
1.  Introduction
It has previously been established that tectonic activity influences the evolution of fluviolacustrine sedimentary 
sequences by affecting the provenance supply, while climate change modifies the sedimentary record through 
weathering and denudation (Najman, 2006). During the Early Cenozoic, many rifted basins developed in eastern 
China, while an array of compressional basins formed in western China, mostly due to the India-Eurasia collision 
and continued convergence (Yin & Harrison, 2000) and/or subduction of the western Pacific Plate (Northrup 
et al., 1995). Most of these basins are filled with non-marine sediments (Ye et al., 1993) and the documented sig-
nals suggest that the environmental evolution has been driven mainly by tectonic activity and/or climate change 
(Ye et al., 1993).

The Qinling-Qilian-Kunlun orogenic system (QQKOS) extends for ∼3,000 km from east to west and formed in 
response to late Mid-Proterozoic to Cenozoic tectonism (Meng & Zhang, 2000; Peltzer et al., 1985). The QQKOS 
represents an important tectonic zone in Asia linking the India-Eurasia collision with extensive deformation in 
eastern China (Meng & Zhang, 2000; Peltzer et al., 1985; Figure 1). Field observations show that the faults of 
the QQKOS are still active today and may have undergone several tens of kilometers of post-Eocene left-lateral 
displacement (Peltzer et al., 1985). However, the impact of the India-Eurasia collision on eastern China during 
the Palaeogene, which represents the critical period of the India-Eurasia collision, has not been determined. On 
the other hand, a broad belt of aridity stretched across China from west to east during the Palaeogene (X. Sun and 
Wang, 2005), overlapping spatially with the QQKOS, with only the southern-most and northeastern China being 

Abstract  Palaeogene environmental evolution in East Asia remains ambiguous. Here we present integrative 
work including magnetostratigraphy, grain-size, geochemistry, and clay mineralalogy from a 1609 m-thick 
fluviolacustrine sequence in eastern China. The results reveal two periods of tectonic control alternating with 
three periods of climatic control on the sedimentary evolution. Tectonic activity in the study area, as revealed 
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59–55 Ma, probably caused by global warming. Continuous global warming during 54–50.5 Ma is responsible 
for enhanced aridification in East Asia. From 50.5 to 37.6 Ma, global cooling weakened evapotranspiration and 
increased westerlies-derived moisture. Both aspects increased effective moisture and chemical weathering in 
East Asia. These results shed light on how alternating tectonism and climate change impacted environmental 
evolution in Asia during the Palaeogene.

Plain Language Summary  Most investigations in sedimentary basins generally focus exclusively 
on climatic signals at the expense of tectonic inputs. In this study, we extract both climatic and tectonic signals 
from long fluviolacustrine sediment records in eastern China comprehensively and objectively. We find that 
environmental evolution during the Paleogene of East Asia was dominated by tectonism during 65.6–59 and 
55–54 Ma, and by climatic changes during 59–55 and 54–37.6 Ma. This work not only constrains the India-
Asia collision to a short 55–54 Ma interval for the first time, but also offers a sound explanation for one of the 
most important but disputed issues of eolian sediments in the North Pacific Ocean.
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dominated by more humid conditions (X. Sun and Wang, 2005; Figure 1b). Under this overall dry environment, 
voluminous windblown deposits developed widely in fault-bounded basins of varying scales around the QQKOS 
during the Palaeogene (Jiang et al., 2014; Meng & Zhang, 2000). Exploring such a long terrestrial sedimentary 
sequence as preserved in the Paleogene of East Asia can help elucidate the terrestrial responses to both green-
house climate change and to tectonism like the India-Eurasia collision (Gao et al., 2021).

In this study, we present a 1609 m-thick Paleocene-Eocene fluviolacustrine sedimentary sequence at Xijiadian 
(XJD) town (32°46′N, 111°12′E) in the Nanyang Basin of the eastern QQKOS (Figure 1). This stratigraphic 
record enables us to distinguish the relative roles of tectonic drivers and climatic drivers in the environmental 
evolution of East Asia during the Palaeogene. It is of profound scientific significance for signature extraction of 
climate change and tectonism from the long lacustrine sequences around the globe during this geologic period.

