). 1103 

• The problem formulation treats all design variables as continuous variables, allowing the 1104 

manufacturer and provider companies to develop bespoke components for a site to reduce 1105 

the cost/increase the reliability (e.g. by manufacturing  a wind turbine with the required 1106 

rated power instead of using an existing wind turbine which is overdesigned or under-1107 

designed for that site).  1108 

• Versatility: It can be easily expanded to include more components than those considered 1109 

in this paper (wind turbine, PV panel, battery bank, fuel cell, electrolyser and diesel 1110 

generator), and to include design qualities (objective and constraints) beyond those 1111 

considered in this paper.  1112 

 1113 

The results also show that the GA reproduction operators which are developed specifically 1114 

for the problem at hand have the following characteristics:  1115 

• Excellent exploitatory functionality at size level: The design space is very vast at the size 1116 

level. There are 7 design variables, of which 6 of them have a wide range (all but 𝑛𝑊𝑇).  1117 

For instance for the case studies 1, 2, 3, 7 and 8 the lower and upper limits for the design 1118 

variables are  𝑋⃗𝑙 = {1,0,0,0,0,0,0} and 𝑋⃗𝑢 = {1,22, 460, 1030, 100000, 8800, 55000} 1119 

with physical increments of {0,0.1, 1, 1, 100, 100, 100}. In order to ensure that the GA 1120 
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and NSGA-II work efficiently and find optimum/nondominated solutions even with a 1121 

small population size (in this study 20) and within a small generation number (here 100), 1122 

the exploitation at the size level must be very efficient. This has been achieved by using a 1123 

combination of a weighted arithmetic crossover and a dynamic mutation. It was shown 1124 

that this combination provides excellent exploitation at size level, leading to solutions 1125 

which match the results of a refined exhaustive search (optimum solution of CS1, and 1126 

extreme solution of CS7). 1127 

• Robust exploratory functionality at size level: The exploratory function is of prime 1128 

importance for problems with piecewise quality space (see separate surfaces for LCE in 1129 

Figure 3). A search algorithm with poor exploration capability is more likely to remain on 1130 

one of the surfaces and therefore to get trapped in a local optima. The search histories of 1131 

CS1 through CS6, show that the population diversity remains high for most of the 1132 

generations (indicating a good exploratory functionality), until towards the end of the 1133 

search where, as intended, the exploitatory functionality of the mutation takes over (fast 1134 

reduction in the diversity).   1135 

• Efficient exploratory functionality at configuration level: Compared to the design space at 1136 

size level, the design space at configuration level is discrete and limited. Therefore, 1137 

exploitation is not applicable at configuration level. On the other hand, an efficient 1138 

exploration at configuration level is very important to have an overall robust optimisation 1139 

algorithm. An efficient exploration at configuration level allows to identify those 1140 

configurations which are more likely to be optimum at earlier generations and then, if 1141 

necessary, to switch between potential optimum configurations as the design space at size 1142 

level is explored and exploited. Removing components from the configuration 1143 

(downward change) and adding components to a configuration (upward change) are 1144 

delivered by a combination of crossover and mutation. The arithmetic crossover can lead 1145 

to upward change in configuration (but not downward). Mutation can change the 1146 

configuration both downward and upward. Tables 4 and 5 of case studies CS1 and CS2 1147 

show the evolution of the best configuration according to what we expect to see from the 1148 

planned exploration mechanism at configuration level.  1149 

• Capability of handling highly constrained problems: In single objective optimisation 1150 

formulation, the constraints can be defined on any of the design qualities 1151 

(𝑇𝐿𝑆𝐶, 𝐿𝐶𝐸, 𝑈𝑡, 𝐶𝑂2, 𝑝, 𝑓𝑒𝑒𝑑, and 𝑟𝑜𝑓𝑖𝑡 ). This may lead to highly constrained problems, 1152 

in which penalising infeasible solutions is the only way of evaluating solutions (e.g. as in 1153 

