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Abstract—Brain computer interface (BCI) based on motor
imagery Electroencephalogram (EEG) has been widely used in
various applications. Despite the previous efforts, the remained
major challenges are effective feature extraction and time-
consuming calibration procedure. To address these issues, a novel
Multi-Attention Adaptation Network integrating multiple atten-
tions mechanism and transfer learning is proposed to classify
the EEG signals. Firstly, the multi-attention layer is introduced
to automatically capture the dominant brain regions relevant to
mental tasks without incorporating any prior knowledge about
the physiology. Then, a multi-attention convolutional neural
network is employed to extract deep representation from raw
EEG signals. Especially, a domain discriminator is applied to
deep representation to reduce the differences between sessions for
target subjects. The extensive experiments are conducted on three
public EEG datasets (Dataset IIa and IIb of BCI Competition IV,
High Gamma dataset), achieving the competitive performance
with average classification accuracy of 81.48%, 82.54% and
93.97%, respectively. All the results outperform the state-of-the-
art algorithms demonstrate the effectiveness and robustness of the
proposed method. Importantly, we confirm that it is easier and
more appropriate to transfer the information from local brain
regions than from the whole brain. This enhances the transfer
ability of deep features and hence it improves the performance
of BCI systems.

Index Terms—Motor imagery (MI), transfer learning, multi-
ple attentions mechanism, electroencephalogram (EEG), brain-
computer interface (BCI).

I. INTRODUCTION

S a novel interaction, the brain-computer interfaces
(BClIs) system allows users to send specific commands to
control external auxiliary devices by translating their neuronal
activities [1], [2]. Since the non-invasiveness and high tem-
poral resolution of Electroencephalogram (EEG), EEG-based
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BCIs have drawn great attention and have been widely applied
to various fields, including driver fatigue detection [3], [4],
emotion recognition [5], [6], entertainment for healthy users
[71, [8], and others [9], [10].

According to different brain activity mechanisms, EEG-
based evoked patterns are generally divided into four cat-
egories: sensorimotor rhythms (SMR), steady-state visual
evoked potential (SSVEP), event-related potential (ERP) and
slow cortical potential (SCP). Motor imagery (MI) associated
with SMR is one of the prevalent BCI paradigms. During
executing imaginary motor movements, the amplitude of u
(7-13Hz) and B (13-30Hz) rhythms would be supressed or
enhanced. These phenomena are called event-related desyn-
chronization (ERD) and event-related synchronization (ERS),
respectively [11]. Moreover, the MI-BClIs system does not re-
quire external stimulation and interacts with the outside world
through the spontaneously controlled EEG. Motor imagery can
be used as a means to activate the motor neural network. It can
be applied to any stage of stroke to improve the motor function
of stroke patients and does not depend on the patient’s residual
function. It is closely related to the patient’s active movement,
so the MI-BCIs system has been successfully applied to stroke
rehabilitation [12].

In recent years, a large number of methods have been
applied to motor imagery EEG signals decoding. These
methods are mainly divided into two categories: machine
learning methods and deep learning methods. Machine learn-
ing methods generally include two stages: feature extraction
and classification. In BCIs, the commonly used features in-
clude time domain features, frequency domain features, time-
frequency joint features and spatial domain features. There
are four mainly used methods for extracting time-frequency
joint features: short-time Fourier transform (STFT), discrete
wavelet transform (DWT), Gabor transform and Wigner-Ville
distribution [13]. In addition to being able to select different
time resolutions and frequency resolutions, these methods are
also able to automatically adjust the time domain resolution
and frequency domain resolution to suit the characteristics
of the signals. In terms of spatial domain, the common
spatial pattern (CSP) is the most typical feature extraction
method and is widely used [14]-[16]. The core of the CSP
algorithm is to find a set of weight vectors, and use those
vectors to spatially project the observed signal so that the
difference between the signal variances before and after pro-
jection is the largest. Subsequently, more CSP enhancement
algorithms were produced, such as filter bank common spatial
pattern (FBCSP) [17] and filter bank regularized common
spatial pattern (FBRCSP) [18]. Recently, frameworks based
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on Riemannian Geometry are proposed to extract manifold
topological features from symmetric positive definite matrices
with the purpose to achieve classification [19], [20]. When
classifying the extracted features, the following classifiers are
generally used: linear discriminant analysis (LDA), support
vector machines (SVM), non-linear Bayesian classifier, nearest
neighbor classifier and multiple classifiers, the latter two are
used in combination [21]. The classification accuracy of these
methods depends to a large extent on handcrafted features. Due
to the low signal-to-noise ratio and non-stationary randomness
of the EEG signals, the large difference in cross sessions and
subjects, it is hard to manually extract robust EEG signal
features, resulting in poor classification performance.

Deep learning is a prominent technique for fully mining
data and extracting more advanced feature representations,
which has been applied to various fields [22], [23]. Specially,
various deep learning models have been successfully used to
decode EEG signals and achieve good results: Lu et al. [24]
proposed a frequential deep belief network (FDBN) which
is formed by stacking three restricted Boltzmann machines
(RBMs) and an extra output layer. These RBMs are trained
with the frequency domain features of EEG signals, which are
obtained by fast Fourier transform and wavelet packet decom-
position. Gao et al. [6] designed simple convolutional neural
network (ConvNet) based on coincidence filtering, using fewer
parameters to tune yielded higher training efficiency for EEG-
based classification. Zhao et al. [25] first converted the EEG
signals to a sequence of 2D array, then transformed it into a 3D
representation; they proposed a multi-branch 3D convolutional
neural network (3D ConvNet) which can preserve not only
temporal features but also spatial ones. Gao et al. [26] develop
a framework combining recurrence plots and convolutional
neural network for fatigue driving recognition.These methods
have achieved more effective EEG feature extraction and
pattern classification with higher accuracy. However, there
are some problems when confronting with brain—computer
interfaces: (1) there are fewer training samples in practice and
(2) how to leverage data from previous sessions to prevent a
calibration for new sessions of the same user. The standard
approach in BClIs is re-training a classifier with a series
of calibration trials at the beginning of each experimental
session. However, such time-consuming procedure is clearly
suboptimal, because it does not utilize any information from
past experiments.

