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Automating the OODA loop in the age of intelligent 
machines: reaffirming the role of humans in command-and- 
control decision-making in the digital age
James Johnson

Department of Politics and International Relations, University of Aberdeen, King's College Aberdeen, United 
Kingdom

ABSTRACT
This article argues that artificial intelligence (AI) enabled capabilities 
cannot effectively or reliably compliment (let alone replace) the role of 
humans in understanding and apprehending the strategic environ
ment to make predictions and judgments that inform strategic deci
sions. Furthermore, the rapid diffusion of and growing dependency on 
AI technology at all levels of warfare will have strategic consequences 
that counterintuitively increase the importance of human involvement 
in these tasks. Therefore, restricting the use of AI technology to auto
mate decision-making tasks at a tactical level will do little to contain or 
control the effects of this synthesis at a strategic level of warfare. The 
article re-visits John Boyd’s observation-orientation-decision-action 
metaphorical decision-making cycle (or “OODA loop”) to advance an 
epistemological critique of AI-enabled capabilities (especially machine 
learning approaches) to augment command-and-control decision- 
making processes. In particular, the article draws insights from Boyd’s 
emphasis on “orientation” as a schema to elucidate the role of human 
cognition (perception, emotion, and heuristics) in defense planning in a 
non-linear world characterized by complexity, novelty, and uncertainty. 
It also engages with the Clausewitzian notion of “military genius” – and 
its role in “mission command” – human cognition, systems, and evolu
tion theory to consider the strategic implications of automating the 
OODA loop.
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Introduction

This article argues that artificial intelligence (AI) enabled capabilities cannot effectively, 
reliably, or safely complement – let alone replace – humans in understanding and apprehend
ing the strategic environment to make predictions and judgments to inform and shape 
command-and-control (C2) decision-making – the authority and direction assigned to 
a commander (Margaret 2014, 2014; Bostrom 2014; Cantwell Smith 2019).1 Moreover, the 
rapid diffusion of and growing dependency on AI technology (especially machine learning 
(ML)) (Terrence 2018; Domingos 2012, 85–86; Russell and Norvig 2014) to augment human 
decision-making at all levels of warfare harbinger strategic consequences that counterintui
tively increase the importance of human involvement in these tasks across the entire chain of 
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command.2 Because of the confluence of several cognitive, geopolitical, and organizational 
factors, the line between machines analyzing and synthesizing (i.e. prediction) data that 
informs humans who make decisions (i.e. judgment) will become increasingly blurred 
human-machine decision-making continuum. When the handoff between machines and 
humans becomes incongruous, this slippery slope argument will make efforts to impose 
boundaries or contain the strategic effects of AI-supported tactical decisions inherently 
problematic and unintended strategic consequences more likely.

The article re-visits John Boyd’s observation-orientation-decision-action metaphori
cal decision-making cycle (or “OODA loop”) to advance an objective epistemological 
critique of using AI-ML enabled capabilities to augment command-and-control deci
sion-making processes (Boulanin 2020).3 Toward this end, the article draws insights 
from Boyd’s emphasis on “Orientation” (or “The Big O”) to elucidate the role of human 
cognition (perception, emotion, and heuristics) in defense planning and the importance 
of understanding the broader strategic environment in a non-linear world characterized 
by complexity, novelty, and uncertainty. It also engages with the Clausewitzian notion of 
“military genius” (especially its role in “mission command”), (Howard and Paret; Grauer 
2016; Beyerchen 1992–1993; Biddle 2004; King 2019), human cognition (Kahneman; 
Ariely, Kahneman et al. 1982; Baron 2008; Robert 2006), and systems and evolution 
theory (Jantsch 1980; Prigogine and Stengers 1984; Perrow 1999; Jervis 1997; Thomas 
1999), to consider the strategic implications of automating the OODA loop. The article 
speaks to the growing body of recent literature that considers the strategic impact of 
adopting AI technology – and autonomous weapons, big data, cyberspace, and other 
emerging technologies associated with the “fourth industrial revolution” (Barno and 
Bensahel) – in the military decision-making structures and processes (Raska 2021; 
Talmadge 2019; Goldfarb and Lindsay 2022).

The article contributes to understanding the implications of AI’s growing role in 
human decision-making in military C2. While the diffusion and adoption of “narrow” AI 
systems have had some success in nonmilitary domains to make predictions and sup
port – largely linear-based – decision-making (e.g. commercial sector, healthcare, and 
education), AI in a military context is much more problematic (Agrawal et al. 2018; 
Furman and Seamans 2018). Specifically, military decision-making in non-linear, com
plex, and uncertain environments entails much more than copious, cheap datasets and 
inductive machine logic. In command-and-control decision-making, commanders’ 
intentions, the rules of law and engagement, and ethical and moral leadership are critical 
to effective and safe decision-making in the application of military force. Because 
machines cannot perform these intrinsically human traits, thus the role of human agents 
will become even more critical in future AI-enabled warfare (Payne 2021; Johnson 2021). 
Moreover, as geostrategic and technological deterministic forces spur militaries to 
embrace AI systems in the quest for first-mover advantage and reduce their perceived 
vulnerabilities in the digital age, commanders’ intuition, latitude, and flexibility will be 
demanded to mitigate and manage the unintended consequences, organizational friction, 
strategic surprise, and dashed expectations associated with the implementation of mili
tary innovation (Michael 2010; Stephen 2010).

The article is organized into three sections. The first unpacks Boyd’s OODA loop 
concept and its broader contribution to military theorizing, particularly the pivotal role 
of cognition in command decision-making to understand and survive in a priori strategic 
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environments within the broader framework of complex adaptive organizational systems 
dynamic non-linear environment. Section two contextualizes Boyd’s loop analogy with 
nonlinearity, chaos, complexity, and system theories with the recent developments in AI- 
ML technology to consider the potential impact of integrating AI-enabled tools across the 
human-machine command-and-control decision-making continuum. This section also 
considers the potential strategic implications of deploying AI-ML systems in unpredict
able and uncertain environments with imperfect information. Will AI alleviate or 
exacerbate war’s “fog” and “friction”?

The second section explores human-machine teaming in high-intensity and dynamic 
environments. How will AI’s cope with novel strategic situations compare to human 
commanders? It argues that using AI-ML systems to perform even routine operations 
during complex and fast-moving combat environments is problematic and that tactical 
leaders exhibiting initiative, flexibility, empathy, and creativity remain critical. This section 
also contextualizes the technical characteristics of AI technology with the broader external 
strategic environment. Will AI-enabled tools compliment, supplant, or obviate the role of 
human “genius” in mission command? The final section considers the implications of AI- 
ML systems for the relationship between tactical unit leaders and senior commanders. 
Specifically, it explores the potential impact of AI-enabled tools that improve situational 
awareness and intelligence, surveillance, and reconnaissance (ISR) on the notion of the 
twenty-first century “strategic corporals” and juxtaposes the specter of “tactical generals.”

