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 

Abstract— This paper presents a framework for predicting

canopy states in real time by adopting a recent MATLAB based 

crop model: AquaCrop-OS. The historical observations are 

firstly used to estimate the crop sensitive parameters in Bayesian 

approach. Secondly, the model states will be replaced by 

updating remotely sensed observations in a sequential way. The 

final predicted states will be in comparison with the groundtruth 

and the RMSE of these two are 39.4155 g/ 𝒎𝟐  (calibration

method) and 19.3679 g/ 𝒎𝟐 (calibration with forcing method)

concluding that the system is capable of predicting the crop 

status timely and improve the performance of calibration 

strategy. 

Keywords-data assimilation; Bayesian calibration; sequential 

forcing method; crop model; remote sensing; states prediction 

I. INTRODUCTION

Timely and accurate estimation of crop status before harvest 
allow framers to make a decision on field management and 
irrigation plan, which is of importance for national food 
security assessment and maximining the economic impacts [1]. 
Therefore, crop model has been improved from qualitative 
research to quantitative research simulating the whole growth 
phase under various stress, like WOFOST, DASSAT, STICS 
and AquaCrop model [2-5]. Individual crop model 
performance may be affected due to the uncertainties of soil 
properties, canopy states and meteorological data resulting in a 
large error in crop states prediction when localized in one 
certain area. These uncertainties of crop growth model can be 
reduced by providing more information to improve model 
parametrization and calibration and increase the final data 
assimilation accuracy.  

There are three approaches to employ remotely sensed data into 
crop model: parameter calibration, forcing method and update 
method. Jin et al. adopted particle swarm optimization (PSO) 
method to calibrate AquaCrop model by using historical 
remote sensing data making a prediction of biomass and final 
yield before harvest [6]. Moreover, Tripathy et al. directly 
replaced model predict leaf area index (LAI) by index-based 
LAI to improve the prediction performance [7]. The rapid 
development of remote sensing platforms provides high 
property data with high spectral and spatial resolutions 
accurately estimating the crop states than ever. The integration 
of crop model and remotely sensed data has been an effective 
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tool to not only calibrate the crop model but also make a 
prediction in time. 

The new water driven crop model, AquaCrop, with characters 
of simplicity, robustness, accurateness, was proposed in 2009 
by Steduto indicating better results in predicting crop growth 
status. Compared with other crop models, the AquaCrop 

simulation model can model the dynamic change of crop 
growth status in response to water [8]. According to the 
principle of AquaCrop model, Foster et al. developed it into an 
open-access software AquaCrop-OS programmed by 
MATLAB enabling the code to be linked quickly with other 
disciplinary models to support yield estimation, water resource 
management and intelligent irrigation program in 2016 [9].  

From previous literature, most of the researchers focus on 
adopting the data assimilation method individually, however, 
each method has their own limitation on crop states prediction. 
Calibration strategy always relies on the historical data and 
cannot make real-time prediction. Forcing method will involve 
in new observation error. In addition, update method is also 
flawed as it requires expensive calculation and new 
uncertainties. In our paper, a real time crop states prediction 
system is presented to combine calibration strategy and forcing 
method to reduce the parameters uncertainties and improve a 
timely prediction. 

The summary of the contribution in this paper is organized as 

follows: 

1. Rather than traditional optimization-based calibration,

a Bayesian-based parameter estimation method is

pointed.

2. It is the first time to program the AquaCrop-OS model

to realize a sequential update function.

3. The integration of calibration method and forcing

method is able to predict the processed states variables

in real time

4. In addition to the timely sates, weather information can

also be updated timely.

II. METHODOLOGY

In this section, materials related to our research will be 

presented, including whole framework, model formulation, 

data collection, calibration strategy and forcing method 

strategy. Due to the character that the model can simulate most 
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of the crops, like spring wheat, spring wheat, maize and corns. 

A specific simulation time from 05/10/2014 to 30/05/2015 on 

winter wheat was chosen. 

A. Framework

As is shown in Fig. 1, the whole framework of real-time states 
variables prediction is divided into two stages: crop sensitive 
parameters estimation and forcing method data assimilation. 
The calibration process is to estimate the most sensitive 
parameters with the historical remote sensing data by Bayesian 
estimation based on Markov Chain Monte Carlo ( MCMC )
techniques. Additionally, the timely updated data will be 
assimilated into the AquaCrop-OS model by employing 
forcing method.  

Fig. 1 The framework of real-time states prediction 
system 

B. Model Formulation

The AquaCrop-OS model are programmed by using Markov 
process on the basis of AquaCrop model. A simplified 
formulation can be achieved according to Eq. 1 and Eq. 2. ܺ𝑡+ଵ = ݂ሺܺ𝑡 , 𝜃′ሻ  (1) 𝑡ܻ+ଵ = ݃ሺܺ𝑡 , 𝜃′ሻ + 𝜀𝑡  (2) 

where ݂ represents the AquaCrop-OS function relative with all
required crop parameters 𝜃′  and the states variables  ܺ . ܻ
indicates the measurement with a proper mean and variance 
gaussian noise 𝜀𝑡.

C. Data Preparation

Fig. 2 Biomass groundtruth and observation data 

In our study, due to the lack of real remotely sensed data, the 

simulated observations can be produced by groundtruth states 

adding a Gaussian noise. The default parameters of 

AquaCrop-OS model are described as the truth parameters and 

thus generating groundtruth states variables. Biomass and 

canopy cover are selected as the state variables for model 

calibration and sequential forcing (see Fig. 2, Fig. 3). There 

are eight-day observations totally, the first five-day historical 

observations of biomass and canopy cover are adopted for 

estimating the crop parameters, and the overall eight-day 

measurements is employed for forcing method. 

