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Abstract 

There is increasing popularity in the use of Artificial Intelligence and Machine Learning techniques to 

provide diagnostic and prognostic models for various aspects of Trauma and Orthopaedic surgery. 

Correct interpretation of these models is however difficult to those without specific knowledge of 

computing or health data science methodology. Lack of current reporting standards leads to 

potential for significant heterogeneity in the design and quality of published studies. We provide an 

overview of Machine Learning techniques for the “lay” individual, including key terminology and 

best practice reporting guidelines. 

 

Introduction 

Trauma and Orthopaedic research using Artificial Intelligence (AI – performance of computer tasks 

that usually require human intelligence), and more specifically a subset of AI called Machine 

Learning (ML – computer algorithms that automatically improve performance through experience), 

has become increasingly popular over the last decade, with a rapid rise seen in the number of 

related publications (Figure 1). This is likely related to the widespread use of patient registries and 

other sources of electronic health information that provide significant quantities of readily accessible 

data to which ML techniques can be applied. The ability to manage complex healthcare data is a key 

feature of ML techniques and hence why it is often seen as having significant potential in the field of 

Trauma & Orthopaedics,1,2 where clinical decision making often relies on integrating multiple 

sources of healthcare information. 

ML applications to Trauma & Orthopaedics mainly relate to predictive or diagnostic classification of 

patients that seek to aid timely diagnosis of adverse outcomes or provide important prognostic 

information about patient outcomes that can support medical decision-making.  

With the increasing number of studies relating to ML published within mainstream orthopaedic 

journals, “lay” readers will inevitably find difficultly in interpreting results, where knowledge and 

training in computing & health data science methodology are required to conduct and interpret 

research in this field. A current lack of reporting standards for non-interventional AI & ML research 

means there is potential for significant heterogeneity in the design and quality of published 

manuscripts. 

In this article we therefore provide an overview of current commonly utilised ML techniques within 

the field of Trauma & Orthopaedics, including best practice recommendations for manuscript 



reporting for the ML researcher and a guide to interpretation for the “lay” clinician or scientist. Table 

1 provides a glossary of important terminology to assist with key concepts and definitions.  

 

Research Reporting  

It is important to recognise that development of clinical prediction or diagnostic models such as 

those used in Trauma & Orthopaedics is a longitudinal process that requires significant oversight and 

input for clinically useful information to be produced. This initially starts with identification of the 

clinical problem to be addressed and runs through data extraction, cleaning and coding, to model 

development, testing and validation3. It is important to reflect that data pre-processing is perhaps 

the most critical step in this “pipeline” and encompasses over ¾ of the required work in producing a 

valid ML output.  

The heterogeneity of reporting in ML approaches to prediction modelling has been recognised by 

others, both in the wider medical literature,4,5 and also specifically within Trauma & Orthopaedics.6,7 

Use of existing guidelines such as the Transparent Reporting of a multivariable prediction model for 

Individual Prognosis Or Diagnosis (TRIPOD) statement8 provide an excellent starting point for study 

reporting, but do not cover AI techniques (although an updated TRIPOD-AI is currently in 

development and should provide a definitive methodological overview for reporting prediction 

modelling using ML).9 

Guidelines for the reporting of interventional studies involving AI are covered by the Consolidated 

Standards of Reporting Trials (CONSORT) AI Extension10 and its complementary Standard Protocol 

Items: Recommendations for Interventional Trials (SPIRIT) AI Extension.11 They specifically highlight 

how the reporting of AI focused studies should differ from traditional trials, with a particular focus 

on how participant selection, data pre-processing and where AI is utilised in the intervention 

pathway. It is imperative that journals, authors and readers are aware of their existence and utilise 

these when considering interventional ML research in Trauma & Orthopaedics.  

Our expert opinion recommendations for the reporting of prognostic or diagnostic ML models are 

included in Table 2.  

Whilst this is not an exhaustive list, and one which may change over time as ML techniques develop, 

we believe it provides a minimum reporting guide for journals, authors and reviewers that will 

ensure that all studies are of sufficient quality that they provide meaningful additions to the current 

evidence base. 



 

Interpretation of machine learning output – a guide for the “lay” audience  

Most individuals involved in the clinical practice of Trauma and Orthopaedics will have minimal 

knowledge and experience of interpreting studies that report on ML output. This is perhaps one of 

the main reasons, alongside a lack of clear reporting, why the majority of published research in this 

area has yet to influence clinical practice. 

 In order to maximise the significant potential of ML in the field it is therefore imperative that 

healthcare professionals and policymakers have at least a basic understanding of how to correctly 

appraise and interpret ML studies. We therefore highlight key areas for output interpretation and 

important factors for consideration in study evaluation. 

The first key step is to understand the data that is included within the model. ML algorithms follow 

the simple mantra that “garbage in = garbage out”. It is important therefore that the data utilised is 

from a reliable source with good data quality, and ideally one that has been externally validated 

regarding its accuracy (e.g. automated electronic capture of healthcare data audited against manual 

searching of individual patient records).  