2.  Geographic and Geological Setting
The studied section lies in the western Nanyang Basin, situated in the eastern QQKOS between the North and 
the South China blocks (Figure 1). Faults, hydrology, and lithology in the study area are generally distributed 
along the WNW-ESE and NEN-SWS directions (Jiang et al., 2014). In the north, mainly Cambrian (limestone 
and shale) and middle Sinian (dolomitized limestone, silicic limestone, and sandstone interbedded with lime-
stones) strata occur. The middle part of the study area is comprised of the Eocene Dacangfang Formation, which 
is dominated by reddish mudstone, silty mudstone, muddy siltstone, sandy conglomerate, and conglomerate. In 
the south, the well-exposed Wudang quartz-sericite schist is interbedded with metasandstone and biotite-albite 
schist (Jiang et al., 2014).

Eastern China is currently influenced by the East Asian Summer Monsoon rainfall and is well vegetated. There-
fore, long sedimentary sequences exposed in the eastern QQKOS (Figure 1) offer the rare chance to reconstruct 
the evolutionary history of a sedimentary environment driven by tectonic activity and climate change in East 
Asia.

3.  Methods
Paleomagnetic samples were drilled and oriented by compass. The average sampling interval was 0.8 m. Paleo-
magnetic specimens were analyzed at the Paleomagnetism and Environmental Magnetism Laboratory in the Key 
Laboratory of Western China's Environmental System in Lanzhou University using the same demagnetizing and 
measuring procedures as Jiang et al. (2014).

In addition to the 4,279 samples for the Eocene strata (Jiang et al., 2014), a total of 1,598 samples were collected 
from the Paleocene sediments of the XJD section for grain-size analysis at a stratigraphic sampling interval of 
0.09–1.28 m with a mean of 0.26 m. Organic material and carbonate were removed sequentially in grain size 
analysis. The samples were then analyzed using a Mastersizer 3000 laser grain-size analyzer at the State Key 
Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration.

Major and trace elemental concentrations were determined at the Analytical Laboratory of Beijing Research In-
stitute of Uranium Geology using a Philips PW2404 X-ray Fluorescence Spectrometer and a Finnigan MAT HR-
ICP-MS (Element I) instrument, respectively. Clay mineral and Sr-Nd isotope analysis were carried out on the 
<2 μm fraction, which was separated using the Stokes' settling velocity principle, after the removal of carbonate 
and organic matter. Clay minerals were identified by X-ray diffraction using a D8 ADVANCE diffractometer 
with CuK (alpha) radiation (40 kV, 40 mA) in the Laboratory of the Institute of Oceanology, Chinese Academy 
of Sciences.

4.  Results
4.1.  Chronology of the XJD Sequence

This new magnetostratigraphic work focuses on the 420 m-thick Paleocene sequence of the XJD section with 525 
samples. Five normal (N1–N5) and five reversed (R1–R5) magnetic polarity zones are observed (Figures S2–S4 in 
Supporting Information S1). Together with previous work on the Eocene strata and the constraints of a mamma-
lian fossil Rhombomylus cf. turpanensis of the late Early Eocene at the Qingtangling site (∼981 m at depth; Jiang 
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et al., 2014), the XJD magnetic polarity column unambiguously and reliably correlates with the geomagnetic 
polarity timescale (Ogg, 2012; Figure S5 in Supporting Information S1), suggesting that the XJD sequence is 
continuous and spans from 65. to 37.6 Ma.