The “real” OODA loop is more than just speed

John Boyd’s OODA loop has been firmly established in many strategic, business, and 
military tropes (Grant 2013; pp. 600–602; Osinga 2013, pp. 603–624). Several scholars have 
criticized Boyd’s OODA loop concept as overly simplistic, too abstract, and over- 
emphasizing speed and information dominance in warfare. Critics argue, for instance, 
that beyond pure granular tactical considerations (i.e. air-to-air combat), the OODA loop 
has minimal novelty or utility at a strategic level, for instance, managing nuclear brinkman
ship, civil wars, or insurgencies (Hasik 2013, pp. 583–99; Storr 2001, 39–45). Some have 
also lambasted the loop for lacking originality, as pseudoscience (informed by thermo
dynamics, quantum mechanics, and human evolution) and lacking scholarly rigor. 
Moreover, the OODA concept struggles to meet the rigorous social science standards of 
epistemological validity, theoretical applicability, falsifiability, and robust empirical support.

Others argue that these criticisms misunderstand the nature, rationale, and richness of 
the OODA concept and thus understate Boyd’s contribution to military theorizing, parti
cularly the role of cognition in command decision-making (Osinga 2013, 603–624). In 
short, the OODA concept is much less a rigorously tested epistemological or ontological 
model for warfaring (which the author never intended), but instead a helpful analogy – akin 
to Herman Kahn’s “escalation ladder” psychological metaphor (Kahn 1965) – for elucidat
ing C2 decision-making cognitive processes and dynamics of commanders and their 
organizations as they “adjust or change in order to cope with new and unforeseen 
circumstances” (Boyd 1982). In other words, Boyd’s concept is analogous to organizational 
and individual psychological experiences of the OODA loop in their respective temporal 
and spatial journeys across the strategic environment (Osinga 2013, 3).
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The OODA concept was not designed as comprehensive means to explain the theory 
of victory at the strategic level. Instead, the concept needs to be viewed as part of 
a broader cannon on conceptualizations Boyd developed to elucidate the complex, 
unpredictable, and uncertain dynamics of warfare and strategic interactions (Ibid, 
p. 173). Moreover, the popularized depictions of the simplified version of Boyd’s concept 
(or the “simple OODA loop,” see Figure 1) neglects Boyd’s comprehensive rendering of 
the loop (or the “real OODA loop,” see Figure 2) – with insights from cybernetics, 
systems theory, chaos and complexity theory, and cognitive science – that Boyd 

Figure 1. The “simple” OODA loop.

Figure 2. The “real” OODA loop.
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introduced in his final presentation, The Essence of Winning and Losing (Boyd 1995). The 
influence of this science and scholarly Zeitgeist most clearly manifests in the OODA 
loop’s vastly overlooked “orientation” element (Ibid, chap. 3 and 4).

The “big o” the center of gravity in warfare

Insights from the cognitive revolution (Polanyi 1969) coupled with Neo-Darwinist 
research on the environment (Bryant Conant 1964), the Popperian process of 
adaptation and hypothesis testing (Popper 1968), and complexity and chaos theory 
(Byrne 1998; Durham 2012), heavily influenced the genesis of Boyd’s “orientation” 
schemata comprising: political and strategic cultural traditions, organizational fric
tion, experience and learning, new and novel information, and the analysis and 
synthesis of this information (see below) (Gardner 1985; von Neumann 1958; 
Wiener 1967; Ryle 1966). Viewed this way, “observation” is a function of inputs 
of external information and understanding the interaction of these inputs with the 
strategic environment. Boyd wrote, “orientation, seen as a result, represents images, 
views, or impressions of the world shaped by genetic heritage, cultural traditions, 
previous experiences, and unfolding circumstances” (Boyd 1987). Without these 
attributes, humans lack the psychological skills and experience to comprehend and 
survive in a priori strategic environments. The OODA loop concept is a shorthand 
for these complex dynamics.

Elaborating on this idea, Boyd asserted that orientation “shapes the way we interact 
with the environment – hence orientation shapes the way we observe, the way we decide, 
the way we act. Orientation shapes the character of present observation-orientation- 
decision-action loops – while these present loops shape the character of future orienta
tion” (emphasis added) (Ibid., p. 16). In other words, without the contextual under
standing provided by “orientation” in analyzing and synthesizing information, 
“observations” of the world have limited meaning. These assertions attest to the pivotal 
role of “orientation” in Boyd’s OODA decision-making analogy, the critical connecting 
thread enabling commanders to survive, adapt, and effectively make decisions under 
uncertainty, ambiguity, complexity, and chaos (Boyd 1987). Boyd’s OODA analogy and 
notions of uncertainty and ambiguous information and knowledge are equally (if not 
more so) relevant for strategy in the digital information age – combining asymmetric 
information, mis-disinformation, mutual vulnerabilities, destructive potential, and 
decentralized, dual-use, and widely diffused AI technology (Kissinger et al. 2021, pp. 
166–167; Trinkunas et al. 2020).

According to Boyd, “how orientation shapes observation, shapes decision, shapes 
action, and in turn is shaped by the feedback and other phenomena coming into our 
sensing or observing window” (emphasis added) (Boyd, p. 5). Thus, the loop metaphor 
depicts an ongoing, self-correcting, and non-static process of prediction, filtering, corre
lation, judgment, and action. Scientists including Ian Stewart and James Maxwell have 
similarly cautioned against assuming that the world is stable, static, and thus predictable 
(Clerk Maxwell 1969, pp. 440–442). These processes, moreover, contain complex feed
forward and feedback loops (or “double-loop learning”) that implicitly influence 
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“decision” and “action” and, in turn, inform hypothesis testing of future decisions.4 For 
instance, while military theorists often categorize politics as extrinsic to war (i.e. a linear 
model), the feedback loops which operate from the use of force to politics and from 
politics to the use of force are intrinsic to war (Roche and Watts; Overy 1981). As 
a corollary, Boyd argues that C2 systems must embrace (and not diminish) the role of 
implicit orientation and their attendant feedback loops (Roche and Watts 1991; Overy 
1981).

Similarly, Clausewitz argued that the interactive nature of war generates system- 
driven dynamics comprising human psychological forces and characterized by positive 
and negative feedback loops, thus leading to potentially limitless versions of ways to seek 
one-upmanship in competition “to compel our enemy to do our will” (Boyd, p. 24). War, 
Clausewitz argues, is a “true chameleon,” exhibiting randomness, chance, and different 
characteristics in every instance (Ibid, p 89). Therefore, it is impossible, as many military 
theorists tend, to force war into compartmentalized sequential models of action and 
counter-reaction for theoretical simplicity (Paret 1985, 74–75).5 Instead, effective com
manders will explore ways to exploit war’s unpredictability and non-linear nature to gain 
the strategic upper hand (Beyerchen 1992–1993, pp. 74–75). At an organizational level, 
systems are driven by the behavior of individuals who act based upon their intentions, 
goals, perceptions, and calculations, an interaction that generates a high degree of 
complexity and unpredictability (Jervis 1997, 16).