More recently, transfer learning has been widely applied
in many EEG-based BCI studies to address the above chal-
lenges. Li et al. [27] proposed the bi-hemisphere domain
adaptation network (BiDANN) for EEG emotion recognition.
In BiDANN, the feature extractor and domain discriminator
are introduced to learn a share feature representation space
and to reduce the distribution discrepancy between different
subjects. Then the classifier trained on EEG signals from
source subjects can predict the EEG signals from target subject
more accurately. Jeon et al. [28] introduced a source selection
to choose similar subjects as souce domain by estimating
their power spectral density in resting-state EEG signals;
then the EEG signals from both source and target domain
are utilized to jointly train a deep network. These studies

enrich the applications of transfer learning in BCI systems.
However, we still encounter challenges in domain adaptation
for EEG decoding, that is, (1) the learning problem of share
representations space cross source and target domains and (2)
the reduction of domain discrepancy.

Additionally, many studies are devoted to optimize the
number of EEG channels by searching the maximums of
spatial pattern vectors in scalp mappings. For instance, ICA-
based methods [29] convert EEG signals into time-frequency
maps and scalp maps, then the relevant components task are
chosen by visual selection. CSP-based methods [30] consider
the spatial pattern as EEG source distribution vectors, and
select the channels corresponding to the maximum coeffi-
cients of distribution vectors as the optimal channels. SVM-
based methods [31] aim at finding a good estimation for
the regularization parameter of the objective function, which
employed the Fisher Criterion, Zero-Norm Optimization and
Recursive Feature Elimination as the estimation criteria. Then
the channel scores are ranked during training procedure, and
the best ranked channels can be considered as the dominant
channels. However, these methods either require an explicit
prior knowledge about the physiological processes underlying
mental tasks or it is only a preprocessing technique that
is difficult to be incorporated in an end-to-end optimization
paradigm. Therefore, it presents a major challenge to locate
automatically critical channels relevant to mental tasks during
training.

In this paper, we propose a multi-attention adaptation net-
work (MAAN) to tackle the aforementioned challenges in BCI
applications. We assume that source domain and target domain
share the common feature spaces, and that the automatic
location of dominant channels during training does boost
the capability to extract more discriminative and transferable
features. Based on such assumption, the transfer learning
technique and multiple attentions mechanism are employed in
our framework. Firstly, we design a multi-attention layer with
multiple learnable kernels to automatically target the dominant
brain regions during training. Then a multi-attention ConvNet
incorporating the multi-attention layer is built as the feature
extractor to learn discriminative features from EEG signals.
Next, these features are fed into both a classifier and a domain
discriminator. With the adversarial learning between classifier
and domain discriminator, the feature extractor tries capturing
the domain-invariant features by minimizing the overall loss.
We evaluate the performance of our proposed EEG decoding
architecture on three public motor imagery EEG datasets, all
the results demonstrate that the proposed MAAN framework
achieves superior classification accuracy than other state-of-
the-art methods. Moreover, it is shown that our method is
capable of locating the critical channel without any prior
knowledge for channel selection.

The major contributions of this paper are summarized
as follows: We introduce the multiple attentions mechanism
to dynamically estimate the channel-wise importance dur-
ing training, which can be easily implemented for end-to-
end learning and is compatible with all EEG-based tasks.
The novel multi-attention adaptation network is proposed to
learn domain-invariant and discriminative features, which can
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Fig. 1. The architecture of the proposed MAAN model, which consists of three components: feature extractor, classifier and domain discriminator.

reduce the calibration time within sessions effectively. All
the experimental results on three public motor imagery EEG
datasets not only show that our models outperform many
state-of-the-art deep learning methods, but also confirm that
transferring the information from the local dominant brain
regions is easier and more realistic.

The remainder of this paper is organized as follows: Sec-
tion II briefly introduces some notations and preprocessing
technique that we consider in this work. Section III presents
the components of the proposed method in detail. Section IV
describes the experiment and discusses the results on three
public motor imagery EEG datasets (Dataset Ila and IIb of
BCI competition IV, High Gamma dataset). Lastly, Section V
concludes the paper.

II. PRELIMINARY

In this section, we first present the definitions and notations
used in this work and introduce the adopted preprocessing
technique for EEG signals.

A. Definitions and Notations

The EEG signals collected from a subject are defined as
{(xi, yi)} |, where n denotes the number of EEG trials. x; €
RET represents an EEG trial with C channels and T sampling
points, y; is the corresponding label.

In this study, we only consider the case of inter-session
transfer for the same subject. Specially, the EEG trials from
previous session are defined as source domain, and trials
from new session are defined as target domain. Usually, we
denote the source domain with ng labeled samples as Dy =
{(x] ,yf)}l’.‘;l, where x; represents the data drawn from the
marginal distribution P(Xj), y] is the label of x;. Similarly, we
define D; = {(xl’.)}:’;] as the target domain with n, unlabeled
samples under the marginal distribution P(X;). In general, it is
assumed that the data come from different domains following

the similar but different marginal distribution, called domain
shift. For a classification task, our goal is to train a classifier
that leverages the available information from source domain
to reduce the domain shift, and make it perform well on the
classification of data points for the target domain.

B. Data Preprocessing

Before presenting the details of the network architecture, it
is necessary to introduce the preprocessing procedures used
in this work. Compared to traditional methods, our method
does not rely on the intricate operation for feature extraction.
In this work, only the band-pass filtering and exponential
moving standardization are required for processing the raw
EEG signals.