4.2.  Provenance of the XJD Fine-Grained Sediments

A total of 5,877 grain-size samples are analyzed with a mean sampling interval of 0.27 m (equivalent to 4.76 ka). 
Systematic grain-size analysis shows that the median grain size (Md) varies between 5.0 and 69.9 μm, with a 
mean of 22.6 μm (Figure 2a). The Sahu Y value, determined by the mean grain size, standard deviation, skew-
ness, and kurtosis, is normally used to recognize an aeolian environment (Sahu, 1964; Note 1 in Supporting 
Information  S1). The Y values of all samples range from −30.3 to −13.7, lower than the threshold value of 
−2.74 (Figure 2b), supporting their windblown origin (Jiang et al., 2014). Furthermore, major and trace element 
compositions are often used to trace the provenance of dust deposits (Ding et al., 2001; Ferrat et al., 2011; Jahn 
et al., 2001). The major and trace element abundances of 136 XJD fluviolacustrine fine samples, which are even-
ly distributed through the entire sequence, show an exponential linear relationship with those of the loess-soil 
units from the Chinese Loess Plateau (CLP; Ding et al., 2001; Figure S9 in Supporting Information S1), further 
corroborating their windblown origin.

The 143Nd/144Nd ratios of 10 analyzed XJD samples display a restricted range of −11.6  ∼  −9.7 (mean 
ƐNd ≈ −10.65 ± 0.95; Note 2 in Supporting Information S1), indicating a relatively young and uniform upper 
crustal source for the XJD fine-grained sediments (Jahn et al., 2001). This is consistent with the typical upper 
crustal patterns revealed by (La/Yb)N (3.8–14.4, mean 10.4) and Eu/Eu* (0.56–0.76, mean 0.64) from the XJD 
sequence, which are typical of dust particles of loess-soil units from the CLP (Jahn et al., 2001).

Figure 1.  (a) Diagram showing the genetic linkage between the Qinling and adjacent orogens to the west (Meng & 
Zhang, 2000). (b) Distribution of semiarid belt and location of the Nanyang Basin (X. Sun & Wang, 2005). (c) Topography 
around the Nanyang Basin (http://www.geomapapp.org/). Note that the Mianlue suture is connected to the Southern Kunlun 
suture, and the South Qinling and Kunlun orogens together represent a northern branch of the Palaeo-Tethyan orogenic 
system (Meng & Zhang, 2000). XJD refers to the Xijiadian section. Red star marks the location of the study area.



Geophysical Research Letters

JIANG ET AL.

10.1029/2021GL096832

4 of 11

4.3.  Variations in the XJD Grain-Size Record

Numerical unmixing of grain-size distribution data into constituent components, known as end-member analysis 
(EMA), can yield valuable information on geological processes (Jiang et al., 2017; Paterson & Heslop, 2015; 

Figure 2.  (a) The median grain-size, (b) Sahu Y value, and (c–e) three grain-size end-member abundances of the Xijiadian sequence in Hubei Province (eastern China) 
spanning 65.6–37.6 Ma plotted against paleomagnetic ages and their correlation with the (f) benthic δ18O record (Cramer et al., 2009). The Sahu Y value less than 
−2.74 indicates an aeolian environment (Sahu, 1964) (Note 1 in Supporting Information S1). The gray dots define sample or data points. The solid lines represent a 
moving average with a window width of 21 points to detect their trends. The horizontal dashed lines indicate the average values of the records. The vertical dashed lines 
indicate the important shifts discussed in the text.
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Weltje, 1997). The multiple correlation coefficient (R2) and angle deviation are commonly used to determine 
goodness-of-fit (Paterson & Heslop, 2015), and one important principle is to explain the observed compositional 
variation with a minimum number of end members (Weltje, 1997). The grain size of all 5,877 samples is mainly 
concentrated in the range of 0–100 μm with a unimodal distribution (Figure S8a in Supporting Information S1). 
To approximate the observed compositional variation, one to five end members are modeled by EMA in this 
study. The correlation maps for R2 and angle deviation with number of end members suggest that end-member 
modeling improves greatly from two to three end members, but improves less from three to four end members 
(Figures S8b and S8c in Supporting Information S1). Accordingly, three end-members are the minimum number 
that are the closest to the truth (Figure S7 in Supporting Information S1), and they include EM1 (0.3–243.0 μm, 
peak at 6.9 μm), EM2 (0.5–306.6 μm, peak at 29.5 μm), and EM3 (0.7–546.6 μm, peak at 78.1 μm; Figure S8 in 
Supporting Information S1). EM1 (0%–100%, mean 47.2%) can be transported through long-term suspension, 
whereas EM2 (0%–77.8%, mean 34.1%), and EM3 (0%–90.6%, mean 18.7%; Figures 2c–2e) represent regional 
and local windblown sediments, respectively (Jiang et al., 2014; Pye, 1987).

