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Abstract  35 

Qualitative Network Models (QNMs), Fuzzy Cognitive Maps (FCMs), and Bayesian 36 

Belief Networks (BBNs) have been proposed as methods to formalize conceptual models of 37 

social-ecological systems and project system responses to management interventions or 38 

environmental change. To explore how these different methods might influence conclusions 39 

about system dynamics, we assembled conceptual models representing three different coastal 40 

systems, adapted them to the network approaches, and evaluated outcomes under scenarios 41 

representing increased fishing effort and environmental warming. The sign of projected change 42 

was the same across the three network models for 31% to 60% of system variables on average. 43 

Pairwise agreement between network models was higher, ranging from 33% to 92%; average 44 

levels of similarity were comparable between network pairs. Agreement measures based on both 45 
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the sign and strength of change were substantially worse for all model comparisons. These 46 

general patterns were similar across systems and scenarios. Different outcomes between models 47 

led to different inferences regarding tradeoffs under the scenarios. We recommend deployment 48 

of all three methods when feasible to better characterize structural uncertainty and leverage 49 

insights gained under one framework to inform the others. Improvements in precision will 50 

require model refinement through data integration and model validation. 51 

 52 

1. Introduction  53 

Ecosystem-based management (EBM) of resources, services, and human activities is 54 

complex due to the array of interacting system components and processes, the many sources of 55 

uncertainty, and the necessity of tradeoffs in decision-making. Conceptual models can be highly 56 

valuable tools in addressing these challenges. They can be developed to depict components, 57 

processes and linkages that make up a social-ecological system, and can encompass 58 

environmental processes that influence basic physical, chemical, and biological properties 59 

through to the governance systems and social patterns that regulate and influence human 60 

activities (e.g., Heemskerk et al., 2003; Harvey et al., 2016). By focusing on the essential 61 

elements of the system, the visual depiction of conceptual models can help provide clarity and 62 

context to decision-makers, managers, stakeholders, and scientists to better navigate the 63 

complexity of ecosystem-based management (Kelble et al., 2013; Dale et al., 2019; Carriger and 64 

Parker, 2021). In addition, conceptual models are often naturally constructed as networks that 65 

can be expressed mathematically as graphs, where vertices correspond to variables and edges 66 

indicate causality, interactions, or associations between variables. The formalization of 67 

conceptual models as network models provides a powerful tool for exploring how management-68 



 

 
 
 

  4 

relevant perturbations propagate through interaction pathways to impact the model system as a 69 

whole which can aid identification of potential tradeoffs or unexpected outcomes relevant to 70 

EBM (Reum et al., 2020a; Baker and Bode, 2021; Carriger and Parker, 2021).  71 

Three network modeling approaches have received particular attention for their ability to 72 

formalize conceptual models of social-ecological systems and simulate potential responses to 73 

change: Qualitative Network Models (QNMs), Fuzzy Cognitive Maps (FCMs), and Bayesian 74 

Belief Networks (BBNs). The approaches are considered “soft” network methods in that they can 75 

be formulated with little or no quantitative information and as a minimum require only a 76 

qualitative (QNM), semi-qualitative (FCM), or subjective understanding (BBN) of system 77 

structure, though quantitative data integration is feasible (McCann et al., 2006; Ramsey and 78 

Norbury, 2009; Melbourne-Thomas et al., 2012; Baker et al., 2018). While quantitative or 79 

“hard” network modeling approaches (e.g., Yodzis, 1998; Fulton, 2010) produce more precise 80 

numerical projections, they also demand significant amounts of data which are limited in many 81 

systems, raising the danger that model structure will reflect data availability rather than essential 82 

features of the underlying system (Dambacher et al., 2003). Further, they require substantial 83 

investment of resources (Dambacher et al., 2009) and their ability to represent coupled social and 84 

ecological systems can be constrained by their capacity to represent only a limited range of 85 

“currencies” such as units of energy or material (Harvey et al., 2016). In contrast, soft network 86 

approaches emphasize understanding of the system as whole, are well-suited to synthesizing 87 

diverse information sources and representing coupled systems, and can be rapidly prototyped and 88 

deployed, albeit at the cost of precision (Puccia and Levins, 1985; Özesmi and Özesmi, 2004; 89 

McCann et al., 2006). The benefits make soft network approaches practical options for 90 

formalizing conceptual models in support of EBM.  91 
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The use of soft network models to explore system responses to management-relevant 92 

scenarios has grown considerably in the environmental and ecological literature (Aguilera et al., 93 

2011; Landuyt et al., 2013; Papageorgiou and Salmeron, 2013; Carriger et al., 2018) and all 94 

three methods have been applied widely to issues ranging from coastal planning and fisheries 95 

management to global climate change and species conservation (e.g., Ramsey and Norbury, 96 

2009; Landuyt et al., 2013; Melbourne-Thomas et al., 2013; Gray et al., 2015; Reum et al., 97 

2020a; Pittman et al. 2020). However, practitioners typically adopt only one modeling 98 

framework to evaluate scenarios and it remains unclear the general extent to which projections 99 

may differ between QNMs, FCMs, and BBNs. The models are similar in that the underlying 100 

conceptual model is represented as a graph, but differ in terms of their mathematics, 101 

assumptions, inputs, and the nature of their predictions (i.e., qualitative, semi-qualitative, or 102 

probabilistic, respectively; Puccia and Levins, 1985; Kosko, 1986; Pearl, 1986). The models are 103 

thus structurally distinct and if projections differ between models, failure to account for model 104 

(structural) uncertainty may result in misleading inferences. This gap in understanding contrasts 105 

with efforts to characterize sources of uncertainty within each framework (Melbourne-Thomas et 106 

al., 2012; Ramsey et al., 2012; Baker et al., 2018).  107 

Here, we sought to evaluate the level of agreement in projections from QNMs, FCMs, 108 

and BBNs. To develop a more general understanding of model agreement in EBM contexts, we 109 

recast conceptual models developed for three different coastal and marine systems as QNMs, 110 

FCMs, and BBNs. The conceptual models were developed by independent research partnerships 111 

and reflect different motivating issues, but are suitable for exploring similar management 112 

interventions (fishing) and environmental change (warming) scenarios. The first model (Fig. 1) 113 

represents the Pribilof Islands in the eastern Bering Sea, and focuses on the ecology and 114 
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management of blue king crab (Paralithodes platypus), which once supported a significant 115 

fishery but is now at historically low population levels (Reum et al., 2020a). The second model 116 

(Fig. 2) depicts the Georges Bank ecosystem of the northwestern Atlantic, including 117 

environmental, ecological, and human subsystems, and focuses on relationships between 118 

commercial and recreational fishing, ecosystem services, and human well-being (DePiper et al., 119 

2017). The third model (Fig. 3) focuses on efforts to mitigate coastal erosion in a region near the 120 

mouth of the Mississippi River by diverting river flow and sediment through the proposed Mid-121 

Barataria Sediment Diversion1. The model aims to represent the relationships among physical, 122 

biological, social, and economic components to examine the potential effect and trade-offs from 123 

proposed sediment diversions and ecosystem restoration (Trifonova et al., In Prep.). 124 

