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Abstract 31 

Smart cropland management practices can mitigate greenhouse gas (GHG) 32 

emissions while safeguarding food security. However, the integrated effects on net 33 

greenhouse gas budget (NGHGB) and grain yield from different management 34 

practices remain poorly defined and vary with environmental and application 35 

conditions. Here, we conducted a global meta-analysis on 347 observation sets of 36 

non-CO2 GHG (CH4 and N2O) emissions and grain yield, and 412 observations of 37 

soil organic carbon sequestration rate (SOCSR). Our results show that for paddy 38 

rice, replacing synthetic nitrogen at the rate of 30−59% with organic fertilizer 39 

significantly decreased net GHG emissions (NGHGB: −15.3±3.4 (standard error), 40 

SOCSR: −15.8±3.8, non-CO2: 0.6±0.1 in Mg CO2 eq ha−1 yr−1) and improved rice 41 

yield (0.4±0.1 in Mg ha−1 yr−1). In contrast, intermittent irrigation significantly 42 

increased net GHG emissions by 11.2±3.1 and decreased rice yield by 0.4±0.1. 43 

The reduction in SOC sequestration by intermittent irrigation (15.5±3.3), which was 44 

most severe (>20) in alkaline soils (pH>7.5), completely offset the mitigation in CH4 45 

emissions. Straw return for paddy rice also led to a net increase in GHG emissions 46 

(NGHGB: 4.8±1.4) in silt-loam soils, where CH4 emissions (6.3±1.3) was greatly 47 

stimulated. For upland cropping systems, mostly by enhancing SOC sequestration, 48 

straw return (NGHGB: −3.4±0.8, yield: −0.5±0.6) and no-tillage (NGHGB: −2.9±0.7, 49 

yield: −0.1±0.3) were more effective in warm climates. This study highlights the 50 

importance of carefully managing croplands to sequester soil organic carbon 51 

without sacrifice in yield, while limiting CH4 emissions from rice paddies.  52 
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1. Introduction 53 

Croplands are vital in tackling two great challenges facing humanity: ensuring food 54 

security and mitigating greenhouse gas (GHG) emissions (1). Non-CO2 GHG 55 

emissions from croplands, i.e., methane (CH4) and nitrous oxide (N2O), accounted 56 

for ~20% of global total anthropogenic emissions during recent decades (2, 3). 57 

With an increase of 25-70% in food demand by 2050 (4) driven by population 58 

growth and increasing demand for animal products, global crop productivity needs 59 

to be increased on limited arable land. Agricultural intensification under 60 

conventional cropland management practices (e.g., intensive tillage and excessive 61 

synthetic nitrogen (N) fertilization) creates a cascade of environmental problems, 62 

such as global warming due to increased SOC decomposition, and N2O and CH4 63 

emissions. Soil organic carbon (SOC) represents the largest terrestrial organic 64 

carbon pool, storing about three times as much carbon (C) as the atmosphere (5). 65 

A change in cropland SOC caused by cropland management practices may lead 66 

to either a release of CO2 emissions to the atmosphere, or net C sequestration into 67 

soils (6), with SOC sequestration representing the long-term CO2 exchanges 68 

between croplands and atmosphere (7).  69 

 70 

A number of smart cropland management practices have been advocated in recent 71 

decades to safeguard food security and to reduce GHG emissions. Conservation 72 

agriculture, which comprises no-tillage and straw return, in croplands has been 73 

widely acknowledged to increase SOC and improve the soil’s ability to retain 74 
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nutrients in both uplands and paddy fields (6, 8). Partial replacement of synthetic 75 

fertilizer with organic N can also enhance SOC by directly adding organic materials, 76 

while addressing the side effects of excessive synthetic N application (9). These 77 

alternative practices can change soil properties and microbial activities, and hence 78 

modify cropland GHG emissions and grain yield (6, 9-11), which may provide an 79 

opportunity for developing a win-win strategy for climate change mitigation and for 80 

delivering food security. 81 

 82 

The most prominent smart practice suggested for paddy rice is intermittent 83 

irrigation, which delivers co-benefits to decrease both CH4 emissions and water 84 

usage (11, 12), to meet the challenge of increasing water scarcity in rice production 85 

(13). In contrast to continuous flooding, intermittent irrigation keeps soil moist in 86 

rice paddies by water saving techniques (e.g., alternate wetting and drying) (14, 87 

15). Because of the lower soil water content and less anaerobic conditions than 88 

continuous flooding, intermittent irrigation prevents CH4 production and promotes 89 

CH4 oxidation (11, 16). For tropical double rice cropping system across Southeast 90 

Asia, a meta-analysis (17) found water saving regimes (e.g., alternate wetting and 91 

drying)) significantly reduced CH4 emissions by 35%, and the mitigation potential 92 

was greater in dry than wet seasons of the double rice cropping (17). The effect of 93 

intermittent irrigation on CH4 emissions was also confirmed in the double and 94 

single rice cropping systems in South (18, 19) and Northeast China (19, 20) 95 

respectively, and other cropping areas (21) across sites, climates and rice variants. 96 
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Intermittent irrigation can also impact other GHG emissions, and a previous study 97 

showed that it generally increased CO2 emissions by 44.8% and reduced SOC 98 

concentrations by 5.2% of the first 20-cm depth (21). In addition, a meta-analysis 99 

showed that it increased N2O emissions across Southeast Asia (17), but this did 100 

not outweigh the climate benefit from the decrease in CH4 emissions. Despite the 101 

lack of consistent benefits on all GHG emissions, intermittent irrigation has been 102 

rapidly disseminated in many Asian countries, such as the Philippines, Bangladesh, 103 

Vietnam, China and India (13). 104 

 105 

The integrated effects of alternative management practices on net GHG budget 106 

(NGHGB, including SOC, CH4 and N2O) and crop grain yield are understudied and 107 

poorly understood. The return of crop residue or straw to the field can increase 108 

SOC sequestration and yield of paddy rice, compared to straw removal (10). 109 

However, straw return may increase CH4 emissions by enhancing organic 110 

substrates for methanogens (22, 23). Similarly, the reduction in CH4 emissions 111 

through intermittent irrigation in rice paddies may be partially offset, or even 112 

reversed, by the associated reduction in SOC sequestration (21). Cropland 113 

management practices can impact SOC sequestration, CH4 and N2O emissions 114 

and crop yield simultaneously, but most studies have focused on only one or two 115 

of these effects, which may result in inconsistency when making comparisons 116 

between effects, or when aggregating to assess total effects on net GHG 117 

emissions. Thus, an integrated assessment of the impact of conversions of 118 
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cropland management practices on grain yield and net GHG emissions, on a CO2 119 

equivalents basis (24), is essential.  120 

 121 

The effects of cropland management practices on GHG emissions and crop yield 122 

vary with environmental factors (i.e., soil properties and climate) and application 123 

conditions (e.g., duration, N application rate and fertilizer type) (6, 9-11). 124 

Conversion from tillage to no-till has differing effects on SOC sequestration (25, 125 

26), with no-tillage in dry climates relating to higher SOC sequestration and grain 126 

yield than wet climates (6). Xia et al. (2017) (27) found the effects of synthetic 127 

fertilizer N replacements with manure on grain yield were related to replacement 128 

proportions: replacements with rates no more than 75% improved grain yields by 129 

~ 8%, but for those with the rates >75% the changes in yield became insignificant. 130 

Hence, a mitigation practice which is effective at one place or under a specific 131 

environmental or application conditions, may not be effective in other situations. 132 

The effects of cropland management practices, to varying environmental and 133 

application conditions, can be investigated by the approach of meta-analysis, 134 

which pools observations with different conditions to determine a general 135 

understanding or an overall trend against important factors (28). Moreover, 136 

combined application of individual practices may be adopted into practical actions 137 

for GHG mitigation; for example, no-tillage combined with residue retention can 138 

avoid its negative effect on grain yield by returning straw into croplands (6, 8). 139 
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However, the effects between individual practices maybe not additive, and the 140 

combined effect can be more or less than the sum of the individual effects (29).  141 

 142 

The objective of this study was to evaluate the integrated effects of alternative 143 

management practices on cropland NGHGB and grain yield. The influences of key 144 

environmental and application conditions on the responses of NGHGB and yield 145 

were investigated. To achieve these objectives, we conducted a global meta-146 

analysis, based on 347 observations of non-CO2 GHG emissions and grain yield 147 

from 73 papers, and 412 observations of SOC sequestration rate from 117 papers. 148 

The alternative management practices investigated relative to conventional 149 

practices were no-tillage vs tillage, straw return vs removal, intermittent irrigation 150 

vs continuous flooding, and synthetic fertilizer N replacements with organic N.  151 

  152 
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2. Materials and Methods 153 

2.1. Study selection and data collection 154 

We used several databases, such as Web of Science, Google Scholar and Scopus 155 

to search peer‐reviewed publications (before April 2020) The keywords used in 156 

the search were “cropland or crop or wheat or maize or barley or rice”, “soil organic 157 

carbon (SOC) or soil organic matter (SOM)”, and/or “methane (CH4), nitrous oxide 158 

(N2O) and yield (grain)”. Studies related to the management practices investigated 159 

were then selected. Each study selected contains measurements of GHG 160 

emissions for both control and treatment management practices. Studies with the 161 

following measurements were excluded: (i) measurements made in pot, 162 

laboratories or greenhouses, (ii) measurements conducted in organic (peaty) soils 163 

where N2O are much higher than those in mineral soils and where soil carbon 164 

fluxes are different (30).  165 

 166 

To investigate the effect of cropland management practices, the paired control and 167 

treatment measurements of GHG emissions and grain yield under each 168 

management practice were collected, for example, pairs of CH4 emission 169 

measurements with and without straw return in the same study. In terms of 170 

synthetic N fertilizer replacements with organic fertilizer, control plots were 171 

receiving synthetic N fertilization only, whilst treatment plots had a mix of synthetic 172 

and organic N fertilizations, but at the same total N application rate as the control 173 
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ones. For annual non-CO2 GHG emissions (CH4 and N2O) and grain yield that 174 

measured simultaneously, the measurements ranging from a crop growing season 175 

to a year were collected. As a surrogate measure of net CO2 exchange between 176 

the atmosphere and croplands (7), annual SOC sequestration rate (SOCSR, Mg 177 

CO2 eq ha−1 yr−1) measured for at least a year was collected. Averaged values 178 

were taken for measurements with multiple years. We collected observations from 179 

experiments of different duration, as can be seen in Table S2. Changes in SOC 180 

sequestration rate are generally more rapid at the beginning of the experiment than 181 

at the end, and it slows down as the duration increases (31), as shown in Figure 182 