Secondly it is important to understand the nature of the control group and gold standard reference 

to ensure they are appropriate if using supervised ML techniques (where the potential outcomes are 

predefined). For example, when considering the diagnosis of distal radius fractures: if a control 

group consists of young healthy controls and the case group consists of low-energy fragility fractures 

then then ML model may pick up on the presence of osteopenia in fracture subjects rather than the 

actual diagnosis. 

It is also important to remember that ML output can only relate to the data that has been included 

within it. Therefore, a model that was trained on a specific dataset may not apply to other data, 

even within a similar field. For example, a ML algorithm to predict attainment of the Minimum 

Clinically Important Difference following knee arthroplasty may only relate to the specific implants 

utilised in the initial dataset. It therefore may not relate to other implant types (e.g. uncemented or 

unicondylar designs) if these were not commonly found within the data the model was trained on. 

This is why external validation of ML models is a vital part of the assessment process and a critical 

requirement before any claims to clinical applicability can be made. 

Interpretation of the results from ML output is also vital to determining the importance of studies. 

Like many things in life, if the predicted accuracy of a ML model sounds too good to be true, it 

probably is. 



 One of the key results often offered in ML literature is the Area Under Curve (AUC) of the Receiver 

Operating Characteristic (ROC) metric (or Concordance/C-statistic). This is typically classified in a 

range from 0-1 and relates to the discriminatory capacity (predictive ability) of the model. An AUC of 

1 therefore represents a model which is always correct in its prediction, and an AUC of 0 is always 

incorrect. An AUC of 0.5 represents a model which is no better than random chance at predicting a 

specific outcome. Though there are no fixed parameters for what constitutes an “acceptable” AUC 

generally 0.6-0.7 is considered moderate, 0.7-0.8 good, 0.8-9 excellent and 0.9+ outstanding. 12 AUCs 

should be reported with 95% Confidence intervals.  

Understanding the calibration slope and intercept of a model is also integral to appreciating how 

well a ML model functions,13 and is often missed from analyses.14 Calibration is defined as the level 

of agreement between the predictive and observed values. 15 An example is shown in Figure 2. These 

assessments are important help determine how well the model fits the sample it is being applied to, 

including potential population sub-groups. A perfect model is one where the intercept (Alpha) is 0, 

and the slope (Beta) is 1.3 Incorrect calibration may have serious consequences in terms of 

underestimating or overestimating risk for certain populations and is again another vital reason for 

external validation of ML models before determination of potential clinical applicability. For 

example, a machine learning algorithm to predict mortality using data from all hip fracture patients 

may underestimate mortality in those with pathological fracture related to malignancy if appropriate 

clinical categorisation is not considered during algorithm development. Further details regarding the 

specifics of calibration, including visual examples, can be found in Van Calster et al – Calibration: the 

Achilles heel of predictive analytics.14 A Brier Score may also sometimes be presented as a way to 

assess model calibration, with a score of 0 the best achievable and 1 the worst. 

A frequently used approach when comparing the ability of human observers and ML models to 

correctly identify objects (typically radiographs) is development of a “classification model”. Here the 

Kappa index (Cohen’s Kappa) is commonly presented.16 This is a test of inter-observer 

reliability/agreement that helps determine the comparative performance of this type of model. 

Values range from 0-1, with 0.8 (80% agreement) typically seen as a minimum acceptable inter-rater 

agreement in the healthcare setting.17 It is always important to remember in this setting that there is 

variability and error in human classification and therefore multiple observers are usually required to 

ensure accuracy of the “gold standard” comparator. A confusion matrix may also be presented 

where the predicted and actual values (+/- Kappa) for the two groups are compared. This can also be 

done where multiple different classes are involved (i.e., determining if radiographic arthritis is mild, 

moderate or severe).  



Finally, it is important to consider common pitfalls for published ML models in Trauma & 

Orthopaedics, which will be aided by the reporting guidelines outlined above and in Table 2. This 

may include, but is not limited to: 

• Lack of an adequate clinical question or hypothesis to test. 

• Use of an inadequate data source e.g., poor data quality, large quantities of missing data, or 

insufficient data to address the clinical question (including confounding variables). 

• Lack of external validation. 

• Insufficient reporting of the results, including the discriminatory and classification 

capabilities of the model. 

• Limited explanation or exploration regarding model deployment in clinical practice and how 

barrier to implementation can be addressed.   

 

Conclusions 

ML techniques are often unfamiliar territory for the orthopaedic specialist, with difficulty in 

determining the relevance of ML studies to clinical practice. ML has previously been described as a 

“black box”, although new techniques that allow us to understand and interpret the decision making 

of ML algorithms are becoming increasingly prevalent, which will massively increase the potential for 

healthcare application in the future.18 This understanding is essential given that ML algorithms may 

function in an abstract fashion if not correctly applied – for example diagnosis of fracture on X-ray 

using an abnormality marker applied by the radiographer at time of image acquisition, rather than 

classification based on the fracture itself. 

We highlight important nomenclature to aid in understanding and key elements required in 

reporting and interpretation of prognostic and diagnostic ML output. The factors identified here are 

by no means exhaustive but should help support comprehension of the ever-increasing numbers of 

ML models now widely prevalent in orthopaedic research. 
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