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Digital holography is a useful tool to image microscopic particles. Reconstructed holograms give high-
resolution shape information that can be used to identify the types of particles. However, the process of
reconstructing holograms is computationally intensive and cannot easily keep up with the rate of data
acquisition on low-power sensor platforms. In this work, we explore the possibility of performing object
clustering on holograms that have not been reconstructed, i.e. images of raw interference patterns, using
the latent representations of a deep-learning autoencoder and a self-organising mapping network in a
fully unsupervised manner. We demonstrate this concept on synthetically generated holograms of differ-
ent shapes, where clustering of raw holograms achieves an accuracy of 94.4%. This is comparable to the
97.4% accuracy achieved using the reconstructed holograms of the same targets. Directly clustering raw
holograms takes less than 0.1 second per image using a low-power CPU board. This represents a three-
order of magnitude reduction in processing time compared to clustering of reconstructed holograms, and
makes it possible to interpret targets in real time on low-power sensor platforms. Experiments on real
holograms demonstrate significant gains in clustering accuracy through the use of synthetic holograms to
train models. Clustering accuracy increased from 47.1% when the models were trained only on the real
raw holograms, to 64.1% when the models were entirely trained on the synthetic raw holograms, and fur-
ther increased to 75.9% when models were trained on the both synthetic and real datasets using transfer
learning. These results are broadly comparable to those achieved when reconstructed holograms are used,
where the highest accuracy of ~70% achieved when clustering raw holograms outperforms the highest ac-
curacy achieved when clustering reconstructed holograms by a significant margin for our datasets.
© 2021 Optical Society of America
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1. INTRODUCTION1

Holography is a non-invasive high-resolution imaging technique2

that retains a large depth-of-field [1]. Digital holographic mi-3

croscopes can be used to generate focused images of micro-4

scopic particles that are suspended in fluids, such as marine5

micro-particles [2–4] and biological cells in vivo [5, 6]. Since raw6

holograms consist of the interference patterns generated when7

particles are in the path of coherent light, it is normally necessary8

to first reconstruct holograms at specific distances (the focused9

reconstructions) to extract the shapes of the particles before fur-10

ther analysis, e.g. object classification or size analysis, can be11

performed. However, hologram reconstruction is a computa-12

tionally intensive process. It becomes more expensive when the13

distance to the target is not known prior to reconstruction, since14

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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hologram reconstruction needs to go through the whole record-15