2c, for example. Nevertheless, the observations were treated in an equivalent way, 183 

and the duration was considered as a factor in the analysis of the effect of 184 

management practice. 185 

 186 

In addition to GHG emissions and grain yield, related variables collected were 187 

sorted into three categories: (i) climatic factors, (ii) soil properties, and (iii) 188 

application parameters. For climatic factors: mean annual air temperature (MAT) 189 

and mean annual precipitation (MAP) were obtained from the original papers. For 190 

soil properties: pH, bulk density, clay and sand contents were also collected from 191 

the articles to represent soil substrate availability and aeration conditions. For 192 

application parameters: N fertilizer type (synthetic or organic) and application rate, 193 

and duration of application were extracted. Crops were categorized into two types: 194 

upland crops and paddy rice. The percentage application rate of organic N fertilizer 195 
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(i.e., manure or compost) to total rate was then calculated and categorized into low 196 

(0-29%), median (30-59%), high (60-99%), and complete (100%) groups. 197 

Information on fertilization methods (e.g. broadcast, injection, or deep placement) 198 

and application timing were mostly not available and therefore, not considered for 199 

further analysis. Missing values of MAT and MAP (21% and 11% for non-CO2 200 

GHGs; 21% and 23% for SOCSR) for 1970-2000 were extracted from WorldClim 201 

v2.1 (32); soil bulk density (45% and 58% for non-CO2 GHGs and SOCSR), pH 202 

(11% and 32%), clay (42% and 46%) and sand (49% and 54%) contents were 203 

supplemented from the 1-km Harmonized World Soil Database (HWSD v1.2) 204 

(http://www.iiasa.ac.at/) using site latitudes and longitudes. About 89% of the 205 

SOCSRs were directly provided by original papers, whilst the remainder were 206 

calculated based on measured initial and final SOC contents and BD. Details of 207 

these variables can be found in Table S1. 208 

 209 

The final compiled dataset contains 347 pairs of treatment and control 210 

observations of non-CO2 GHG (CH4 and N2O) emissions and grain yield at 68 sites 211 

from 73 papers, and 412 pairs of SOCSR at 130 sites from 117 papers (Figure S1 212 

and Table S2). For upland crops, it includes 44 and 170 paired observations of 213 

non-CO2 GHGs and SOCSR for no-tillage, 27 and 138 pairs for straw return, 19 214 

and 23 pairs for synthetic fertilizer replacement with organic fertilizer. For paddy 215 

rice, it includes 11 and 7 pairs of non-CO2 GHGs and SOCSR for no-tillage, 119 216 
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and 28 pairs for straw return, 50 and 18 pairs for synthetic fertilizer replacement 217 

with organic fertilizer, 77 and 28 pairs for intermittent irrigation (Figure S1).  218 

 219 

2.2. Net greenhouse gas budget (NGHGB) 220 

The NGHGB (Mg CO2 eq ha−1 yr−1) was calculated as the sum of CO2 equivalents 221 

from SOCSR, and CH4 and N2O emissions in croplands (Equations 1a-c). SOCSR 222 

measurements were reported by studies with various soil depths. To improve 223 

comparability, we normalized the SOCSR to the top 30 cm depth (30), using a 224 

depth distribution method developed by Jobbágy and Jackson (33) (Equations 1c). 225 

2 4 2=1 +28 265NGHGB CO CH N O  +                                                                                  (1a) 226 

2 3044 12 dCO SOCSR= −                                                                                                            (1b) 227 

( ) ( )( )30 0

30 01 1 d

d dSOCSR SOCSR = − −                                                                                (1c) 228 

where 229 

CO2, CH4 and N2O represent the amounts of the greenhouse gas emissions, Mg 230 

mass ha−1 yr−1; 1, 28, and 265 are the global warming potentials of CO2, CH4 and 231 

N2O at 100-year time horizon without climate change feedback, respectively (24, 232 

30); SOCSRd30 is SOC sequestration rate up to 30 cm soil depth (Mg C ha−1 yr−1); 233 

−44/12 is the coefficient to transfer the value of SOCSRd30 to CO2 emissions (Mg 234 
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CO2 eq ha−1 yr−1); SOCSRd0 is SOCSR at original depth d0, Mg C ha−1 yr−1; β is 235 

the relative rate of decrease (0.9786) with soil depth in croplands (33). 236 

 237 

2.3. Effects of an individual management practice 238 

In this meta-analysis, the individual effect of each management practice on 239 

cropland NGHGB emissions and grain yield were estimated by the response size 240 

mean difference (MD), using the following equation (34, 35): 241 

T CMD X X= −                                                                                                                  (2) 242 

where XT and XC are the treatment and control means of variable X (i.e., SOCSR, 243 

CH4 and N2O emissions, NGHGB, and grain yield), respectively. The MD can 244 

indicate the direction and absolute value of the change of variable X, and the 245 

values of MD, expressed in Mg CO2 eq ha−1 yr−1, are comparable between different 246 

GHG emissions. 247 

 248 

We performed our analysis on MD weighted by study replication, on unweighted 249 

effect sizes (36, 37). Then, a weighted random-effects model, which are more 250 

adaptable to ecological synthesis compared to fix-effects model (28), was selected 251 

to estimate the MD of the variable X for a certain cropland management practice. 252 

The effect of the management practice was considered not significant if 95% 253 

confidence interval (CI) of the MD overlapped with zero. The estimations of the MD 254 
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and associated 95% CI of were conducted in R version 4.0.1 with “meta” and 255 

“metaphor” packages (38, 39). 256 

 257 

2.4. Combination of effects on SOCSR and non-CO2 GHG emissions 258 

To assess the effect of an alternative management practice on NGHGB, 259 

bootstrapping resampling was preformed to combine the MDs of SOCSR and non-260 

CO2 GHG emissions. These two datasets were obtained from different 261 

environmental and application conditions, and they had different numbers of 262 

observations from various papers. We used the bootstrapping function in R to 263 

generate the normal distributions of the means of MD for SOCSR and non-CO2 264 

GHG, with replacements of the equal sizes of the initial datasets repeated 265 

n=100,000 times. Then, the means of SOCSR and non-CO2 GHG emissions were 266 

added together to create a normal distribution of the means of NGHGB MDs, 267 

according to Equation 1a. 95% CIs of the means was compared with zero to 268 

identify the significance of the impact of the practice.  269 

 270 

2.5. Response of individual management effect to important factors 271 

We used linear, stepwise forward regression to identify significant explanatory 272 

variables regulating response (estimated as MD) for an alternative management 273 

practice. Environmental and application factors acted as dependent variables; the 274 

MD for SOCSR acted as independent variable, because it accounted for the 275 



 

 

15 

 

majority of NGHGB in general. A list of cumulative R2 was calculated with gradual 276 

inclusion of significant variables by order. Backwards regression was also explored 277 

and gave broadly similar results for the relative importance of factors, but because 278 

of co-linearity between variables (see Figure S2, for example), the method was 279 

insensitive to removal of variables (i.e. R2 did not decrease with variable removal) 280 

when assessing the relative importance of correlated variables. Because of this, 281 

forward regression was better able to discriminate the most influential variables, 282 

so was used in this analysis. The joint interactions of two factors, which explained 283 

most variation of the MD for SOCSR, were used to interpolate the response of the 284 

effect on SOCSR and non-CO2 GHG emissions and yield. The interpolation was 285 

performed in R using “akima” package (40). 286 

 287 

2.6. Combined and interactive effects of management practices  288 

Combined and interactive effects were estimated for paired management practices. 289 

For combined effects (MDA+B), XT in Equation 1a was replaced by the 290 

measurements under simultaneous application of practice A and B (XAB, Equation 291 

3a). For interactive effect (MDA*B), the interaction between practice A and B was 292 

calculated by Equation 3b: 293 

A B AB CMD X X+ = −                                                                                                           (3a) 294 

( ) ( )*A B AB A B CMD X X X X= − − −                                                                                            (3b) 295 
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where XA and XB are means of variable X under treatments of alternative practice 296 

A and B, respectively. As mentioned in the estimation of individual effect, MDA+B, 297 

MDA*B and associated 95% CIs were estimated in R. The interaction between A 298 

and B is additive if MDA*B is not significantly different from zero; If MDA*B was 299 

greater than zero the interaction was synergistic, if it was less than zero the 300 

interaction was antagonistic, when the individual effects of A and B are both 301 

positive (29). Studies reporting observations measured simultaneously under 302 

paired management practices, two individual practices, and control were selected 303 

for the assessment of interactive effects. The selected studies are shown in Table 304 

S2. 305 

  306 
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3. Results 307 

3.1. Effects of an individual management practice 308 

Across all crops, only no-tillage and organic fertilizer N (ON) replacements of low 309 

(0-29%), median (30-59%) and high (60-99%) percentages consistently decreased 310 

NGHGB whilst maintaining or increasing grain yield (Figure 1a b and c). However, 311 

intermittent irrigation and complete (100%) organic fertilizer substitution 312 

substantially decreased grain yield and increased or had no effect on NGHGB. 313 

 314 

For upland crops, all management practices (i.e. no-tillage, straw return at median, 315 

high and complete ON replacements) decreased NGHGB while maintaining grain 316 

yield (Figure 1d). The reduction in the NGHGB (all expressed in Mg CO2 eq ha−1 317 

yr−1) was largest in the high ON replacement (−3.7), followed by straw return (−2.7), 318 

no-tillage (−1.8), complete (−1.4) and median (−1.2) ON replacements. The overall 319 

average reduction in NGHGB (−2.2±0.5, mean ± SE) for upland crops were mostly 320 

(97%) attributed to the enhanced SOC sequestration (Figure 1f). 321 

 322 

For paddy rice, the best practice in terms of decreasing NGHGB (−15.3) and 323 

improving grain yield (0.4) was median ON replacement (30-59%), and the least 324 

effective were complete ON replacement (NGHGB: 3.1, yield: −0.6) and 325 

intermittent irrigation (NGHGB: 11.2, yield: −0.4) (Figure 1g). Straw return to paddy 326 
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rice significantly increased grain yield (0.2, p<0.001), but greatly increased the 327 

non-CO2 GHG emissions (4.2, p<0.001, Figure 1h), which is partly offset by the 328 

increase in SOC sequestration (−3.0, p<0.001, Figure 1i). Overall, straw return had 329 

a small effect on NGHGB (1.2, p>0.05, Figure 1g). Similarly, although no-tillage 330 

significantly decreased the non-CO2 GHG emissions by 3.0 Mg CO2 eq ha−1 yr−1 331 

for paddy rice, the total effect on NGHGB was negligible (p>0.05, Figure 1h and 332 

g). Intermittent irrigation, instead of continuous flooding resulted in a significant 333 

increase in NGHGB (11.2, p<0.05), mainly due to decreased SOC sequestration 334 

(15.5, p<0.001). Here, the non-CO2 GHG emissions (−4.3, p<0.001) were 335 

simultaneously decreased due to the largely reduced CH4 emissions (Figure S3). 336 