Therefore, a broader interpretation of the OODA loop analogy is best viewed as less 
a general theory of war than an attempt to depict the strategic behavior of decision- 
makers within the broader framework of complex adaptive organizational systems in 
a dynamic non-linear environment (Dooley 1996), pp. 2–3).6 According to Clausewitz, 
general (linearized) theoretical laws used a perspective to explain the non-linear 
dynamics of war must be heuristic; each war is a “series of actions obeying its own 
peculiar law” (Von Clausewitz 1976, 80). Colin Gray opined that Boyd’s OODA loop is 
a grand theory because the concept has an elegant simplicity, a vast application domain, 
and valuable insights about strategic essentials (Gray 1999, 91).

Intelligent machines in non-linear chaotic warfare

Nonlinearity, chaos theory, complexity theory, and systems theory have been broadly 
applied to understand organizational behavior and intra-organizational and the inter- 
organizational dynamics associated with competition and war (Jervis 1997; Perrow 1999). 
Charles Perrow introduced that organizations can be categorized as either simple/linear 
(stable, regular, and consistent) or complex/non-linear (unstable, irregular, and incon
sistent) systems with tight or loose couplings (Perrow 1999, 90). Non-linear systems do 
not obey proportionality or additivity; they can behave erratically through dispropor
tionally large or small outputs, exhibiting interactions in which the whole is not necessa
rily equal to the sum of the parts (Beyerchen 1992–1993, p. 63). The real world has always 
contained an abundance of non-linear phenomena, for example, fluid turbulence, com
bustion, breaking or cracking, biological evolution, and biochemical reactions in living 
organisms (Campbell 1987, pp. 218–262). Perrow’s idea of coupling and complexity is 
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critical in a system’s susceptibility to accidents and failure’s speed, severity, and prob
ability. All things being equal, tightly coupled systems such as AI-ML algorithms react 
faster, unpredictably, with extensive multi-layered interconnections, compared to loosely 
coupled systems such as universities – which, when everything runs smoothly, afford 
more time for response and recovery (Perrow 1999, 262).

According to Perrow, the problem arises in cases where a system is both complex and 
tightly coupled. Whereas complexity generally optimally requires a decentralized 
response, tight coupling suggests a centralized approach – to ensure a swift response 
and recovery from accidents before tightly coupled processes cause failure. In response to 
complex and tightly coupled systems, Perrow dismisses the efficacy of decentralizing 
decision-making at lower levels in an organization (i.e. commanders on the battlefield) 
because, in complex/tightly coupled systems, potential failures throughout the system are 
unforeseeable and highly contingent (Ibid., pp. 331–334). Perrow writes that alterations 
to any one component in a complex system “will either be impossible because some 
others will not cooperate, or inconsequential because some others will be allowed more 
vigorous expression” (Ibid., p. 173).

Similar dynamics (randomness, complex interactions, and long and intricate chains) 
can also be found in ecological systems (Ehrenfeld 1991, 26–39). Because of the intrinsic 
unpredictability of complex systems, evolutionary biology is – that is, compared to 
conventional international relations (IR) theories – particularly amenable for under
standing IR’s such as alliance alignments, the balance of power, signaling deterrence and 
resolve, assessments of actors intentions, and diplomatic and foreign policy mechanisms 
and processes (Bernstein et al. 2000, 70). In complex systems, Robert Jervis notes, 
“problems are almost never solved once and for all; initial policies, no matter how well 
designed can be definitive [machine generated] solutions will generate unexpected 
difficulties” (Jervis 1997, 291). Because of the interconnectedness of world politics – 
imposed on states by the structures of international relations and actors’ perceptions of 
other’s intentions and policy preferences – low-intensity disputes can be strategically 
consequential (Ibid., p 24).

During conflict and crisis, where the information quality is poor (i.e. information 
asymmetry) and judgment and prediction are challenging, decision-makers must balance 
these competing requirements. Automation is generally an asset when high information 
quality can be combined with precise and relatively predictable judgments. Clausewitz’s 
highlights the relationship between the unpredictability of war – caused by interaction, 
friction, and chance – as a manifestation and contributor of the role of nonlinearity. 
Clausewitz wrote, for instance, “war is not an exercise of the will directed at inanimate 
matter . . . or at matter which is animate but passive and yielding . . . In war, the will is 
directed at an animate object that reacts” – and thus, the causes that the outcome of the 
action cannot be predicted (Von Clausewitz 1976, 149). Inanimate intelligent machines 
operating and reacting in human-centric (“animate”) environments exhibiting interac
tion, friction, and chance cannot predict outcomes and thus control. While human 
decision-making under these circumstances is far from perfect, the unique interaction 
of factors including, inter alia, psychological, social, cultural (individual and organiza
tional), ideology, emotion, experience (i.e. Boyd’s “orientation” concept), and luck, give 
humans a sporting chance to make clear-eyed political and ethical judgments in the chaos 
(“fog”) and nonlinearity (“friction”) of warfare (Gleick 1987).
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The computer revolution and recent AI-ML approaches have made militaries increas
ingly reliant on statistical probabilities and self-organizing algorithmic rules to solve 
complex problems in the non-linear world. According to Maxwell, analytical mathema
tical rules are not always reliable guides to the real world “where things never happen 
twice” (Clerk Maxwell 1969, p. 440–442). AI-ML techniques (e.g. image recognition, 
pattern recognition, and natural language processing) inductively (inference from gen
eral rules) fill the gaps in missing information to identify patterns and trends; thereby 
increasing the speed and accuracy of certain standardized military operations, including 
open-source intelligence collation, satellite navigation, and logistics. However, because 
these quantitative models are isolated from the broader external strategic environment of 
probabilities rather than axiomatic certainties characterized by Boyd’s “orientation,” 
human intervention remains critical to avoid distant analytical abstraction and causal 
deterministic predictions during the non-linear chaotic war. Several scholars assume that 
the perceived first-mover benefits of AI-augmented war machines will create self- 
fulfilling spirals of security dilemma dynamics that will upend deterrence (Michael 
2019, pp. 764–788; Kenneth Payne 2021; Johnson 2020).

AI’s exacerbating the “noise” and “friction” of war

Because AI-ML predictions and judgments tend to deteriorate where data is sparse (i.e., 
nuclear war), low quality (i.e., biased, intelligence is politicized, or data is poisoned or 
manipulated by mis-disinformation)7 (NATO, 2021), military strategy requires 
Clausewitzian human ”genius” to navigate battlefield ”fog,” and the political, organiza
tional, and information (or ”noise” in the system) ”friction” of war (Shaw 1981).8 For 
example, the lack of training data in the nuclear domain means that AI’s would depend 
on synthetic simulations to predict how adversaries might react during brinkmanship 
between two or more nuclear-armed states (Johnson 2020). Nuclear deterrence is 
a nuanced perceptual dance in competition and manipulation between adversaries, 
“keeping the enemy guessing” by leaving something to chance (Thomas 1960, pp. 
199–201).

Therefore, datasets will need to reflect the broader strategic environment military 
decision-makers face in a military context, including the distinct doctrinal, organiza
tional, and strategic cultural approaches of allies and adversaries. Even where situations 
closely mirror previous events, a dearth of empirical data to account for war’s contingent, 
chaotic, and random nature makes statistical probabilistic AI-ML reasoning a very blunt 
instrument. AI’s predicting and reacting to a priori novel situations will increase the risk 
of mismatch – between algorithmically optimized goals and the evolving strategic 
environment – and misperception will heighten the risk of accidents (e.g. targeting errors 
or false alerts) and inadvertent catastrophe. In unpredictable and uncertain environ
ments with imperfect information that requires near-perfect confidence levels, simula
tions and synthetic data sets are technically limited (Paul and Bracken 2022, 293).

