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Abstract 

Background: Short-term trials demonstrate the low FODMAP diet improves symptoms of irritable 

bowel syndrome (IBS) but impacts nutrient intake and the gastrointestinal microbiota. The aim of this 

study was to investigate clinical symptoms, nutrient intake and microbiota of patients with IBS 12 

months after starting a low FODMAP diet.   

Methods: Participants enrolled in a previous short-term clinical trial and who had been through 

structured FODMAP restriction, reintroduction and personalisation were invited to participate in a 

follow-up study at one time point at 12months. Gastrointestinal symptoms, stool output, dietary 

intake and quality of life were recorded. Stool samples were collected and analysed for microbiota 

(qPCR) and short-chain fatty acids (SCFA). Data were compared with baseline (prior to any intervention 

in the original clinical trial) using non-parametric statistics. 

Key results: Eighteen participants were included in the study. Adequate relief of symptoms occurred 

in 5/18 (28%) at baseline and increased to 12/18 (67%) following long-term personalised low FODMAP 

diet (p=0.039). There was a reduction in IBS-SSS total score between baseline (median 227, IQR 99) 

and long term (154, 89; p<0.001). Bifidobacteria abundance was not different between baseline 

(median  9.29, IQR 1.45) and long term (9.20, 1.41; p=0.766, q=0.906), however there were lower 

concentrations of total SCFA, acetate, propionate and butyrate.  

Conclusions: In this long-term analysis, two thirds of patients reported adequate relief of symptoms 

after 12 months of personalised low FODMAP diet, that did not result in differences from baseline in 

Bifidobacteria. FODMAP reintroduction and personalisation may normalise some of the effects of 

short-term FODMAP restriction.  
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Introduction 

Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal (GI) disorder with a global 

prevalence of 4.1% (1) and with a considerable patient burden. A number of dietary triggers have been 

explored, including a group of short-chain fermentable carbohydrates (2), termed fermentable 

oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs). Some FODMAPs increase 

small intestinal water and others increase colonic gas generation, which in a patient with IBS can 

induce symptoms (3).  

 

Randomised controlled trials (RCT) demonstrate the efficacy of a short-term low FODMAP diet for IBS. 

Short periods (3-4 weeks) of low FODMAP diet lead to global clinical response (4-6), greater clinical 

response for individual gastrointestinal symptoms (e.g. bloating, pain) (4, 5, 7, 8) and improved quality 

of life outcomes (7, 9) compared with controls. However, there are possible disadvantages associated 

with a short-term low FODMAP diet including shifts in the GI microbiota (4, 7, 10), altered nutrient 

intake (11, 12) and lower diet quality (12) compared with controls who consume habitual or control 

diets.  

 

The majority of research on the low FODMAP diet is focused on short-term clinical, nutritional and 

microbiota outcomes during the initial restriction phase only, where foods high in all FODMAPs are 

restricted from the diet. However, in clinical practice, the restriction phase is followed by a 

reintroduction phase where dietitian-supervised stepwise reintroduction of high FODMAP foods is 

undertaken to identify which FODMAPs and in what quantities trigger IBS symptoms. This is then 

followed in the longer term by the  personalisation phase, such that the patient constructs and follows 

a ‘personalised-FODMAP’ diet that includes FODMAP-containing foods to tolerance whilst maintaining 

symptom control (13). Given the chronicity of symptoms in IBS, it is critical to determine whether 

patients with IBS experience clinical benefit from the low FODMAP diet in the long term, for which 



there are numerous studies, and whether there are long-term impacts on nutrient intake, for which 

there are few studies, and also the impact on the microbiota, for which there are currently no studies.  

 

Several cross-sectional and prospective studies have evaluated IBS symptoms during the low FODMAP 

diet in the long term, after FODMAP reintroduction and personalisation. Of the three cross-sectional 

studies, positive symptom responses were reported at follow-up 9-24 months following starting the 

diet (14-16). In a prospective questionnaire study most patients continued a personalised-FODMAP 

diet at 12 months and 57% reported satisfactory relief of overall symptoms (17). Three RCTs have 

reported IBS symptoms during the low FODMAP diet in the long term, all reporting sustained symptom 

improvement, albeit only at 4-6 months (18-20).  

 

With regards to dietary adequacy, nutrient intake is somewhat restored when individuals move from 

the restriction phase of the low FODMAP diet to FODMAP personalisation in the long term. Despite  

reductions in intakes of energy (19, 20) and fibre (20) after 4-week FODMAP restriction, these were 

restored to baseline following longer term reintroduction and personalisation. One long-term follow-

up study reported no difference in the proportion of patients meeting national recommendations for 

fibre and 13 micronutrients in those following a personalised-FODMAP diet after reintroduction and 

personalisation, compared with those who had returned to habitual diet (17).  

 

These evaluations of the long-term effect of the low FODMAP diet on clinical and dietary endpoints 

are limited for a variety of reasons. Firstly, cross-sectional data are subject to recall bias whereby 

change in symptoms is reported after a period of 12-months or more. Secondly, objective measures 

of adherence to a low FODMAP diet (i.e. FODMAP intake) and nutrient intake have been measured 

only in selected studies (17, 19, 20). Finally, it is known that even very small doses (3.5 g/d) of prebiotic 

carbohydrates can modulate the microbiota in IBS (21), however, there are no reliable data reporting 

microbiota composition during long-term FODMAP personalisation. One RCT has attempted this, 



although a technical failure impacted most of the baseline samples leaving the comparison with 

follow-up timepoints largely unreliable (19).  