Additionally, rice yield was also significantly reduced by 0.3 Mg ha−1 yr−1 (p<0.05) 337 

by intermittent irrigation. 338 

 339 

3.2. Response of individual management effect to important factors 340 

The most significant factors affecting the impact of no-tillage on SOC sequestration 341 

for upland crops were mean annual air temperature (MAT) and nitrogen application 342 

rate (Nrate) (cumulative R2=0.07, N=136, Figure 2a). It was most effective for SOC 343 

sequestration (SOCSR<−10 Mg CO2 eq ha−1 yr−1) at temperatures above 12C and 344 

nitrogen fertilizer rates above 200 kg N ha−1 yr−1, whereas non-CO2 GHG 345 

emissions and grain yield were slightly affected (Figure 2a).  346 

 347 
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The two factors explaining the most variations in the effect of intermittent irrigation 348 

as a replacement of continuous flooding in paddy fields were soil pH and Nrate 349 

(cumulative R2=0.78, N=27, Figure 2b). Intermittent irrigation was most effective 350 

for SOC sequestration and non-CO2 GHG mitigation at low pH (<7) and high Nrate 351 

(>200kg N ha−1 yr−1) respectively, whereas yield varied within ±2 Mg ha−1 yr−1 352 

(Figure 2b).  353 

 354 

For straw return for upland crops, the two factors explaining the most variation in 355 

effect were application duration and MAT (cumulative R2=0.27, N=135, Figure 2c). 356 

SOC sequestration and non-CO2 GHG reduction were greater within higher MAT 357 

(>12C) and short application duration (1-10 years for SOC and <200 days for non-358 

CO2 GHG), while yield tended to decline (Figure 2c). However, these reductions 359 

decreased with the increasing duration of application.  360 

 361 

For straw return for paddy rice, the two factors explaining most variation in the 362 

response were the sand and clay content of the soil (cumulative R2=0.48, N=25, 363 

Figure 2d). Unlike other practices which had greater effects on SOC sequestration 364 

than non-CO2 GHG emissions, straw return to rice paddy mainly increased CH4 365 

(6.8 Mg CO2 eq ha−1 yr−1, Figure 2c and Figure S3), especially for sand content in 366 

the range of 20-30%, and clay content in the range of 20-40%, reducing the benefit 367 
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gained from enhanced SOC sequestration. Meanwhile, the effect on yield was 368 

negligible, varying mostly within the range of ±1 Mg ha−1 yr−1 (Figure 2d).  369 

 370 

For synthetic fertilizer replacement for upland crops, the two most significant 371 

factors in explaining variation in response were the percentage of replacement of 372 

mineral N with organic fertilizer and MAT (cumulative R2=0.48, N=21). As shown 373 

in Figure 2e, this practice was most effective at lower temperatures (<15 C) and 374 

with the replacement percentage rates of around 60-70 and above, which 375 

increased SOC sequestration (SOCSR<−3 Mg CO2 eq ha−1 yr−1) and also 376 

increased the yield (>2 Mg ha−1 yr−1), with negligible effects on non-CO2 GHG 377 

emissions (<0.2 Mg CO2 eq ha−1 yr−1).  378 

 379 

The variation in the effect of synthetic fertilizer replacement for paddy rice was 380 

mostly (cumulative R2=0.91, N=18, Figure 2f) explained by pH and clay content of 381 

soil. Higher pH led to greater SOC sequestration, while clay content showed strong 382 

positive correlation with the non-CO2 GHG emissions (Figure 2f). The grain yield 383 

was little affected and mostly varied within 1 Mg ha−1 yr−1. 384 

 385 
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3.3. Interactive effects between management practices 386 

The interactions between paired management practice on non-CO2 GHGs and 387 

grain yield are shown in Figure 3. For synthetic and organic fertilizer N applications, 388 

there were significant antagonistic interactive effects (−0.1 Mg CO2 eq ha−1 yr−1, 389 

p<0.001, Figure 3a) on N2O emissions from rice paddies. In this case, individual 390 

synthetic and organic fertilizer applications increased N2O emissions by 0.2 and 391 

0.1 Mg CO2 eq ha−1 yr−1 respectively, but the combined application only raised the 392 

emissions by 0.2 Mg CO2 eq ha−1 yr−1, significantly less than the sum of the 393 

individual effects (0.3 Mg CO2 eq ha−1 yr−1). For combined applications of no-tillage 394 

and straw return (Figure 3b) and no-tillage and synthetic N fertilizer application 395 

(Figure 3c), the interactive effects were additive (i.e. the combined effect is not 396 

significantly different from the sum of the individual effects). 397 

  398 
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4. Discussion  399 

Integrated assessment of smart cropland management practices on GHG 400 

emissions and grain yield is essential for developing win-win strategies to produce 401 

more grains with lower environmental costs.   402 

 403 

4.1. No-tillage 404 

No-tillage significantly decreased net GHG emissions, mainly through improved 405 

SOC sequestration rate for upland crops (Figure 1b), especially in warm climates 406 

(MAT>12 C) and under high N fertilizer application rates (>200 kg N ha−1 yr−1, 407 

Figure 2a). No-tillage can reduce disturbance of soil surface layers and protect 408 

SOC aggregates from fragmentation and microbial decomposition (41). Based on 409 

170 paired observations of SOC sequestration rates, we found no-tillage generally 410 

increased the SOC sequestration rate by 1.8 Mg CO2 eq ha−1 yr−1 for upland crops, 411 

which falls within the range (0.7-1.8 Mg CO2 eq ha−1 yr−1) from a recent meta-412 

analysis (6). Compared to SOC sequestration, changes in CH4 and N2O emissions 413 

were insignificant and much smaller (Figure S3 and Figure 1b). In warm climates 414 

(MAT>12 C), high temperature improves enzymatic reactions and accelerates 415 

SOC decompositions (33, 42). This can be counteracted by the conversion of no-416 

tillage from tillage, which protects SOC from decomposition and thereby, increases 417 

SOC sequestration (6, 41, 43). This is further supported by the significant positive 418 

relationship between SOC sequestration rate and temperature (R=0.22, N=170, 419 
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p<0.01). Under high N fertilization (>200 kg N ha−1 yr−1), no-tillage can accumulate 420 

more SOC through microbial activities and crop growth (41, 43), and protect SOC 421 

from enhanced microbial activity. Although temperature and N fertilizer application 422 

rate hardly explained the variance of the effect of no-tillage on SOC sequestration 423 

(Figure 2a), the effect was significantly greater in warm regions with high N 424 

fertilization areas (SOCSR: −6.7 Mg CO2 eq ha−1 yr−1) than in cool areas with lower 425 

fertilization rates (SOCSR: 0.2 Mg CO2 eq ha−1 yr−1) (Figure S4). Grain yield was 426 

found generally unaffected by no-tillage (p>0.05, Figure 1d and e). A recent global 427 

meta-analysis (6) found no-tillage in dry areas in China and India, can maintain or 428 

increase grain yield. Therefore, our study suggests that warm-dry areas with high 429 

N fertilizations, such as North China Plain, North India and East Pakistan (44, 45), 430 

where traditional tillage is widely practiced (6), are likely to deliver GHG mitigation 431 

while maintaining grain yield under no-tillage.  432 

 433 

4.2. Straw return 434 

Straw return to rice paddy was risky in increasing net GHG emissions in silt-loam 435 

soils with stimulation in CH4 emissions. We found that straw return increased SOC 436 

sequestration for paddy rice by 3.0 Mg CO2 eq ha−1 yr−1 (Figure 1i). However, straw 437 

decomposition can provide substantial methanogenic substrates for CH4 438 

production (23, 46). We found that the enhanced SOC sequestration was 439 

completely offset by straw induced CH4 emissions (Figure S3 and Figure 1c), with 440 

relatively small changes in N2O emissions (Figure S3). We found the increase in 441 
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non-CO2 GHGs (mostly CH4, Figure S3) emissions were greatest in silt-loam soils 442 

with median clay (20-30%) and sand (20-40%) contents (Figure 2c). Kristofor et al. 443 

(47) reported 23% higher CH4 emissions from silt-loam soils than clay (=50%) soils 444 

in rice paddies under the same environmental conditions. This was because of the 445 

delayed reducing conditions for methanogenesis, substantial alternative electron 446 

acceptors preventing CH4 production, and lower diffusivity of clay soils (47). 447 

Although having not significant impact on net GHG emissions (1.2 Mg CO2 eq ha−1 448 

yr−1, p>0.05), straw return significantly increased net GHG emissions by 4.8 Mg 449 

CO2 eq ha−1 yr−1 in silt-loam soils. This suggests silt-loamy paddy fields, mainly 450 

located in Chinese Middle and Lower Yangtze River Basin, North and East 451 

Bangladesh and South Myanmar (45), are likely to act as a net GHG emitter under 452 

straw return. 453 

 454 

In contrast, straw return to upland crops significantly decreased net GHG 455 

emissions, mainly due to the enhanced SOC sequestration especially in warm 456 

climates (MAT>12C) and in first 10 implementing years (NGHGB: −6.9±1.3, 457 

Figure 1d). Compared to non-CO2 GHG emissions, straw return mostly (89%) 458 

impacted on SOC sequestration for upland crops (Figure 1e and f). Microbes are 459 

more active in warm climates, which facilities faster decomposition of applied straw 460 

for SOC accumulation (48, 49). The rate of SOC sequestration decreases with the 461 

continuous application of straw return, and would eventually become zero, when a 462 

new equilibrium level of SOC is reached (31). Our results suggest straw return can 463 
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be most effective for sequestrating SOC within first 10 years after application for 464 

upland crops. For 44 observations of SOC sequestration rates which were greater 465 

than the average (2.4 Mg CO2 eq ha−1 yr−1) of the dataset, 89% of them were either 466 

from warm climates or within the implementation of first 10 years. Only five outliers 467 

were from Canada (50) and Northern US (51, 52) with long-term (13-16 years) 468 

application of straw retention combined with no- or chisel-tillage, which needs 469 

further investigation.  470 

 471 

4.3. Intermittent irrigation 472 

Our results showed that replacing continuous flooding by intermittent irrigation 473 

increased net GHG emissions and decreased rice yield (Figure 1g). Typical 474 

intermittent irrigation, such as alternate wetting and drying, keep soil moist but 475 

avoid continuous flooding in rice paddies (14, 15). We found the intermittent 476 

irrigation significantly decreased CH4 emissions by 4.6 Mg CO2 eq ha−1 yr−1 477 

(p<0.01, Figure S3), within the reported range of 3-7 Mg CO2 eq ha−1 yr−1 (53, 54). 478 