To cope with novel strategic situations and mitigate unintended consequences, human 
“genius” – the contextual understanding afforded by Boyd’s “orientation” – is needed to 
finesse multiple flexible, sequential, and resilient policy responses. Jervis writes that 
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“good generals not only construct fine war plans but also understand that events will not 
conform to them” (Jervis 1997, 293). Unlike machines, humans use abductive reasoning 
(or inference to the best explanation) and introspection (or “metacognition”9) to think 
laterally and adapt and innovate in novel situations (Silver 2015, pp. 272–273). Faced 
with uncertainty or lack of knowledge and information, people adopt a heuristic 
approach – cognitive short-cuts or rules of thumb derived from experience, learning, 
and experimentation – promoting intuition and reasoning to solve complex problems 
(Gladwell and Blink 2005; Herbert 1987, 57–64). While human intuitive thinking heur
istics often produces biases and cognitive blind spots, it also offers a very effective means 
to make quick judgments and decisions under stress in a priori situations. AI systems use 
heuristics derived from vast training datasets to make inferences that inform predictions; 
they lack, however, human intuition that depends on experience and memory.

Recent empirical studies indicate that the ubiquity of “friction” in AI-ML systems, 
designed to reduce the “fog” of war and thus improve certainty, can create new or 
exacerbate legacy, accountability, security, and interoperability issues, thereby generating 
more “friction” and uncertainty (Michael 2010; Timothy 2013; Nina 2015, pp. 529–553). 
In theory, there is ample potential for AI-ML tools (e.g. facial and speech recognition, AI- 
enhanced space satellite navigation, emotion prediction, and translation algorithms) to 
benefit military operations where vast amounts of disparate information (i.e. “noise”) 
data and metadata (that labels and describes data) is often incomplete, overlooked, or 
misdiagnosed. For example, reducing the data processing burden, monitoring multiple 
data feeds, and highlighting unexpected patterns for intelligence, surveillance, and 
reconnaissance (ISR) operations that are integral to improving tactical and strategic 
command decision-making (Timothy 2013; Nina 2015).

In practice, intelligence tasks involve ambiguity, deception, manipulation, and mis- 
disinformation, which require nuanced interpretation, creativity, and tactical flexibility. 
Like C2 reporting systems, intelligence operations are more of an art than a science, 
where human understanding of the shifting strategic landscape is critical in enabling 
commanders to predict and respond to unexpected events, changes in strategic objec
tives, or intelligence politicization – which will require updated data, thus rendering 
existing data redundant or misleading. Operational and planning tasks – that inform 
decision-making – cannot be delegated to AI-ML systems or used in human-machine 
teaming without commanders being fully mindful of the division of labor and the 
boundaries between human and machine control (i.e. humans in vs. out of the loop).

Furthermore, human intervention is critical in deciding when and how changes to the 
algorithm’s configuration (e.g. the tasks it is charged with, the division of labor, and the 
data it is trained on) are needed, which changes in the strategic environment demand. In 
other words, rather than complimenting human operators’ linear algorithms trained on 
static datasets will exacerbate the “noise” in non-linear, contingent, and dynamic scenar
ios such as tracking insurgents and terrorists or providing targeting information for 
armed drones and missile guidance systems. Moreover, some argue that AI systems 
designed to “lift the fog of war” might instead compound the friction within organiza
tions with unintended consequences, particularly when disagreements, bureaucratic 
inertia, or controversy exists about war aims, procurement, civil-military relations, and 
the chain of command amongst allies.
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“Rapid looping” and the dehumanization of warfare

AI-ML systems that excel at routine and narrow tasks and games (e.g. DeepMind’s 
StarCraft II and DARPA’s Alpha Dogfight (AlphaStar Team 2019; Newdick 2021) with 
clearly defined pre-determined parameters in relatively controlled, static, and isolated 
(i.e. there is no feedback) linear environments – for example, such as logistics, finance, 
and economics, data collation – are found wanting when it comes to addressing politi
cally and morally strategic questions in the non-linear world of C2 decision-making 
(Raul 2020). For what national security interests are we prepared to sacrifice soldiers’ 
lives? What stage on the escalation ladder should a state sue for peace over escalation? 
When do the advantages of empathy and restraint trump coercion and the pursuit of 
power? At what point should actors step back from the brink in crisis bargaining? How 
should states respond to deterrence failure, and what if allies view things differently?

In high-intensity and dynamic combat environments such as densely populated urban 
warfare – even where well-specified goals and standard operating procedures exist – the 
latitude and adaptability of “mission command” remains critical, and the functional 
utility of ML-AI tools for even routine “task orders” (i.e. the opposite of “mission 
command”) problematic (Kramer 2015). Routine task orders such as standard operating 
procedures, doctrinal templates, explicit protocols, and logistics performed in dynamics 
combat settings still have the potential for accidents and risk of life, commanders 
exhibiting initiative, flexibility, empathy, and creativity are needed (Stephen 2002, 66). 
Besides, the implicit communication, trust, and a shared outlook that “mission com
mand” imbibes across all levels make micro-management by senior commanders less 
necessary – that is, it permits tactical units to read their environment and respond within 
the overall framework of strategic goals defined by senior commanders – thus potentially 
speeding up the OODA decision cycle. Boyd writes, “the cycle time increases commensu
rate with an increase in the level of organization, as one tries to control more levels and 
issues . . . the faster rhythm of the lower levels must work within the larger and slower 
rhythm of the higher levels so that the overall system does not lose its cohesion or 
coherency” (emphasis added) (Boyd 1987, p. 72).

War is not a game; instead, it is intrinsically structurally unstable; an adversary rarely 
plays by the same rules and, to achieve victory, often attempts to change the rules that do 
exist or invent new ones. The diffusion of AI-ML will unlikely assuage this ambiguity in 
a myopic and likely ephemeral quest, as many have noted, to speed up and compress the 
command-and-control OODA decision cycle – or Boyd’s “rapid looping.” Instead, 
policymakers risk being blind-sided by the potential tactical utility – where speed, 
scale, precision, and lethality coalesce to improve situational awareness – offered by AI- 
augmented capabilities, without sufficient regard for the potential strategic implications 
of artificially imposing non-human agents on the fundamentally human endeavor of 
warfare. Moreover, the appeal of “rapid looping” may persuade soldiers operating in 
a high-stress environment with large amounts of data (or “data tsunami”) to use AI tools 
as a means to offload cognitively, thus placing undue confidence and trust in machines – 
known as “automation bias” (Skitka et al. 1999, pp. 991–1006). Recent studies demon
strate that the more cognitively demanding, time-pressured, and stressful a situation is, 
the more likely humans are to defer to machine judgments (Mary 2004, pp. 557–562).
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NATO’s Supreme Allied Command Transformation is working with a team at 
John Hopkins University to develop an AI-enabled “digital triage assistant” to 
attend to injured combatants – trained on injury datasets, casualty scoring systems, 
predictive modeling, and inputs of a patient’s condition – to decide who should 
receive prioritized care during conflict and mass casualty events (e.g. the Russian- 
Ukrainian conflict) where resources are limited (Graham 2021). On the one hand, 
AI-enabled digital assistants can make quick decisions intense, complex, and fast- 
moving situations using algorithms and data (especially much-vaunted “big-data” 
sources), and arguably, removing human biases that could reduce human error – 
caused by cognitive bias, fatigue, and stress, for example – and potentially save lives 
(DARPA, 2022).