For each conceptual model, we developed corresponding QNMs, FCMs, and BBNs; 125 

evaluated model agreement in outcomes under fishing and warming scenarios; and examined 126 

whether models produced outcomes that implied different management-relevant tradeoffs. In 127 

addition, we compare the effort required to adapt conceptual models to conform to the 128 

assumptions of each modeling framework, and clarify the strengths and weaknesses of the 129 

approaches from a practical perspective. 130 

 131 

2. Methods 132 

Our primary goal was to compare agreement in projections between QNMs, FCMs, and 133 

BBNs as commonly implemented in the ecological literature. We first provide brief overviews of 134 

QNMs, FCMs, and BBNs to highlight key distinctions between the approaches and their outputs, 135 

and note differences in terminology that reflect their different origins and mathematics. Where 136 

 
1 https://coastal.la.gov/project/mid-barataria-sediment-diversion/ 
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pertinent, we direct interested readers to more in-depth treatments of the underlying theory. For 137 

each case study system we provide a summary of the conceptual model and the issues motivating 138 

its construction. Detailed procedures for recasting the conceptual models as either a QNM, FCM, 139 

or BBN are provided in the Supplemental Materials. To facilitate comparisons of the models, 140 

adjacency matrices corresponding to the final QNMs and FCMs and matrices indicating the 141 

structure of the DAGs used in the BBNs are also provided in Supplemental Materials. Input files 142 

used to run the models are available online (Reum et al. 2021b).  143 

 144 

2.1 Network models 145 

2.1.1 Qualitative Network Models 146 

Qualitative Network Models were developed from Loop Analysis which was first 147 

introduced in the ecological literature (Levins, 1974). Under Loop Analysis, conceptual models 148 

are represented as signed, directed graphs (or digraphs), where edges (links) represent 149 

interactions between nodes (variables) and encode the sign (+, -, or 0) of the effect of one 150 

variable on another. The matrix representation of the signed digraph corresponds to the 151 

community matrix A, which encapsulates the pairwise interactions of variables composing the 152 

system. By assuming the system is in equilibrium and that pairwise interactions between 153 

variables are approximately linear near equilibrium, the qualitative response of the system to a 154 

press perturbation can be calculated from the inverse of the negative community matrix (−A-1; 155 

Puccia and Levins 1985). A press perturbation corresponds to a sustained increase (or decrease) 156 

in the level of the perturbed variable (the exact value is not specified but assumed to be small) 157 

and the response of the perturbation is the sign of the direction of changes in the equilibrium 158 

level of variables composing the system (Bender et al., 1984). A key feature of the approach is 159 
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that feedbacks in conceptual models are preserved and incorporated into the projected responses 160 

(Puccia and Levins, 1985).  161 

For small systems (e.g., less than five to seven variables), A can be analyzed 162 

symbolically to identify criteria for system stability or conditions needed to obtain a sign 163 

outcome for a particular node  (Puccia and Levins, 1985; Dambacher et al., 2003). However, in 164 

larger systems, simulation methods are more practical and can be used to rapidly assess the sign 165 

response of nodes and characterize uncertainty (Dambacher et al., 2002, 2003). QNMs are 166 

synonymous with simulation-based approaches to Loop Analysis (Raymond et al., 2011; 167 

Melbourne-Thomas et al., 2012). The simulation approach proceeds by first sampling elements 168 

of A from uniform probability distributions. The sign of the link is retained, but the magnitude is 169 

sampled over two orders of magnitude (0.01 to 1), reflecting vague priors (Raymond et al., 2011, 170 

Melbourne-Thomas et al., 2012). The simulated A is tested against stability criteria (Melbourne-171 

Thomas et al., 2012), and if stable, the sign response of system variables to a given press 172 

perturbation scenario is recorded. In practice, as the number of variables and links in QNMs 173 

increase, the likelihood of drawing a stable community matrix decreases, and the issue is 174 

exacerbated if few negative feedbacks are present. To counteract this, negative self-loops are 175 

applied to all nodes in the system (e.g., Raymond et al., 2011, Melbourne-Thomas et al., 2013). 176 

In ecological communities, negative self-loops can represent negative density-dependence but 177 

more broadly can represent stabilizing control by variables outside the formal model (Puccia and 178 

Levins, 1985).  179 

Outcomes are summarized from a large number of stable community matrices (104) to 180 

obtain estimates of uncertainty. Sign agreement (SA) is calculated as (P−N)/T, where P, N, and T 181 

correspond to the number of positive, negative, and total simulated outcomes. Values of SA 182 
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range from -1 to 1; larger absolute values reflect higher confidence in the projected sign outcome 183 

and values near zero indicate higher ambiguity. If P and N are identical (e.g., 50% positive and 184 

50% negative), then every positive outcome is matched by a negative outcome and the level of 185 

agreement is 0. All else being equal, the absolute value of sign agreement decreases as the 186 

number of countervailing feedbacks increases (Dambacher et al., 2003). The QNMs developed 187 

for each system were analyzed using the R package “QPress” (Melbourne-Thomas et al., 2012). 188 

 189 

2.1.2 Fuzzy Cognitive Maps  190 

FCMs were first introduced and popularized in the social sciences (Kosko, 1986) but 191 

have been used to represent systems across disciplines including coupled social-ecological 192 

systems (Özesmi and Özesmi, 2004; Papageorgiou and Salmeron, 2013). Cognitive maps are 193 

static, graphical depictions of perceived causal relationships between variables (or concepts) 194 

composing a system (Axelord, 1976). In FCMs, the magnitude of the effect or degree of 195 

causality is designated according to linguistic categories (e.g., weak, moderate, strong; rarely, 196 

sometimes, usually; etc.) and fuzzy causal algebra is used to propagate causal relationships and 197 

infer the system-wide effects of perturbation scenarios (Kosko, 1986). The use of linguistic 198 

categories captures uncertainty or fuzziness in the nature of the relationships and is easily 199 

understood using human reasoning (Kosko, 1986). To propagate causal relationships, linguistic 200 

categories are first converted to real numbers on the interval [-1, 1] based on fuzzy set theory or, 201 

alternatively, designation of linguistic categories can be bypassed and causal weights specified 202 

directly.  203 

The cognitive map is transformed into an adjacency matrix E, a square matrix with nodes 204 

Ci listed on the vertical axis and nodes Cj on the horizontal axis. The elements of the matrix (eij) 205 



 

 
 
 

  10 

contain the values of the causal relationships. If eij < 0, then Ci causally decreases Cj; if eij = 0, no 206 

causality is implied; and if eij > 0, then Ci causally increases Cj (Kosko, 1986). Baseline 207 

equilibrium values of concepts are obtained through forward propagation of the causal weights  208 

(Kosko, 1986). Specifically, the initial states of concepts are set to a value of 1, stored in the state 209 

vector c, and updated following:  210 

c[t+t] = f(Ect)       (Eqn. 1) 211 

where the superscript t denotes the simulation time step and function f is the “activation 212 

function,” typically the logistic function, which rescales all values between 0 and 1. The state 213 

vector is updated until an equilibrium is reached (typically less than 50 iterations in most 214 

applications), though limit cycles or chaotic behavior may also emerge (Özesmi and Özesmi, 215 