1) Band-pass filtering: We employ a third-order Butter-
worth band-pass filter for capturing most discriminative motor-
related band power information. As done in [32], the band-pass
filtering with frequency bands of 3—40 Hz is conducted on the
raw EEG trials.

2) Exponential moving standardization: For eliminating the
undesired signals such as interferences and noise, we employ
the electrode-wise exponentially moving standardization to
standardize the continuous EEG signals. We select a decay
factor a of 0.999 for calculating the mean u; and variances
o} as follows:

Hr = (1 —a)xg +app_y, (1)

o7 = (1-a)(xe — )’ +ao. )
where x; represents the input filtered signal at time k. Then
the filtered data can be standardized as:

- Xk~ Hk
= L 3)

2
Ok

where X represents the the standardized data.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Softmax
»

Learnable Kernel

Attentive Map

Feature Maps

2=

Refined Feature Maps

A

Optional

spuuey)
o

1
Channel Attention #1
' . c
#9 (]

Channel Attention

Channel Attention

\4

Next Layers

¥

NxL

EEG Signals Channel Feature Maps

Multi-attention Layer

Concatenation of Weighted
Channel Feature Maps

Fig. 2. An illustration of the multi-attention layer in a 5-electrode BCI system. As illustrated, a multi-attention layer with multiple channel attention kernels
is utilized to weight the raw EEG signals directly or channel feature maps (when feature extraction is required). Each channel attention kernel employs a
learnable tensor and scale its weights with Softmax operation to produce an attentive map. Then the attentive map is applied to the feature maps to weight
the channel features. Finally, all the refined feature maps weighted by different kernels are concatenated together and fed to the following layers.

After conducting the above operations on each EEG trial,
the derived signals can be considered as cleaner data and
preserves the motor imagery information.

III. METHODS

In this section, we firstly introduce the basic ideas of
the multi-attention layer and its implementation. Then the
framework of the proposed MAAN model is presented in
detail. Figure 1 illustrates the architecture of the MAAN
method, which consists of three basic components: a feature
extractor ¥ (-), a classifier C(-) and a domain discriminator
D().

A. Multi-attention Layer

MI signals encode the motor intentions of subjects by
modifying the neuronal activity in specific brain regions.
According to the previous physiological studies on MI, EEG
signals for different brain regions contribute differently to
imagination tasks. Concretely, the ERD of hand imagery
movements appears over somatosensory areas, while the ERD
of feet imagery movements localizes on the central cortex
between both hemispheres [11]. Inspired by these neurosci-
entific findings, we introduce a Multi-attention Layer to
dynamically estimate the channel-wise contribution in motor
intention decoding, aiming at searching the specific spatial
patterns relevant to mental tasks. To be concrete, considering
a trial of MI signals x € RE*T | the multi-attention layer with
different kernels is applied to it directly or to its channel
feature maps F € RET'XN as presented in Fig. 2, where
T’ is the feature dimension, N represents the number of
feature sets. Each feature set may be obtained by different
feature extraction methods or from different frequency bands.
Note that the channel feature maps are equivalent to their
corresponding raw signals only when the feature extraction is
not required. Next, the features from important brain regions
need to be given more attention during the forward process.

For this purpose, the dynamic weight is employed to weight
electrodes of different brain regions, which can be denoted
by a learnable tensor W € RE*XL. Here, W contains L
kernels, each kernel corresponds to a specific spatial pattern,
denoted by W; = {w;} € RE*XI(] = 1,2,...,L). Note that
the proposed multi-attention layer is independent of its input
feature maps, like the convolution layer, all the weights are
initialized to be 1 in our case. Sequentially, the Softmax
operation is applied to each kernel to produce the channel
attentive map. Then we weight the input feature maps and
output the refined feature maps, as illustrated in the yellow
box in Fig. 2. In short, the above attention process can be
summerized by the following rule:

_ _exp(w) @
Z].C:Iexp(wj)
and
F,=W,0F, 6)

where O represents the Hadamard product operator. w; indi-
cates the importance of the i-th channel, which is normalized
to [0, 1] using Eq. (4). Finally, all the refined feature maps
weighted by multiple kernels are concatenated as a 3D-signal
F e ROTX(NXL) “and fed to the following layers.

As can be seen from the above description, Multi-attention
Layer is essentially composed of multiple spatial attention
patterns. Each pattern might select some critical channels
that are highly relevant to a specific mental task. Thus, it is
necessary to deploy multiple patterns in the attention layer,
specially in the case of multi-class tasks. Importantly, the pa-
rameters of Multi—attention Layer can be dynamically updated
by back-propagation algorithm during the training process,
which allows learning the appropriate spatial distributions for
each subject without requiring any prior knowledge about
neuroscience.
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TABLE I
MODEL PARAMETERS OF THE MAAN FRAMEWORK

Modules Layer Kernel Stride
Multi-attention Cxl1, 5 1
Temporal Conv 1x25, 40 1
Spatial Conv Cxl1, 40 1
Batch Normalization - -
Feature extractor
Square Activaction - -
Average Pooling 1x75 15
Log Activaction - -
Dropout p =05 -
. Conv-1 1x61, M 1
Classifier
Softmax - -
o Conv-2 1x61, 2 1
Domain discriminator
Softmax - -

B. Feature Extractor

For further extracting the high-level presentations from the
EEG signals, we build a multi-attention ConvNet to implement
the feature extractor as shown in Fig. 1. It includes the multi-
attention layer, the temporal convolutional layer (Temporal
Conv), the spatial convolutional layer (Spatial Conv), the batch
normalization layer, the Nonlinear Transformation block and
the dropout layer. Specially, the size of the convolutional
kernel in the temporal layer is 1 X 25 and in the spatial layer
is C x 1 with the stride of 1, which has been shown that such
a size of kernel is proper for feature extraction of an EEG
time series [32]. In addition, the Nonlinear Transformation
block is equipped with squaring nonlinearity layer, average
pooling layer and logarithmic activation layer, where the size
of the pooling filter is set as 1 x 75 with the stride of 15. The
parameters of the feature extractor are presented in Table 1.