ing volume to detect the focal plane. Although efforts have been16

made to speed up this process using field-programmable gate17

arrays (FPGAs) [7, 8] and parallel processing using graphics18

cards [9], these methods significantly increase the cost, power19

consumption and complexity of embedded sensing platforms.20

Recent demonstrations of supervised deep-learning tech-21

niques to efficiently reconstruct raw holograms [10–12] give the22

possibility for real-time interpretation of digital holograms on23

compact, low-power devices. However, the need for large train-24

ing datasets is a limiting factor because reconstruction and focus25

detection in holograms is time consuming. At the same time,26

the fact that deep-learning algorithms can extract useful features27

from raw holograms motivates investigation into direct interpre-28

tation using deep-learning autoencoders [13, 14]. A key feature29

of autoencoders is that they can learn latent representations in a30

fully unsupervised manner (i.e. without the need for any human31

input to generate training data), which greatly simplifies the32

training process. Unlike traditional feature extraction methods,33

e.g. principal component analysis (PCA) [15], autoencoders can34

model more complex, nonlinear relationships between inputs35

and their extracted features, i.e. latent representations [16]. This36

flexibly makes autoencoders effective at learning features from37

datasets gathered under different conditions or when different38

instruments are used. The latent representations extracted by39

autoencoders can be used for clustering without the need for40

any human supervision. This has been effectively demonstrated41

for various types of optical image [17–20]. However, there have42

been no previous studies investigating their use for clustering of43

raw digital holograms.44

In this paper, we investigate how to learn features from raw45

holograms and cluster holograms based on these features us-46

ing an end-to-end unsupervised workflow. Even though un-47

supervised methods do not require human input to generate48

labelled training data, they still require large amounts of unla-49

belled data to learn useful features, which can be challenging to50

obtain in applications where targets of interest are sparse and51

have unbalanced class distributions (e.g. marine micro-particle52

imaging). Therefore, we investigate how to improve the ef-53

ficiency of training unsupervised models using synthetically54

generated data. The concept of directly interpreting raw holo-55

grams is first demonstrated entirely using synthetic holographic56

data. Next, we explore methods to analyse real holograms us-57

ing transfer learning [21], where models are first pre-trained on58

synthetic holograms before training on a small number of real59

holograms. The performance of this proposed method is com-60

pared to alternative transfer learning methods that use generic61

image databases, and methods that use only synthetic holo-62

grams for training. The proposed workflow is demonstrated63

on a low power CPU board to show its practical use for in situ64

applications.65

2. FEATURE LEARNING USING AUTOENCODERS66

An autoencoder consists of two components: an encoder and67

a decoder, as shown in Fig. 1. The encoder reduces an input68

image x into a latent representation h that has a lower number69

of dimensions than the original image. The decoder does the70

reverse, using the latent representation h to restore1 an image, xr,71

1 In this paper the output of the decoder is called restoration (image generated
from the latent representation); the output of the hologram reconstruction algo-
rithm is called reconstruction (focused image that has been generated from the raw
interference patterns).

that is as close to the initial input image x as possible. Typically,72

noise is added to inputs so that the encoder learns to denoise73

images and extract more robust representations of the original74

inputs [14, 22].75

Fig. 1. Flowchart of an autoencoder with denoising. x, h and
xr signify an input image, its latent representation and re-
stored image respectively. Loss(x, xr) is a loss function which
calculates the error between x and xr.

The model learns by minimising the difference, or loss, be-76

tween x and xr for all the images in a training dataset. The77

process can be described as follows:78

{ϕ : x → h; φ : h→ xr; ϕ, φ⇐ min(Loss(x, xr))} (1)

where ϕ and φ are the mappings of the encoder and decoder79

respectively. The training attempts to find the optimal weights80

in ϕ and φ to minimise the loss between x and xr. Once trained,81

the encoder can be used independently to extract latent repre-82

sentations h that have reduced dimensions compared to x and83

xr, and can be used as features for unsupervised clustering or84

supervised classification of the inputs.85

The autoencoder used in this work is based on the AlexNet86

architecture [23, 24]. The original architecture of AlexNet con-87

sists of 8 layers in total, taking input image dimensions of 22788

× 227 × 3, using 5 convolutional layers (the first, second and89

fifth layer are each followed by max pooling layers) and 3 fully-90

connected layers. The relatively simple architecture compared91

to more recent convolutional neural networks (CNNs) makes it92

suitable for use in autoencoders, as demonstrated in [19, 20, 25].93

In this work, two modifications are made to the original94

AlexNet architecture as described in Section 1 of the sup-95

plementary document. Since typical holographic images are96

monochrome, the input data size is changed to 227 × 227 × 1 in-97

stead of 227 × 227 × 3, which caters for the RGB colour channels98

in conventional imaging. The three fully-connected layers in the99

original architecture are useful for solving highly complex clas-100

sification problems [26]. However, these fully-connected layers101

comprise 94% of the parameters in AlexNet and allow geometric102

structures in the input images to be lost in the extracted features103

[27]. In contrast, the convolutional layers preserve spatial local-104

ity [23]. Since raw holograms have a high degree of geometric105

structure (interference fringes around object silhouettes), we106

replaced the three fully connected layers by two convolutional107

layers (each followed by a max pooling layer). This modification108

efficiently preserves geometric characteristics in the extracted109

features, which improves the learning efficiency for spatially110

structured images like raw holograms, and speeds up the train-111

ing process with a reduced network size. Details of these im-112

provements are described in Section 3-B of the supplementary113

document).114

The first modified convolutional layer uses 96 filters with115

a kernel size of 3 × 3 and scanning stride of 1 × 1. The same116

padding strategy [28] is used in this layer, which results in this117
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layer outputting a datum of size 6 × 6 × 96. After max pooling118