CS6). Design qualities have different units and different order of magnitudes. The penalty 1154 

function defined for handling infeasible solutions in highly constrained problems is based 1155 

on normalised deviations and therefore needs minimal tuning. 1156 

• Capability of producing a uniformly populated front and finding the extreme solutions 1157 

accurately as shown in CS7 and CS8 (for NSGA-II). 1158 

 1159 

  1160 

5 Concluding Remarks 1161 

Sequential configuration-size optimisation, as the current practice, needs a complete size 1162 

optimisation for all potential configurations that can be made by using all potential 1163 

components in the system. This can be a cumbersome task when dealing with many potential 1164 

components. The reported integrated configuration-size optimisation formulation in this 1165 

paper allows finding the optimum configuration for a given site and the optimum size of each 1166 

component in that configuration by solving only one optimisation problem. This formulation 1167 

allows a search within the configuration and size domains simultaneously, hence exploring 1168 

the overall design space more rigorously, leading to superior solutions.  1169 

 1170 
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The integrated configuration-size optimisation formulation presented in this paper can be also 1171 

used for retrofitting of an existing system, which is another valuable capability of the 1172 

reported formulation when we design energy transition scenarios. Only an integrated size-1173 

configuration formulation allows to incorporate all characteristics of an energy transition 1174 

scenario, such as adding new sources of energy and new storage systems to the existing 1175 

system, taking into account an increase in the demand load, and assigning targets to the 1176 

performance measures (e.g. a targeted reduction in emission).  1177 

 1178 

The integrated configuration-size optimisation formulation requires to be accompanied by a 1179 

robust search algorithm, which is capable of exploration and exploitation of the design space 1180 

at configuration and size levels. The developed GA and NSGA-II are proved to be robust in 1181 

exploration and exploitation of the design space at both configuration and size level. These 1182 

optimisers can be easily adapted by other researchers and expanded to include more design 1183 

variables and design qualities.  1184 

 1185 

The generality of the problem formulation and the robustness of the developed optimisers 1186 

allow for the expansion of the current work beyond power production in future studies, for 1187 

instance, by integrating heating and thermal storage components and optimal design of 1188 

combined heat/power systems. 1189 
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Table A.1-The remaining power and cost modelling parameters  1363 

Parameter (unit) Value 

Margin of safety (storage sizing) 𝑀𝑂𝑆(−) 0.2 
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Autonomy period (battery sizing) 𝑇𝑎,𝐵 (𝑑𝑎𝑦) 1 

Autonomy period (H2 tank sizing) 𝑇𝑎,𝐻2
 (𝑑𝑎𝑦) 0.5 

Air density 𝜌 (𝑘𝑔 𝑚3⁄ ) 1.225 

Overall wind turbine mechanical and electrical efficiency 𝜂𝐸𝑀 (%) 90 

Site surface roughness length 𝑧0 (𝑚) 0.03 

Minimum blade tip-ground clearance ℎ𝑐  (𝑚) 8 

Wind turbine hub elevation for pre-sizing calculations ℎℎ𝑢𝑏,0(𝑚) 12 

PV panel efficiency 𝜂𝑃𝑉  (%) 14 

Battery nominal capacity per unit battery 𝑐𝐵 (𝐴ℎ)  40 

Battery bank voltage  𝑉𝐵(𝑉) 24 

Battery maximum SOC, 𝑆𝑂𝐶𝑚𝑎𝑥  (−) 1 

Battery minimum allowable SOC, 𝑆𝑂𝐶𝑚𝑖𝑛 (−) 0.5 

Battery efficiency in charge 𝜂𝐵,𝑐 (%) 90 

Battery efficiency in discharge 𝜂𝐵,𝑑 (%) 95 

Battery self-discharge rate, 𝛿 (%)  0.2 

Fuel cell efficiency 𝜂𝐹𝐶  (%) 47 

Electrolyser efficiency 𝜂𝐸𝐿 (%) 74 

Diesel generator fuel cost 𝐶𝑓𝑢𝑒𝑙 ($/𝑙) 1 

Emission per litre of diesel 𝐶𝑂2(𝑘𝑔) 2.68 

System nominal life 𝑁𝑆 (𝑦𝑒𝑎𝑟𝑠) 20 

Real discount rate 𝑑 (%) 4 

 1364 

 1365 

 1366 
Figure A1-Hourly averaged demand load for four seasonal typical days 1367 
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 1369 
Figure A2-Hourly averaged solar irradiance for four seasonal typical days 1370 

 1371 

 1372 
Figure A3-Hourly averaged wind speed for four seasonal typical days at a reference height of  1373 

𝑧𝑟𝑒𝑓 = 3𝑚 1374 
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