 

Therefore, the aim of this study was to investigate clinical symptoms, nutrient intake and microbiota 

of a carefully characterised group of patients with IBS at baseline (prior to FODMAP restriction) and 

twelve months later, after following all three phases of the low FOODMAP diet (restriction, 

reintroduction, personalisation).   

 

Methods 

Participants in this study had previously taken part in a RCT consisting of 104 patients with IBS 

randomised to a factorial design study of low FODMAP diet/control sham diet and probiotic/placebo 

for 4-weeks, described in full elsewhere (7)(ISRCTN02275221). The patients in the initial study were 

aged 18-65 years with Rome III IBS and recruited from Guy’s and St Thomas’ NHS Foundation Trust 

and St George’s Healthcare NHS Trust (London, UK). They had no other major medical conditions (e.g. 

diabetes, major active psychiatric condition), other GI disease (e.g. inflammatory bowel disease, 

coeliac disease) or history of GI resection and were naïve to the low FODMAP diet. Those reporting 

consumption of antibiotics, prebiotics or probiotics four weeks prior to the RCT were excluded. 

Individuals were allocated to follow sham or low FODMAP dietary advice for four weeks. Those 

allocated to the low FODMAP diet group were provided indepth dietary counselling for the low 

FODMAP diet at baseline and then FODMAP reintroduction advice at four weeks together with 

explanation of the rationale for the diet (in order to maintain blinding in the original 4-week RCT). 

Those allocated to the sham diet group were provided with indepth dietary counselling for the low 

FODMAP diet together with explanation of the rationale for the diet at four weeks and subsequently 

provided FODMAP reintroduction advice 4-8 weeks later.  

 



Recruitment to the current study involved contacting all patients (where possible) approximately 10 

months after completing the RCT to ask about their interest in participating in this long-term follow-

up study. Exclusion criteria for the long-term study was a new diagnosis of GI disease, GI resection 

since the RCT, and antibiotics, prebiotics, probiotics or bowel preparation in the previous 4 weeks. 

Eligible individuals attended the study centre 12-months after receiving low FODMAP advice (i.e. those 

initially randomised to the low FODMAP diet arm attended 12 months after starting the RCT; those 

randomised to the sham diet arm attended 12 months after completing the RCT). Therefore, for the 

current analysis, all patients had received indepth low FODMAP dietary advice from a registered 

dietitian, including all three phases (restriction, reintroduction, personalisation) starting 12 months 

earlier. 

 

Informed consent was obtained prior to any study-related procedures, and this long-term follow-up 

study was approved by an NHS research ethics committee (NRES Committee London–Fulham, 

12/LO/1402). Eligible and interested participants were sent diaries to record symptoms, stool output 

and food intake for seven days. At the long-term research visit, the seven-day symptom, stool and 

food diaries were collected, further questionnaires completed, bodyweight and medications 

recorded, and a fresh stool sample provided. 

 

The symptom diary rated the presence and severity of 15 individual symptoms and overall symptoms 

on each of the seven days using the GI symptom rating scale (22). Symptom response was also 

measured using a global symptom question (‘did you have adequate relief of your symptoms over the 

last seven days’) and was completed on day seven only. The stool diary recorded the frequency and 

rated the stool consistency of all stools using the Bristol Stool Form Scale (23) and was completed daily 

for seven days. 

  



Dietary intake was recorded in an unweighed 7-day food diary, using food labels, standard measures 

and food photographs to estimate portion size, and was completed daily for seven days. Nutrient 

intake was calculated using published tables of food composition in the United Kingdom (24) and 

FODMAP intake was calculated using bespoke online software populated with comprehensive 

FODMAP composition data (25).  

 

At the long-term research visit, symptoms were also measured using the IBS severity scoring system 

(IBS-SSS) (26). Generic and disease-specific health-related quality of life were measured using the SF-

36 (27) and the IBS-QoL (28) questionnaires, respectively.  

 

A whole, fresh stool sample was collected in a sterile bag and homogenised in a stomacher for four 

minutes. An aliquot was stored in a lysis matrix tube at -80 °C until DNA extraction and subsequent 

microbiota analysis, an aliquot was stored immediately at -80 °C for analysis of short-chain fatty acid 

(SCFA) and another aliquot was used to immediately measure stool pH. Stool sample collection and 

processing at the long term visit were performed identically to those at baseline (e.g. collection 

method, delivery to the unit, timing and method of processing etc). 