We averaged three end-members with a window width of 21 points to detect their varying trends. There are two 
patterns: dramatic changes and steady evolution. The grain-size record from 65.6 to 59 Ma has the strongest 
fluctuations with the largest amplitude (7.2–69.9 μm) and the maximum Md of the sequence (mean 34.8 μm). 
The local windblown fraction (EM3) reaches 90.6%, with the highest mean of 36.8% during 65.6–59 Ma. The 
dust particles become coarse at 55–54 Ma, with an abrupt increase in EM2 and a corresponding decrease in EM1, 
similar to a 1 Myr-duration wedge (Figures 2c and 2d). In contrast, the other periods display a relatively steady 
evolution; specifically, the dust particles gradually fine from 59 to 55 Ma, coarsen from 54 to 50.5 Ma, and slowly 
fine again from 50.5 to 37.6 Ma (Figure 2).

4.4.  Major and Trace Element Variations

The addition of fresh material to sedimentary basins commonly results in a decrease in the immobile element 
content and an increase in the mobile element content, whereas stepwise weathering and leaching usually induce 
the opposite change.

During 65.6–59 Ma, the content of immobile TiO2 (0.5%–0.9%) has the lowest mean (0.6%) of the sequence 
with unstable oscillations (Figure 3a). It steadily increases from 59 to 55 Ma, decreases significantly during 
55–54 Ma, and decreases from 54 to 37.6 Ma but remains above the overall average. The abundance of mobile 
Na2O (0.5%–3.52%) and the molar ratios of Na2O/Al2O3 (0.03–0.49) during 65.6–55 Ma are the most scattered 
but their average values (2.05% and 0.24%) are the highest of the whole sequence, which then exhibits a decreas-
ing trend from 59 to 55 Ma (Figure 3b). They increase significantly during 55–54 Ma and oscillate generally 
below the average values after 54 Ma. The other major elements and 17 trace elements all have distinct changes 
at 55–54 Ma (Figures S10 and S11 and Note 4 in Supporting Information S1). Noticeably, the ratios of Y/ΣREE, 
Y/NdPAAS, (Eu/Eu*)PAAS, and (La/Er)PAAS normalized to post-Archean Australian shale (PAAS) and are utilized 
to identify provenance changes independent of particle size (Ferrat et al., 2011). At 55–54 Ma, the first three 
ratios increase dramatically (Figures S12a–S12c in Supporting Information S1), whereas the last ratio decreases 
significantly (Figure S12d in Supporting Information S1). They are followed by the opposite trends for these four 
ratios after ∼54 Ma.

The chemical index of alteration (CIA) is generally used as an indicator of the degree of weathering of sediments 
(Note 5 in Supporting Information S1). The CIA values (55.3–75.7) of the analyzed samples have an overall 
low average of 67.2 (Figure 3c), indicating deposition under a dry and weak-weathering environment. During 
65.6–59 Ma, the CIA values fluctuate strongly between 55.3 and 72.3, with a mean value of 63.0. The CIA val-
ues increase from 59 to 55 Ma (mean 66.1) and decrease abruptly at 55–54 Ma with the lowest average value of 
60.8 for the whole sequence. After 54 Ma, the CIA values show small oscillations, with most samples above the 
average (67.2; Figure 3c).