2004). 216 

To implement a scenario, the forward propagation procedure is repeated but the states of 217 

concepts are fixed at values that reflect the scenario under consideration. The change in the 218 

resulting equilibrium state vector relative to the baseline equilibrium state vector conveys the 219 

magnitude and direction of change of concepts under the scenario. The numerical difference can 220 

be “fuzzified” back into linguistic categories or treated as the final output. Similar to QNMs, the 221 

method permits representation of feedbacks, causal weights (pairwise interactions) are assumed 222 

to be linear, and scenario outcomes convey change relative to assumed equilibrium conditions 223 

(Papageorgiou and Salmeron, 2013). Self-loops are also permitted to represent specific 224 

processes, though they are not required to address computational challenges as in QNMs. In 225 

conventional FCMs, the magnitudes of outcomes are interpreted in qualitative, relative terms, 226 

and lack quantitative uncertainty estimates; however, methods to represent uncertainty are 227 

evolving (Ramsey et al., 2012; Baker et al., 2018). In all case studies, we used the R package 228 
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“FCMapper” to run scenarios (Turney and Bachhofer, 2016) because of transparency in the 229 

underlying code and post-processing capabilities in the R environment, but note that other 230 

software platforms implement FCMs with potentially more user-friendly graphical user 231 

interfaces (e.g., Mental Modeler; Gray et al. 2013). 232 

 233 

2.1.3 Bayesian Belief Networks 234 
  235 

BBNs have grown in popularity in environmental modeling (Aguilera et al., 2011) and 236 

are probabilistic graphical models that consist of two structural components: (1) a directed 237 

acyclic graph (DAG) and (2) a conditional probability table (CPT). Graph nodes represent a 238 

random variable with a finite set of mutually exclusive states and graph edges are directed from a 239 

“parent” node to a “child” node to indicate conditional dependency relationships. These directed 240 

dependence relationships flow from at least one node with no parents to at least one node with no 241 

children without creating cycles. Thus, BBNs by definition cannot include feedbacks, unlike 242 

QNMs and FCMs. The CPTs represent the strength of the dependence relationships 243 

corresponding to edges in the DAG and denote the likelihood of the state of a child node, given 244 

the states of its parent nodes (Renken and Mumby, 2009; Landuyt et al., 2013). Values 245 

composing the tables can be constructed from empirical data where available, or assigned based 246 

on expert judgment.  247 

The joint probability distribution for variable X consisting of i =1, 2,..., n states, where x 248 

denotes state, is given by the chain rule: 249 

𝑃𝑃(𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛)  =  ∏ 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑖𝑖))𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋 .    (Eqn. 2) 250 

Using the model, information on the states of nodes is propagated through the DAG, and the 251 

posterior distribution is updated based on proposed changes in node states or the introduction of 252 
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new data or evidence. That is, to specifically evaluate a scenario, the state of a node is changed, 253 

and the conditional probabilities are propagated through the model structure. The resulting 254 

change in the posterior distribution of variable state probabilities reflects the outcome. Similar to 255 

QNM and FCMs, outcomes under the framework correspond to equilibrium conditions and do 256 

not represent temporal dynamics. The software Genie (BayesFusion, LLC., v. 2.3) was used to 257 

parameterize the BBN networks for all case studies and obtain posterior probabilities under the 258 

perturbation scenarios.  259 

  260 

2.4 Case Studies  261 
 262 

 263 
2.4.1 Pribilof Islands Blue King Crab 264 
 265 
 The Pribilof Islands Blue King Crab (BKC) conceptual model represents important 266 

ecological interactions between BKC and the benthic community, and was originally developed 267 

to identify potential management interventions for promoting BKC stock recovery under climate 268 

change (Reum et al., 2020a). The model is built around the life history of BKC which is 269 

separated into four stages (larvae, benthic recruit, juvenile, and adult), and includes six additional 270 

species or functional groups that are competitors and predators of BKC (Fig. 1). To develop the 271 

model, multiple workshops were convened that included academic, indigenous government, 272 

state, and federal agency scientists, Pribilof Islands community members, and representatives 273 

from local fishing organizations. At each workshop, participants were guided through activities 274 

intended to encourage discussion and elicit input on the key ecological processes influencing 275 

BKC and other key benthic species or functional groups that interact with BKC. The conceptual 276 

model reflects a synthesis of information from the literature and opinions and views encountered 277 
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at the workshops, and was developed with the original intention of informing a QNM (Reum et 278 

al., 2020a).  279 

 280 

2.4.2 Georges Bank  281 
 282 
 283 
 The Georges Bank conceptual model was developed by the Northeast Fisheries Science 284 

Center in support of NMFS’s Northeast Integrated Ecosystem Assessment and as part of the 285 

ICES Working Group on the Northwest Atlantic Regional Sea (ICES 2016, DePiper et al., 286 

2017). Over the course of several workgroup meetings, scientists with expertise on regional 287 

management issues and ecosystem dynamics built the conceptual model with the intent of 288 

informing QNMs, FCMs, and BBNs in follow-on studies. The conceptual model focuses on four 289 

managed groups (shellfish, forage fish, groundfish, and protected species) and was motivated in 290 

part by a need to better understand how these groups may respond to management actions or 291 

environmental change. Consequently, the model emphasizes resolution of human activities 292 

(commercial and recreational fishing), environmental drivers, trophic interactions, and lower 293 

trophic levels with strong relationships to the focal groups. Additional details regarding 294 

development of the conceptual model are available in DePiper et al. (2017) and working group 295 

reports (ICES 2015, 2016).  296 

  297 

 298 

2.4.3 Mid-Barataria Basin  299 

The Mid-Barataria Basin is a shallow, brackish embayment located in southeast 300 

Louisiana that is bounded to the North by the Mississippi River and to the south by barrier 301 

islands that separate it from the Gulf of Mexico. In response to rapid land loss and erosion in the 302 
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region, construction of a large sediment diversion project is currently underway that will divert 303 

sediment and fresh water from the Mississippi River (Peyronnin et al., 2017). The project intends 304 

to sustain and build land to reduce sea level rise impacts, stabilize wetland loss, and enhance 305 

wildlife populations. However, impacts on the larger social-ecological systems are not fully 306 

understood (Peyronnin et al., 2017). To examine potential social-ecological trade-offs, a team of 307 

scientific experts from NOAA’s Gulf of Mexico Integrated Ecosystem Assessment (IEA) team 308 

initiated development of a conceptual model for the Mid-Barataria Basin based on the EBM-309 

Driver, Pressure, State, Ecosystem service, and Response framework (Kelble et al., 2013) which 310 

organizes variables in the system according to pressures (e.g., flooding), ecosystem states (e.g., 311 

wetlands), and ecosystem services (e.g., farming). This framework was modified to include 312 

human dimension variables (e.g., jobs). The conceptual model was vetted with stakeholders and 313 

refined based on feedback until consensus was achieved. Similar to Georges Bank, the 314 

conceptual model was built with the intent of informing subsequent development of QNMs, 315 