 

Microbiota analysis was performed using quantitative polymerase chain reaction (qPCR), with full 

methods reported in online supplementary information. Bacterial DNA was extracted using the 

FastDNA™ SPIN kit for soil (MP Biomedicals Europe, Illkirch-Graffenstaden, France) and DNA 

concentration measured using a NanoDrop ND1000 instrument prior to qPCR using primers for 11 

bacterial taxa using a 7900HT fast qPCR system (Applied Biosystems, Foster City, CA). SCFA were 

analysed using gas liquid chromatography. SCFA were extracted from defrosted stool in buffer 

containing an internal standard, as previously described (29). Extracted SCFA (0.2 mL) were separated 

on a Hewlett Packard 6890 series GLC system (Agilent Technologies, Santa Clara, CA) equipped with a 

BP21 25-m capillary column with internal diameter of 0.22 mm and film thickness of 0.25 mm. Stool 



pH was measured on fresh stool, which was diluted 1:4 (vol: vol) in pH buffer (1x10-5mol/L Na2HPO4, 

KH2PO4, 0.1 g HgCl2), homogenised, and incubated at room temperature for 1 h. The pH was measured 

using a pH meter and a pH electrode specifically designed for slurries (VWR, Pennsylvania, US). Full  

laboratory methods are provided in online supplementary information. 

 

Statistical analysis 

Data from the long-term research visit were compared with the same data from baseline, prior to any 

intervention in the original RCT. Conservative last observation carried forward approach was used to 

impute minor elements of missing data for symptoms and quality of life. Overall clinical, dietary and 

quality of life data were not normally distributed and therefore summary data are presented as 

median and interquartile range and the Wilcoxon ranked-signed tests used to compare data between 

baseline and following 12-months of low FODMAP diet. McNemar’s test was used to compare the 

proportion of patients reporting adequate relief between baseline and following 12-months. Data 

were considered statistically significant where p<0.05. Microbiota data at long term were compared 

with baseline using Wilcoxon ranked-signed tests and corrections were made for multiple 

comparisons and false detection rate was considered significant when q<0.05. 

 

Results 

In total, 104 patients were recruited to the initial RCT at baseline and 95 completed that study. All 

patients were defined as compliant to the dietary interventions in the initial 4-week RCT, patients in 

the LFD group reduced FODMAP intake and those in the sham diet arm did not (7).  

 

Of the 95 completing the original RCT, 44 responded to our contact, of whom 21 declined to 

participate (5 too busy, 16 no reason given). Of the 23 screened for long-term follow-up, 5 were 

excluded (3 never attempted low FODMAP diet, 1 still taking probiotics, 1 moved overseas). The 

remaining 18 consented to participate and completed the long-term follow study. Of these 18, in the 



initial RCT, eight had been randomised to low FODMAP dietary advice and 10 had been randomised 

to sham diet (control group) and therefore received low FODMAP dietary advice four weeks after 

baseline, whilst nine had been randomised to the probiotic group and nine to the placebo group. 

Demographic data are presented in Table 1. The majority had diarrhoea-predominant IBS at baseline 

(14/18, 78%). Medication intake had remained stable for the majority of patients in the past 12 

months (16/18, 89%). Of the two whose medication had changed, this was for non-IBS medication 

(one ceased a proton pump inhibitor and commenced over-the-counter reflux medication, one 

commenced a statin and a beta-blocker).  

 

By the long-term research visit, following FODMAP restriction, reintroduction and personalisation, 

total FODMAP intake was not significantly different to baseline. Intake of individual FODMAPs was 

also not significantly different, except for sorbitol which was lower at 12 months (Table 2). Energy, 

carbohydrate, protein and fat intakes were lower in the long term compared with baseline. However, 

fibre intake was not significantly different between baseline (median 17.0 g/d, IQR 5.6) and long term 

(16.6 g/d, 5.7, p=0.349), but iron intake was reduced between baseline (median 11.4 mg/d, IQR 5.9) 

and long term (median 9.4 mg/d, IQR 5.7, p=0.005) (Table 2). Neither body weight (baseline median 

70.9 kg, IQR 27.7 vs long term 72.7 kg, 22.4; p=0.711) nor BMI (baseline median 24.0 kg/m2, IQR 10.1 

vs long term 24.3 kg/m2, 6.7; p=0.777) changed between baseline and long-term visit. 

 

By the long-term research visit (following FODMAP restriction, reintroduction and personalisation), 

5/18 (28%) participants had such symptom improvement that they no longer met Rome III criteria for 

IBS. Overall, compared with baseline (5/18, 28%), a higher proportion of patients reported adequate 

relief of symptoms in the long term (12/18, 67%, p=0.039). There was a significant reduction in IBS-

SSS total score between baseline (median 227, IQR 99) and long term (median 154, IQR 89; p<0.001), 

together with significant reductions in all subscores (Table 3). In terms of individual symptoms, 



measured using the GSRS, there were significantly lower severity scores for abdominal pain, 

borborygmi, bloating and flatulence (Table 3).  

 

Compared with baseline, in the long term there was firmer stool consistency (median BSFS score 4.9, 

IQR 1.0 vs  4.1, 1.5; p<0.001) and lower stool frequency (median 13.5 per week, IQR 12.0 vs 9.0 per 

week, 5.8; p=0.038). Compared with baseline, there was improved quality of life in the long term as 

measured by the SF-36 pain subscale (p=0.011), overall IBS-QOL score and for several IBS-QOL sub-

scores including interference with activity and health worry (Table 4). 