For the multi-channel EEG signals x € RS fed into the
feature extractor, the multi-attention layer is firstly employed
to select the task relevant channels by weighting the input
signals. Then the temporal convolutional layer and spatial
convolutional layer are applied to learn temporal and spatial
representations from the weighted signals. Next, a batch nor-
malization layer is utilized to speed up the convergence speed
and improve generalization ability. Finally, the Nonlinear
Transformation block is employed for extracting the high-level
EEG features. And the operations of dropout are inserted after
the Nonlinear Transformation block for further robustness. As
a results, we obtain a group of discriminative features from the
EEG time series, which are denoted as f. Here, f represents
both source domain features f* and target domain features f*.

C. Classifier and Domain Discriminator

The classifier (as shown in Fig. 1) is trained to predict the
label of high-level EEG features with high certainty. In this
work, the classifier is a two-layer network, where the first
layer is the convolutional operation (Conv-1) with kernel size
1 x 61 and M output units, the second layer is the softmax

activation function. Here, M is the number of categories for
mental tasks.

As can be seen in Fig. 1, the classifier takes feature f as
input, then the output O of Conv-1 is fed into the softmax
function to obtain the predicted probability p; for the k-th
category of mental tasks by the following formula:

exp(ox)
st exp(on)’

pr(x) = (6)
where oy is the k-th element of output O, k = 1,2,...., M.
Consequently, the predicted vector corresponding to feature f
can be denoted as C(f) = (p1, p2, ---» Pk)- Since only the EEG
signals from the source domain are labeled, the loss function
of the classifier is formulated as:

1 &
Le(Br.00) = — > LIC().5). (7
s i

where 67 and 6. represent the parameters in the feature
extractor and classifier, respectively. f* is the extracted feature
from the source domain, y} is the corresponding ground-truth
label, and £(-) denotes the cross-entropy loss function.

In EEG signal classification, training data and testing data
usually come from different distributions, i.e., the training and
testing data are drawn from different sessions or subjects. In
this case, the classification model trained on training data
may perform badly on the testing data. Thus, the domain
discriminator is introduced to address this problem. As is
shown in Fig. 1, the aim of the discriminator is to distinguish
the feature in source domain from target domain. Similarly
to the classifier, we adopt a convolutional layer (Conv-2)
with kernel size 1 X 61 and 2 output units as the first
layer of the discriminator, and insert softmax operation as
the activation function. Considering the given feature sets
FS = {f5, f5, . .} and F* = {f], f3,..., fp } from source
and target domains, respectively. Then the loss function of the
discriminator can be defined as:

1< RS
La(05,00) = == > LID(f), d) + = > LD, dp), ®)
S =1 =1

where 6, represents the learned parameters in the discrimina-
tor, df and d’. denote the source and target domain labels of the
input features f and f J’ , respectively. During the training, the
feature extractor extracts domain-invariant features to reduce
the domain discrepancy by maximizing the above loss function
of the discriminator.

D. Optimization of Network

During the training stage, the proposed MAAN is jointly
optimized by the adversarial learning between classifier and
discriminator. To be concrete, the parameters 6. in the clas-
sifier aim to minimize the prediction loss (Eq.(7)) while,
simultaneously, the parameters 6 in the discriminator strive to
maximize the domain loss (Eq.(8)). As a result, the parameters
6¢ in the feature extractor can be optimized by minimizing
the prediction loss to capture the discriminative feature, and
by maximizing the domain loss to obtain the domain-invariant
feature in such minimax game.
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Based on the above analysis, we integrate all components
and present the overall loss function of MAAN as follows:

L(6f70C96d) = LC - Q’Ld, (9)

where « is the trade-off parameter to balance the classifier and
the domain discriminator learning process.

For finding the optimal parameters to minimize the loss
function of (9), we can iteratively minimize L. while maxi-
mize Lg. Firstly, the parameters of 6 and 6. are updated by
minimizing the loss function as follow:

r,0,) = arg min L(Of,0c,04). (10)
RLE
Subsequently, based on the optimal parameters @ r and 0.,
the parameters of 6; can be updated by maximizing the
following loss function:

édzargr%axL(éf,éc,Hd). (11)
d

As a result, the feature extractor is able to learn the dis-
criminative features by minimizing the loss functions L.
Moreover, in order to maximizing the loss function Ly, the
feature extractor generates the domain-invariant features to
deceive the discriminator. Consequently, by means of the
adversarial learning between classifier and discriminator, we
can obtain the discriminative and domain-invariant features for
EEG decoding.

Additionally, we insert the Gradient Reversal Layer
(GRL) the grey part in Fig. 1 [33] before the discriminator to
change the maximizing problem into a minimizing problem.
During the forward propagation, the GRL acts like an identity
transform. However, in the back propagation stage, the GRL
reverses the gradient sign in the discriminator by multiplying
it with a negative scalar, denoted by -, here (8=1 in our case).
By incorporating the GRL before the discriminator, the param-
eters of MAAN can be optimized with SGD-based approaches
[34]. The optimization process of MAAN is summarized in
Algorithm 1.

IV. EXPERIMENTS
A. Dataset

1) Dataset A (Dataset Ila of BCI competition IV [35]): In
this dataset, the EEG signals from nine different subjects are
recorded with 22 electrodes during two sessions. Each of them
were instructed to perform four classes of MI movements,
including movements of the left hand, the right hand, the feet
and the tongue. The first session consists of the 288 four-
second trials, which is used to be the training set. And the
second session consists of the 288 four-second trials, which is
used to be the testing set.