4.5.  Clay Minerals and Their Sr-Nd Isotopic Variations

The clay mineral assemblages of the XJD sequence are dominated by smectite (6%–91%, mean 36%), illite (7%–
60%, mean 34%), and palygorskite (0%–59%, mean 25%), with minor amounts of chlorite (0%–9%, mean 2%) 
and kaolinite (0%–7%, mean 2%; Figures 3d–3f, Figure S14 and Table S2 in Supporting Information S1). During 
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65.6–59 Ma, the content of illite (12%–58%, mean 43%) and the ratio of illite/smectite (0.15–6.50, mean 2.24) 
are not only the highest but also the most scattered of the sequence, while most smectite values are lower than 
the average (Figures 3e and 3f). Palygorskite shows extremely scattered values (Figure 3d). From 59 to 55 Ma, 
content variation of these major clay minerals become stable, with decrease in illite and palygorskite and increase 
in smectite (Figures 3d–3f). At 55–54 Ma, illite and the illite/smectite ratio increase rapidly, smectite decreases 
significantly, and palygorskite remains the lowest of the sequence. From 54 to 50.5 Ma, smectite decreases and 
palygorskite and the illite/smectite ratio increase, while these three proxies show the opposite trend from 50.5 to 
37.6 Ma.

A strong inverse relationship between smectite and palygorskite reveals the authigenic transformation of paly-
gorskite from smectite (Figures 3d and 3e, Figure S16a in Supporting Information S1). Furthermore, a stronger 

Figure 3.  Comparison of varyingvalues of (a) TiO2, (b) Na2O/Al2O3 (molar ratio), (c) chemical index of alteration, (d) 
palygorskite, (e) smectite, (f) and illite/smectite in fluviolacustrine sediments from the Xijiadian sequence in Hubei Province 
(eastern China) with variations in the (g) benthic δ18O record (Cramer et al., 2009). The gray points and open circles represent 
sample or data points. The dashed horizontal or oblique lines indicate the average or fitting trends. The vertical dashed lines 
and the gray band indicate the time points and intervals discussed in the text. The red single-line arrows indicate the variation 
of weathering while the blue double-line arrows indicate the variation in fresh material sources with upward arrows showing 
the trend of increase and vice versa.
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inverse relationship between illite and the sum of palygorskite and smectite (Figure S16b in Supporting Informa-
tion S1) suggests that the illite in the study area has been transformed into palygorskite and smectite. Clay com-
ponents of the XJD fluviolacustrine sediments have Sr-Nd isotopic features similar to those from the northern 
margin of the TP instead of those from the eastern QQKOS (Note 2 in Supporting Information S1). This implies 
that they are mainly transported by wind from the northern margin of the TP.

5.  Discussion and Implications
Some layers of sandstone and sandy conglomerate are occasionally developed in the XJD section, reflecting the 
fluvial contribution in the Nanyang Basin (Jiang et al., 2014). This basin is located in the piedmont area of the 
East Qinling Mountains (Figure 1c). The floodplains may provide silt particles for the Nanyang Basin similar 
to those from the western Qinling Mountains for the Tianshui Basin (S. Liu et al., 2019). However, there is no 
evidence in the field of hydrodynamic waxing or waning expressed as upward coarsening or fining particles. 
Correspondingly, sedimentary structures such as cross-bedding and ripples related to current action were rarely 
observed in the XJD section. Instead, massive structure, a typical feature of dust deposition (Ding et al., 2001), 
commonly exists in the XJD section. Noticeably, fluvial sedimentation generally has a momentary process with 
a high-energy environment while dust deposition occurs over a long duration with the inherent characteristics 
of a low-energy environment. Accordingly, we focus on slow deposition of fine dust particles rather than fluvial 
deposits in this study.