It is widely known that intermittent can lead to lower water content and less 479 

anaerobic conditions than continuous flooding in the soil, and hence prevents CH4 480 

production and promotes CH4 oxidation (11, 16). Interestingly, we found that the 481 

mitigation effect on CH4 emissions was completely offset and reversed by the 482 

reduced SOC sequestration (SOCSR: 15.5 Mg CO2 eq ha−1 yr−1, Figure 1g, h and 483 

i), with a slight increase in N2O emissions. The reduced SOC sequestration can be 484 

explained by the increased SOC decomposition under intermittent irrigation (55). 485 
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Intermittent irrigation avoids extreme dry and waterlogged conditions which 486 

constrain the availabilities of soluble substrates and oxygen for microbial 487 

decomposition, respectively (56). We found rice yield was significantly decreased 488 

by intermittent irrigation in general (−0.3 Mg ha−1 yr−1, Figure 1g). Unsaturated soil 489 

moisture under intermittent irrigation can inhibit rice growth, especially during the 490 

flowering period (57, 58).  491 

 492 

Our analysis suggests that soils with higher pH (>7.5) were more likely to suffer 493 

from losses in SOC sequestration and rice yield under intermittent irrigation. The 494 

reduction in SOC sequestration was most severe (>20 Mg CO2 eq ha−1 yr−1) in 495 

soils with higher pH (>7.5) (Figure 2b). Through improving microbial growth (59, 496 

60), soil pH can enhance SOC decomposition rate (61), with pH only capturing 74% 497 

of the effect variation of intermittent on SOC sequestration (Figure 2b). Aciego 498 

Pietri and Brookes (59) also found significant relationships between soil pH and 499 

microbial biomass C (R2=0.80) based on a long-term field study with controlled pH 500 

gradients (3.7-8.3). Severe reductions to SOC sequestration (20-42 Mg CO2 eq 501 

ha−1 yr−1) were reported in India at soils with pH=7.9 (62), and the reductions 502 

caused by intermittent irrigation declined with increasing N application rates of both 503 

synthetic and organic fertilizers (0-150 kg N ha−1) in this field experiment. Higher 504 

application rate of fertilizer N can lead to more organic carbon to soils from root 505 

and root exudate by supporting crop growth (63-66), which partially offsets the 506 

reduction in SOC sequestration. Yang et al. (2017) (67) reported less, but still 507 
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severe, reduction of SOC sequestration (12 Mg CO2 eq ha−1 yr−1) in clayey alkaline 508 

soils (clay content=75% and pH=7.4), where the high soil clay content, associated 509 

with long water retention (68), may also affect the impact of intermittent irrigation. 510 

Since SOC is important for maintaining nutrients and soil water for crop growth (21, 511 

69), the decreased SOC sequestration may further impact rice yield. We found rice 512 

yield was significantly decreased by intermittent irrigation especially under low 513 

SOC content (Figure S5). This suggests that we should avoid a potential long-term 514 

negative feedback on SOC stock and yield in alkaline soils when adopting 515 

intermittent irrigation. Since intermittent irrigation has been widely promoted in 516 

Bangladesh (13), where alkaline paddy fields prevail in Ganges Delta (45), special 517 

attentions on SOC and grain yield in Bangladesh are needed. 518 

 519 

4.4. Synthetic N fertilizer replacement by organic N 520 

Replacing synthetic fertilizer N with organic sources for paddy rice can increase 521 

net GHG emissions at some levels of substitution, but median proportion (30-59%) 522 

was identified to significantly decrease the net GHG emissions while increasing 523 

grain yield (Figure 1g). Synthetic N fertilizer replacement promotes SOC 524 

accumulation by directly adding exogenous organic materials, and increasing the 525 

inputs of root and root exudate to soils through stimulating crop growth (63-66). 526 

However, the decomposition of organic addition enhanced methanogens activities 527 

for CH4 production (23, 46). All proportions of synthetic N fertilizer replacements 528 

significantly stimulated CH4 emissions, with the largest at 100% replacement 529 
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(p<0.05, Figure S3). Median organic proportion (30-59%) increased CH4 emissions 530 

by 0.5 Mg CO2 eq ha−1 yr−1, but it was completely offset by the enhanced SOC 531 

sequestration (15.8 Mg CO2 eq ha−1 yr−1, Figure 1g). Partial replacement with 532 

organic N not only provides macronutrients from synthetic fertilizer, but also 533 

provides micronutrients such as phosphorus, potassium, copper and zinc from 534 

organic sources, and improves soil texture, water and nutrient holding capacities 535 

for crop growth (64, 70). We found median organic proportion (30-59%) 536 

significantly increased the rice yield by 0.3 Mg ha−1 yr−1, which was decreased 537 

under 100% replacement (p<0.05, Figure 1g and h). Since organic N requires 538 

longer time to be mineralized than synthetic N which is immediately available, 539 

insufficient N supply for early crop growth in complete replacement can negatively 540 

impact grain yield (71, 72). Similarly, complete replacement for upland crops 541 

decreased grain yield, while 50-70% replacement proportions improved grain yield 542 

(−0.5 vs 0.7 Mg ha−1 yr−1, p<0.05) (Figure 2e). It is risky for paddy rice to completely 543 

replace synthetic fertilizers with organic materials, which may both result in grain 544 

yield loss and increase in net cropland GHG emissions. 545 

 546 

The synthetic and organic N fertilizations had antagonistic interaction on the N2O 547 

emissions for paddy rice (Figure 3a), i.e., the combined effect of synthetic and 548 

organic N fertilizations was significantly smaller than the sum of individual effects. 549 

The combined application of synthetic and organic N fertilizers can enhance crop 550 

nitrogen use efficiency (27, 73) and microbial immobilization (74, 75), and hence 551 
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reduce the soil nitrogen availability for N2O production. Based on field 552 

measurements from Bhattacharyya et al. (2013), the combined application of 553 

synthetic and organic N showed 20% lower conversion of fertilizer N to soil 554 

ammonium and nitrate nitrogen than individual applications, and its N2O emission 555 

factor (N2O-N/fertilizer N) was 18% and 57% lower than those for synthetic and 556 

organic N applications, respectively. Besides, the combined application of 557 

synthetic and organic N fertilizers promotes the reduction of N2O to N2 in 558 

denitrification which prevails in rice paddies, due to the supply of dissolved organic 559 

carbon by organic fertilizer addition (10).  560 

 561 

4.5. Limitations 562 

Some limitations exist during the estimation of integrated effects of cropland 563 

management practices investigated. More observations were available in China 564 

and North America, where temperate and sub-tropic climate prevail, and there 565 

were fewer studies in Africa and South America (Figure S1). Sample numbers 566 

among different GHG emissions may differ during the integration of all GHG 567 

emissions for a certain management practice. Environmental conditions, 568 

experimental techniques and durations, and other management practices may also 569 

vary between the integrated or individual assessment of GHG emissions and grain 570 

yield. These differences may influence the magnitude of the effects of cropland 571 

management practices on GHG emissions and grain yield. However, the approach 572 

of pooling observations with different conditions to determine a general 573 



 

 

30 

 

understanding or an overall trend has been widely adopted by other meta-analysis 574 

studies (27, 28). In the integration of emissions of the three GHG, we have tackled 575 

the difference in sample numbers by collecting data from studies that at least 576 

measure the emissions of CH4 and N2O simultaneously, to ensure the observation 577 

numbers of two kinds of GHG emissions are at least the same. In addition, we 578 

have adopted bootstrapping (100,000 iterations) to generate the 95%CIs of the 579 

integrated effects to make a reliable assessment. In the individual assessment, we 580 

used a random-effects model, which is more adaptable than a fixed-effects model 581 

in ecological synthesis (28), to evaluate the effect of management practice, and to 582 

deal with the variability across studies in environmental, experimental and other 583 

conditions (28). 584 

 585 

4.6. Implications and looking forward 586 

We comprehensively assessed the integrated effects of cropland management 587 

practices on net GHG emissions and grain yield. Our study shows straw return, 588 

no-tillage in warm climates (MAT>12 C), synthetic N fertilizer replacements with 589 

median organic proportion (30-59%) for paddy rice generally decreased cropland 590 

net GHG emissions and maintained or increased grain yields. In contrast, 591 

intermittent irrigation for paddy rice increased the net GHG emissions and reduced 592 

rice yield. We found it is essential to comprehensively consider impacts on SOC 593 

and non-CO2 GHG emissions, especially for paddy rice. Although straw return and 594 

complete synthetic N fertilizer replacements (100% organic) for paddy rice 595 
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increased SOC sequestration, the organic additions stimulated substantial CH4 596 

emissions, leading to a net balance or even an increase in cropland GHG 597 

emissions (Figure 1g). We should take a systematic view of the agroecosystem to 598 

deal with environmental problems (76). The changes in N2O emission are relatively 599 

small compared to the net GHG emissions, however, there are other N-cycling 600 

related environmental impacts (NH3, N leaching and running) needed to be 601 

included in the future integrated assessment of cropland management practices. 602 

For example, NH3 emissions increased by 17% under straw return (10). It may be 603 

challenging to integrate all environmental aspects of agroecosystem (e.g., water 604 

usage and storage, and biodiversity), but this study has taken the first step toward 605 

the integrated assessment of cropland management practice. 606 

 607 

Interactive effects between management practices have great influences on the 608 

combined application of multiple practices for mitigating GHG emissions and 609 

ensuring food provision. A number of studies have investigated the effects of 610 

combined management practices applied together (6, 8), but few studies have 611 

quantified the interactions between these practices. We found synthetic and 612 

organic N fertilizations antagonistically interacted on N2O emissions for paddy rice 613 

(Figure 3a). This means the combined synthetic and organic N fertilizations can 614 

reduce N2O emissions relative to individual fertilizations, apart from increased SOC 615 

sequestration by organic addition. The combined application of multiple 616 

management practices can compensate for the disadvantages of a single practice. 617 
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For instance, to combat reductions in SOC and yield, intermittent irrigation for 618 

paddy rice was applied together with straw or biochar (55, 77-79). Still, little is 619 

known about the interactive effects between the management practices, which can 620 

be additive, synergistic or antagonistic (29) on GHG emissions and grain yield. 621 