2) Dataset B (Dataset IIb of BCI competition IV [36]):
This dataset records 3-electrode EEG motor-imagery signals
from nine subjects with five sessions of imagined movements
of the left or the right hand, the latest 3 sessions include
online feedback [36]. The training set consists of the approx.
400 trials of the first 3 sessions, the test set consists of the
approx.320 trials of the last two sessions.

Algorithm 1 Training procedure of MAAN

Input: EEG signals and label from source dataset: Ds = {(x}, ;) }?:51,
EEG signals from target dataset: D; = {(xlf) }:.21,
source domain label set: Lg = {1},
target domain label set: L; = {0},
the learning rate for feature learning and discriminator: g,
minibatch size for source and target datasets: n,
adaptation parameter: «.

Output: Learned parameters: Of, Oc, 0q.

Initialize: Initialize model parameters: Of, Oc, 0q.

1: while Of, Oc, Oq has not converged do

n
i=1’

2: Source samples {(x7,y7)} a batch from source dataset Dy;
n
i=1’

3 a batch from target dataset Dy;
4. Calculate the classifier loss L. (07, 6c);
5

Target samples {(x])}

Optimize the parameters of the feature extractor and classifier by:

L L
O < Op ~pgGe. Oe — Oc = pge:

6:  Calculate the domain loss Ly (65, 64);
7:  Optimize the parameters of the feature extractor and discriminator by:
SL L
Of < Of +u(t—89}’, Og «— 04 _/"Tej;

8: end while

3) Additional Dataset (High Gamma dataset [32]): High
Gamma dataset (HGD) is a MI dataset created under controlled
recording conditions and therefore contains minimum noise.
This dataset is recorded using 128 electrodes from 14 healthy
subjects, and it consists of a training set of 880 trials and a
testing set of 160 trials. In this work, HGD dataset is employed
as an additional dataset to investigate whether the performance
of our method also hold on other dataset.

B. Experiment Settings

In this work, a variety of state-of-the-art methods are
employed for comparing to our framework: FBCSP [17],
Sparse Support Matrix Machine (SSMM) [37], ConvNet [32],
Channel-wise Convolution with Channel Mixing (C2CM) [38],
EEGNet [39], Transfer Component Analysis (TCA) [40] and
Joint Distribution Adaptation (JDA) [41] methods . Specif-
ically, FBCSP is a popular baseline for MI signals classi-
fication, which utilizes the common spatial pattern feature
in different filter bands. SSMM utilizes the low-rank struc-
tural information and feature selection to improve the EEG
decoding performance. ConvNet is a shallow convolutional
neural network tailored to decode band power features. C2CM
is a deep convolutional neural network with fine-tuning the
model parameters for every subject, such as hidden units,
kernel size, and so on. EEGNet is a compact CNN framework
designed to decode EEG signals from different BCI paradigms
such as P300 visual-evoked potentials, error-related negativity
responses, movement-related cortical potentials and sensory
motor rhythms. Noted that the EEGNet-10,3 is implemented
in this paper because it obtain the best performance in MI
classification among the family of EEGNet. TCA is a subspace
alignment approach by mapping original high-dimensional
representations space into lower-dimensional representations
space, while JDA provides an effective framework for transfer-
able representations learning by aligning the joint distributions
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TABLE II
THE CLASSIFICATION PERFORMANCE (%) OF DIFFERENT ALGORITHMS ON DATASET A, WHERE STARS INDICATE STATISTICALLY SIGNIFICANT
DIFFERENCES BETWEEN COMPARISON METHODS AND MAAN (WILCOXON SIGNED-RANK TEST, P < 0.05:*, P < 0.01:™, P < 0.001:**)

Subject FBCSP [17] SSMM [37]  ConvNet [32] C2CM [38]  EEGNet [39] TCA [40] JDA [41] MAAN
Al 76.00 82.64 76.39 87.50 83.68 75.00 77.78 86.81
A2 56.50 60.76 5521 65.28 63.89 62.15 56.25 70.49
A3 81.25 85.76 89.24 90.28 90.97 78.82 81.60 92.71
Ad 61.00 67.01 74.65 66.67 64.24 63.54 62.50 85.42
AS 55.00 58.68 56.94 62.50 59.72 55.56 61.46 72.22
A6 4525 54.51 54.17 45.49 52.08 49.65 4931 62.85
AT 82.75 90.97 9271 89.58 87.85 7431 80.90 93.06
A8 81.25 81.25 77.08 83.33 82.29 66.32 69.79 86.46
A9 70.75 79.51 76.39 79.51 86.81 68.40 71.18 83.33

Avg acc (kappa) | 67.75(0.570)**  73.45(0.646)™  72.53(0.634)  74.46(0.660)*  74.61(0.661)*  65.97(0.546)™  67.86(0.571)*  81.48 (0.753)

TABLE III
THE CLASSIFICATION PERFORMANCE (%) OF DIFFERENT ALGORITHMS ON DATASET B, WHERE STARS INDICATE STATISTICALLY SIGNIFICANT
DIFFERENCES BETWEEN COMPARISON METHODS AND MAAN (WILCOXON SIGNED-RANK TEST, P < 0.05:*, P < 0.01:*, P < 0.001:%)

Subject FBCSP [17] SSMM [37]  ConvNet [32] EEGNet [39] TCA [40] JDA [41] MAAN

Bl 70.00 74.06 76.56 67.50 69.38 68.44 82.81

B2 60.36 55.00 50.00 60.35 59.29 56.79 60.36

B3 60.94 55.63 51.56 62.81 55.00 55.00 59.06

B4 97.50 94.06 96.88 91.25 93.44 95.00 97.50

B5 93.12 86.88 93.13 83.44 87.50 87.81 91.88

B6 80.63 82.19 85.31 61.56 75.94 78.44 86.38

B7 78.13 76.56 83.75 83.75 78.13 77.81 84.06

BS 92.50 92.19 91.56 91.88 90.94 89.38 93.44

B9 86.88 85.62 85.62 82.5 85.94 82.81 86.88
Avg acc (kappa) | 80.00(0.600)*  78.00(0.560)™  79.37(0.588)*  76.12(0.682)*  77.28(0.546)  76.83(0.537)"  82.54 (0.651)