with a pooling size of 3 × 3 and a scanning stride of 3 × 3, the119

output datum size becomes 2 × 2 × 96. The second convolutional120

layer controls the number of the latent features. Its output size121

is 2 × 2 × 40. ReLU (rectified linear unit) activation functions122

are used in these two convolutional layers. After max pooling,123

a 40-dimension latent representation is obtained from each in-124

put image. This value was chosen based on a parametric study,125

where increasing the dimensionality of latent representation did126

not improve the results (see Section 3-A in the supplementary127

document). Its decoder is mirror-symmetrical, where convolu-128

tional layers are transposed to transconvolutional layers [29],129

and the max pooling layers are transposed to upsampling layers130

[30].131

To address the background noise that exits in holograms [31],132

a denoising step is added to the autoencoder to reduce the effect133

of noise on feature extraction (Section 3-C in the supplementary134

document). The training parameters for the autoencoder are135

described in Section 2-A of the supplementary document.136

3. CLUSTERING MODEL137

In this work, objects are clustered using a self-organising map-138

ping (SOM) network [32]. The SOM is a well-established unsu-139

pervised learning model that is built using a pre-defined 2-D net140

of neurons [33]. Unlike the error-correction-based learning in141

other networks (e.g. gradient descent in backpropagation), com-142

petitive learning [32] is applied where training samples compete143

for neurons to represent them. This causes different portions of144

the SOM network to respond similarly to certain input samples,145

creating a transfer function where similar regions of the latent146

representation are mapped to the same clusters. Further details147

of the SOM used in this work can be found in Section 2-B of the148

supplementary document.149

4. DATASETS150

For applications such as marine micro-particle imaging, it can151

be difficult to prepare large datasets of real holographic imagery152

for training a deep-learning autoencoder. A possible solution is153

to generate synthetic holograms and use these to train a model.154

The trained model can be used directly, or used as pre-trained155

outputs to initialise further training using a small dataset of real156

holographic images (i.e. transfer learning). Artificial noise is157

added to the synthetic holograms to facilitates the denoising158

training process in the autoencoder.159

Experiments are performed on both the interference patterns160

of raw holograms and equivalent reconstructed images of four161

simple geometries: circle, triangle, rectangle, and diamond. Real162

holograms are obtained using a 200 × 200 mm2 glass plate with163

these shape patterns etched on it. The diameter of the circle and164

the smallest edge of other patterns is 100 µm, as shown in Fig.165

2, where the etched shapes on the plate have 1 mm separation166

between them. The synthetic dataset is generated using the same167

shapes without any neighbours.168

Real dataset: An in-line holographic camera was used to take169

holograms of the shape plate. The setup is shown in Fig. 3170

and is based on a previously described system [34]. A 532 nm,171

single-longitudinal mode continuous wave laser (Elforlight) is172

used as the light source. The beam intensity is controlled using a173

variable neutral density filter, while a spatial filter (items 3© and174

4© provide a spatially coherent and uniform beam. This beam is175

collimated using a lens 5© before illuminating a complementary176

Fig. 2. Microscopic photographs of four shapes. (a) – circle; (b)
– triangle; (c) – rectangle; (d) – diamond.

metal-oxide-semiconductor (CMOS) image sensor (JAI GO-5100-177

USB, 6©) that has a resolution of 2464 × 2056, pixel pitch of 3.45178

µm and an active detection area of 8.5 mm × 7.09 mm.179

Fig. 3. Schematic diagram of the in-line structure hologram
recorder used in this work. 1© – laser, 2© – neutral density
filter, 3© – microscopic objective lens, 4© – pinhole, 5© – colli-
mating convex lens, 6© – CMOS image sensor.

The shape plate is placed in the laser beam path, between180

the collimating lens 5© and sensor 6©. The dataset consists of181

holograms where the distance of the plate from the sensor varies182

between 10 mm to 60 mm, and different sensor exposure times183

(10, 40, 70, 100, 130, 160, 190 and 220 µs) and relative plate184

orientations (between -90◦ and 90◦) are used. Fig. 4 shows four185

holograms of rectangles recorded under different conditions.186

Fig. 4. Four hologram samples of a rectangle under differ-
ent conditions. (a) recorded at 17.90 mm with 10 µs exposure
time; (b) recorded at 17.90 mm with 220 µs exposure time; (c)
recorded at 47.70 mm with 130 µs exposure time; (d) recorded
at 17.85 mm with 130 µs exposure time and close to 90◦ rota-
tion with regard to positions in the other three holograms.

Two independent sets of real holographic data are used. One187

set (Group 1) is used for autoencoder training, and the other188

(Group 2) is used to test the trained models. Each hologram is189

cropped to 300 × 300 pixels around the target (as discussed in190

Section 3-D of the supplementary document), resulting in 4,180191

cropped holograms in Group 1 and 3,844 in Group 2 (see Table192

1). These are reconstructed using the angular spectrum method193

[35], with examples of reconstructed holograms shown in Fig. 5.194
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Table 1. Number of real holograms for each shape.

Group Circle Triangle Rectangle Diamond Total

1 780 887 1522 991 4,180

2 891 708 1546 699 3,844

Fig. 5. Cropped holograms of four shapes with the size of 300
× 300 and their reconstructions.

Synthetic dataset: Raw holograms are simulated from the tar-195

get shapes using the angular spectrum method. The parameters196

used for the simulation are shown in Table 2. The size and record-197

ing distance of the shapes are randomly selected from within198

the given ranges. The centre and orientation of the shapes are199

also randomly chosen, but are restricted so that the shape is fully200

shown within the boundary of the image.201

Table 2. Parameters used to create the synthetic holographic
dataset.