FCMs, and BBNs. 316 

 317 

2.5 Model Comparison 318 

2.5.1 Network metrics 319 

 In addition to the total number of nodes and links (connectivity), we compared 320 

differences in network size and structure across models and systems based on link density 321 

(average number of links per node), connectance (the number of realized links relative to the 322 

total number possible), the total number of self-loops, and the hierarchy index (Özesmi and 323 

Özesmi, 2004; Lau et al., 2017). The latter ranges from 0 to 1, where 1 corresponds to a fully 324 

hierarchical network (a linear network where a node influences only one other node) and 0 325 
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indicates a fully democratic network where all nodes influence all others (Özesmi and Özesmi, 326 

2004).  327 

 328 

2.5.2 Model Evaluation 329 

We measured similarity of outcomes predicted by the different network models under 330 

three scenarios that could conceivably occur across all three systems. The first scenario 331 

(“fishing”) simulated an increase in fishing mortality (both directed and bycatch) relative to 332 

current fishing levels on groups vulnerable to trawling. The second scenario (“warming”) 333 

simulated an increase in ocean temperature and its potential impacts on species or functional 334 

groups. The final scenario evaluated the combined effect of both fishing and warming (“fishing + 335 

warming”). The nodes representing temperature and trawl fishing effort in models for each 336 

system along with their direct effects on variables are provided in Supplemental Materials, Table 337 

S1.  338 

In the QNMs, the warming, fishing, and fishing+warming scenarios were implemented 339 

by positively pressing the corresponding temperature and fishing nodes individually or jointly. 340 

Outcomes for QNMs were expressed as sign agreement. For FCMs, scenario runs were 341 

performed by fixing the value of temperature or trawl fishing concepts to 1 individually or 342 

jointly, and outcomes were calculated in terms of the change in the magnitude of each node 343 

relative to baseline levels (that is, scenario/baseline − 1). A similar procedure was also applied to 344 

the BBNs, where the probability of a warmer state or higher state of trawl fishing effort was set 345 

to 1, reflecting a 100% probability. BBN outcomes consisted of the difference in the probability 346 

of observing the high (or highest) state of each node between scenario and baseline conditions.  347 

 348 
We measured agreement between network model outcomes in three ways based on 349 
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responses from nodes that were susceptible to direct or indirect influence from the pressed nodes 350 

under the fishing + warming scenario (a total of 14, 12, and 31 response nodes for the Pribilof 351 

Island, George’s Bank, and Mid-Barataria Basin systems, respectively). Doing so removed nodes 352 

from the calculations that were unable to change under the scenarios or that were perturbed 353 

directly in the scenarios. In the case of the Mid-Barataria Basin and Georges Bank models, nodes 354 

in the former category tended to be associated with processes that were resolved for evaluating 355 

other ecosystem stressors in the original model application.  356 

For each pair of network methods, we first calculated “sign match” which we defined as 357 

the ratio of the number of nodes that had the same sign outcome under each modeling framework 358 

(that is, they matched in sign) to the total number of nodes susceptible to direct or indirect 359 

influence from the pressed nodes in the same system. Second, we calculated “category match” 360 

which we defined as the ratio of the number of nodes with outcomes that had both the same sign 361 

and magnitude to the total number of nodes susceptible to the perturbations. For all three 362 

network frameworks, we considered the absolute values of outcomes in the intervals [0, 0.1), 363 

[0.1, 0.5) and [0.5, +∞] as weak, moderate, and strong, respectively, similar to intervals used 364 

elsewhere (e.g., Marcot et al., 2001; Raymond et al., 2011). Placement of outcomes on the same 365 

scale facilitated comparison, but we note that outcome values have different interpretations based 366 

on the network model. In using the same scale, we made the reasonable assumption that 367 

relatively strong responses (FCMs) would be associated with a higher probability of occurrence 368 

(BBNs) and high sign agreement (QNMs) and that the converse would also hold. Given the low 369 

frequency of strong responses, we considered either a strong or moderate response with sign 370 

agreement a match.  371 

For the third similarity measure, we focused on agreement between moderate and strong 372 
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responses, as stronger responses are of particular interest in many decision-making contexts. 373 

Specifically, we calculated “strong category match” as the ratio of the number of nodes with 374 

outcomes of the same sign and that were either moderate or strong under both modeling 375 

frameworks to the total number of nodes with outcomes that were moderate or strong under at 376 

least one of the modeling frameworks. For each similarity measure, we also calculated 377 

agreement in node outcomes across all three network modeling frameworks.  378 

In addition, we compared whether potential tradeoffs as inferred from node outcomes 379 

under the scenarios differed between models. Specifically, we examined a subset of focal nodes 380 

which represented variables that were important to the management issues motivating the 381 

conceptual models of each system and evaluated their responses in the scenarios for consistency 382 

across the three network modeling methods. Focal nodes for the Pribilof Islands system included 383 

adult blue king crab, its competitor red king crab (Paralithodes camtschaticus), and two of its 384 

predators, Pacific cod (Gadus macrocephalus) and adult halibut (Hippoglossus stenolepis). The 385 

Georges Bank focal nodes included two important functional groups (groundfish and forage 386 

fish), an indicator of habitat quality (seafloor and demersal habitat), and an indicator of a key 387 

ecosystem service (fishery catches and the provisioning of seafood). Last, the Mid-Barataria 388 

focal nodes included total fish biomass (fish), the aerial extent of wetland habitat, the availability 389 

of habitable land, and an index of recreational opportunities.  390 

 391 

3. Results 392 

3.1 Network summaries  393 

All network metrics differed primarily by system, and to a lesser degree by model type 394 

(Table 1). Overall, the Mid-Barataria Basin network models had the most nodes and links, 395 
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approximately twice and three times, respectively, the number of the Pribilof Islands, which were 396 

the lowest (Table 1). Further, link densities were also highest for the Mid-Barataria Basin 397 

models, and were approximately double the values of the Georges Bank models, which were the 398 

lowest (Table 1). Connectivity, however, was highest for the Pribilof Islands model, followed by 399 

Mid-Barataria Basin and then Georges Bank (Table 1). Hierarchy indices were all low (less than 400 

0.05; Table 1). Between network models, QNMs consistently had the highest numbers of links, 401 

link densities, and connectance values, while BBNs had the lowest (Table 1). This was related to 402 

the large number of self-loops in the QNMs and the reconfiguration of networks to remove 403 

cycles in BBNs (Table 1; see Supplemental Material for details).  404 

 405 

3.2 Comparison of model projections  406 

 Overall, a majority of nodes responded weakly under the FCM and BBN models to the 407 

individual and joint fishing and warming scenarios across systems (Table 2). For BBN and 408 

FCMs, weak responses composed between 44% to 100% and 71% to 100%, respectively, of 409 

node outcomes across systems and scenarios. In contrast, the majority of outcomes were 410 

moderate or strong under the QNMs (Table 2). Strong QNM responses occurred most frequently 411 

under the fishing scenario for two of the three systems, moderate responses occurred most 412 

frequently under the warming scenario for all three systems, and the proportion of responses that 413 

were moderate and strong were more similar under the joint scenario (Table 2).  414 