TABLE IV
THE CLASSIFICATION PERFORMANCE (%) FOR ADDITIONAL DATASET, WHERE STARS INDICATE STATISTICALLY SIGNIFICANT DIFFERENCES BETWEEN
COMPARISON METHODS AND MAAN (WILCOXON SIGNED-RANK TEST, P < 0.05:*, P < 0.01:™, P < 0.001:**)

Method FBCSP [17] SSMM [37] ConvNet [32]

EEGNet [39] TCA [40] JDA [41] MAAN

Avg acc (kappa) | 90.90(0.879)**  92.50(0.900)™*  92.98(0.906)"*

85.57(0.808)***  84.81(0.797)***  88.92(0.852)"  93.97 (0.920)

of source and target domains, which are widely applied to
EEG-based BClIs in recent studies [42]-[45].

Following the competition guideline [46], the training and
testing sets are used to train and evaluate the model, respec-
tively. Especially, all examples with labels from training set
are used as source domain, and all examples without labels
from testing set are used as target domain. Such evaluation
protocols is successfully applied to computer vision fields
for unsupervised domain adaptation [47], [48]. To make the
comparison fair for all methods, we employ the classification
accuracy and kappa value as the evaluation metrics. The kappa
value is a statistical measurement and can be defined as:
acc—p

1-p°
where acc and p represent the classification accuracy and
the hypothetical probability for the chance agreement, respec-
tively.

Our approach is implemented in Pytorch with an Intel CPU
(i7-7700k, 4.2GHz) and an NVIDIA GPU (GTX 1060). For
both datasets, all the EEG channels are employed for classi-

k= 12)

fication and the three electrooculography (EOG) channels are
directly discarded without removing any artifact operation. We
train MAAN through back-propagation from scratch. We adopt
Adam optimizer with momentum of 0.9, the learning rate of
0.0003 and batchsize = 72 in MAAN during training. And
the early-stopping skill [49] is employed for early-terminating
the training process if no improvement on the training set is
observed in twenty steps to prevent over-fitting.

C. Experimental Results Analysis

We first evaluate different algorithms on the dataset Ila
and present classification accuracy on each subject and mean
accuracy (kappa) values in Table II. Moreover, the p value of
Wilcoxon signed-rank tests [50] is also utilized to check the
significant difference of accuracies between the proposals and
other state-of-the-art baselines, and the stars shown in Tabel
II indicate the levels of significant difference. As is shown,
MAAN outperforms all comparison methods and exhibits
the statistically significant difference ( p < 0.05, Wilcoxon
signed-rank test), which demonstrates that our architecture is
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Fig. 3. The performance of MAAN with different multi-attention layer widths on Dataset A.

able to transfer deep presentations across different domains.
From the experimental results, we can make the following
observations. (1) Deep learning based methods (EEGNet and
C2CM) achieve comparable performance and even outperform
conventional methods by extracting the handcrafted features,
like FBCSP and SSMM; this confirms that the deep neural
networks are capable of learning the discriminative features
for classification. (2) Comparing with ConvNet, C2CM shows
superior performance, implying that fine-tuning the architec-
ture parameters for each subject may improve the classification
performance. However, such operation is time consuming and
exhausting. (3) The transfer learning methods TCA and JDA
shows an inferior classification performance than ours, and
the difference between them are statistically significant ( p <
0.01), suggesting that the domain discrepancy is difficult to
be bridged by separately optimizing the feature extraction and
classification with minimizing different objective functions.
Moreover, such separable optimization procedure is easier
to sink into local optima and deteriorate the classification
performance of models. In contrast, our deep learning method
learns the discriminative representation and classifier in an
end-to-end optimization paradigm. Moreover, our framework
based on transfer learning technique and multiple attention
mechanism is capable of extracting the domain-invariant fea-
tures and achieving the better performance.

For further verifying the effectiveness of our method, the
results on the dataset IIb are reported in Table III. It is
noteworthy that our method still outperforms all comparison
methods on most subjects, which demonstrates our framework
is effective for motor imagery decoding and classification.

Looking carefully at Table III, it is surprising that FBCSP
yields a better performance than many other methods (SSMM
and ConvNet) on Dataset IIb, while it is worse on Dataset Ila.
It indicates that handcrafted features may not have enough
generalization ability, and the classifier trained with these fea-
tures is suboptimal. However, the deep learning methods, such
as ConvNet and MAAN, show the competitive performance on
both datasets, indicating ConvNet is the effective architecture
for EEG classification. Especially, the MAAN framework
exhibits a powerful EEG decoding ability on MI-based tasks,
which contributes to its multi-attention mechanism and do-
main adaptation. The multiple attentions mechanism target the
critical channels automatically to improve the discriminative
feature extraction during EEG decoding, while the domain
adaptation technique reduces the discrepancy between the sig-
nals from different sessions effectively by adversarial learning.
All the findings verify the effectiveness and robustness of the
proposed framework.

The performance of the additional dataset is shown in Table
IV, MAAN obtains the mean accuracy of 93.97% and mean
kappa value of 0.920, much better than other deep learning
methods, such as SSMM, ConveNet and EEGNet. However,
EEGNet only reaches the accuracy of 85.57%, worse than
FBCSP with 90.90%.