Despite there are limited observations, our study provided an approach and initially 622 

quantified the interactive effects between management practices. Future studies 623 

should provide more data and bridge the gap for the interactions between cropland 624 

management practices for GHG mitigation and food security. 625 

 626 
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Figures 872 

 873 

Figure 1. Overall effect of individual management practice on cropland net greenhouse 874 

gas budget (NGHGB), non-CO2 GHG (CH4 and N2O), SOC sequestration rate (SOCSR), 875 

and grain yield. Data is presented as absolute mean difference between alterative and 876 

conventional practices, with 95% confidence intervals (CIs) as error bars, and number of 877 

observations noted in parentheses, for non-CO2 GHG and grain yield (left) and SOCSR 878 

(right). The effects are significant when the 95% CIs do not overlap with zero. Asterisks 879 

and solid error bars represent significant, and dashed bars indicate the insignificant 880 

differences. Letters at the end of parentheses indicate the significances of differences in 881 

NGHGB and yield, with a for both, b for NGHGB only and c for yield only.  882 
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Figure 2. Responses of SOCSR, non-CO2 emissions and grain yield to important factors 884 

under alternative management practices. The responses are expressed as absolute mean 885 

difference between alterative and conventional practices. Response surface was 886 

interpolated based on observations (open circles). Importance of factors was defined by 887 

the order of environmental and application variables selected in stepwise forward 888 

regression for SOCSR, which generally accounts for the majority of NGHGB. Cumulative 889 

R2 with gradual inclusion of the significant factors was shown. Nrate: fertilizer N application 890 

rate; Organic replacement: the proportion of synthetic fertilizer N replaced by organic N; 891 

MAT: Mean annual air temperature; MAP: mean annual precipitation.  892 

  893 
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 894 

Figure 3. Interactive and combined effects on cropland non-CO2 GHG (CH4 and N2O) 895 

emissions and grain yield between paired management practices of (a) synthetic and 896 

organic N fertilizations, (b) no-tillage and straw return, and (c) no-tillage and synthetic N 897 

fertilization. The results are expressed as mean difference, with 95% confidence intervals 898 

(CIs), and sample size numbers. If the 95% CI of interactive effect overlapped with zero, 899 

then the effect between the paired management practices was considered to be additive; 900 

otherwise, synergistic or antagonistic. Solid square indicates significant effect at 95% CIs, 901 

and open square represents insignificant. 902 

 903 

CH4 N2O Non-CO2 GHGs (CH4 & N2O) Yield

Interactive (A*B) Combined (A+B) Individual A

T
o
ta

l

Individual B

U
p
la

n
d

R
ic

e
U

p
la

n
d

U
p
la

n
d

a. Synthetic and organic N fertilizations

b. Non-tillage and straw return 

c. Non-tillage and synthetic fertilizer application

Emissions (Mg CO2 eq ha−1 yr−1) Emissions (Mg CO2 eq ha−1 yr−1) Emissions (Mg CO2 eq ha−1 yr−1) Emissions (Mg CO2 eq ha−1 yr−1)

Yield (Mg ha−1 yr−1) Yield (Mg ha−1 yr−1) Yield (Mg ha−1 yr−1) Yield (Mg ha−1 yr−1)



Can cropland management practices lower net greenhouse 

emissions without compromising yield?  

 

Ziyin Shang1,2, Mohamed Abdalla1, Longlong Xia3, Feng Zhou4, Wenjuan Sun5, 

Pete Smith1 

 

1Institute of Biological and Environmental Sciences, University of Aberdeen, 23 

St Machar Drive, Aberdeen AB24 3UU, UK 

2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry 

of Agriculture and Rural Affairs, Beijing, 100081, P.R. China 

3Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute 

of Technology, Garmisch-Partenkirchen 82467, Germany. 

4Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface 

Processes, College of Urban and Environmental Sciences, Peking University, 

Beijing, 100871, P.R. China  

5State Key Laboratory of Vegetation and Environmental Change, Institute of 

Botany, Chinese Academy of Sciences, Beijing, 100093, P.R. China 

 

* Corresponding Author: 

Ziyin Shang, Phone: +44 (0)1224 272702, Fax: +44 (0)1224 272702, Email: 

ziyin.shang@abdn.ac.uk 

 

 



This PDF file includes: 

Figures S1 to S5 

Tables S1 to S2 

Figure S1. Map showing the locations of experimental sites for (a) non-CO2 

GHG emissions and crop yield and (b) SOC sequestration rate (SOCSR).  

Figure S2. Correlation between variables for the replacement of synthetic 

fertilizer N with organic sources. 

Figure S3. Overall effects of individual conversion of agricultural practices on 

CH4 and N2O emissions and crop yields.  

Figure S4. Response of the effect on SOC sequestration rate to mean annual 

air temperature and fertilizer N application rate, by no-tillage conversion from 

conventional tillage. 

Figure S5. Relationship between soil organic carbon content and change in rice 

yield by conversion to water saving irrigation from continuous flooding. 

Table S1. Variable descriptions of cropland GHG emissions and yield collected. 

Table S2. References collected for cropland GHG emissions, yield and 

conversions of agricultural practices. 



 

Figure S1. Map showing the locations of experimental sites for (a) non-CO2 

GHG (CH4 and N2O) emissions and crop yield and (b) SOC sequestration rate 

(SOCSR). The dataset contains 437 pairs of treatment and control observations 

of non-CO2 GHG emissions and yield at 68 sites, and 412 pairs of SOCSR at 

130 sites. Green area represents global croplands. 

 

  



 

Figure S2. Correlation between variables for the replacement of synthetic 

fertilizer N with organic sources. Asterisks indicate significant differences from 

zero (***p< 0.001; **p < 0.01; *p<0.05) 
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Figure S3. Overall effects of individual conversion of agricultural practices on 

CH4 and N2O emissions and crop yields. Data is presented as absolute mean 

difference between altered and conventional practices, with 95% confidence 

intervals (CIs) as error bars, and number of observations noted in parentheses, 

for CH4 (left), N2O (middle) and crop yields (right). The effects are significant 

when the 95% CIs do not overlap with zero. Asterisks and solid error bars 

represent significant, and dashed bars indicate the insignificances.  
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Figure S4. Response of the effect on SOC sequestration rate to mean annual 

air temperature (MAT) and fertilizer N application rate (Nrate), by no-tillage 

conversion from conventional tillage. Data is presented as absolute mean 

difference between altered and conventional practices, with 95% confidence 

intervals (CIs) as error bars, and number of observations at the top. Different 

letters indicate significant differences between groups of MAT and Nrate. 
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Figure S5. Relationship between soil organic carbon content and change in 

rice yield by conversion to water saving irrigation from continuous flooding. 

  

y = 1.04 ln(x) - 2.73 
R² = 0.22 

-6

-4

-2

0

2

4

0 10 20 30 40

C
h

an
ge

s 
in

 y
ie

ld
 (

M
g 

h
a−

1
yr

−
1
)

Soil organic carbon (g kg−1)



Table S1. Variable descriptions of cropland GHG emissions and yield collected. 

Category Variable Type Unit 

Emissions CH4 emissions Continuous Mg CH4 ha−1 

N2O emissions Continuous Mg N2O ha−1 

Soil organic carbon 
sequestration rate (SOCSR) 

Continuous Mg C ha−1 

Yield Crop yield Continuous Mg ha−1  

Climatic factors Mean annual temperature 
(MAT) 

Continuous C 

Mean annual precipitation 
(MAP) 

Continuous mm 

Soil attributes pH Continuous - 

Bulk density Continuous g cm−3 

Clay content Continuous % 

Sand content Continuous % 

Managements Crop type Categorical - 

Practice type Categorical - 

Fertilizer type Categorical - 

N fertilizer application rate Continuous kg N ha−1 

Duration Continuous Days/years 

 

 



Table S2. Collected references for cropland GHG emissions, yield and conversions of agricultural practices. Each row presents an 

observation under a certain management practice. X denotes observation available by corresponding reference. + represents paired 

management practice. 

Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Fan et al., 2018 China Upland crops Maize X X X X X - - - - - - 2 years 1 year 

Fan et al., 2018 China Upland crops Maize X X X X X - - - - - - 2 years 1 year 

Fan et al., 2018 China Upland crops Maize X X X X X - - - - - - 2 years 1 year 

Fan et al., 2018 China Upland crops Maize X X X X X - - - - - - 2 years 1 year 

Fan et al., 2018 China Upland crops Maize X X X X X - - - - - - 2 years 2 years 

Fan et al., 2018 China Upland crops Maize X X X X X - - - - - - 2 years 2 years 

Jin et al., 2017 US Upland crops Maize X X X X X - - - - - - 4 years 1 year 

Jin et al., 2017 US Upland crops Maize X X X X X - - - - - - 4 years 1 year 

Jin et al., 2017 US Upland crops Maize X X X X X - - - - - - 4 years 1 year 

Jin et al., 2017 US Upland crops Maize X X X X X - - - - - - 4 years 1 year 

Jin et al., 2017 US Upland crops Maize X X X X X - - - - - - 4 years 1 year 

Piva et al., 2012 Brazil Upland crops Maize X X X X X - - - - - - 3.5 years 1 year 

Sainju et al., 2014 US Upland crops Barley X X X X X - - - - - - 6 years 3 years 

Sainju et al., 2014 US Upland crops Barley X X X X X - - - - - - 6 years 3 years 

Sainju et al., 2014 US Upland crops Barley X X X X X - - - - - - 6 years 3 years 

Sainju et al., 2014 US Upland crops Barley X X X X X - - - - - - 6 years 3 years 

Tellez-Rio et al., 2017 Spain Upland crops Wheat X X X X X - - - - - - 2 years 1 year 

Tellez-Rio et al., 2017 Spain Upland crops Wheat X X X X X - - - - - - 2 years 1 year 

Wang et al., 2011 Austrilia Upland crops Wheat X X X X X - - - - - - 3 years 3 years 

Wang et al., 2011 Austrilia Upland crops Wheat X X X X X - - - - - - 3 years 3 years 

Wang et al., 2011 Austrilia Upland crops Wheat X X X X X - - - - - - 3 years 3 years 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Wang et al., 2011 Austrilia Upland crops Wheat X X X X X - - - - - - 3 years 3 years 