On the other hand, critics are concerned about how these algorithms will cause some 
combatants (allies, adversaries, civilian conscripts, volunteers, etc.) to get prioritized for 
care over others (Verma 2022). If, for example, there was a large explosion and civilians 
were among the people harmed (e.g. the Kabul Airport bombing in 2021), would they get 
less priority, even if they were severely injured? Would soldiers defer to an algorithm’s 
judgment regardless of whether facts on the ground suggested otherwise during an 
intense situation? Further, if the algorithm plays a part in someone dying, who would 
be held responsible?

These ethical conundrums are compounded by mounting evidence of bias – 
such as when algorithms in health care prioritize white patients over black ones 
for getting care – in AI datasets that can perpetuate biased decision-making 
(Simonite 2019). In contexts where judgment and decisions directly (or indirectly) 
can affect human safety, algorithmic designers cannot remove entirely unforeseen 
biases or prepare AI’s to cope with a priori situations. Besides, an optimized 
algorithm (even if human engineers determine these goals) (Goldfarb and 
Lindsay 2022, 22, and 30–31) is unable to encode the broad range of values and 
issues humans care about, such as empathy, ethics, compassion, and mercy – not 
to mention Clausewitzian courage, coup d’oeil, primordial emotion, violence, 
hatred, and enmity – which are critical for strategic thinking. In short, when 
human life is at stake, the ethical, trust, and moral bar for technology will always 
be higher than those we set for accident-prone humans.

Notwithstanding the many vexing ethical and morals about the intersection 
between people, algorithms, and ethics (Applin 2018, pp. 101–102; Heather 2019, 
pp. 124–140; Schwarz 2018) introducing non-human agents onto the modern 
battlefield in extremis risks atrophying the vital feedback – or Boyd’s “double- 
looping learning” of empathy, correlation, and rejection – in “mission command” 
between tactical unit leaders who interpret and execute war plans crafted by 
generals – or the “strategic corporals” vs. “tactical generals” problem discussed 
below (US Department of the Army 2012). In this symbiotic relationship, mis
matches, miscommunication, or accidents would critically undermine the role of 
“genius” in mission command on the modern battlefield – combining AI-ML 
technology, asymmetrical information and capabilities, and multi-domain opera
tions where it is in highest demand.
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Butterfly effects, unintended consequences, and accidents

Even a well-running optimized algorithm is vulnerable to adversarial attacks which may 
corrupt its data, embed biases, or become a target of novel tactics that seek to exploit 
blind spots in a system’s architecture (or “going beyond the training set”), which the AI 
cannot predict and thus effectively counter (Biggio and Roli, pp. 317–331; Goodfellow 
et al. 2014). Moreover, algorithms optimized to fulfill a specific goal in unfamiliar 
domains (i.e. nuclear war) and contexts – or if deployed inappropriately – false positives 
are possible, which inadvertently spark escalatory spirals (Saalman 2018). Other technical 
shortcomings of AI-ML systems (especially newer unsupervised models) tested in 
dynamic non-linear contexts such as autonomous vehicles include: (1) algorithmic 
inaccuracies; (2) misclassification of data and anomalies in data inputs and behavior; 
(3) vulnerability to adversarial manipulation (e.g. data-poisoning, false-flags, or spoof
ing); and (4) and erratic behavior and ambiguous decision-making in new and novel 
interactions (James 2010). These problems are structural, not bugs that can be patched or 
easily circumvented.

In war, much like other domains like economics and politics, there is a new problem 
for every solution that AI’s (or social scientists) can conceive. Thus, algorithmic 
recommendations which may look technically correct and inductively sound may 
have unintended consequences unless they are accompanied by novel strategies 
authored by policymakers who are (in theory) psychologically and politically prepared 
to cope with these consequences with flexibility, resilience, and creativity – or the 
notion of “genius” in mission command discussed below. Chaos and complexity 
theories can help to elucidate the potential impact of the interaction of algorithms 
with the real world. Specific interactions in physics, biology, and chemistry, for 
instance, do not produce more properties as a summing between them; instead, the 
opposite occurs; that is, a non-additive chemical phenomenon that does not have 
a numerical value equal to the sum of values for the component parts (Kamo et al. 
2015, 20–26). Combining two medical treatments, for example, can produce consider
ably more than a double dose effect in the patient or even a single but unexpected 
outcome. Moreover, recent research has found that computers cannot capture the 
behavior of the complexity of real-world chaotic dynamical events such as climate 
change (Boghosian et al. 2019, 1–8).

The coalescence of multiple (supervised, unsupervised, reinforcement and deep 
learning etc.), complex (military and civilian datasets), and tightly coupled and 
compressed (convolution neural networks, artificial neural networks, Bayesian net
works, etc.) ML algorithms, sensitive to small changes in the non-linear real world’s 
initial conditions, could generate a vast amount of stochastic behavior (or “butterfly” 
effects), thus increasing the risk of unintended consequences and accidents. 
Therefore, without an improved technical understanding of how these systems 
interact (exacting patterns from the world) and connect with the real world (the 
“explainability” problem) (Deeks et al. 2019, 1–25) as well as a consensus between 
militaries (allies/partners and adversaries) and other stakeholders on how AI-ML 
might be normatively aligned with human values, ethics, and goals. This synthesis 

12 J. JOHNSON



will require robust boundaries and controls that delineate the anomaly generating 
noisy data of the virtual world from the friction and chaos of war (Russell 2019; 
Singh Gill 2019, pp. 169–179; Sauer 2021, 4–29; Schmitt 2013, 1–37).

Conceptually speaking, boundaries might be placed between AI’s analyzing and 
synthesizing (prediction) data that inform humans who make decisions (judgment); 
for example, through recruitment, the use of simulations and wargaming exercises, and 
training combatants, contractors, algorithm engineers, and policymakers in human- 
machine teaming. However, the confluence of several factors will likely blur these 
boundaries along the human-machine decision-making continuum (see Figure 3): cog
nitive (automation bias, cognitive offloading, and anthropomorphizing) (Watson 2019); 
organizational (intelligence politicization, bureaucratic inertia, unstable civil-military 
relations) (Richard 2007; Sagan 1996); geopolitical (first-mover pressures, security 
dilemma dynamics) (Lieber 2000; Jervis 1978); and divergent attitudes (of both allies 
and adversaries) to military ethics, risk, deterrence, escalation, and misaligned algorithms 
(Acton et al. 2017; Morgan et al. 2008; Dobos 2020).