D. Effectiveness Analysis

In this section, we conduct the following experiments to
investigate the effects of parameter settings and to validate the
significance of the multiple attentions mechanism and domain
adversarial learning.
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Fig. 4. The visualization of multiple attention kernels learned by multi-attention layer: (a) Subject A6; (b) Subject A9; (c) Subject B6; (d) Subject B9. A
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kernel.

1) Effect of Multi-attention mechanism: To validate the
importance of the introduced multiple attentions mechanism,
we analyze experimentally the behavior of our model with
different multi-attention widths on Dataset Ila. In this experi-
ment, we remove the discriminator module from the proposed
framework and set the multi-attention layer width L as {0, 1,
5, 10}. The results presented in Fig. 3 indicate the following
conclusions: (1) Comparing the results with L=0, the networks
with channel attention mechanism obtain better classification
performance in most subjects (e.g., Al, A2, A5, A6, A7, A8).
However, some networks without attention mechanism show
an higher accuracy than those with attention mechanism. Take
subject A3 as an example, the model with L=0 yields a rise of
0.31% in the accuracy compared with L=1, being also worse
than those models with L=5 or L=10. Similar phenomenon
can be seen in subjects A4 and A9, which demonstrates that
it is effective to introduce the channel attention mechanism
for improving the EEG decoding performance. (2) Among
the networks with attention mechanism, the networks with
multiple attention kernels achieve a superior performance than
those with single attention kernel, implying that multiple
attention kernels capture more informative spatial patterns

for classification. (3) However, the performance of MAAN
deteriorates when increasing the multi-attention layer width
to 10. This result can be found in almost all subjects (except
for subjects Al and A3). The average accuracy indicates that
the excessive increase of the multi-attention layer width may
lead the network learning to be more noisy, redundant and
less informative about the spatial patterns, and cause the over-
fitting phenomenon. Empirically, we set the width of the multi-
attention layer as 5 for our framework to obtain the expected
performance.

For further revealing the spatial activation patterns for motor
imagery learned by multi-attention layer, the visualization
of multiple attention kernels is conducted on two evaluation
datasets. For a clear illustration, the parameters of 5 attention
kernels are obtained and mapped over the brain surface accord-
ing to the electrode positions. Figure 4 displays the channel
scores estimation of four randomly selected subjects A6, A9,
B6 and B9. Actually, similar phenomena also occur for other
subjects. In all plots, red regions mark channel relevance for
the classification task whereas blue regions mark irrelevant
ones. As presented in Figs. 4(a)-(d), the attention kernels
only focus on relatively small detailed brain regions, which
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TABLE V
THE PERFORMANCE OF MAAN WITH DIFFERENT WEIGHTS OF DOMAIN LOSS ON DATASET A
L=0 L=5
Subject

a=0 a =05 a=1 a=0 a =05 a=1
Al 81.42 86.08 83.42 85.24 86.81 84.72
A2 56.73 60.49 54.48 69.44 70.49 67.01
A3 88.89 89.72 87.78 90.10 92.71 93.06
A4 79.82 82.92 80.14 83.65 85.42 84.38
AS 56.53 58.44 66.18 66.56 72.22 72.57
A6 59.38 60.87 56.42 62.78 62.85 59.38
A7 92.15 92.85 93.68 94.27 93.06 95.83
A8 76.94 85.10 84.51 83.10 86.46 84.72
A9 80.87 78.92 80.45 80.97 83.33 80.90

Avg acc (kappa) | 74.75 (0.663)  77.27 (0.697)  76.34 (0.685) | 79.57 (0.728)  81.48 (0.753)  80.28 (0.737)

is important for EEG feature extraction. For example, the
kernel #0, kernel #2, kernel #3 and kernel #4 for subject A6
emphasizes the frontal and central areas (e.g., Fz, FC1, FCz,
FC4, C1, C2, C3, C4, CP3, CP1 and CPz) of human brain; the
similar activated patterns can be seen in the attention kernels
for subject A9, B6 and B9. These brain regions are exactly
overlaying the somatosensory cortex and the primary hand cor-
tex, which demonstrates that the primary sensory-motor cortex
is activated during MI (hand imagery, feet imagery and tongue
imagery). This finding agrees well with the notion confirmed
in previous studies [51]-[53]. Moreover, it can be seen that
the activation levels on both hemispheres are asymmetric in
some attention kernels, such as kernel #0 and kernel #1 for
subject A6, kernel #0 and kernel #4 for subject B6, and so
on. This phenomenon may be relevant to the ERD/ERS of
hand imagery [11]. Interestingly, the multi-attention layer also
learns to locate the other EEG channels that might be ignored,
such as P1, Pz and POz, implying that these channels could be
helpful to discriminative feature extraction. Furthermore, it can
be observed that the spatial attention patterns and activation
levels cross subjects are different, which correctly explains the
intrinsic individual dependency of motor imagery. Therefore,
the same channel subsets selection is not suitable for all
subjects, it again verifies the effectiveness of the introduced
multiple attentions mechanism.

2) Effect of Domain Adversarial Learning: We further
investigate the effect of domain loss with different weights on
Dataset Ila and display the results in Table I'V. In this exper-
iment, we consider two different scenarios: MAAN without
multi-attention layer (L=0) and MAAN with multi-attention
layer (L=5). When L=0, the performance of MAAN increases
from 74.75% to 77.27% and 76.34% as a varies from O to
0.5 and 1, respectively. The 2.52% and 1.59% improvements
of average accuracy demonstrate that the domain adversarial
learning reduces the discrepancies between source and target
domains effectively. The same conclusion can also be obtained
in the case of L=5. Moreover, the results of MAAN with
domain loss and multiple attentions exhibits a superior per-
formance than MAAN with only domain loss. Especially, the
improvement is even more significant for the subjects with
poor signals quality, e.g., subject A2 and A5 yields a rise of

10% and 13.78% in the accuracy, respectively, when « is 0.5. It
indicates that transferring the knowledge from the critical brain
regions estimated by multi-attention layer is easier and more
effective than transferring the information from the whole
brain. It is worth noting that the performance of MAAN
would deteriorate when the weight value of @ increases from
0.5 to 1 in both scenarios, which emphasizes the importance
of balancing the classifier and domain discriminator learning
process.