 

In terms of stool microbiota absolute abundance, there was no difference in total bacterial abundance 

between baseline (median 11.13 log10 rRNA genes/g, IQR 0.04) and in the long term (11.33 rRNA 

genes/g, 0.42; p=0.054, q=0.108). In the long term, there were higher abundances of the genera 

Lactobacillus and Clostridium Cluster XIVa and the species Roseburia & Eubacterium rectale, 

Ruminococcus bromii and Akkermansia muciniphila compared with baseline, although these lost 

significance after correction for multiple comparisons (Table 5). Bifidobacteria abundance did not 

change between baseline (median  9.29 log10  rRNA genes/g, IQR 1.45) and in the long term (9.20 log10  

rRNA genes/g, 1.41; p=0.766, q=0.906).  

 

In terms of relative abundance, compared to baseline, there was lower relative abundance of 

Bacteroides spp. (median 30.33%, IQR 30.71 vs 13.34%, 16.22; p=0.004, q=0.022) and 

Faecalibacterium prausnitzii (median 7.11%, IQR 4.32 vs 2.73%, 1.78; p<0.001, q=0.001) and a higher 

abundance of Ruminococcus bromii (median 0.77%, IQR 1.62 vs 1.75%, 1.96; p=0.007, q=0.024) in the 

long term (Table 5, Figure 1). Bifidobacteria relative abundance did not change between baseline 

(median 1.34%, IQR 5.77) and in the long term (1.24%, 3.30; p=0.766, q=0.997).  

 



SCFA and pH data were only available for 17 participants, due to insufficient sample from one 

participant. There was a reduction in total SCFA, acetate, propionate and butyrate concentrations 

between baseline and in the long term (p<0.05, Table 6, Figure 2), but there was no change in faecal 

pH. 

 

Discussion 

This is the first prospective study to report long-term data for symptoms, nutrient intake and 

microbiota for people with IBS following a low FODMAP diet, following all three phases (restriction, 

reintroduction, personalisation). Overall, reintroduction and personalisation of FODMAP intake into 

the diet led to total FODMAP intakes that were not different from habitual baseline intakes (except 

for reduced sorbitol intake) and was associated with long-term improvement in overall and specific GI 

symptoms, quality of life, and maintenance of absolute and relative abundance of Bifidobacterium in 

stool. However, in the long term, there were reductions in intake of some nutrients, and alterations 

in relative abundance of some bacteria and absolute abundance of some SCFA.  

 

Following completion of all three phases of the low FODMAP diet, global symptom relief was reported 

by over two thirds of participants at 12 months. This corresponds to previous data from observational 

and randomised trials of continued global relief in 53-70% of individuals at 4-15 months (14, 17, 20). 

The mean reduction in IBS-SSS (-73) is greater than the minimally clinically important difference 

frequently quoted for this instrument (-50). The symptoms that improved in this long-term study 

(pain, bloating, flatulence) align with the symptoms reported to be improved during RCTs of short-

term FODMAP restriction (30). In parallel with these symptom improvements, quality of life scores 

also improved, and particularly the IBS-specific quality of life outcomes.  

 

With regard to dietary intake, FODMAP reintroduction and personalisation led to total FODMAP intake 

that was similar to baseline, suggesting participants were able to reintroduce considerable quantities 



of FODMAPs into the diet by 12 months, potentially modifying the sources and distribution of intake 

to tolerance. The intake of total FODMAPs at 12 months here was higher than that reported in a recent 

Canadian follow-up study of patients who had received low FODMAP advice by a dietitian, although 

only half of patients included were currently in the personalisation phase (31) . There are a number of 

potential reasons to explain symptom improvement at 12-months despite FODMAP intake returning 

to baseline levels. Improved visceral sensitivity may have occurred over time, either due to the natural 

history of IBS or in response to reduced exposure to FODMAPs (during the restriction and 

reintroduction phase and intermittently during the personalisation phase), some of which have been 

shown to induce visceral hypersensitivity in animal models (32). Additionally, although the gold 

standard food record was used to measure dietary intake, this assessment of dietary intake may have 

not accurately estimated actual FODMAP intake, and the assessment at only one time point may not 

completely capture fluctuations in FODMAP intake over a long period. 

 

According to user data from over 2000 individuals using a mobile app to follow a low FODMAP diet, 

fructans and lactose are the most commonly reintroduced FODMAPs (33). Patients may therefore 

place less importance on reintroducing other FODMAPs, such as sorbitol which was still restricted at 

12 months. Energy intake was reduced in the long term, by approximately -100 kcal/d, resulting from 

lower intakes of carbohydrate, protein and fat, however, the clinical relevance of such a small 

reduction is questionable, especially considering that weight and BMI remained stable, although of 

course at the individual patient level, dietary adequacy should be considered. 