Parameters Values

shape size (µm) 50 – 300 with interval of 1

image size (pixel number) 227 × 227

wavelength (nm) 532

pixel pitch (µm) 3.45 × 3.45

recording distances (mm) 10 – 60 with interval of 0.5

In this dataset, three groups of data are created: training202

data consisting of 24,000 holograms, validating data with 8,000203

holograms and test data with 16,000 holograms. In each group,204

the number of each shape is equal. Histograms of the recording205

distances and shapes’ sizes for each group are shown in Fig. 6.206

Regarding the recording distance, the number of the holograms207

of each shape in each range is similar. Most holograms lie within208

the size range of 100 – 250 µm, which matches the sizes of the209

shapes in the glass plate (see Fig. 2).210

The reconstructed holograms are generated using the angular211

spectrum method. Two examples for each shape are shown in212

Fig. 7, with the original shapes, the synthetic holograms and213

their reconstructions.214

Noise is added to the synthetic holograms by taking real215

holograms without any targets and superimposing randomly216

cropped regions of them as background noise in the synthetic217

holograms (see Fig. 8).218

Fig. 6. Histogram of recording distances and shapes’ sizes in
three groups.

5. RESULTS AND ANALYSIS219

The clustering performance of the proposed method was veri-220

fied on the raw holograms of the entirely synthetic, entirely real221

and on combined synthetic and real hologram datasets using222

transfer learning. The results were compared to the equivalent223

performance with reconstructed holograms for all the conditions224

investigated in this work. In the first set of experiments, both225

training and evaluation were performed on the synthetic data226

to validate our concept. Next, experiments were performed to227

cluster the real dataset. For the transfer learning experiments,228

the autoencoder was pre-trained on the synthetic holograms and229

fine-tuned using the real hologram data in Group 1. Afterwards,230

the encoder was used to extract the latent representations from231

the corresponding real hologram data in Group 2. These repre-232

sentations were used as features to cluster the real holograms in233

an unsupervised manner. For comparison, we also performed234

transfer learning using the generic ImageNet database [24] for235

pre-training. Besides this, only synthetic data and only real data236

from Group 1 were respectively used for training the models.237

These experimental conditions are shown in Table 3.238

The clustering performance was assessed using the overall239

accuracy and F1 score [36, 37] compared to the ground truth, and240

the computational runtime. The workstation used for training241

the models had an Intel i9-9900K CPU @ 3.60 GHz × 16 with242

36 GB RAM and a GPU of NVIDIA GeForce RTX 2080 with 8243

GB RAM. The low-power CPU board used to run the proposed244

models had an Intel Atom processor E3940 @ 3.60 GHz × 4 with245

8 GB RAM, which can be directly integrated into a compact246

digital holographic microscope for use in situ.247

All the algorithms in this work were implemented in Python248

programming language. The angular spectrum algorithm [35]249

was used to reconstruct a hologram at a given distance, and the250

autofocusing method described in [38] was used to automatically251

detect the focused reconstruction across the entire recording252

distance range. In order to speed up the algorithms of angular253

spectrum and autofocusing, two Python-based modules were254

used: mpi4py-fft [39] for parallel computing the fast Fourier255
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Fig. 7. Two examples of each shape, including original shapes (in the first row), corresponding synthetic holograms (in the second
row) and their reconstructions (in the third row). Number below each column gives the recording distance of the hologram. The
scale lines in the first row indicate 200 µm.

Table 3. Description of four sets of experiments.

Experiment data for training autoencoder data for training SOM test data

proposed

method
P synthetica+real (Group 1 b) synthetic+real (Group 1) real (Group 2 b)

comparative

method

C1 ImageNet+real (Group 1) real (Group 1) real (Group 2)

C2 synthetic synthetic real (Group 2)

C3 real (Group 1) real (Group 1) real (Group 2)
a synthetic data for training.
b Group 1: real data for training; Group 2: real data for testing. See Table 1.
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Fig. 8. An example of adding noise to the synthetic hologram.
The noise image (c) is cropped from a background hologram
(a), and it is added to a synthetic hologram (b) to create the
final synthetic hologram (d).