Fig. 3 Canopy cover groundtruth and observation data 

D. Calibration Strategy

In our case, the sensitive parameters to be calibrated is selected 
as 𝜃 = [gdd, p_up3, wp, cgc, ccx, mat, eme, kcb] describing the
typical characters during crop growth and treated as uniform 
distribution. The historical observations are selected at 
intervals of 15 days from day 8 to day 68 for crop model 
parameter calibration. 

Bayesian calibration aims to derive the posterior probability 

distributions for parameters of interest conditional on 

measurements, where the uncalibrated parameter posterior 

distribution 𝑝ሺ𝜃|𝐷ሻ is proportional to the prior distribution𝑝ሺ𝜃ሻ and the measurement likelihood function 𝑝ሺ𝐷|𝜃ሻ, given

by: 𝑝ሺ𝜃|𝐷ሻ ∝ 𝑝ሺ𝜃ሻ × 𝑝ሺ𝐷|𝜃ሻ       (4) 

where 𝜃  means the pending parameter vectors and 𝐷
represents the observed data. The likelihood function 𝑝ሺ𝐷|𝜃ሻ
evaluates each value for 𝜃 on the basis of how well the model
with parameter 𝜃 is able to reproduce the data 𝐷 [8].

To effectively estimate the parameters posterior distribution 
that direct sampling is difficult, a Markov Chain Monte Carlo 
(MCMC) algorithm entitled Metropolis-Hastings algorithm is
employed.

E. Forcing Method

The model uncertainties have been reduced by estimating the 
sensitive parameters with the historical measurement. Forcing 
method can provide the researchers a feasible way to directly 
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replace the crop model simulation data by timely observation 
data where the time step can be daily, weekly or monthly, 
offering the farmers a chance for real-time decision make [1]. 
In our case, the total of 8 observations will be conducted to do 
forcing method. 

III. RESULTS

In this part, the model calibration results and forcing method 
prediction results will be presented. The estimated parameters 
involving biomass and canopy cover measurements will be 
compared with the truth; meanwhile, the forcing strategy 
embedded calibration results will be in comparison with 
calibration strategy by using the remaining days states from the 
whole growth period. 

A. Parameters Estimation Results

Fig. 4 Estimated parameters posterior distribution 

The posterior distribution with the observations is shown in 
Fig. 4, where the red star represents the truth parameters. The 
mean value was calculated of each parameter distribution and 
compared with the truth parameter (see TABLE I). The error 
of each parameters is less than 4% with truth parameter, 
moreover, the overall error of eight parameters is only 2.2902% 
(see Eq. 3). The result is corresponding to the literature [8] 
decreasing the uncertainties. 

TABLE I. COMPARISION BETWEEN ESTIMATED AND TRUTH 

PARAMETERS 

Sensitive 

Parameters 

Estimated 

Parameters 

Truth 

Parameters 

Error 

(%) 

GDD_up 12.0187 12 0.1557 

P_up3 0.6648 0.69 3.6494 

WP 32.5386 33.7 3.4463 

CGC 0.0125 0.0125 0.0220 

CCX 0.9544 0.96 0.5845 

MAT 1733 1700 1.9514 

EME 84.0916 80 5.1145 

KCB 1.0616 1.05 1.1073 

Average 2.2902 

 Error = 
|Eୱ୲୧ma୲ୣୢ Pa୰amୣ୲ୣ୰ୱ−T୰୳୲୦ Pa୰amୣ୲ୣ୰ୱ|T୰୳୲୦ Pa୰amୣ୲ୣ୰ୱ ∗ ͳͲͲ%      (3)

B. Forcing Method Results

Forcing method is able to provide a timely update strategy after 
directly replace the model data by observations. The prediction 
states of AquaCrop-OS applying forcing method are shown in 
Fig. 5-6. Compared with goundtruth, the Root Mean Squared 
Error (RMSE) of predicted biomass with the technique of 
parameter estimation and forcing method embedded parameter 
estimation are 39.4155 g/𝑚ଶ and 19.3679 g/𝑚ଶ, respectively.

Fig. 5 Real time prediction by forcing timely biomass 

Fig. 6 Real time prediction by forcing timely canopy 
cover 
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The states prediction of various method with the observation of 
biomass can also be obtained from Fig. 7, which can be 
concluded that the real-time system prediction line is much 
closer to truth states. The prediction performs better especially 
after forcing method. 

Fig. 7 Comparison of predicted biomass with different 
methods 

IV. CONCLUSION

This work aims at exploiting the potentials of integrating 

calibration strategy and forcing strategy on crop states timely 

prediction with multiple observations. Results showed that the 

performance of our system outperforms individual calibration 

strategy, especially after new measurement updates. 

Therefore, it can be used on states variables prediction and 

irrigation decision-making or field management during the 

period of crop growth. 

V. FUTURE WORKS

Future work on this direction is summarized in the following 

aspects:  

(i) To reduce the uncertainties of observations in forcing

method, some sequential Monte Carlo algorithm could be

applied, such as Particle Filter.

(ii) Crop parameters and crop states can be estimated at the

same time during particle filter process.

(iii) Remote sensing data may also be collected from UAVs

at a higher spectral resolution.
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