AI’s isolated from the broader external strategic environment (i.e. the political, ethical, 
cultural, and organizational contexts depicted in Boyd’s “real OODA loop”) are no 
substitute for human judgment and decisions in chaotic and non-linear situations. 
Even in situations where algorithms are functionally aligned with human decision- 
makers – that is, with knowledge of crucial human decision-making attributes – human- 
machine teaming risks diminishing the role of human “genius” where it is in high 
demand. Consequently, commanders are less psychologically, ethically, and politically 
prepared to respond to nonlinearity, uncertainty, and chaos with flexibility, creativity, 
and adaptivity. Because of the non-binary nature of tactical and strategic decision- 
making – tactical decisions are not made in a vacuum and invariably have strategic 
effects – using AI-enabled digital devices to complement human decisions will have 
strategic consequences that increase the importance of human involvement in these 
tasks.

How much does a human decision to use military force derived from data mined, 
synthesized, and interpreted by AI-ML algorithms possess more human agency than 
a decision executed fully autonomously by a machine? AI researcher Stuart Russell argues 
that through conditioning what and how data is presented to humans’ decision-makers – 
without disclosing what has been omitted or rejected – AI’s possesses “power” over 
human’s “cognitive intake” (Russell 2021). This “power” runs in opposition to one of AI- 
ML’s most touted benefits: reducing the cognitive load on humans in high-stress 
environments.

Figure 3. The human-machine decision-making continuum.
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In a recent Joint All-Domain Command and Control (JADC2) report, the US 
Department of Defense (DoD) proposed integrating AI-ML technology into C2 capabil
ities across all domains to exploit AI-enhanced remote sensors, intelligence assets, and 
open sources to “sense and integrate” (i.e. Boyd’s “observe” and “orientate”) information 
to “make sense” (i.e. analysis, synthesis, and predict) of the strategic environment, so the 
“decision cycle” operates “ faster relative to adversary abilities (US Department of 
Defense 2022). The JADC2 report obfuscates the possible strategic implications of 
automating the OODA loop for tactical gains and the illusionary clarity of certainty. In 
a similar vein, researchers in China’s PLA Daily (the official newspaper of China’ People’s 
Liberation Army) argue that advances in AI technology will automate the OODA loop 
for command decision-making of autonomous weapons and drive the broader trend 
toward machines replacing human observation, judgment, prediction, and action 
(Johnson 2018).10 While the PLA Daily authors stress the importance of training and 
human-machine “interfacing,” like the DoD’s JADC2, they also omit consideration of the 
strategic implications of this technologically determined “profound change” (Yan et al. 
2022).

Static, pre-defined, and isolated algorithms are not the answer to the quintessentially 
non-linear, chaotic, and analytically unpredictable nature of war. Therefore, an undue 
focus on speed and decisive tactical outcomes (or completing the “kill-chain”) in the 
decision-making loop underplays AI’s influence in command-and-control decision- 
making activities across the full spectrum of operations and domains. As the US-led 
Multinational Capability Development Campaign (MCDC) notes: “Whatever our C2 
models, systems and behaviours of the future will look like, they must not be linear, 
deterministic and static. They must be agile, autonomously self-adaptive and self- 
regulating” (Brose 2020).

AI-empowered “strategic corporals” vs. “tactical generals”

US Amy Gen. Charles Krulak coined the term “strategic corporal” to describe the 
strategic implications which flow from the increasing responsibilities and pressures 
placed on small-unit tactical leaders due to rapid technological diffusion and the resulting 
operational complexity in modern warfare that followed the information revolution- 
based revolution in military affairs in the late-1990ʹs (Charles 1999). Krulak argues that 
recruitment, training, and mentorship will empower junior officers to exercise judgment, 
leadership, and restraint to become effective “strategic corporals.”

On the digitized battlefield, tactical leaders will need to judge the reliability of AI-ML 
predictions, determine algorithmic outputs’ ethical and moral veracity, and judge in real- 
time whether, why, and to what degree AI systems should be recalibrated to reflect 
changes to human-machine teaming and the broader strategic environment. In other 
words, “strategic corporals” will need to become military, political, and technological 
“geniuses.” While junior officers have displayed practical bottom-up creativity and 
innovation in using technology in the past, the new multi-directional pressures from 
AI systems will unlikely be resolved by training and recruiting practices. Instead, 
pressures to make decisions in high-intensity, fast-moving, data-centric, multi-domain 
human-teaming environments might undermine the critical role of “mission command,” 
which connects tactical leaders with the political-strategic leadership – namely, the 
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decentralized, lateral, and two-way (explicit and implicit) communication between senior 
command and tactical units. Despite the laudable efforts of the DoD to instill tactical 
leaders with the “tenants of mission command” to leverage AI-ML in joint force multi- 
domain environments, the technical and cognitive burden on subordinate commanders – 
singularly tasked with completing the entire OODA loop – will likely be too great (Nina 
2015, 529–553). The US Army’s reliance on electronic communications

Under tactical pressures to compress the decision-making, reduce “friction,” and speed 
up the OODA loop, tactical leaders may make unauthorized modifications to algorithms 
(e.g. reconfigure human-machine teaming, ignore AI-ML recommendations),11 or launch 
cross-domain countermeasures in response to adversarial attacks) that puts them in direct 
conflict with other parts of the organization or contradicts the strategic objectives of 
political leaders. According to Boyd, the breakdown of the implicit communication and 
bonds of trust that defines “mission command” will produce “confusion and disorder, 
which impedes vigorous or directed activity, hence, magnifies friction or entropy” – 
precisely the outcome of the empowerment of small-group tactical leaders on the twenty- 
first-century battlefield was intended to prevent (Boyd 1987, pp. 20–21). This breakdown 
may also be precipitated by adversarial attacks on the electronic communications (e.g. 
electronic warfare jammers and cyber-attacks) that advanced militaries rely on, thus forcing 
tactical leaders to fend for themselves (Johnson and Krabill 2020). In 2009, for example, the 
Shiite militia fighters used off-the-shelf software to hack into un-secured video-feed from 
US Predator drones. Militarily advanced near-peer adversaries such as China and Russia, 
have well-equipped electronic warfare (EW) for offensive jamming (or triangulating their 
sources for bombardment), sophisticated hackers, and drones to target precision weapons 
(Freedberg 2017). To avoid this outcome, Boyd advocates a highly decentralized hierarch
ical structure that allows tactical commanders initiative while insisting that senior com
mand resist the temptation to overly cognitively invest in and interfere with tactical 
decisions (Boyd 1982, p. 128).

On the other side of the command spectrum, AI-ML augmented ISR, autonomous 
weapons, and real-time situational awareness might produce a juxtaposed yet contingent 
phenomenon, the rise of “tactical generals” (Peter 2009). As senior commanders gain 
unprecedented access to tactical information, the temptation to micro-manage and 
directly intervene in tactical decisions from afar will rise. Who understands the com
mander’s intent better than the generals themselves? While AI-ML enhancements can 
certainly help senior commanders become better informed and take personal responsi
bility for high-intensity situations as they unfold, the thin line between timely interven
tion and obsessive micro-management is a fine one. Centralizing the decision-making 
process – and contrary to both Boyd’s guidance and the notion of “strategic corporals” – 
and creating a new breed of “tactical generals” micro-managing theater commanders 
from afar, AI-ML enhancements might compound the additional pressures placed on 
tactical unit leaders to speed up the OODA loop, and become political, and technological 
“geniuses.” This dynamic may increase uncertainty and confusion and amplify friction 
and entropy.