Bayer et al., 2014 Brazil Paddy rice Paddy rice X X - X X - - - - - - - 
1 growing 

season 

Bayer et al., 2014 Brazil Paddy rice Paddy rice X X - X X - - - - - - - 
1 growing 

season 

Bayer et al., 2014 Brazil Paddy rice Paddy rice X X - X X - - - - - - - 
1 growing 

season 

Fangueiro et al., 2017 Spain Paddy rice Paddy rice X X - X X - - - - - - - 
1 growing 

season 

Fangueiro et al., 2017 Spain Paddy rice Paddy rice X X - X X - - - - - - - 
1 growing 

season 

Fangueiro et al., 2017 Spain Paddy rice Paddy rice X X - X X - - - - - - - 
1 growing 

season 

Fangueiro et al., 2017 Spain Upland crops Aerobic rice X X - X X - - - - - - - 
1 growing 

season 

Fangueiro et al., 2017 Spain Upland crops Aerobic rice X X - X X - - - - - - - 
1 growing 

season 

Fangueiro et al., 2017 Spain Upland crops Aerobic rice X X - X X - - - - - - - 
1 growing 

season 
García-Marco et al., 
2016 

Spain Upland crops Wheat X X - X X - - - - - - - 
1 growing 

season 
García-Marco et al., 
2016 

Spain Upland crops Wheat X X - X X - - - - - - - 
1 growing 

season 

Harada et al., 2007 Japan Paddy rice Paddy rice X X - X X - - - - - - - 
1 growing 

season 
Regina and Alakukku 
2010 

Finland Upland crops Barley X X - X X - - - - - - - 
1 growing 

season 
Regina and Alakukku 
2010 

Finland Upland crops Barley X X - X X - - - - - - - 
1 growing 

season 
Regina and Alakukku 
2010 

Finland Upland crops Barley X X - X X - - - - - - - 
1 growing 

season 

Tian et al., 2012 China Upland crops Wheat X X - X X - - - - - - - 
1 growing 

season 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Tian et al., 2012 China Upland crops Wheat X X - X X - - - - - - - 
1 growing 

season 

Tian et al., 2013 China Upland crops Wheat-maize X X - X X - - - - - - - 1 year 

Tian et al., 2013 China Upland crops Wheat-maize X X - X X - - - - - - - 1 year 

Yao et al., 2013 China Upland crops Wheat X X - X X - - - - - - - 
1 growing 

season 

Yao et al., 2013 China Upland crops Wheat X X - X X - - - - - - - 
1 growing 

season 

Yeboah et al., 2016 China Upland crops Wheat X X - X X - - - - - - - 
1 growing 

season 

Yeboah et al., 2016 China Upland crops Wheat X X - X X - - - - - - - 
1 growing 

season 

Zhang et al., 2015a China Upland crops Wheat X X - X X - - - - - - - 
1 growing 

season 

Zhang et al., 2015a China Upland crops Wheat X X - X X - - - - - - - 
1 growing 

season 

Zhang et al., 2015a China Upland crops Wheat X X - X X - - - - - - - 
1 growing 

season 

Zhang et al., 2015a China Upland crops Wheat X X - X X - - - - - - - 
1 growing 

season 

Zhang et al., 2015c China Paddy rice Paddy rice X X - X X - - - - - - - 
1 growing 

season 

Zhang et al., 2015c China Paddy rice Paddy rice X X - X X - - - - - - - 
1 growing 

season 

Zhang et al., 2015c China Upland crops Wheat X X - X X - - - - - - - 
1 growing 

season 

Zhang et al., 2015c China Upland crops Wheat X X - X X - - - - - - - 
1 growing 

season 

Zhang et al., 2016c China Paddy rice Paddy rice X X - X X - - - - - - - 
1 growing 

season 

Zhang et al., 2016c China Paddy rice Paddy rice X X - X X - - - - - - - 
1 growing 

season 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

A′ lvaro-Fuentes et al., 
2009 

Spain Upland crops Barley - - X - X - - - - - - 16 years - 

A′ lvaro-Fuentes et al., 
2009 

Spain Upland crops Barley - - X - X - - - - - - 16 years - 

A′ lvaro-Fuentes et al., 
2012 

Spain Upland crops Unkown - - X - X - - - - - - 13 years - 

A′ lvaro-Fuentes et al., 
2012 

Spain Upland crops Unkown - - X - X - - - - - - 13 years - 

A′ lvaro-Fuentes et al., 
2012 

Spain Upland crops Unkown - - X - X - - - - - - 13 years - 

Allmaras et al., 2004 US Upland crops Unkown - - X - X - - - - - - 13 years - 

Allmaras et al., 2004 US Upland crops Unkown - - X - X - - - - - - 13 years - 

Allmaras et al., 2004 US Upland crops Unkown - - X - X - - - - - - 13 years - 

Allmaras et al., 2004 US Upland crops Unkown - - X - X - - - - - - 13 years - 

Allmaras et al., 2004 US Upland crops Unkown - - X - X - - - - - - 13 years - 

Allmaras et al., 2004 US Upland crops Unkown - - X - X - - - - - - 13 years - 

Allmaras et al., 2004 US Upland crops Unkown - - X - X - - - - - - 13 years - 

Allmaras et al., 2004 US Upland crops Unkown - - X - X - - - - - - 13 years - 

Barbera et al., 2012 Italy Upland crops Wheat - - X - X - - - - - - 19 years - 

Bayer et al., 2006 Brazil Upland crops Maize - - X - X - - - - - - 18 years - 

Bayer et al., 2006 Brazil Upland crops Maize - - X - X - - - - - - 18 years - 

Bayer et al., 2006 Brazil Upland crops Maize - - X - X - - - - - - 9 years - 

Bayer et al., 2006 Brazil Upland crops Maize - - X - X - - - - - - 9 years - 

Bayer et al., 2006 Brazil Upland crops Maize - - X - X - - - - - - 13 years - 

Bayer et al., 2006 Brazil Upland crops Maize - - X - X - - - - - - 13 years - 

Ben-Hur Costa et al., 
2011 

Brazil Upland crops Mix - - X - X - - - - - - 19 years - 
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Ben-Hur Costa et al., 
2011 

Brazil Upland crops Mix - - X - X - - - - - - 19 years - 

Bhattacharyya et al., 
2008 

India Upland crops Wheat - - X - X - - - - - - 4 years - 

Bhattacharyya et al., 
2013a 

India Upland crops Unkown - - X - X - - - - - - 9 years - 

Buyanovsky et al., 1998 US Upland crops Corn - - X - X - - - - - - 26 years - 

Campbell et al., 1995 Canada Upland crops Wheat - - X - X - - - - - - 12 years - 

Campbell et al., 1995 Canada Upland crops Wheat - - X - X - - - - - - 12 years - 

Campbell et al., 1996a Canada Upland crops Wheat - - X - X - - - - - - 5 years - 

Campbell et al., 1996a Canada Upland crops Wheat - - X - X - - - - - - 9 years - 

Campbell et al., 1996b Canada Upland crops Wheat - - X - X - - - - - - 5 years - 

Campbell et al., 1996b Canada Upland crops Wheat - - X - X - - - - - - 9 years - 

Cavigelli et al., 2018 US Upland crops Wheat-corn-legume - - X - X - - - - - - 11 years - 

Cavigelli et al., 2018 US Upland crops Wheat-corn-legume - - X - X - - - - - - 16 years - 

Chen et al., 2015 China Paddy rice Paddy rice - - X - X - - - - - - 3 years - 

Chen et al., 2015 China Paddy rice Paddy rice - - X - X - - - - - - 7 years - 

Choudhary et al., 2013 India Upland crops Unkown - - X - X - - - - - - 2 years - 

Choudhary et al., 2013 India Upland crops Unkown - - X - X - - - - - - 2 years - 

Clapp et al., 2000 US Upland crops Maize - - X - X - - - - - - 13 years - 

Clapp et al., 2000 US Upland crops Maize - - X - X - - - - - - 13 years - 

Clapp et al., 2000 US Upland crops Maize - - X - X - - - - - - 13 years - 

Clapp et al., 2000 US Upland crops Maize - - X - X - - - - - - 13 years - 

Dendooven et al., 2012 Mexico Upland crops Corn-wheat - - X - X - - - - - - 19 years - 

Dendooven et al., 2012 Mexico Upland crops Corn-wheat - - X - X - - - - - - 19 years - 

Dikgwatlhe et al., 2014 China Upland crops Wheat-maize - - X - X - - - - - - 4 years - 
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+SN 

SOCSR 
Non-CO2 

GHG&yield 

Dikgwatlhe et al., 2014 China Upland crops Wheat-maize - - X - X - - - - - - 12 years - 

Dimassi et al., 2014 France Upland crops Wheat-maize - - X - X - - - - - - 42 years - 

Dimassi et al., 2014 France Upland crops Wheat-maize - - X - X - - - - - - 42 years - 

Dimassi et al., 2014 France Upland crops Wheat-maize - - X - X - - - - - - 42 years - 

Dimassi et al., 2014 France Upland crops Wheat-maize - - X - X - - - - - - 42 years - 

Dixit et al., 2019 India Upland crops Soybean-maize - - X - X - - - - - - 6 years - 

Dong et al., 2009 China Upland crops Wheat–corn - - X - X - - - - - - 5 years - 

Dong et al., 2009 China Upland crops Wheat–corn - - X - X - - - - - - 5 years - 

Farina et al., 2011 Italy Upland crops Maize-wheat - - X - X - - - - - - 2 years - 

Follett et al., 2005 Mexico Upland crops Wheat-corn - - X - X - - - - - - 6 years - 

Follett et al., 2005 Mexico Upland crops Wheat-corn - - X - X - - - - - - 6 years - 

Follett et al., 2005 Mexico Upland crops Wheat-corn - - X - X - - - - - - 6 years - 

Follett et al., 2005 Mexico Upland crops Wheat-legume - - X - X - - - - - - 6 years - 

Follett et al., 2005 Mexico Upland crops Wheat-legume - - X - X - - - - - - 6 years - 

Follett et al., 2005 Mexico Upland crops Wheat-legume - - X - X - - - - - - 6 years - 

Franzluebbers and 
Stuedemann 

US Upland crops Unkown - - X - X - - - - - - 1 year - 

Franzluebbers and 
Stuedemann 

US Upland crops Unkown - - X - X - - - - - - 2 years - 

Franzluebbers and 
Stuedemann 

US Upland crops Unkown - - X - X - - - - - - 3 years - 

Franzluebbers et al., 
1995a 

US Upland crops Wheat - - X - X - - - - - - 9 years - 

Franzluebbers et al., 
1995a 

US Upland crops Legume - - X - X - - - - - - 9 years - 

Franzluebbers et al., 
1995b 

US Upland crops 
Sorghum-

wheat/soybean 
- - X - X - - - - - - 9 years - 
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Franzluebbers et al., 
1995b 