transforms used by the algorithms, and multiprocessing [40] for256

parallel execution of reconstruction across the recording distance257

range. The autoencoder was developed, trained and tested using258

Tensorflow [41]. The SOM model was built, trained and tested259

using the open-source library of MiniSom [42].260

A. Feature learning and clustering of synthetic holograms261

The clustering performance of the proposed method was first262

evaluated using the synthetic holograms. The autoencoder and263

SOM were trained on the synthetic training data (raw and recon-264

structed holograms respectively). Afterwards, each pair of the265

trained encoder and SOM were used to cluster the correspond-266

ing raw and reconstructed datasets for testing.267

Fig. 9 shows the loss of the autoencoder on the training268

dataset (24,000 holograms) and validation dataset (8,000 holo-269

grams) for 100 epochs. The fact that the loss is similar for train-270

ing and validation indicates that the model is able to generalise,271

without over-fitting the synthetic data. The result also shows272

that convergence is achieved after ~40 epochs.273

Fig. 10 shows the TSNE (t-distributed stochastic neighbour274

embedding) [43] plots of the latent representations extracted275

from the raw and reconstructed holograms in the test data by276

the corresponding trained encoders. It shows that there is larger277

separation between the different shapes in the reconstructed278

holograms, with some merging between different shapes occurs279

in the plot of the raw data. Some raw holograms of circles are280

mixed with the triangle cluster, and this is reflected in the clus-281

tering scores of these shapes being lower in the raw holograms282

than the reconstructed holograms.283

The autoencoder and SOM were trained five times, and each284

trained encoder and SOM pair were used to cluster the corre-285

sponding raw and reconstructed synthetic datasets for testing.286

The clustering performance of the SOM was compared to two287

different classification methods. It should be noted that while288

the SOM can cluster the dataset in a fully unsupervised manner,289

the classifiers used for comparison both require labelled training290

data of the target shapes, where in this case the ground truth291

synthetic data was available. The first method used a support292

vector machine (SVM) [44] that was trained on the features ex-293

tracted from the training data by the encoder. The trained SVM294

was then used to classify the test data (training parameters are295

Fig. 9. Loss curves for autoencoder training and validation on
the raw (a) and reconstructed (b) synthetic holograms. Each
loss value is the mean of the results from five experiments.

Fig. 10. TSNE visualisation of the latent representation space
extracted by the encoder for (a) the raw and (b) the recon-
structed synthetic hologram test data.
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given in Section 2-C of the supplementary document). The sec-296