 

This is the first report of long-term microbiota composition in individuals with IBS who have 

undertaken the whole low FODMAP diet including FODMAP restriction, stepwise FODMAP 

reintroduction, and FODMAP personalisation to tolerance. Many RCTs have reported that FODMAP 

restriction results in reductions in Bifidobacteria in the short term (4, 7, 10, 34, 35), however in the 

current study, absolute and relative abundance of Bifidobacteria spp. in the long term was not 



different to baseline. Based on the well-established bifidogenic effects of fructans and galacto-

oligosaccharides (GOS) (36), it is likely that this finding is due to reintroduction of prebiotic fructans 

and GOS during the FODMAP reintroduction and personalisation process. This may serve to reassure 

clinicians given the concerns surrounding the ‘anti-bifidogenic’ effect of a short term low FODMAP 

diet reported across several RCTs  (4, 7, 10, 34, 35).   

 

With regards to other genera, there was a marked reduction in relative abundance of Bacteroides spp. 

in the long term. The findings from the initial RCT, which the current study followed up, also reported 

lower relative abundance of Bacteroides spp. after four weeks of a low FODMAP diet compared with 

sham diet (37). Bacteroides species contain genomes encoding an array of sugar utilisation enzymes 

(38) and in particular flourish in the presence of soluble fibres (38) and in humans have been shown 

to be reduced in response to carbohydrate restriction diets (39, 40). Therefore this finding may be due 

to the marginally lower carbohydrate intake or more likely the alteration in types of fibre sources. 

Interestingly, this reduction in Bacteroides spp. (from the Bacteroidetes phylum) occurred in 

conjunction with an almost 2-fold increase in relative abundance of butyrate-producing Clostridium 

Cluster XIVa (from the Firmicutes phylum), although this change did not remain after correction for 

multiple testing.  

 

At the species level, there was a significantly lower relative abundance of F. prausnitzii in the long 

term. This is of potential concern given its butyrate-producing potential and anti-inflammatory 

properties, and because, according to a recent systematic review, abundance is already compromised 

in IBS compared with healthy controls (41). One small 4-week uncontrolled trial of a gluten-free diet 

(which excludes wheat, the major source of fructans) in healthy individuals similarly reported >50% 

reduction in relative abundance of F. prausnitzii (42), whilst other studies report supplementation with 

prebiotics (e.g. inulin type fructans) enhanced abundance of F. prausnitzii (43). Although intakes of 

prebiotic fructans and GOS were not statistically significantly different between baseline and long-



term follow-up, it may be that subtle changes in the variety and source of these prebiotics may have 

contributed to this finding. In addition, although generally highly specific, during qPCR the primer for 

F. prausnitzii is known to also amplify some species from the Subdoligranulum genus, and therefore 

the effect on F. prausnitzii specifically is unclear and warrants further investigation.  

 

Finally, the reductions in relative abundance of Bacteroides spp. and F. prausnitzii must be viewed in 

conjunction with data on absolute abundance, in which total abundance did not change, suggesting 

that there was not a specific decrease in these bacteria, but perhaps an increase in other taxa. 

 

This is the first study to report the effects of a low FODMAP diet on stool microbial metabolite 

concentrations in the long term, showing reductions in total SCFA concentration and some individual 

SCFA concentrations including butyrate. These data are of potential concern given the role of SCFA in 

intestinal permeability, immunomodulation and secretory functions in the gut (44), however, the 

biological and clinical significance of these findings are unclear. The reduction may be due to a 

reduction in total carbohydrate intake (45) and the likely alteration in carbohydrate sources broadly 

across the diet, although it is important to note that fibre and total FODMAP intakes were maintained. 

Previous human studies have shown that reductions in F. prausnitzii, induced by reductions in 

carbohydrate supply, correlate with reductions in butyrate (45,46), both of which occurred here. 

However, the majority of stool SCFA produced by the microbiota in the gut are absorbed in the colon, 

and stool SCFA is affected by variable stool volume (46) and is negatively correlated with colonic transit 

time, suggesting slower colonic transit could lead to greater SCFA absorption (47).  Lower stool SCFA 

concentrations might be explained by personalised low FODMAP diet increasing colonic transit time, 

although one trial reported no impact of a low FODMAP diet on whole gut transit time (10). Stool pH 

was maintained despite total SCFA concentrations being reduced. This likely reflects that stool pH is 

determined not just by SCFA but by the pool of colonic metabolites (e.g. lactate, ammonia, volatile 



organic compounds), and that pH is a logarithmic scale and the reduction in SCFA may be reflected by 

the (statistically non-significant) 0.1 overall increase in pH.   

 

The strengths of this study include the use of paired analysis over two time points, measured at 

baseline prior to low FODMAP dietary and again 12-months after starting the low FODMAP diet 

following FODMAP restriction, reintroduction and personalisation. All indepth dietary counselling was 

provided by  a specialist dietitian, in line with evidence from research studies (31) and as widely 

recommended in the literature (48, 49). The limitations of this study are the relatively small sample 

size (n=18), compared to that of the initial RCT (n=104 patients), which was due to inability to contact 

participants despite multiple attempts or their unwillingness to participate in a long-term research 

visit. This may result in a relatively selected group of patients, and in particular that those who did not 

participate may have had worse symptom outcomes than those who did (non-response bias),  whilst 

the small sample size in the study may result in type II error that would suggest null findings compared 

with baseline. Microbiota were analysed using qPCR which is highly accurate at measuring bacterial 

taxa abundance but does not provide comprehensive global microbiota composition. The microbiota 

and SCFA at baseline and in the long term were inevitably measured in different analytical runs which 