3) A-distance: To study how the multiple attentions mech-
anism and domain adversarial learning impact on the distribu-
tion discrepancy between sources and targets, the A-distance
[54], [55] is employed to measure the distribution discrepancy
across domains. According to the previous studies, the A-
distance is defined as following:

dist a(Ds, D) =2(1 - 2e), (13)

where € represents the test error of a binary classifier (kernel
SVM in our case) trained to distinguish source samples from
target samples. Figure 5 presents the dists with features
learned by MAAN with three different settings of multi-
attention layer when the weight value of domain loss varies
from O to 1, including (1) L=0, (2) L=1 and (3) L=5. Note that
all the dist# are averaged on 9 subjects from Dataset Ila. For
all the weighted values of domain loss, we observe that dist 4
on MAAN-O features is larger than dist# on both MAAN-
1 and MAAN-5 features, implying that the features learned
with multiple attentions mechanism can reduce the domain
gap more effectively. The dist# on MAAN features learned
by domain adaptation shows smaller values, demonstrating the
effectiveness of the domain adversarial learning. Moreover,
for the results in @=0.5 and a=1, the MAAN with multiple
attentions exhibits the smaller dists, which validates the
introduction of multiple attentions mechanism that enhances
the transferability of features. All the results with @=0.5 show
a smaller dist#z demonstrating that a superior classification
performance is achieved by adjusting the domain adaptation
parameter « to 0.5.

4) Confusion Matrices: We exploit the comprehensive anal-
ysis of classification results for multi-class motor imagery task
by confusion matrixes and the experiment results on test set
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are given in Fig. 6, where the value in the diagonal line of
the confusion matrixes is the correctly predicted samples of
the classification task of each motor imagery. For a more
comprehensive evaluation of the performance of MANN, we
also add recall and precision to the confusion matrix, where
the last row of the confusion matrix is the recall for the
classification task for each motor imagery and the last column
is the precision. From Fig. 6(a), our method could calssify
each motor imagery task with high accuracy, and the majority
of all mistakes were due to the discriminating between Left
Hand/Right Hand and Feet/Tongue. Similarly, Fig. 6(b) showes
the same trend on the HGD dataset that the average accuracy
of all the four classes is over 92%, which demonstrates the
efficacy of MAAN.

5) Feature Visualizations: To verify the transferability of
features learned by MAAN, we randomly select subjects
A2, A5 and B5 from the two datasets and visualize their
network representations as learned by MAAN-0 (without
domain adaptation and multi-attention) and MAAN using t-
SNE embeddings [56], which are presented in Figs. 7(a)-
(c), respectively. Each row corresponds to a different subject;
the left plot presents the MAAN-O features while the right
presents the MAAN features. The red dots are features from
the previous session (source domain), and the blue triangles
from the current session for the same subject (target domain).
The visualization results lead to the following observations:
(1) With MAAN-O features, the distributions between the
source and the target domains are not aligned very well for
both subjects. (2) By contrast, for the feature learned with
MAAN, the distributions between the source and the target
domains are aligned much better, implying that the domain
discrepancies between them are efficiently reduced by transfer
learning and multiple attentions mechanism. These observa-
tions demonstrate that our method is capable of learning the
domain-invariant features, which also explains the superior
classification performance of our method.
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Fig. 6. Confusion matrices of MAAN on different datasets. (a) BCIC IV 2a;
(b) HGD.

V. CONCLUSION

In this paper, we propose a novel Multi-Attention Adapta-
tion Network (MAAN) architecture to extract more discrimi-
native and transferable features for EEG signals classification.
Firstly, the multi-attention layer is introduced to dynamically
estimate the channel-wise contribution during training, which
can be easily implemented for end-to-end learning. Then,
a multi-attention ConvNet is employed as feature extractor
for learning discriminative features from raw EEG signals.
Then, the extracted features are fed into the classifier for label
prediction. Specially, a domain discriminator is introduced for
adversarial domain adaptation on the extracted features, aim-
ing at aligning different distribution across source and target
domains. As a result, we can make good use of the source
data to learn the discriminative features and to train a robust
classifier with better generalization for the target domain. The
extensive experiments demonstrate that, compared to other
state-of-the-art methods, the proposed method achieves su-
perior performance, contributing to domain-invariant features
extraction. Additionally, we visualize the multi-attention layer
from the feature extractor, and we confirm that the multiple
attentions mechanism can locate the critical channels and
different spatial patterns related to MI tasks. It is worth noting
that any explicit prior knowledge of the mental task is not
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7. Feature visualization of three randomly selected subjects by t-SNE.

(a) Subject A2; (b) subject AS; (c) subject B5. Red dots, trials from source
domain; blue triangles, trials from target domain.

incorporated in the multi-attention layer, it still targets the
channels that are important from a viewpoint of physiology
whereas irrelevant channels are discarded. Since our method is
based on the domain adversarial learning, it is not necessary to
collect labelled data for new sessions and it is more convenient
to be deployed in EEG-based BCI applications.

However, the current MAAN may still have some limita-
tions. On the one hand, it only leverages the data from previous
sessions, the data from other subjects are not considered
in the training. On the other hand, we only consider the
alignment of marginal distributions between source domain
and target domain, though the discrepancy of the distributions

for

labeling (conditional distribution) between them may not

decrease. Our future study will focus on the research about
inter-subject transfer and conditional distribution alignment

for

overcoming the limitations of multi-attention adaptation

network.
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