 In general, outcomes matched in sign across all network models for 32% to 65% of 415 

nodes; lower sign match rates occurred for systems under the fishing scenario and the highest 416 

values occurred under the warming + fishing scenario (Table 3). In comparison, pairwise sign 417 

matching rates were higher overall, ranging from 33% to 92% (Table 3). Among network model 418 
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pairs, FCM-QNM sign match rates were equal to or higher than other model pairs for Pribilof 419 

Island system outcomes, ranging from 64% (fishing scenario) to 86% (both the warming and 420 

fishing+warming scenarios; Table 3). FCM-QNM sign match rates were also higher than other 421 

model pair for Georges Bank outcomes across scenarios, with values ranging from 67% to 92%. 422 

In contrast, Mid-Barataria sign match rates were lower but identical across model pairs under the 423 

fishing scenario (52%), highest for BBN-FCM under the warming and fishing+warming 424 

scenarios (90% and 77%, respectively).  425 

 Match rates based on outcome sign and strength category were substantially lower than 426 

those for sign alone; match rates all three network models ranged from 0% to 21% and pairwise 427 

match rates were lower for all models and scenarios (Table 3). Overall, sign and strength 428 

category match rates decreased the most for FCM-QNM and BBN-QNM outcomes relative to 429 

sign match rates (Table 3). This was related in part to the higher proportion of moderate and 430 

strong QNM outcomes relative to BBN and FCM outcomes across systems and scenarios (Table 431 

2). Consequently, sign and strength cateogry match rates were typically highest for BBN-FCM 432 

outcomes which were dominated by weak responses (Table 3).   433 

Match rates for only strong outcomes were also low: values for all but two pairwise 434 

comparisons were less than 50% and the mode of the match rate was 0% (Table 3). Overall, 435 

pairwise strong match rates were lowest for BBN-FCM outcomes and all but two match rates 436 

were greater than 0%. Strong match rates were slightly better for FCM-QNM and BBN-QNM 437 

outcomes (Table 3), with the highest match rate (85%) occurring between BBN-QNM for Mid-438 

Barataria Basin under the fishing scenario (Table 3).  439 

 440 

3.3 Focal nodes 441 
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Outcomes for focal nodes were predominately moderate to strong under the QNM in all 442 

three systems, and tended to be weaker for BBNs in the Pribilof Islands and Georges Bank 443 

systems and for FCMs in all three systems (Fig. 4). For a subset of nodes, the signs of outcomes 444 

were consistent within scenarios across modeling methods, indicating a degree of robustness 445 

(e.g., Pacific cod, Pribilof Islands; Demersal Habitat, Georges Bank; and Wetlands, Mid-446 

Barataria Basin; Fig. 4). However, for other nodes differences in outcomes between models 447 

resulted in different inferences regarding potential tradeoffs under the three scenarios (Fig. 4). 448 

In the Pribilof Islands system, under increased fishing effort the QNM projected higher 449 

BKC and RKC levels (moderate and weak strength, respectively) and reductions in Pacific cod 450 

and adult halibut (moderate strength). In the model the groundfish fishery increases mortality on 451 

all four species, but Pacific cod and halibut are also predators on early life history stages of BKC 452 

and RKC. The net effect of their removal increased BKC and RKC levels. The strong tradeoff, 453 

however, was not evident under the FCM and BBN, where outcomes were uniformly negative, 454 

albeit weakly in terms of strength (Fig. 4). Under warming, three of the four Pribilof Islands 455 

focal species had consistent sign responses across modeling approaches; the exception was 456 

halibut, which increased, decreased and remained unchained under the QNM, FCM, and BBN, 457 

respectively. Under the joint fishing+warming scenario, the sign of most focal nodes were also 458 

uniform across models, though strengths were again highest under the QNM.  459 

For Georges Bank, under the fishing scenario in the QNM, a tradeoff was apparent 460 

between groundfish and demersal habitat on the one hand and seafood and foragefish on the 461 

other. Groundfish, demersal habitat, and seafood are all directly linked to fishing effort, and their 462 

outcomes reflect the sign of the direct linkage, while the increase in foragefish likely reflects 463 

release from predation from groundfish. Under the FCM and BBN models, the strength of the 464 
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tradeoffs decreased overall and the sign of the outcome for seafood reversed under the BBN (Fig. 465 

4). Under warming, sign disagreement across modeling methods also occurred for foragefish and 466 

seafood, and additionally, under the joint fishing+warming scenario groundfish outcomes were 467 

inconsistent, indicating heightened ambiguity in their response (Fig. 4).  468 

In the Mid-Barataria system, sign outcomes were consistent across methods under the 469 

fishing scenario for Fish and Wetlands, but inconsistent for Recreation and Habitable Land (Fig. 470 

4). For Habitable Land, no change was projected under the BBN, which reflected the removal of 471 

pathways that in the other models indirectly connected it to fishing effort. The difference in 472 

network structure reflected the obligatory removal of links to prevent feedbacks in the BBN (see 473 

Methods). Under warming, sign reversals were limited to Fish, which increased under warming 474 

in the QNM, but decreased in the FCM and BBN; all other nodes responded negatively across 475 

models (Fig. 4). Under the joint fishing+warming scenario, sign disagreement across modeling 476 

methods were limited to Fish and Recreation which increased under the QNM and FCM, 477 

respectively (Fig. 4). Outcomes for all other nodes and models were negative (Fig. 4).   478 

 479 

DISCUSSION 480 

 Soft network approaches are increasingly applied in EBM settings, but few studies have 481 

attempted to compare outcomes across methods. Our main results indicate that differences in 482 

projections can be considerable depending on whether QNMs, FCMs, or BBNs are utilized and 483 

that outcomes based on a single method should be interpreted with caution. Currently, 484 

practitioners tend to use only one framework when exploring management-relevant scenarios, 485 

and while different types of uncertainty (e.g., parametric, structural) can be represented within 486 

frameworks to varying degrees (Marcot et al., 2006; e.g., Melbourne-Thomas et al., 2012; Baker 487 
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et al., 2018), structural uncertainty between frameworks is considerable. Characterizing this 488 

uncertainty should be a high priority, particularly when network approaches are applied in 489 

contexts where data to validate models or criteria to select outcomes from one framework over 490 

another are lacking. In the three case studies, QNM outcomes for the focal nodes tended to have 491 

higher strengths relative to the other network methods across scenarios. If considered in 492 

isolation, QNM outcomes in these instances could potentially lead to overconfidence in 493 

projection certainty. For example, in the Pribilof Islands system, the management action to 494 

increase fishing effort results in the desirable effect of promoting population recovery of blue 495 

king crab under the QNM, but when the outcome is considered in concert with the negative, 496 

weak outcomes from the FCM and BBN, the projection likelihood is tempered and a need for 497 

heightened caution is indicated. The same issue arises for groundfish and foragefish in the 498 

Georges Bank system, where strong, contrasting outcomes under the QNM for the fishing, 499 

warming and joint scenarios, were tempered by weaker outcomes, some in opposing directions, 500 

under the FCM and BBN. Conversely, agreement across methods improves confidence in 501 

projections and suggests that the outcome may be robust in the face of structural uncertainty 502 