may result in analytical variations. However, between-run variations would likely be minor and were 

minimised by analysis in triplicate (microbiota) or duplicate (SCFA) and comparison with 

contemporaneous internal standards and control samples. Data for symptoms, microbiota and SCFA 

were not collected at the end of the restriction phase for participants originally in the sham diet group, 

and so in the current study tracking these across three time points (baseline, end of restriction, long 

term personalisation) was not possible. Finally, some of the patients in this study had been provided 

with four weeks of probiotic supplements to take at the start of the initial RCT. However, those 

continuing to  supplement with any probiotic were excluded from the long-term analysis, and there is 

limited evidence that probiotics have a tangible impact on global bacterial abundance or composition 



in the short term (50) and no evidence of probiotic persistence in the gut in the long term after 

cessation of supplementation. 

 

In conclusion, this is the first ever study of clinical symptoms, dietary intake and microbiota during 

long-term follow-up of patients following a low FODMAP diet that includes a structured restriction, 

reintroduction and personalisation process, demonstrating two thirds of patients have adequate 

symptom relief even after 12 months. Fructan and GOS intakes and abundance of Bifidobacteria spp. 

were maintained over the long term, although stool SCFA were decreased. This study justifies the need 

for larger long-term studies to investigate these endpoints.  
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Table 1: Baseline demographic and clinical data in 18 people with IBS followed up after 12-months 

of low FODMAP diet (restriction, reintroduction, personalisation) 

Variable Baseline 

Age, yrs, median (IQR)  33 (20) 

Female n (%) 11 (61) 

IBS subtype, n (%)  

    IBS-D  14 (78) 

    IBS-M 2 (11) 

    IBS-U  2 (11) 

Ethnicity, white n (%) 12 (66) 

Weight, kg, median (IQR) 72.7 (22.4) 

BMI ,kg/m2, median (IQR) 24.3 (6.7) 

  



Table 2: FODMAP, energy and nutrient intake at baseline and after 12-months of low FODMAP 
diet (restriction, reintroduction, personalisation) in 18 people with IBS 

*Wilcoxon signed-rank test 

Values in bold are statistically significant (p<0.05) 

 

 

  

Dietary variable, median (IQR) 
Baseline  

(n=18) 

Long-term personalised low 

FODMAP diet (n=18) 
p* 

Total FODMAPs, g/d 16.9 (14.4) 18.4 (9.7) 0.679 

     Fructans, g/d 4.8 (2.7) 4.0 (4.5) 0.557 

     GOS, g/d 0.6 (0.5) 0.6 (0.6) 0.112 

     Lactose, g/d 9.0 (11.8) 9.9 (8.4) 0.983 

     Excess fructose, g/d 1.3 (1.9) 1.0 (1.3) 0.500 

     Sorbitol, g/d 0.7 (1.1) 0.3 (0.4) 0.028 

     Mannitol, g/d 0.3 (0.4) 0.3 (0.3) 0.327 

Energy, kcal/d 2052 (812) 1948 (603) 0.043 

Carbohydrate, g/d 218 (85) 196 (79) 0.039 

     Total sugar, g/d 79 (27) 78 (62) 0.879 

     Starch, g/d 128 (71) 116 (48) 0.085 

     Total fibre, g/d 17.0 (5.6) 16.6 (5.7) 0.349 

Protein, g/d 78 (47) 74 (27) 0.011 

Fat, g/d 86 (31) 77 (41) 0.048 

Calcium, mg/d 806 (308) 819 (424) 0.267 

Iron, mg/d 11.4 (5.9) 9.4 (5.7) 0.005 



Table 3:  Gastrointestinal symptom scores at baseline and after 12-months of low FODMAP diet 
(restriction, reintroduction, personalisation) in 18 people with IBS  

*Wilcoxon signed-rank test 
# IBS-SSS total score based upon seven items where worst severity is 500 points 
##GSRS where each symptom was rated daily for severity over 7 days on a scale of 0 (absent), 1 
(mild), 2 (moderate), 3 (severe)  
Values in bold are statistically significant (p<0.05) 

  

Median (IQR) 
Baseline  

(n=18) 