Micromanaging or taking control of tactical decision-making could also mean that 
young officers lack the experience in making complex tactical solutions in the field, which 
might cause confusion or misperceptions in the event communications are compromised 
and the “genius” of “strategic corporals” is demanded. For example, interpreting sensor 

DEFENCE STUDIES 15



data (e.g. from warning systems, electronic support measures, and optronic sensors) 
from different platforms, monitoring intelligence (e.g. open-source data from geospatial 
and social media), and using historical data (e.g. data on the thematic bases for producing 
temporal geo-spatialization of an activity) relating to the strategic environment of 
previous operations (US Office of Naval Research 2014).

US then-Army Chief of Staff, General Mark Milley, recently stated that the Army is 
“overly centralized, overly bureaucratic, and overly risk averse, which is the opposite of 
what we’re going to need in any type of warfare” (Freedberg 2017). Milley stressed the 
need to decentralize leadership, upend the Army’s deep culture of micromanagement, 
empower junior officers, and thus strengthen mission command. Further, the breakdown 
in lateral relations and communication across the command chain would also risk 
diminishing the crucial tactical insights that inform and shape strategizing, potentially 
impairing political and military leadership, undermining civil-military relations, and 
causing strategic-tactical mismatches, which during a crisis may spark an inadvertent 
escalation.

Tactical units operating in the field using cloud computing technology (or “tactical 
cloud”) coupled with other AI-enabling sensors and effectors to ensure interoperability, 
resilience, and digital security, and close to combat situations such as rugged, urban, 
complex terrains – where logistics and communications lines are put under intense 
stress – would be well placed to guide and inform strategic decision-making. Thus, 
senior commanders would indubitably benefit from the speed and richness of two-way 
information flows as the “tactical cloud” matures; for example, information on topogra
phy, the civilian environment, 3D images of the combat distribution of airspace volumes, 
compliment C2 strike and reconnaissance tracking and targeting for drone swarming and 
missile strike systems and verifying open-source intelligence and debunking of mis- 
disinformation (Gros 2019).

Absent the verification and supervision of machine decisions by tactical units (e.g. 
the troop movement of friendly and enemy forces), if an AI system gave the green light 
to an operation in a fast-moving combat scenario – when closer examination of 
algorithmic inputs and outputs are tactically costly – false positives from automated 
warning systems, mis-disinformation, or an adversarial attack, would have dire con
sequences (John 2017).12 Moreover, tactical units executing orders received from 
brigade headquarters – and assuming a concomitant erosion of two-way communica
tion flows – may not only diminish the providence and fidelity of information received 
by senior commanders deliberately from their ivory towers but also result in unit 
leaders following orders blindly and eschewing moral, ethical, or even legal concerns 
(Fabre 2022). Psychology research has found that humans tend to perform poorly at 
setting the appropriate objectives and are predisposed to harm others if ordered by an 
“expert” (or “trust and forget” (Brewer and Crano 1994). As a corollary, human 
operators may begin to view AI systems as agents of authority (i.e. more intelligent 
and more authoritative than humans) and thus be more inclined to follow their 
recommendations blindly; even in the face of information (e.g. that debunks mis- 
disinformation) that indicates they would be wiser not to.

Whether the rise of “tactical generals” compliments, subsume, or conflicts with 
Krulak’s vision of the twenty-first century “strategic corporals, and the impact of this 
interaction on battlefield decision-making are open questions. The literature on systems, 
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complexity, and nonlinearity suggests that the coalesce of centralized, hierarchical 
structures, tight-coupled systems, and complexity generated by this paradigm would 
make accidents more likely to occur and much less easy to anticipate (Perrow 1999, 
pp. 331–334). The erosion of “mission command” this phenomenon augurs would 
dramatically reduce the prospects of officers down the chain of command overriding 
or pushing back against top-down tactical decisions; for example, in 1983, when a Soviet 
air force lieutenant, Stanislav Petrov, overrode a nuclear launch directive from an 
automated warning system that mistook light reflecting off clouds for an inbound 
ballistic missile (Lockie 2018). AI-ML data synthesis and analysis capacity can enhance 
the decision-making process’s prediction (or “observation”) element. However, it still 
needs commanders at all levels to recognize the strengths and limitations of AI intuition, 
reasoning, and foresight (Baum et al. 2018, 19–20). Professional military training and 
education of military professionals will be critical in tightly integrated, non-linear, and 
interdependent tasks where the notion of handoffs between machines and humans 
becomes incongruous.

Conclusion

Whether or when AI will continue to trail, match, or surpass human intelligence and, in 
turn, compliment or replace humans in decision-making is a necessary speculative 
endeavor but a vital issue to deductively analyze, nonetheless. That is, develop a robust 
theory-driven hypothesis to guide analysis of the empirical data about the impact of the 
diffusion and synthesis of “narrow” AI technology in command-and-control decision- 
making processes and structures. This endeavor has a clear pedagogical utility, guiding 
future military professional education and training in the need to balance data and 
intuition as human-machine teaming matures. A policy-centric utility includes adapting 
militaries (doctrine, civil-military relations, and innovation) to the changing character of 
war and the likely effects of AI-enabled capabilities – which already exist or are being 
developed – on war’s enduring chaotic, non-linear, and uncertain nature. Absent funda
mental changes to our understanding of the impact (cognitive effects, organizational, and 
technical) of AI’s on the human-machine relationship, we risk not only failing to harness 
AI’s transformative potential but, more dangerously, misaligning AI capabilities with 
human values, ethics, and norms of warfare that spark unintended strategic conse
quences. Future research would be welcome on how to optimize C2 processes and 
structures to cope with evolving human-machine relations and adapt military education 
to prepare commanders (at all levels) for this paradigm shift.

The article argued that static, pre-defined, and isolated AI-ML algorithms do not 
answer war’s non-linear, chaotic, and analytically unpredictable nature. Therefore, an 
undue focus on speed and tactical outcomes to complete the decision-making loop (or 
Boyd’s “rapid OODA looping”) understates the permeation of AI in command-and- 
control decision-making across the full spectrum of operations and domains. Insights 
from Boyd’s “orientation” schemata – particularly as they relate to human cognition in 
command decisions and the broader strategic environment – coupled with systems, 
chaos, and complexity theories still have a pedagogical utility in understanding these 
dynamics. The article argued that a) speeding up warfare and compressing decision- 
making (or automating the OODA loop) will have strategic implications that cannot be 
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easily anticipated (by humans or AI’s) contained; b) the line between the handoff from 
humans to machines will become increasingly blurred; and thus, c) the synthesis and 
diffusion of AI into the military decision-making process increases the importance of 
human agency across the entire chain of command.