ond method used AlexNet1 to directly classify the input images297

based on the labelled training data. Table 4 shows their perfor-298

mance for the raw and reconstructed holograms in the test data.299

Clustering using the proposed unsupervised method - SOM -300

achieves a high accuracy of 94.4% and 97.3% for the raw and301

reconstructed holograms, respectively. The corresponding F1302

scores for each target shape are lower for the raw holograms303

than the reconstructed holograms. The two supervised classi-304

fiers achieve higher accuracy scores, which is expected since305

labelled training data is provided to the classifiers. The results306

show that a high level of accuracy can be achieved when directly307

analysing raw holograms that is comparable to processing re-308

constructed holograms. This has significant implications for in309

situ applications as it avoids the large computational overhead310

needed to reconstruct holograms. The main advantage of the un-311

supervised approach is that it does not require any human labels312

for training, which is generally time-consuming to generate and313

is challenging for applications where the exact target classes in314

the dataset are not initially known. An interesting observation315

is that the SVM classifier achieved close to 100% accuracy using316

the same features as the SOM. This indicates that it is the SOM317

that limits clustering performance and not encoder.318

Table 5 shows the time taken for the different computations319

carried out in the experiment. The autoencoder and SOM were320

trained on the workstation, and testing the trained models was321

done on the low-power CPU board to reflect a realistic in situ op-322

erating scenario. The time required to train the autoencoder and323

SOM are almost identical for the raw and reconstructed holo-324

grams. The biggest cost is in the reconstruction of the holograms,325

which takes more than 13 times the combined training time. This326

processing step is not needed when interpreting raw holograms327

directly. Clustering the entire test dataset of 16,000 images using328

each trained encoder and SOM pair takes approximately 1,500329

s, i.e. and average of ~0.09 s to process each hologram input.330

This would allow real-time clustering on the lower-power CPU331

board for an image acquisition rate of up to 10 Hz. However,332

reconstructing each hologram on the same lower-power CPU333

board takes ~14 s per image, which forms significant bottleneck334

for real-time clustering of reconstructed holograms. It should335

be noted that hardware optimisation, such as the use of Field336

Programmable Gate Array (FPGA) or Graphics Processing Unit337

(GPU) embedded single board computers can allow real-time re-338

construction at faster rates [7–9]. However, this comes at the cost339

of higher power consumption, which is not ideal for long term340

monitoring applications where low-power electronics solutions341

are required.342

B. Feature learning and clustering of real holograms343

In our proposed method (P), experiments were performed where344

the autoencoder was first pre-trained on the synthetic training345

holograms and then fine-tuned using a small set of real holo-346

grams (Group 1) using transfer learning (see Section 2-D in the347

supplementary document). Similarly, the SOM pre-trained on348

the synthetic training data was also fine-tuned using the fea-349

tures of the holograms in Group 1 extracted by the fine-tuned350

autoencoder. The fine-tuned encoder and SOM were then used351

to extract and cluster the latent representations from real holo-352

grams in the test dataset in Group 2. The real holograms for353

testing were fed to the fine-tuned autoencoder and SOM. For354

1 The image input size is changed to 227 × 227 × 1 instead of 227 × 227 × 3. Its
output class number is changed to 4. The training parameters are the same with
those used to train the autoencoder.

comparison, three other sets of experiments were carried out355

with the real test holograms: C1. the autoencoder was pre-356

trained on the ImageNet dataset1 (2012 [24]) and fine-tuned on357

the real holographic training data; the SOM was trained on the358

real training data based on the features extracted by the trained359

encoder; C2. the autoencoder and SOM were trained only on360

the synthetic training data; C3. the autoencoder and SOM were361

trained only on the real training data. These experiment condi-362

tions are summerised in Table 3. The parameters for fine-tuning363

the autoencoder and SOM are kept the same as those used in pre-364

training (see Section 2-A&B in the supplementary document).365

The latent representations of the real test holograms extracted366

by the encoders from these four experiments are visualised in367

Fig. 11, and the results of clustering are shown in Table 6. Com-368

pared to the TSNE plots of the synthetic data in Fig. 10, the latent369

representations have decreased separation between the points of370

different shapes, where this is likely due to the unmodelled com-371

plexities of recording real holograms compared to generating372

synthetic ones. The TSNE visualisation for the proposed transfer373

learning method P (encoder pre-trained on synthetic data and374

fine-tuned on real data) shows good separation between the dif-375

ferent shape classes for the raw holograms (Fig. 11-(a-1)), with376

the rectangles clearly separated from other shapes. However,377

there is some mixing between the circle, triangle and diamond378

classes, which we expect to degrade the clustering performance379

for these shapes. A similar trend is seen for the conditions C1380

(Fig. 11-(b-1))and C2 (Fig. 11-(c-1)). For C3 (Fig. 11-(d-1)), which381

was trained only on the real holograms, we see a higher level of382

mixing overall, and so we expect poor clustering performance.383

This result shows that the use of synthetic data and transfer384

learning can benefit feature extraction. A possible explanation385

for the better performance is that availability of a large number386

of training examples, where there are only 24,000 images in the387

synthetic training data, and 1,281,167 images in the ImageNet388

2012 training dataset, both of which are larger than the 4,180 real389

holograms available for training in Group 1.390

For the reconstructed holograms, although there is some391

change in the TSNE for conditions P (Fig. 11-(a-2)), C1 (Fig. 11-392

(b-2)) and C2 (Fig. 11-(c-2)), the degree of mixing and separation393

are similar to the raw holograms. For condition C3 (Fig. 11-(d-2))394

however, there is a clear reduction in mixing and improvement395

in the separation of the rectangles. For conditions P, C1, and C2,396

the TSNE distributions for the raw holograms and reconstructed397

holograms have different appearances but it is not clear if either398

has a clear advantage over the other. This is favourable as we399

do not expect a large differences in performance when interpret-400

ing the raw holograms, which has a far lower computational401

overhead than the reconstructed holograms.402

Regarding the differences between P (synthetically pre-403

trained and fine-tuned using real data) and C2 (synthetic data404

trained encoder), some insight can be drawn from Fig. 12, which405

shows two output images of each shape restored by the autoen-406

coders for conditions P and C2 respectively. The autoencoder407

trained only on the synthetic reconstructed data with denoising408

allows it to restore reconstructed holograms with clear shape409

outlines, but fine-tuning the model on the real reconstructed410

holograms reduces this capability, as seen by the distortion of411

the diamond shape and rounding of the triangles. For raw holo-412

grams however, the fine-tuned autoencoder retains the distinc-413

tive characteristics of the original inputs better than the autoen-414

coder trained only on the synthetic holograms. This is noticeable415

1 The images were converted into grayscale.
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Table 4. Results of the three methods based on the F1 scores and accuracy when used to cluster/classify the synthetic holograms in
the test dataset.