(Cheung et al. 2016). For example, projections for Wetlands in the Mid-Barataria Basin system 503 

were variable in strength, but consistently negative across methods under the fishing, warming, 504 

and joint scenarios. From a management perspective, agreement across the different methods 505 

adds weight to the plausibility of this undesirable outcome and highlights a possible indirect 506 

effect under the scenarios. Like their quantitative counterparts, soft network models are best 507 

suited to informing strategic decision-making, and a fuller assessment of prediction uncertainty 508 

through multimodel comparisons could potentially advance their uptake in EBM (e.g., Addison 509 

et al. 2013).  510 
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Despite originating from a common conceptual model, outcomes between network 511 

models were moderately similar only in terms of sign match. Moreover, the relative level of 512 

similarity in outcomes between network models varied across scenarios and systems. That is, 513 

outcome similarity was not consistently higher or lower for any specific pair of methods. Among 514 

comparisons involving BBNs, the lack of consistency may partly be related to differences in how 515 

the conceptual models were simplified to remove feedbacks across systems. For the Mid-516 

Barataria Basin model, a DAG was constructed by preferentially removing links that were scored 517 

low by experts in terms of being relevant to representing systems responses to sediment 518 

diversions (a major scenario motivating the model). In contrast, feedback loops in the Georges 519 

Bank and Pribilof Island models were broken based on expert judgment with the goal of 520 

emphasizing drivers on focal species and to reflect explicit ecological assumptions (e.g., bottom-521 

up control), respectively. The different approaches were driven by the different issues motivating 522 

the conceptual models, and reflect the absence of any single best practice for simplifying systems 523 

with feedbacks into DAGs. Variation in the similarity of FCMs and QNMs outcomes also ranged 524 

widely across systems and scenarios, despite retention of feedbacks and more consistent 525 

topological differences (namely, the addition of negative self-effects in the QNMs relative to 526 

FCMs to address practical computational constraints; Raymond et al., 2011). For these models, 527 

topological differences may play a smaller role relative to link weight in driving differences in 528 

outcomes. However, quantifying the extent to which network topology, interaction strength, and 529 

fundamental differences in the underlying mathematics drive dissimilarity in projections is 530 

challenging because the topological differences are necessitated by the approaches themselves. 531 

Evaluation of the effects of network topology could potentially be evaluated within the FCM 532 

framework as it can accommodate both DAGs and negative self-loops, but similar comparisons 533 
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are less feasible due to constraints under the BBN and QNM frameworks (Marcot et al., 2006, 534 

Raymond et al., 2011). 535 

While we have focused on comparisons of the model outcomes, researchers could 536 

potentially consider treating the model set as an ensemble and blend projections across methods. 537 

In the simplest case, model outcomes could be reduced to a common currency such as the sign of 538 

the response or to the strength categories used in the current study, and unweighted quantities 539 

(e.g., mean, standard deviation) could be calculated assuming a “democracy of models”. 540 

Alternatively, if predictive performance metrics are available, model outcomes could be 541 

weighted accordingly or provide a basis for selecting a “best” model (Burnham and Anderson 542 

2002; King et al. 2009). That said, soft network approaches are often used because information is 543 

sparse, in which case other more subjective criteria such as the relative plausibility of model 544 

assumptions may provide more relevant weighting criteria. For instance, the assumption that 545 

network structure must conform to a DAG in a BBN could be a basis for down-weighting BBN 546 

outcomes relative to the other methods if feedbacks are considered essential to representing the 547 

system under study. Ultimately, the approach taken to synthesize outcomes will depend on the 548 

management question and characteristics of the system, and we note that the technical challenge 549 

of combining outcomes from the three approaches in a statistically coherent manner requires 550 

further study.  551 

In each case study, researchers formulated individual QNMs, BBNs, and FCMs without 552 

particular regard to the outcomes of the other two models. This approach helped to indicate the 553 

possible level of variation in outcomes that can go undetected when researchers adopt only one 554 

method. However, in practice, EBM modeling should follow an iterative process (Levin et al., 555 

2009; Addison et al., 2013) and future efforts to simultaneously apply all three methods could 556 
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draw from lessons learned in other multimodel research endeavors (Townsend et al., 2014; 557 

Reum et al., 2021a). For instance, information learned under one modeling approach could be 558 

used to inform subsequent iterations of network structure under all frameworks or aid revision of 559 

the common underlying conceptual model. The sharing of information across models, or the 560 

“mingling of models,” entails updating models with knowledge gained through the process of 561 

building the model set itself (Townsend et al., 2014). Similarly, sharing model outcomes with 562 

stakeholder groups is an important step in the model building cycle, and the level of similarity or 563 

divergence in projections can stimulate useful dialogue and spur further model refinement (Reum 564 

et al., 2021a). A key advantage of soft network models is that they are easy to revise and should 565 

be considered working hypotheses of system structure. 566 

The present study provides an evaluation of outcome uncertainty across network 567 

methods, but we note that operationalizing these models to support EBM decision-making will 568 

require consideration of additional uncertainty sources and further refinement. Specifically, we 569 

have not addressed model uncertainty at the conceptual model level. The set of conceptual 570 

models considered represent composite models and average over different beliefs, opinions, or 571 

levels of evidence for processes operating within the system to varying degrees. Important 572 

components of each system may have been omitted from the conceptual models as well, due to 573 

factors such as who participated in model development and the degree to which conceptual 574 

model simplification was emphasized. Such uncertainty could be considered explicitly by 575 

developing alternative conceptual models in consultation with stakeholders and managers (Stier 576 

et al. 2017). The corresponding network models could be added to the model set and variance 577 

partitioning methods applied to quantify the relative importance of conceptual model uncertainty 578 

to outcome variance (Cheung et al., 2016; Reum et al., 2020b). Similarly, each BBN was 579 
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represented with one DAG, but alternative DAGs may also be plausible and could be added to 580 

the model set. We recommend follow-on studies that aim to (1) evaluate which processes and 581 

linkages disproportionately drive outcome uncertainty to focus model revision and data 582 

collection efforts, (2) attempt model validation using empirical data where available, and (3) 583 

undertake vetting of all models with stakeholders to improve transparency, familiarity, and 584 

potential uptake of results.  585 

We have focused on comparisons of projected outcomes across network model methods, 586 

but disagreement in outcomes does not diminish the larger benefits of developing conceptual 587 

models in tandem with network models. First, the process of developing conceptual models can 588 

provide a framework for querying stakeholders of their system knowledge, facilitate synthesis 589 

and organization of system understanding, and place different knowledge sources (e.g., formal 590 

scientific research, experiential knowledge, or a combination thereof) on equal footing (Harvey 591 

et al., 2016; DePiper et al., 2021). Second, conceptual modeling exercises can generate optimism 592 

that is often lacking when stakeholders face long-term environmental challenges (Freitag et al., 593 

2019) and facilitate dialogue between stakeholders, managers, and scientists which can broaden 594 

the perspectives of each group and increase buy-in to model building enterprises (Reum et al., 595 