US Upland crops 
Sorghum-

wheat/soybean 
- - X - X - - - - - - 9 years - 

Franzluebbers et al., 
1995b 

US Upland crops Wheat/soybean - - X - X - - - - - - 9 years - 

Grandy et al., 2006 US Upland crops Maize-wheat-soybean - - X - X - - - - - - 12 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 
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Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - X - - - - - - 3 years - 

Gwenzi et al., 2009 Zimbabwe Upland crops Wheat-cotton - - X - X - - - - - - 6 years - 

Halpern et al., 2010 Canada Upland crops Maize - - X - X - - - - - - 16 years - 

Halpern et al., 2010 Canada Upland crops Maize - - X - X - - - - - - 16 years - 

He et al., 2019 China Upland crops Unkown - - X - X - - - - - - 10 years - 

Hernanz et al., 2009 Spain Upland crops Winter wheat-legume - - X - X - - - - - - 20 years - 

Ji et al., 2010 China Paddy rice Unkown - - X - X - - - - - - 3 years - 

Ji et al., 2010 China Paddy rice Unkown - - X - X - - - - - - 3 years - 

Lo′ pez-Fando and 
Pardo 2011 

Spain Upland crops Barley/legume - - X - X - - - - - - 16 years - 

Maas et al., 2017 US Upland crops Corn-soybean - - X - X - - - - - - 44 years - 

Maas et al., 2017 US Upland crops Corn-soybean - - X - X - - - - - - 37 years - 

Maillard et al., 2018 Canada Upland crops Wheat - - X - X - - - - - - 29 years - 

Mazzoncini et al., 2016 Italy Upland crops Wheat-soybean - - X - X - - - - - - 30 years - 

Mikha et al., 2018 US Upland crops Wheat-sorghum - - X - X - - - - - - 50 years - 

Mikha et al., 2018 US Upland crops Wheat-sorghum - - X - X - - - - - - 50 years - 

Mikha et al., 2018 US Upland crops Wheat-sorghum - - X - X - - - - - - 50 years - 

Mrabet et al., 2001 Morocco Upland crops Mix - - X - X - - - - - - 11 years - 

Page et al., 2013 Australia Upland crops Wheat - - X - X - - - - - - 27 years - 

Page et al., 2013 Australia Upland crops Wheat - - X - X - - - - - - 27 years - 
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Page et al., 2013 Australia Upland crops Wheat - - X - X - - - - - - 27 years - 

Page et al., 2013 Australia Upland crops Wheat - - X - X - - - - - - 27 years - 

Page et al., 2013 Australia Upland crops Wheat - - X - X - - - - - - 5 years - 

Page et al., 2013 Australia Upland crops Wheat - - X - X - - - - - - 26 years - 

Peterson et al., 1998 US Upland crops Wheat - - X - X - - - - - - 8 years - 

Peterson et al., 1998 US Upland crops Wheat-sunflower - - X - X - - - - - - 8 years - 

Pratibh et al., 2016 India Upland crops Legume - - X - X - - - - - - 4 years - 

Pratibh et al., 2016 India Upland crops Legume - - X - X - - - - - - 4 years - 

Pratibh et al., 2016 India Upland crops Legume - - X - X - - - - - - 4 years - 

Qi et al., 2018 China Paddy rice Paddy rice - - X - X - - - - - - 10 years - 

Qi et al., 2018 China Paddy rice Paddy rice - - X - X - - - - - - 10 years - 

Sa et al., 2001 Brazil Upland crops Wheat-legume - - X - X - - - - - - 22 years - 

Sainju et al., 2002 US Upland crops Mix - - X - X - - - - - - 5 years - 

Sainju et al., 2002 US Upland crops Mix - - X - X - - - - - - 5 years - 

Sainju et al., 2002 US Upland crops Mix - - X - X - - - - - - 5 years - 

Sainju et al., 2002 US Upland crops Mix - - X - X - - - - - - 5 years - 

Sainju et al., 2002 US Upland crops Mix - - X - X - - - - - - 5 years - 

Sainju et al., 2002 US Upland crops Mix - - X - X - - - - - - 5 years - 

Sainju et al., 2002 US Upland crops Mix - - X - X - - - - - - 5 years - 

Sainju et al., 2002 US Upland crops Mix - - X - X - - - - - - 5 years - 

Sainju et al., 2002 US Upland crops Mix - - X - X - - - - - - 5 years - 

Sainju et al., 2002 US Upland crops Mix - - X - X - - - - - - 5 years - 

Sainju et al., 2002 US Upland crops Mix - - X - X - - - - - - 5 years - 

Sainju et al., 2002 US Upland crops Mix - - X - X - - - - - - 5 years - 

Sainju et al., 2006 US Upland crops Mix - - X - X - - - - - - 3 years - 
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Sainju et al., 2006 US Upland crops Mix - - X - X - - - - - - 3 years - 

Sainju et al., 2006 US Upland crops Mix - - X - X - - - - - - 3 years - 

Sainju et al., 2006 US Upland crops Mix - - X - X - - - - - - 3 years - 

Sainju et al., 2006 US Upland crops Mix - - X - X - - - - - - 3 years - 

Sainju et al., 2006 US Upland crops Mix - - X - X - - - - - - 3 years - 

Sainju et al., 2006 US Upland crops Mix - - X - X - - - - - - 3 years - 

Sainju et al., 2006 US Upland crops Mix - - X - X - - - - - - 3 years - 

Sainju et al., 2008 US Upland crops Mix - - X - X - - - - - - 10 years - 

Sainju et al., 2008 US Upland crops Mix - - X - X - - - - - - 10 years - 

Shrestha et al., 2009 US Upland crops Grass–legume - - X - X - - - - - - 5 years - 

Shrestha et al., 2009 US Upland crops Grass–legume - - X - X - - - - - - 5 years - 

Shrestha et al., 2009 US Upland crops Grass–legume - - X - X - - - - - - 5 years - 

Tian et al., 2016 China Upland crops Wheat-maize - - X - X - - - - - - 10 years - 

Tian et al., 2016 China Upland crops Wheat-maize - - X - X - - - - - - 10 years - 

Veloso et al., 2018 Brazil Upland crops Oat/maize - - X - X - - - - - - 29 years - 

Veloso et al., 2018 Brazil Upland crops Vetch/maize - - X - X - - - - - - 29 years - 

Veloso et al., 2018 Brazil Upland crops 
Oat-vetch/maize-

cowpea 
- - X - X - - - - - - 29 years - 

Veloso et al., 2018 Brazil Upland crops Oat/maize - - X - X - - - - - - 29 years - 

Veloso et al., 2018 Brazil Upland crops Vetch/maize - - X - X - - - - - - 29 years - 

Veloso et al., 2018 Brazil Upland crops 
Oat-vetch/maize-

cowpea 
- - X - X - - - - - - 29 years - 

Wang et al., 2018a China Upland crops Wheat-maize - - X - X - - - - - - 8 years - 

Yadav et al., 2017 India Upland crops Maize - - X - X - - - - - - 6 years - 

Yadav et al., 2019 India Paddy rice Paddy rice - - X - X - - - - - - 3 years - 

Yadav et al., 2019 India Upland crops Aerobic rice - - X - X - - - - - - 3 years - 
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Zhang et al., 2019 China Upland crops Maize–soybean - - X - X - - - - - - 12 years - 

Zhang et al., 2019 China Upland crops Maize–soybean - - X - X - - - - - - 12 years - 

Zhao et al., 2013 China Upland crops Maize-wheat - - X - X - - - - - - 8 years - 

Zhao et al., 2013 China Upland crops Maize-wheat - - X - X - - - - - - 8 years - 

Zhao et al., 2013 China Upland crops Maize-wheat - - X - X - - - - - - 8 years - 

Zhao et al., 2013 China Upland crops Maize-wheat - - X - X - - - - - - 8 years - 

Zhao et al., 2013 China Upland crops Maize-wheat - - X - X - - - - - - 4 years - 

Jiang et al., 2017 China Upland crops Maize X X X X - X - - - - - 5 years 
1 growing 

season 

Jiang et al., 2017 China Upland crops Maize X X X X - X - - - - - 5 years 
1 growing 

season 

Liu et al., 2016a China Paddy rice Paddy rice X X X X - X - - - - - 3 years 
1 growing 

season 

Liu et al., 2016a China Paddy rice Paddy rice X X X X - X - - - - - 3 years 
1 growing 

season 

Liu et al., 2016b China Paddy rice Paddy rice X X X X - X - - - - - 1 year 3 years 

Yang et al., 2018 China Paddy rice Paddy rice X X X X - X - - - - - 3 years 3 years 

Yang et al., 2018 China Paddy rice Paddy rice X X X X - X - - - - - 3 years 3 years 

Yang et al., 2018 China Paddy rice Paddy rice X X X X - X - - - - - 3 years 3 years 

Zhang et al., 2017 China Upland crops Wheat-maize X X X X - X - - - - - 2 years 2 years 

Yang et al., 2018 China Paddy rice Paddy rice X X X X - X - - - - - 3 years 3 years 

Bhatia et al., 2005 India Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Cui et al., 2017 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Fan et al., 2018 China Upland crops Maize X X - X - X - - - - - - 1 year 

Fan et al., 2018 China Upland crops Maize X X - X - X - - - - - - 1 year 

Fan et al., 2018 China Upland crops Maize X X - X - X - - - - - - 1 year 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Fan et al., 2018 China Upland crops Maize X X - X - X - - - - - - 1 year 

Fan et al., 2018 China Upland crops Maize X X - X - X - - - - - - 2 years 

Fan et al., 2018 China Upland crops Maize X X - X - X - - - - - - 2 years 

Gupta et al., 2016 India Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Gupta et al., 2016 India Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Hang et al., 2014 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Hang et al., 2014 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Hang et al., 2014 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Hang et al., 2014 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Hang et al., 2014 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Hang et al., 2014 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Htun et al., 2017 China Upland crops Wheat X X - X - X - - - - - - 
1 growing 

season 

Htun et al., 2017 China Upland crops Wheat X X - X - X - - - - - - 1 year 

Hu et al., 2016 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Hu et al., 2016 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Hu et al., 2016 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Hu et al., 2016 China Upland crops Wheat X X - X - X - - - - - - 
1 growing 

season 

Hu et al., 2016 China Upland crops Wheat X X - X - X - - - - - - 
1 growing 

season 
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Hu et al., 2016 China Upland crops Wheat X X - X - X - - - - - - 
1 growing 

season 

Jiang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Jiang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Jiang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Jiang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Jiang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 1 year 