Shape
Encoder+SOM Encoder+SVM AlexNet

F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy

Raw

Holograms

Circle 0.933 (±0.009a)

94.4%

(±0.4%)

0.980 (±0.007)

98.9%

(±0.3%)

1.000 (±0)

99.8%

(±0.1%)

Triangle 0.930 (±0.006) 0.980 (±0.004) 1.000 (±0)

Rectangle 0.966 (±0.009) 1.000 (±0) 1.000 (±0)

Diamond 0.948 (±0.013) 1.000 (±0) 1.000 (±0)

Reconstructed

Holograms

Circle 0.975 (±0.014)

97.4%

(±1.5%)

1.000 (±0)

99.9% (±0.1%)

1.000 (±0)

100.0%

(±0%)

Triangle 0.978 (±0.013) 1.000 (±0) 1.000 (±0)

Rectangle 0.980 (±0.017) 1.000 (±0) 1.000 (±0)

Diamond 0.962 (±0.025) 1.000 (±0) 1.000 (±0)
a standard deviation.
Note: Each value is the mean of the results from five experiments.

Table 5. Processing time for the models used to extract features from and cluster the raw and reconstructed holograms.The times
shown are for processing the entire training and test datasets, where training is performed on a high-preformance workstation, and
testing is performed on a low-power single board CPU.

Time (s) a

Reconstruction

for training b

Autoencoder

training

SOM

training

Reconstruction

for testing b

Clustering

for testing

Raw

Holograms
- 3,229 3.8 - 1472

Reconstructed

Holograms
42,240 3,235 3.9 226,240 1477

a average value of five experiments.
b image size: 227 × 227; reconstruction distance range: 10 – 60 mm with step 0.1 mm; no
manual operation included.
Note: Training was carried out on the workstation and testing was done on the CPU board.
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Fig. 11. TSNE visualisations of the latent representations extracted by the encoder for raw (first row) and reconstructed (second
row) real test holograms. (a) shows the results for the encoder trained using the proposed condition P; (b) shows the results for the
encoder trained using condition C1; (c) shows the results for the encoder trained using condition C2; and (d) shows the results for
the encoder trained using condition C3. A description of the conditions is given in Table 3.