2021a). Third, representing conceptual models using multiple network models explicitly 596 

acknowledges model uncertainty, which can help build credibility with stakeholders along with 597 

confidence in projections (Addison et al., 2013; Cheung et al., 2016). Last, disagreement in 598 

outcomes across model methods indicates sensitivity to system specification and the need for 599 

closer scrutiny of the models, their assumptions, and the underlying conceptual model from 600 

different vantages (Reum et al. 2021a). The networks can be analyzed within each framework to 601 

identify important links or relationships that drive the outcome of important nodes. Insights 602 
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obtained from closer evaluation can help inform research priorities, future data collection needs, 603 

and areas to focus quantitative modeling efforts. These and other benefits common to broader 604 

classes of ecological models (Addison et al., 2013; Geary et al., 2020) make conceptual and 605 

network models useful tools in the EBM modeling toolbox. The intercomparison of network 606 

modeling approaches is a critical step towards operationalizing conceptual models and we 607 

strongly encourage continued research into the synthesis of outcomes across frameworks.  608 
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Table 1.  Network summary statistics for QNM, FCM, and BBN models developed for the 796 
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Pribilof Island, Georges Bank, and Mid-Barataria Basin systems.  797 
 798 
 799 

 Pribilof Islands 
Georges Bank Mid-Barataria Basin 

 QNM FCM BBN QNM FCM BBN QNM FCM BBN 

Node number 16 16 11 31 31 31 35 35 35 
Connectivity 
(link number) 77 66 34 118 87 78 220 185 167 

Link density 4.81 4.12 3.09 3.8 2.81 2.52 6.29 5.29 4.77 
Connectance 
(connection 
density) 0.30 0.25 0.28 0.12 0.09 0.08 0.18 0.15 0.14 
Self-loop 
number 16 5 0 31 0 0 35 0 0 

Hierarchy 0.0115 0.0022 0.0310 0.002 0.0002 0.0019 0.0042 0.0012 0.0040 
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Table 2. Percentage of nodes with responses categorized as weak, moderate, and strong under 827 
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fishing, warming, and fishing+warming scenarios for the Pribilof Islands (PI), Georges Bank 828 
(GB), and Mid-Barataria Basin (MB) systems. Percentages are based on the total number of 829 
response nodes that were susceptible to direct or indirect influence from nodes pressed under the 830 
fishing+warming scenario and corresponded to 14, 12, and 31 nodes, respectively. Values greater 831 
than 50% are in bold.  832 
 833 
 834 
    % Weak % Moderate % Strong 
Scenario System QNM FCM BBN QNM FCM BBN QNM FCM BBN 
Fishing PI 43 97 56 43 3 44 14 0 0 

 GB 8 85 92 0 8 8 92 8 8 
 MB 16 86 100 34 14 0 50 0 0 

Warming PI 14 100 50 79 0 50 7 0 0 
 GB 15 100 100 54 0 0 31 0 0 
 MB 22 71 100 50 29 0 28 0 0 

Fishing + 
warming PI 36 97 44 43 3 56 21 0 0 

 GB 8 85 92 23 8 8 69 8 8 
  MB 19 71 86 50 29 14 31 0 0 
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837 
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Table 3. Summary of prediction similarities across network types and under different perturbation scenarios for Pribilof Islands (PI), 838 
Georges Bank (GB), and Mid-Barataria (MB) systems. Sign match is the percentage of nodes with the same sign response. Sign and 839 
strength category match is the percentage of node responses with matching response signs and magnitudes. Strong and moderate 840 
match indicates the percentage of nodes in which moderate or strong responses were projected for nodes by both network model 841 
relative to the total number of nodes (indicated in parentheses) in which either network predicted a strong or moderate response. 842 
Matches equal to or greater than 50% are in bold. Percentages are based on the total number of response nodes that were susceptible to 843 
direct or indirect influence from pressed nodes under the fishing + warming scenario and corresponded to 14, 12, and 31 nodes for PI, 844 
GB, and MB, respectively.  845 
 846 
    % Sign match % Sign and category match % Strong and moderate match 

Scenario System 
FCM-
QNM 

BBN-
QNM 

BBN-
FCM All 

FCM-
QNM 

BBN-
QNM 

BBN-
FCM All 

FCM-
QNM 

BBN-
QNM 

BBN-
FCM All 

Fishing PI 64 43 64 36 21 7 50 0 14 (7) 0 (6) 0 (2) 0 (1) 
 GB 92 33 42 33 17 0 33 0 10 (10) 0 (5) 0 (1) 0 (1) 
 MB 52 52 52 32 3 42 29 3 0 (15) 85 (13) 0 (7) 0 (6) 
 Average 63 46 53 33 11 25 35 2 6 (32) 46 (24) 0 (10) 0 (8) 
              

Warming PI 86 57 79 57 29 29 57 21 20 (10) 17 (6) 50 (4) 50 (2) 
 GB 67 50 42 33 8 8 42 0 13 (8) 0 (6) 0 (1) 0 (1) 
 MB 58 65 90 52 10 32 39 3 0 (15) 41 (22) 0 (12) 0 (5) 
 Average 67 60 77 49 14 26 44 7 9 (33) 29 (34) 12 (17) 13 (8) 
              

Fishing + 
Warming PI 86 64 71 64 29 7 50 7 27 (11) 0 (9) 0 (4) 0 (3) 

 GB 75 67 50 42 8 8 42 8 0 (8) 0 (4) 0 (0) 0 (0) 
 MB 65 65 77 65 3 32 39 3 0 (19) 35 (26) 0 (16) 0 (9) 

  Average 72 65 70 60 11 21 42 5 8 (38) 23 (39) 0 (20) 0 (12) 
847 
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 850 
 851 
 852 
Fig. 1. Overview of variables included in the Pribilof Islands blue king crab conceptual model. 853 
For clarity, variables are organized into descriptive groups. Variables that were perturbed in the 854 
warming and fishing scenarios are indicated by thick outlines. Arrows symbolize general 855 
interaction within and across groups of variables; a detailed diagram with all pairwise links is 856 
provided in the Supplemental Materials.  857 
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 879 
Fig. 2. Overview of variables included in the Georges Bank conceptual model. For clarity, 880 
variables are organized into descriptive groups. Variables that were perturbed in the fishing and 881 
warming scenarios are indicated by thick outlines. Arrows symbolize general interaction within 882 
and across groups of variables; a detailed diagram with all pairwise links is provided in the 883 
Supplemental Materials.  884 
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 897 
Fig. 3. Overview of variables included in the Mid-Barataria Basin conceptual model. For clarity, 898 
variables are organized into descriptive groups. The model was based in part upon the EBM-899 
DPSER conceptual modeling framework (Kelble et al., 2013) and distinguishes between 900 
pressure variables and response variables. Variables that were perturbed in the fishing and 901 
warming scenarios are indicated by thick outlines. Arrows symbolize general interaction within 902 
and across groups of variables; a detailed diagram with all pairwise links is provided in the 903 
Supplemental Materials.  904 
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 921 
 922 
Fig. 4. Response of focal nodes in network models of the Pribilof Island, Georges Bank, and 923 
Mid-Barataria system under fishing, warming, and fishing + warming perturbation scenarios. 924 
Nodes with no direct or indirect pathways linking them to the perturbed node in a given scenario 925 
are indicated by an open grey square. For the Pribilof Island nodes, BKC and RKC correspond to 926 
blue king and red king crab; A indicates adult life history stages. For the Georges Bank nodes, 927 
HSD corresponds to seafloor and demersal habitat; for the Mid-Barataria nodes, HL corresponds 928 
to habitable land.  929 