Long-term personalised 

low FODMAP diet (n=18) 
p* 

Irritable bowel severity scoring system (IBS-SSS)#    

 IBS-SSS total, points 227 (99) 154 (89) <0.001 

 Pain severity 45 (28) 25 (31) 0.006 

 Days of pain (days) 55 (70) 20 (20) 0.005 

 Distension severity 39 (37) 27 (36) 0.030 

 Satisfaction with bowels 61 (27) 40 (24) 0.017 

 Affecting life 48 (29) 36 (36) 0.011 

Gastrointestinal Symptom Rating Scale Severity##   

 Overall symptoms 1.3 (0.4) 0.8 (1.0) 0.005 

 Abdominal pain 1.2 (0.8) 0.7 (0.6) <0.001 

 Heartburn 0.1 (0.8) 0.0 (0.2) 0.495 

 Acid reflux 0.1 (0.5) 0.0 (0.1) 0.414 

 Nausea 0.1 (0.6) 0.1 (0.2) 0.077 

 Borborygmi 1.1 (1.1) 0.6 (1.2) 0.006 

 Bloating 1.2 (1.3) 0.8 (1.2) 0.006 

 Belching 0.4 (1.1) 0.1 (0.7) 0.844 

 Flatulence 1.3 (1.2) 0.9 (1.4) 0.004 

 Constipation 0.0 (0.0) 0.0 (0.0) 0.269 

 Diarrhoea 0.1 (0.8) 0 (0.2) 0.369 

 Loose stool 0.9 (0.8) 0.4 (1.1) 0.053 

 Hard stool 0.0 (0.1) 0.0 (0.1) 0.682 

 Urgency 0.9 (0.9) 0.5 (1.1) 0.157 

 Incomplete evacuation 0.5 (0.8) 0.1 (0.6) 0.014 

 Tiredness 1.0 (1.2) 1.1 (1.4) 0.267 



Table 4: Quality of life scores at baseline and after 12-months of low FODMAP diet (restriction, 

reintroduction, personalisation) in 18 people with IBS 

Quality of life, median (IQR) 
Baseline 

(n=18) 

Long-term 

personalised low 

FODMAP diet (n=18) 

p* 

SF-36    

Physical functioning 95 (5) 98 (26) 0.876 

Role limitations due to physical health 75 (75) 100 (56) 0.214 

Role limitations due to emotional problems 83 (67) 67 (75) 0.501 

Energy/fatigue 50 (30) 60 (48) 0.314 

Emotional wellbeing 74 (34) 74(41) 0.599 

Social functioning 75 (41) 94 (38) 0.887 

Pain 68 (40) 80 (33) 0.011 

General Health 58 (23) 60 (21) 0.493 

IBS-QOL    

Overall 70 (24) 85 (20) <0.001 

   Dysphoria 75 (24) 91 (22) 0.001 

   Interference with activity 64 (24) 86 (15) 0.001 

   Body Image 69 (39) 88 (31) 0.004 

   Healthy worry 75 (33) 83 (25) 0.018 

   Food avoidance 67 (25) 50 (38) 0.377 

   Social reaction 66 (33) 88 (33) 0.001 

   Sexual 94 (28) 100 (25) 0.384 

   Relationships 83 (27) 92 (17) 0.006 

*Wilcoxon signed-rank test 
Values in bold are statistically significant (p<0.05) 



Table 5: Absolute and relative abundance of microbiota at baseline and after 12-months of low FODMAP diet (restriction, reintroduction, personalisation) 

in 18 people with IBS 

 Absolute abundance (log10 rRNA genes/g) (n=18) Relative abundance (% of total) (n=18) 

Median (IQR) Baseline 

Long-term 

personalised low 

FODMAP diet 

p* q** Baseline 

Long-term 

personalised low 

FODMAP diet 

p* q** 

Total bacteria 11.13 (0.04) 11.33 (0.42) 0.054 0.108 - - - - 

Bacteroides spp.  10.41 (0.37) 10.48 (0.45) 0.865 0.906 30.33 (30.71) 13.34 (16.22) 0.004 0.022 

Prevotella spp. 6.34 (9.81) 0.00 (8.96) 0.154 0.263 0.00 (4.03) 0.00 (0.72) 1.000 1.000 

Bifidobacteria spp. 9.29 (1.45) 9.20 (1.41) 0.766 0.906 1.34 (5.77) 1.24 (3.30) 0.766 0.997 

     Bifidobacterium longum 8.60 (1.44) 8.70 (1.34) 0.580 0.773 0.54 (2.76) 0.30 (1.64) 0.442 0.695 

     Bifidobacterium adolescentis 3.26 (8.62) 0.00 (8.78) 0.906 0.906 0.00 (0.37) 0.00 (0.42) 0.906 0.997 

Clostridium Cluster XIVa 10.04 (0.62) 10.70 (0.93) 0.043 0.104 8.79 (10.32) 19.67 (25.24) 0.027 0.074 

     Roseburia spp. & E. rectale 9.99 (0.55) 10.19 (0.33) 0.043 0.104 8.18 (11.00) 7.68 (8.01) 0.865 0.997 

     Faecalibacterium prausnitzii 10.10 (0.51) 9.85 (0.64) 0.433 0.650 7.11 (4.32) 2.73 (1.78) <0.001 0.001 

Ruminococcus bromii 8.79 (1.05) 9.55 (0.78) 0.009 0.087 0.77 (1.62) 1.75 (1.96) 0.007 0.024 

Akkermansia muciniphila 0.00 (7.69) 8.05 (6.99) 0.041 0.104 0.00 (0.05) 0.04 (0.39) 0.187 0.343 

Lactobacillus spp. 0.00 (4.88) 7.48 (7.92) 0.014 0.087 0.00 (0.00) 0.02 (0.04) 0.093 0.206 

*Wilcoxon signed-rank test 

**Adjustment for false detection rate 

Values in bold are statistically significant (p<0.05 or q<0.05) 

 



Table 6: Faecal short chain fatty acid concentration (ⴗmol/g wet weight) and pH at baseline and 

after 12-months of low FODMAP diet (restriction, reintroduction, personalisation) in 17 people with 

IBS 

 