for the restored images of the raw circles, where the entirely syn-416

thetically trained autoencoder deforms the interference fringes,417

making them appear triangular.418

The clustering performance of the real test holograms (Group419

2) using the corresponding encoder and SOM pairs (Table 3) are420

shown in Table 6. The poorest performance is for the models421

were trained only on the real data (C3), where the raw holo-422

grams achieves the accuracy of 47.1% and the reconstructed423

holograms achieves 58.4%. The improved performance for the424

reconstructed holograms, particularly for the rectangles is ex-425

pected based on the TSNE visualisation of the latent representa-426

tions used for clustering. When the models were trained only427

on the synthetic data (C2), the accuracy increases for both raw428

and reconstructed holograms to 64.1% and 70.2%, respectively.429

In both C2 and C3, the reconstructed holograms perform better430

than the raw holograms. For the two transfer learning methods,431

the accuracy achieved for raw holograms further increases to432

~76%, while the accuracy in the reconstructed holograms (~68%)433

is comparable to condition C2. Regarding accuracy, the models434

trained on the synthetic and real data (P) have similar perfor-435

mance with the models trained on the ImageNet and real data436

(C1), where the differences in the results are within the order of437

experiment repeatably. This is somewhat unexpected based on438

the TSNE plots, where the ImageNet pre-trained (C1) encoder439

appears to have a higher level of mixing between shapes than440

the synthetically pre-trained (P) encoder (see Fig. 11). A possi-441

ble explanation is that the SOM used is limiting the ability to442

separate the shapes in P due to the merged boundaries between443

the shapes, and this is leading to a similar degree of confusion444

as the more intermixed distributions between the shapes in C1.445

Another unexpected result is that the accuracy in the raw holo-446

grams is higher than the reconstructed holograms after using447

transfer learning. This is reflected in Fig. 12, which shows that448

transfer learning does not facilitate the encoder to extract better449

representations from reconstructed holograms.450

The performance across classes is not uniform based on the451

F1 score in each set of experiments. The rectangles are always452

resolved the best, and the circles resolved the worst both in the453

raw and reconstructed holograms. After using transfer learning,454

the circles and diamonds are better resolved in the raw holo-455

grams than the reconstructed holograms. The corresponding456

confusion matrices of the raw and reconstructed holograms from457

the experiments using condition P are shown in Fig. 13. In the458

raw holograms, there is a high degree of confusion between the459

circles and triangles. A possible reason for this can be seen in460

Fig. 11, where the restored interference fringes of the circles look461

similar to the triangles. In the reconstructed holograms, there is462

greater confusion between the circles and diamonds, which can463

again be seen in Fig. 11, where the restored diamonds have lost464

characteristic information about their shape.465

6. CONCLUSIONS466

Object clustering can be efficiently performed on raw holograms467

to achieve comparable performance to equivalent reconstructed468

holograms for the shapes investigated in this work. This of-469

fers significant gains in computational efficiency, which is com-470

pelling for in situ applications where real-time interpretation471

cannot keep up with the rate of data acquisition using low power472

CPUs. The key findings are:473

• Deep-learning autoencoders can be used to extract latent474

representations from both raw and reconstructed holograms in475

a fully unsupervised manner. We demonstrate a modified CNN476

architecture that preserves geometric structure in the original477

images when extracting latent representations. When using an478

SOM as a clustering model, the accuracy of the raw and recon-479

structed holograms achieved 94.4% and 97.4% respectively for480

the synthetic dataset generated in this work. While the accuracy481

is nearly 100% both in the raw and reconstructed holograms482

when an SVM is used as a classifier to classify the same dataset.483

This reflects that the proposed autoencoder has the capability484

to extract good representations from raw holograms, and the485

clustering performance limited by the SOM that was used for486

unsupervised clustering.487

• A three-order gain in computational efficiency can be488

achieved by directly interpreting raw holograms compared to489

reconstructed holograms using the same processing hardware.490
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Fig. 12. Examples of input and restored output images for each shape using the autoencoders trained only on the synthetic data
(C2), and synthetically pre-trained and fine-tuned with real data (P) respectively. The first three rows show the results for raw
holograms, the bottom three rows show the results for reconstructed holograms.
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Table 6. Clustering results from condition P and conditions C1 – C3 respectively, based on F1 score and accuracy when used to
cluster the real test holograms (Group 2).

Shape

Condition P

(transfer learning)

Condition C1

(transfer learning)
Condition C2 Condition C3

F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy

Raw

Holograms

Circle
0.614

(±0.023a)
75.9%

(±1.3%)

0.601

(±0.063)
76.2%

(±2.6%)

0.136

(±0.082)
64.1%

(±3.8%)

0.274

(±0.095)
47.1%

(±11.9%)Triangle
0.615

(±0.044)

0.605

(±0.065)

0.560

(±0.022)

0.409

(±0.109)

Rectangle
0.917

(±0.020)

0.926

(±0.022)

0.891

(±0.061)

0.646

(±0.170)

Diamond
0.729

(±0.053)

0.737

(±0.044)

0.549

(±0.074)

0.351

(±0.091)

Reconstructed

Holograms

Circle
0.382

(±0.030)
68.1%

(±3.0%)

0.414

(±0.044)
67.7%

(±1.8%)

0.271

(±0.022)
70.2%

(±7.9%)

0.216

(±0.137)
58.4%

(±7.8%)Triangle
0.702

(±0.078)

0.526

(±0.024)

0.767

(±0.146)

0.538

(±0.102)

Rectangle
0.947

(±0.006)

0.912

(±0.011)

0.950

(±0.026)

0.868

(±0.100)

Diamond
0.429

(±0.042)

0.596

(±0.050)

0.568

(±0.083)

0.342

(±0.147)
a standard deviation.
Note: Each value is the mean of the results from five experiments.
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Fig. 13. Confusion matrices of the clustering results for mod-
els pre-trained on synthetic and fine-tuned on real holograms
(Group 1 in Table 1) (P) for raw (a) and reconstructed (b) holo-
grams in the real test data (Group 2 in Table 1).

It takes ~0.09 second on average to process a hologram on a low-491

power CPU board. This makes it possible to interpret holograms492

in real time when data are collected by a low-power sensor493

platform.494

• Synthetic data can be used to train autoencoder-based clus-495

tering of real holograms. Comparing the results for raw and496

reconstructed holograms, the syntheticalled trained encoders497

achieved 64.1% and 70.2% accuracy, respectively. This is sig-498

nificantly better than the results from the models trained only499

on the real training holograms. Further gains in performance500

can be achieved using transfer learning techniques, where the501

models are synthetically pre-trained, and then fine-tuned using502

real holograms. This increased the accuracy when processing503

raw holograms to 75.9%. Similar gains in accuracy were not504

however, achieved for the reconstructed holograms. This perfor-505

mance is comparable to the performance achieved when using506

a far larger (1.2 million images as opposed to 24,000 synthetic507

images) generic image database for pre-training, where it is sug-508

gested that the SOM used for clustering limits the final accuracy509

achieved by the proposed method.510
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