While the article agrees with the conventional wisdom that AI is already and will 
continue to have a transformative impact on warfare, it finds fault with the prevailing 
focus of militaries on harnessing the tactical potential of AI-enabled capabilities in the 
pursuit of speed and rapid decision-making. This undue focus risk blind-siding 
policymakers without sufficient regard for the potential strategic implications of 
artificially and inappropriately imposing non-human agents on the fundamentally 
human nature of warfare. Misunderstanding the human-machine relationship during 
fast-moving, dynamic, complex battlefield scenarios will likely undermine the critical 
symbiosis between senior commanders and tactical units (or “mission command”), 
which increase the risk of mismatches accidents, and inadvertent escalation. In 
extremis, the rise of “tactical generals” (empowered with AI tools making tactical 
decisions from afar) and the concomitant atrophy of “strategic corporals” (junior 
officers exercising judgment, leadership, and restraint) will create highly centralized 
and tight-coupled systems that make accidents more probable less predictable. 
Paradoxically, therefore, AI’s used to complement and support humans in decision- 
making might obviate the role of human “genius” in mission command when it is 
most demanded.

Although the article focused on “narrow” task-specific AI, the prospects of AGI – and 
aside from the hype surrounding what a “third-wave” of genuine intelligence might look 
like, whether it is even technically possible, and broader debates about the nature of 
“intelligence” and machine consciousness – are confounding. Conceptually speaking, 
AGI systems would be able to complete the entire OODA loop without human inter
vention – and, depending on the goals it is programmed by humans to optimize – would 
be able to out-fox, manipulate, deceive, and overwhelm any human adversary. Pursuing 
these goals at all costs and absent an off switch (which adversaries would presumably seek 
to activate), AGI’s would unlikely attach much import to the various ethical and moral 
features of warfare that humans care about most (Bostrom 2014). In imagined future 
wars between rival AI’s who define their own objectives and possess a sense of existential 
threat to their survival, the role of humans in warfare – aside from suffering the physical 
and virtual consequences of dehumanized autonomous hyper-war – is unclear. In this 
scenario, “strategic corporals” and “tactical generals” would become obsolete, and 
machine “genius” – however that might look – would fundamentally change 
Clausewitz’s nature of war.

Notes

1. There are three different types of AI: artificial “narrow” intelligence (ANI), artificial general 
intelligence (AGI) that matches human levels of intelligence, and artificial superintelligence 
(ASI) (or “superintelligence”) that exceeds human intelligence. The debate about when and 
whether AGI (let alone ASI) will emerge is highly contested and thus inconclusive. This 
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article focuses on task-specific “narrow AI” (or “weak AI”), which is rapidly diffusing and 
maturing (e.g. facial recognition, natural language processing, navigation, and digital 
assistants such as Siri and Google Assistant).

2. Machine learning (ML) – closely associated with “narrow AI” – is a widely used form of 
statistical prediction that applies vast training datasets (e.g. metadata and Big-Data) to 
inductively generate missing information to improve the quantity, and accuracy, complex
ity, and speed of predictions. There are three main machine learning approaches – super
vised, unsupervised, and reinforcement – differentiated by the type of feedback that 
contributes to the algorithm learning process: (1) in “supervised” learning, an algorithm is 
trained to produce hypotheses or take specific actions to pursue pre-determined objectives 
or outputs based on specific inputs (or labels) (e.g. image, text, and speech recognition); (2) 
in “unsupervised” learning (including neural networks and probabilistic methods) the 
algorithm has no set parameters or labels; instead, the system learns by finding patterns in 
the data (e.g. protein folding and DNA sequencing); (3) in “reinforcement learning” the 
system uses feedback loops to reinforce the algorithms learning process through a reward- 
and-punishment process (e.g. autonomous vehicles and robotics) to optimize the overall 
“reward.”

3. Many AI-enabled weapons have already been deployed, operational, or developed by 
militaries. Examples include: Israel’s autonomous Harpy loitering munition; China’s “intel
ligentized” cruise missiles, AI-enhanced cyber capabilities, and AI-augmented hypersonic 
weapons; Russia’s armed and unarmed autonomous unmanned vehicles and robotics; and 
US “loyal wingman” human-machine teaming (unmanned F-16 with a manned F-35 or 
F-22) program, intelligence, surveillance, and reconnaissance (ISR) space-based systems, 
and various AI-ML-infused command and control support systems.

4. However, some scholars contend that learning from complexity and uncertainty from past 
events is ambiguous.

5. In contrast with Clausewitz’s non-linear approach, other classical military theorists such as 
Antoine- Henri de Jomini and Heinrich von Bulow adopt implicit linear approaches to 
manipulate empirical evidence selectively.

6. Complex Adaptive System (CAS) is a concept that refers to a group of semi-autonomous 
agents who interact in interdependent ways to produce system-wide patterns, such that 
those patterns then influence the behavior of the agents. In human systems at all scales, you 
see patterns that emerge from agents’ interactions in that system.

7. Several military organizations are testing alternative AI-ML approaches to compensate for the 
lack of labeled data (i.e. real-world information from the battlefield), which is needed to train 
existing supervised ML systems. These new approaches combine supervised ML with unsuper
vised deep-learning approaches, which work with a limited amount of annotated data. 
“Unsupervised machine learning in the military domain,” NATO Science & Technology 
Organization, 27 May 2021, https://www.sto.nato.int/Lists/STONewsArchive/displaynewsitem. 
aspx?ID=642.

8. According to information theory, the more possibilities and information a system has, the 
greater amount of “friction” and “noise” it embodies.

9. “Metacognition” is a familiar concept to master chess players who can shift their thought 
concentration to execute moves when faced with complex problems and trade-offs.

10. Other countries, including the UK (e.g. The British Army’s Project Theia), France (e.g. the 
French Air Force’s Connect@aero program), and NATO (e.g. IST-ET-113 Exploratory 
Team) have also started developing and testing AI technology to support C2 and military 
decision-making; these efforts, however, remain limited in scale and scope. “Unsupervised 
machine learning in the military domain,” NATO Science & Technology Organization, 
27 May 2021, https://www.sto.nato.int/Lists/STONewsArchive/displaynewsitem.aspx?ID= 
642.; and “Digging deeper into THEIA,” The British Army, 8 July 2021, https://www.army. 
mod.uk/news-and-events/news/2021/07/digging-deeper-into-theia/.; and Philippe Gros, 
“The ‘tactical cloud,’ a key element of the future combat air system,” Fondation Pour La 
Recherche Stratégique, no. 19:19, 2 October 2019.
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11. The judgments (i.e. outputs) of AI-ML algorithms cannot be determined in advance 
because it would take too long to specify all possible contingencies; thus, human 
judgment is required to interpret the system’s prediction to inform judgment and 
decision-making.

12. For example, in 2003, a MIM-104 Patriot surface-to-air missile’s automated system mis
identified a friendly aircraft as an adversary that human operators failed to correct, leading 
to the death by friendly fire of a US F-18 pilot. Other potential causes of misguided or 
erroneous algorithmic outputs include: open-source mis-disinformation, adversarial 
attacks, data-poisoning, or simply the use of outdated, malfunctioning, or biased data 
training sets.
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