Median (IQR) 
Baseline 

(n=17) 

Long-term personalised 

low FODMAP diet 

(n=17) 

P* 

Total SCFA, µmol/g   140 (63) 93 (50) 0.004 

     Acetate  85 (40) 50 (28) 0.002 

     Propionate  24 (11) 15 (10) 0.001 

     Butyrate 22 (10) 15 (11) 0.035 

     Valerate  3 (3) 2 (2) 0.062 

     Isobutyrate 2 (1) 1 (1) 0.093 

     Isovalerate 3 (2) 2 (2) 0.435 

pH 6.7 (0.5) 6.8 (0.8) 1.000 

*Wilcoxon signed-rank test 
Values in bold are statistically significant (p<0.05) 

 
  



Figure 1 Relative abundances at baseline and after 12-months of low FODMAP diet (restriction, 

reintroduction, personalisation) in 18 people with IBS 

Bacteroides spp. (p=0.004, q=0.022), Bifidobacteria spp. (p=0.766, q=0.997), Faecalibacterium 

prausnitzii (p<0.001, q=0.001) and Ruminococcus bromii (p=0.007, q=0.024) 

 

 

  



Figure 2 Total short-chain fatty acid concentrations between baseline and after 12-months of low 

FODMAP diet (restriction, reintroduction, personalisation) in 17 people with IBS 
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Microbiota analysis, quantitative PCR 

DNA was extracted from 3-5g stool aliquots using FastDNA™ SPIN kit for soil (MP Biomedicals Europe, 

Illkirch-Graffenstaden, France) for quantitative polymerase chain reaction (qPCR) according to 

manufacturer instructions. After extraction, the sample was centrifuged at 14,000 x g for 1 minute to 

transfer eluted DNA into the clean catch tube. The sample was transferred to a sterile microcentrifuge 

tube and centrifuged at 14,000 x g for 1 minute. DNA concentration was measured using a NanoDrop 

ND1000 instrument (Thermo Scientific, Waltham, MA, USA) and then stored at 4°C for qPCR. Samples 

were diluted to 1.25 ng/µl by an automated pipetting system (Biomek FXP Laboratory Automation 

Workstation, Beckman Coulter, Brea, CA, USA) in 5 µg/ml herring perm DNA (Promega). Standard 

template DNA was prepared from a 16S rRNA gene of Bifidobacterium adolescentis DMS 20083. 

Standard curves were prepared with five standard concentrations of 107 to 103 gene copies/2µl or 106 

to 102 gene copies/2µl in herring sperm DNA, depending on the expected concentration of target in 

the samples. Amplification was performed using primers for the quantification of 11 bacterial groups.  

 

Samples and standards were examined in triplicate per PCR run (6µl per well) and mixed with SYBR 

Green Supermix (Bio-Rad) (5µl per well) and forward and reverse primers at 10µM (0.5µl per well 

each; total volume 10µl per well) in clear 384 MicroAmp Optical 384-well reaction plates (Applied 

Biosystems) sealed with optical adhesive tape. If the plate required storage prior to thermal cycling, it 

was covered with opaque foil and refrigerated at 4°C for no more than 2 hours. Amplification was 

performed with a 7900HT fast qPCR system (Applied Biosystems) using the following protocol: one 

cycle at 95 °C for 3 minutes, 40 cycles of 95 °C and 60 °C for 30 seconds each, one cycle at 95 °C for 10 

seconds and a final cycle of 65 °C increasing to 95 °C for 5 seconds at each 0.5 °C increment to obtain 

melt curve data. Data were analysed using SDS 2.4.1 (Applied Biosystems). 

 



Samples at 12 months were analysed in a different analytical run than the baseline samples. To 

account for differences in efficiencies between batches, the detection threshold for each bacterial 

group was calculated as a 10-fold higher transcript number than the highest mean no template control 

transcript number and applied across both baseline and 12-month data. 

Short-chain fatty acid analysis, gas liquid chromatography and stool pH 

Faecal samples for analysis of SCFAs were immediately frozen at 80°C. SCFAs were extracted from 

defrosted faeces using an extraction buffer (1% H3PO4; 0.1% HgCl2) containing 2,2-dimethylbutyric 

acid as an internal standard. Extracted SCFAs were injected splitless into a Hewlett Packard 6890 series 

GLC system (Agilent Technologies, Santa Clara, CA) equipped with a BP21 25-m capillary column with 

internal diameter of 0.22 mm and film thickness of 0.25 mm. Initial oven temperature was 80°C, which 

increased by 10°C/min up to 145°C, and then 100°C/min up to 200°C to ensure complete elution. 

Extracted SCFA underwent chromatography alongside contemporaneous control pure SCFA of known 

concentration to enable calculation of standard elution curves for calculating unknown 

concentrations. 

 

Stool pH was measured on fresh stool, which was diluted 1:4 (vol: vol) in pH buffer (1x10-5mol/L 

Na2HPO4, KH2PO4, 0.1 g HgCl2), homogenised, and incubated at room temperature for 1 h. Stool pH 

was measured using a pH meter and a pH electrode specifically designed for slurries (VWR, 

Pennsylvania, US). 

 

 

 