5.1.  Weathering Affected by Climate Change

From 59 to 55 Ma, the XJD dust particles consistently become finer (Figure 2). The immobile TiO2 content, CIA, 
and smectite increase, while the mobile Na2O content, the Na2O/Al2O3 ratio, the illite/smectite ratio, and palygor-
skite proportion decrease (Figure 3). These trends are probably due to enhanced chemical weathering induced by 
global warming, as revealed by the benthic δ18O record (Cramer et al., 2009; Figure 2f).

From 54 to 50.5 Ma, the local particle supply EM3 decreases below the average, implying a tectonically stable 
environment (Figure 2e). However, the XJD dust particles become coarse (Figure 2a) as the regional particle 
supply EM2 increases above the average (Figure 2d). In addition, illite content and CIA increase slightly, while 
the illite/smectite ratio and palygorskite (probably transformed from smectite) increase significantly (Figure 3). 
These results indicate a slight weathering-enhanced and high-alkalinity (Singer, 1980) sedimentary environment 
in the Nanyang Basin. This enhanced aridification (Jiang et al., 2014) is likely to result from sustained warming 
globally based on the benthic δ18O record (Cramer et al., 2009; Figure 2f).

The period from 50.5 to 37.6 Ma is characterized by slow fining of the XJD dust particles, with the smallest mean 
Md (18.2 μm) and the lowest mean EM3 proportion (10.6%) of the sequence. The generally high CIA values and 
TiO2 contents and low contents of Na2O and ratio of Na2O/Al2O3 suggest a slightly increased weathering, though 
with a generally low intensity under an arid environment (Figures 3a–3c). The stepwise content decrease in paly-
gorskite from 50.5 to 37.6 Ma indicates a decreased alkalinity and thus an increased humidity of the depositional 
environment (Figure 3d). The increase in smectite and the decrease in the illite/smectite ratio imply increased 
weathering in the study area, although illite remains relatively stable in content (Figures 3e and 3f). Here we 
propose that global cooling from 50.5 to 37.6 Ma weakened evapotranspiration, enhanced the westerly circulation 
(Jiang et al., 2014), and consequently increased moisture carried by the westerly wind (Gao et al., 2021). Both 
aspects increased effective moisture and consequently enhanced chemical weathering in East Asia. This inter-
pretation is also supported by the positive response of the XJD sedimentation to two salient climatic events. The 
appearance of ice in the Arctic at ∼46 Ma (Moran et al., 2006) indicates significant global cooling. The obvious 
response of the XJD sequence at ∼46 Ma includes the fining of dust particles (Figure 2), high CIA values and 
smectite contents (Figures 3c and 3e), low Na2O/Al2O3 and illite/smectite ratios, and reduced alkalinity as re-
vealed by the decrease in palygorskite content (Figures 3b, 3d, and 3f). A global warming event at ∼40 Ma related 
to a brief reversal of the long-term Eocene cooling trend (Bohaty & Zachos, 2003; Bohaty et al., 2009), induced 
the opposite responses to those at ∼46 Ma (Figures 2 and 3b–3e). Hence, during the Palaeogene, East Asia was 
controlled by a planetary climate rather than a monsoon climate.
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5.2.  Enhanced Tectonic Activity at 55–54 Ma