Main manuscript Tables and Figures  1 
 2 
 3 
Table 1.  Network summary statistics for QNM, FCM, and BBN models developed for the Pribilof Islands, Georges Bank, Mid-4 
Barataria Basin systems.  5 
 6 
 7 
 8 
 9 

 Pribilof Islands 
Georges Bank Mid-Barataria Basin 

 QNM FCM BBN QNM FCM BBN QNM FCM BBN 

Node number 16 16 11 31 31 31 35 35 35 

Connectivity 
(link number) 77 66 34 118 87 78 220 185 167 

Link density 4.81 4.12 3.09 3.8 2.81 2.52 6.29 5.29 4.77 

Connectance 
(connection 
density) 0.30 0.25 0.28 0.12 0.09 0.08 0.18 0.15 0.14 

Self-loop 
number 16 5 0 31 0 0 35 0 0 

Hierarchy 0.0115 0.0022 0.0310 0.002 0.0002 0.0019 0.0042 0.0012 0.0040 
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 18 
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Table 2. Percentage of nodes with responses categorized as weak, moderate, and strong under fishing, warming, and fishing+warming 20 
scenarios for the Pribilof Islands (PI), Georges Bank (GB), and Mid-Barataria Basin (MB) systems. Percentages are based on the total 21 
number of response nodes that were susceptible to direct or indirect influence from nodes pressed under the fishing+warming scenario 22 
and corresponded to 14, 13, and 32 nodes, respectively. Values greater than 50% are in bold.  23 
 24 
 25 
    % Weak % Moderate % Strong 
Scenario System QNM FCM BBN QNM FCM BBN QNM FCM BBN 
Fishing PI 43 97 56 43 3 44 14 0 0 

 GB 8 85 92 0 8 8 92 8 8 
 MB 16 86 100 34 14 0 50 0 0 

Warming PI 14 100 50 79 0 50 7 0 0 
 GB 15 100 100 54 0 0 31 0 0 
 MB 22 71 100 50 29 0 28 0 0 

Fishing + 
warming PI 36 97 44 43 3 56 21 0 0 

 GB 8 85 92 23 8 8 69 8 8 
  MB 19 71 86 50 29 14 31 0 0 
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Table 3. Summary of prediction similarities across network types and under different perturbation scenarios for Pribilof Islands (PI), Georges 28 
Bank (GB), and Mid-Barataria (MB) systems. Sign match is the percentage of nodes with the same sign response. Sign and strength category 29 
match is the percentage of node responses with matching response signs and magnitudes. Strong and moderate match indicates the percentage of 30 
nodes in which moderate or strong responses were projected for nodes by both network model relative to the total number of nodes (indicated in 31 
parentheses) in which either network predicted a strong or moderate response. Matches equal to or greater than 50% are in bold. Percentages are 32 
based on the total number of response nodes that were susceptible to direct or indirect influence from pressed nodes under the fishing + warming 33 
scenario and corresponded to 14, 12, and 31 nodes for PI, GB, and MB, respectively.  34 

    % Sign match 
% Sign and strength category 

match % Strong and moderate match 

Scenario System 
FCM-
QNM 

BBN-
QNM 

BBN-
FCM All 

FCM-
QNM 

BBN-
QNM 

BBN-
FCM All 

FCM-
QNM 

BBN-
QNM 

BBN-
FCM All 

Fishing PI 64 43 64 36 21 7 50 0 14 (7) 0 (6) 0 (2) 0 (1) 
 GB 92 33 42 33 17 0 33 0 10 (10) 0 (5) 0 (1) 0 (1) 
 MB 52 52 52 32 3 42 29 3 0 (15) 85 (13) 0 (7) 0 (6) 
 Average 63 46 53 33 11 25 35 2 6 (32) 46 (24) 0 (10) 0 (8) 
              

Warming PI 86 57 79 57 29 29 57 21 20 (10) 17 (6) 50 (4) 50 (2) 
 GB 67 50 42 33 8 8 42 0 13 (8) 0 (6) 0 (1) 0 (1) 
 MB 58 65 90 52 10 32 39 3 0 (15) 41 (22) 0 (12) 0 (5) 
 Average 67 60 77 49 14 26 44 7 9 (33) 29 (34) 12 (17) 13 (8) 
              

Fishing + 
Warming PI 86 64 71 64 29 7 50 7 27 (11) 0 (9) 0 (4) 0 (3) 

 GB 75 67 50 42 8 8 42 8 0 (8) 0 (4) 0 (0) 0 (0) 
 MB 65 65 77 65 3 32 39 3 0 (19) 35 (26) 0 (16) 0 (9) 

  Average 72 65 70 60 11 21 42 5 8 (38) 23 (39) 0 (20) 0 (12) 
35 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Fig. 1. Overview of variables included in the Pribilof Islands blue king crab conceptual model. 
For clarity, variables are organized into descriptive groups. Variables that were perturbed in the 
warming and fishing scenarios are indicated by thick outlines. Arrows symbolize general 
interaction within and across groups of variables; a detailed diagram with all pairwise links is 
provided in the Supplemental Materials.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
Fig. 2. Overview of variables included in the Georges Bank conceptual model. For clarity, 
variables are organized into descriptive groups. Variables that were perturbed in the fishing and 
warming scenarios are indicated by thick outlines. Arrows symbolize general interaction within 
and across groups of variables; a detailed diagram with all pairwise links is provided in the 
Supplemental Materials.  
 
 
 
 
 
 
 
 
 
 
 



 
 
Fig. 3. Overview of variables included in the Mid-Barataria Basin conceptual model. For clarity, 
variables are organized into descriptive groups. The model was based in part upon the EBM-
DPSER conceptual modeling framework (Kelble et al., 2013) and distinguishes between 
pressure variables and response variables. Variables that were perturbed in the fishing and 
warming scenarios are indicated by thick outlines. Arrows symbolize general interaction within 
and across groups of variables; a detailed diagram with all pairwise links is provided in the 
Supplemental Materials.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Fig. 4. Response of focal nodes in network models of the Pribilof Island, Georges Bank, and 
Mid-Barataria system under fishing, warming, and fishing + warming perturbation scenarios. 
Nodes with no direct or indirect pathway linking them to the perturbed node in a given scenario 
are indicated by an open grey square. For the Pribilof Island nodes, BKC and RKC correspond to 
blue king and red king crab; A indicates adult life history stages. For the Georges Bank nodes, 
HSD corresponds to seafloor and demersal habitat; for the Mid-Barataria nodes, HL corresponds 
to habitable land.  
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