The period of 65.6–59 Ma is characterized by the highest mean values and the strongest oscillations in the local 
dust supply (EM3), the lowest average TiO2 content, the highest average Na2O/Al2O3 and illite/smectite ratios, and 
a low mean CIA (63.0) in the XJD sequence. Additionally, the period 55–54 Ma features pronounced increases 
in the regional dust supply (EM2) and the Na2O/Al2O3 and illite/smectite ratios, and significant decreases in the 
immobile TiO2 content, CIA, and smectite. These features indicate the significant addition of fresh material into 
the XJD sediments and a resultant decrease in weathering. We ascribe these changes to tectonic activity around 
the eastern QQKOS during 65.6–59 Ma, and significantly strengthened tectonic activity in Asia during 55–54 Ma 
in response to the India-Eurasia collision at ∼55 Ma as revealed by the Indian Ocean magnetic anomalies (Powell 
& Conaghan, 1975). In addition to the effects observed in our study area, the intense tectonic activity during 
55–54 Ma produces a widespread disconformity (Fang et  al.,  2019; Singh,  2003; Y. Wang et  al.,  2010; Xue 
et al., 2013; Y. Zhang et al., 2014; Zheng et al., 1999; X. Zhou et al., 2019), the onset of India-Eurasia terrestrial 
faunal exchange (Clementz et al., 2011), an abrupt increase in sediment accumulation (Jin et al., 2018), facies 
transitions (Orme et al., 2015), palaeolatitudinal intersection (Ma et al., 2014), thermal remagnetization (Tong 
et al., 2008), the formation of many basins in Asia (J. Sun and Jiang, 2013), and the closure of the Neo-Tethys 
Ocean (J. Li et al., 2015; Figure 4, Note 6 and Table S3 in Supporting Information S1). Furthermore, the in-
tense tectonic activity during 55–54 Ma also generates widespread magmatic eruptions in Asia (Bazhenov & 

Figure 4.  Diagram showing the consistent kinematic properties of the Qinling-Qilian-Kunlun orogenic system and locations with corroborating evidence of the strong 
tectonic activities at 55–54 Ma in Asia. These include stratigraphic unconformities, abrupt increases in the sediment accumulation rate, palaeolatitudinal intersection, 
facies transitions, molasse deposits, faunal exchange, volcanism, and thermal remagnetization (Table S3 in Supporting Information S1).
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Mikolaichuk, 2002; Z. Chen et al., 2014; J. R. Li et al., 1989; Z. Sun et al., 2010; S. Zhou et al., 2004). These 
features for the first time collectively constrain the India-Eurasia collision to a short interval from 55 to 54 Ma, 
which is consistent with the timing of an almost complete halt to the northward motion of India (Sclater & Fish-
er, 1974), the end of suturing and the beginning of the so-called hard collision at ∼55 Ma (Klootwijk et al., 1992).

5.3.  Impact on the North Pacific Ocean

The eolian sediments in the North Pacific Ocean display sharp decreases in grain +size from continuously coarse 
grained in the Paleocene to continuously fine grained in the Eocene, while the peak accumulation rate decreases 
by almost a factor of 3 across the Paleocene/Eocene boundary (Janecek & Rea, 1983; Rea, 1994). Both phenom-
ena have for decades remained enigmatic due to the absence of systematic investigations into long continental 
sedimentary records. Based on our work, we propose that the occurrence of tectonic activity around the QQKOS 
during 65.6–59 Ma and its enhancement in Asia at 55–54 Ma in response to the India-Eurasia collision, are re-
sponsible for both phenomena. Strong earthquakes associated with tectonic activity can generate large amounts 
of dust particles in arid to semiarid regions (Jiang et al., 2017), which could have been transported to the basins 
around the QQKOS and even as far as the North Pacific Ocean during the Paleogene. In the Nanyang Basin, 
the dust particles are generally coarse during 65.6–55 Ma and remain mostly fine after 54 Ma (Figure 2), which 
contributes to our understanding of the patterns of aeolian sediments in the North Pacific Ocean (Janecek & 
Rea, 1983; Rea, 1994). This is the first study to develop a new source-to-sink model that links basin deposition 
during the Paleogene in Asia to pelagic sedimentation in the North Pacific Ocean in response to the India-Eurasia 
collision. Noticeably, the availability of dust particles in Asia, instead of transport capacity, plays the primary role 
in deposition of the aeolian sediments in the North Pacific Ocean from the Paleocene to the Eocene, given that the 
low thermal gradients and less vigorous atmospheric circulation during this period (Janecek & Rea, 1983; Suan 
et al., 2017) could have weakened the dynamics of dust transport.

Data Availability Statement
Source data are provided with this paper and are deposited in Mendeley (doi: 10.17632/gdppp4r97d.1).
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