Jiang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 1 year 

Jiang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Jiang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Jiang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Jiang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Jiang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 1 year 

Jiang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 1 year 

Kim et al., 2014 
South 
Korea 

Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Kim et al., 2014 
South 
Korea 

Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Koyama et al., 2015 Japan Paddy rice Paddy rice X X - X - X - - - - - - 1 year 

Lehman et al., 2016 US Upland crops Maize X X - X - X - - - - - - 4 years 

Liu et al., 2016b China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 
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Ma et al., 2009 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Ma et al., 2009 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Ma et al., 2009 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Ma et al., 2009 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Ma et al., 2009 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Ma et al., 2009 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Qin et al., 2016 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Qin et al., 2016 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Qin et al., 2016 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Qin et al., 2016 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Qin et al., 2016 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Qin et al., 2016 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Qin et al., 2016 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Qin et al., 2016 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Qin et al., 2016 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 
Samoy-Pascual et al., 
2019 

Philippines Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 
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+SN 
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Shen et al., 2014 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Shen et al., 2014 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Shen et al., 2014 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Shen et al., 2014 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Wang et al., 2015 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Wang et al., 2015 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Wang et al., 2017 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Wang et al., 2018d China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Wang et al., 2018d China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Wang et al., 2018d China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Xiong et al., 2015 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Xiong et al., 2015 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Xiong et al., 2015 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Xiong et al., 2015 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Xiong et al., 2015 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Xiong et al., 2015 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 



Reference Country 
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Management practices 
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Individual Paired 

Category Type CH4 N2O SOCSR Yield 
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No-tillage 
+SN 

SOCSR 
Non-CO2 
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Xu et al., 2017a China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Xu et al., 2017a China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Xu et al., 2017b China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Xu et al., 2017b China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2017b China Upland crops Maize X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2017b China Upland crops Maize X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 



Reference Country 
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No-tillage 
+SN 

SOCSR 
Non-CO2 
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Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 1 year 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 1 year 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 1 year 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 1 year 
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Management practices 
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Individual Paired 

Category Type CH4 N2O SOCSR Yield 
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+SN 

SOCSR 
Non-CO2 
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Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 1 year 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 1 year 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 1 year 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 1 year 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 1 year 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 1 year 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 1 year 

Yang et al., 2018 China Paddy rice Paddy rice X X - X - X - - - - - - 1 year 

Yao et al., 2013 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Yao et al., 2013 China Upland crops Wheat X X - X - X - - - - - - 
1 growing 

season 

Yao et al., 2013 China Upland crops Wheat X X - X - X - - - - - - 
1 growing 

season 

Yeboah et al., 2016 China Upland crops Wheat X X - X - X - - - - - - 
1 growing 

season 

Yeboah et al., 2016 China Upland crops Wheat X X - X - X - - - - - - 
1 growing 

season 

Zhang et al., 2015a China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Zhang et al., 2015a China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Zhang et al., 2015a China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Zhang et al., 2015a China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Zhang et al., 2015a China Upland crops Wheat X X - X - X - - - - - - 
1 growing 

season 

Zhang et al., 2015a China Upland crops Wheat X X - X - X - - - - - - 
1 growing 

season 
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Zhang et al., 2015a China Upland crops Wheat X X - X - X - - - - - - 
1 growing 

season 

Zhang et al., 2015a China Upland crops Wheat X X - X - X - - - - - - 
1 growing 

season 

Zhang et al., 2015b China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Zhang et al., 2015b China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Zhang et al., 2015b China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Zhang et al., 2015c China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Zhang et al., 2015c China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Zhang et al., 2015c China Upland crops Wheat X X - X - X - - - - - - 
1 growing 

season 

Zhang et al., 2015c China Upland crops Wheat X X - X - X - - - - - - 
1 growing 

season 

Wang et al., 2017 China Paddy rice Paddy rice X X - X - X - - - - - - 
1 growing 

season 

Allmaras et al., 2004 US Upland crops Unkown - - X - - X - - - - - 13 years - 

Allmaras et al., 2004 US Upland crops Unkown - - X - - X - - - - - 13 years - 

Allmaras et al., 2004 US Upland crops Unkown - - X - - X - - - - - 13 years - 

Allmaras et al., 2004 US Upland crops Unkown - - X - - X - - - - - 13 years - 

Allmaras et al., 2004 US Upland crops Unkown - - X - - X - - - - - 13 years - 

Allmaras et al., 2004 US Upland crops Unkown - - X - - X - - - - - 13 years - 

Aulakh et al., 2001 India Paddy rice Paddy rice - - X - - X - - - - - 4 years - 

Aulakh et al., 2001 India Paddy rice Paddy rice - - X - - X - - - - - 4 years - 

Aulakh et al., 2001 India Upland crops Wheat - - X - - X - - - - - 4 years - 
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Bhattacharyya et al., 
2012 

India Paddy rice Paddy rice - - X - - X - - - - - 6 years - 

Bista et al., 2016 US Upland crops Wheat - - X - - X - - - - - 80 years - 

Campbell et al., 1998 Canada Upland crops Wheat - - X - - X - - - - - 10 years - 

Cassman et al., 1996 Philippines Paddy rice Paddy rice - - X - - X - - - - - 11 years - 

Cassman et al., 1996 Philippines Paddy rice Paddy rice - - X - - X - - - - - 9.5 years - 

Chen et al., 2015 China Paddy rice Paddy rice - - X - - X - - - - - 3 years - 

Chen et al., 2015 China Paddy rice Paddy rice - - X - - X - - - - - 7 years - 

Cheng et al., 2017 China Paddy rice Unkown - - X - - X - - - - - 31 years - 

Clapp et al., 2000 US Upland crops Maize - - X - - X - - - - - 13 years - 

Clapp et al., 2000 US Upland crops Maize - - X - - X - - - - - 13 years - 

Clapp et al., 2000 US Upland crops Maize - - X - - X - - - - - 13 years - 

Clapp et al., 2000 US Upland crops Maize - - X - - X - - - - - 13 years - 

Cong et al., 2014 China Upland crops Corn-wheat - - X - - X - - - - - 16 years - 

Cong et al., 2014 China Upland crops Corn-wheat - - X - - X - - - - - 20 years - 

Cong et al., 2014 China Upland crops Corn-wheat - - X - - X - - - - - 20 years - 

Dendooven et al., 2012 Mexico Upland crops Corn-wheat - - X - - X - - - - - 19 years - 

Dendooven et al., 2012 Mexico Upland crops Corn-wheat - - X - - X - - - - - 19 years - 

Dikgwatlhe et al., 2014 China Upland crops Wheat-maize - - X - - X - - - - - 4 years - 

Dikgwatlhe et al., 2014 China Upland crops Wheat-maize - - X - - X - - - - - 12 years - 

Dimassi et al., 2014 France Upland crops Wheat-maize - - X - - X - - - - - 42 years - 

Dimassi et al., 2014 France Upland crops Wheat-maize - - X - - X - - - - - 42 years - 

Dimassi et al., 2014 France Upland crops Wheat-maize - - X - - X - - - - - 42 years - 

Dimassi et al., 2014 France Upland crops Wheat-maize - - X - - X - - - - - 42 years - 

Dong et al., 2009 China Upland crops Wheat–corn - - X - - X - - - - - 5 years - 
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Dou et al., 2016 China Upland crops Maize - - X - - X - - - - - 25 years - 

Fan et al., 2008 China Upland crops Maize-wheat - - X - - X - - - - - 26 years - 

Fan et al., 2018 China Upland crops Maize - - X - - X - - - - - 2 years - 

Fan et al., 2018 China Upland crops Maize - - X - - X - - - - - 2 years - 

Feiziene et al., 2018 Lithuania Upland crops Wheat-barley - - X - - X - - - - - 17 years - 

Feiziene et al., 2018 Lithuania Upland crops Wheat-barley - - X - - X - - - - - 17 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - - X - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - - X - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - - X - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - - X - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - - X - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - - X - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - - X - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - - X - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - - X - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - - X - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - - X - - - - - 3 years - 

Guzman and Al-Kaisi 
2014 

US Upland crops Maize - - X - - X - - - - - 3 years - 

Halpern et al., 2010 Canada Upland crops Maize - - X - - X - - - - - 16 years - 
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Halpern et al., 2010 Canada Upland crops Maize - - X - - X - - - - - 16 years - 

Heitkamp et al., 2012 Germany Upland crops Maize-wheat-barley - - X - - X - - - - - 21 years - 

Heitkamp et al., 2012 Germany Upland crops Maize-wheat-barley - - X - - X - - - - - 21 years - 

Heitkamp et al., 2012 Germany Upland crops Maize-wheat-barley - - X - - X - - - - - 21 years - 

Heitkamp et al., 2012 Germany Upland crops Maize-wheat-barley - - X - - X - - - - - 21 years - 

Heitkamp et al., 2012 Germany Upland crops Maize-wheat-barley - - X - - X - - - - - 21 years - 

Heitkamp et al., 2012 Germany Upland crops Maize-wheat-barley - - X - - X - - - - - 21 years - 

Hua et al., 2014 China Upland crops Wheat-soybean - - X - - X - - - - - 29 years - 

Huang et al., 2013 China Upland crops Maize-wheat - - X - - X - - - - - 6 years - 

Huang et al., 2013 China Upland crops Maize-wheat - - X - - X - - - - - 6 years - 

Huang et al., 2013 China Upland crops Maize-wheat - - X - - X - - - - - 6 years - 

Huang et al., 2018 China Upland crops Maize-wheat - - X - - X - - - - - 7 years - 

Huang et al., 2018 China Upland crops Maize-wheat - - X - - X - - - - - 7 years - 

Huang et al., 2018 China Upland crops Maize-wheat - - X - - X - - - - - 7 years - 

Jacinthe and Lal 2003 US Upland crops Wheat - - X - - X - - - - - 4 years - 

Jacinthe and Lal 2003 US Upland crops Wheat - - X - - X - - - - - 4 years - 

Jacinthe and Lal 2003 US Upland crops Wheat - - X - - X - - - - - 4 years - 

Jacinthe and Lal 2003 US Upland crops Wheat - - X - - X - - - - - 4 years - 

Ji et al., 2010 China Paddy rice Unkown - - X - - X - - - - - 28 years - 

Ji et al., 2010 China Paddy rice Unkown - - X - - X - - - - - 3 years - 

Ji et al., 2010 China Paddy rice Unkown - - X - - X - - - - - 3 years - 

Kaur et al., 2008 India Paddy rice Paddy rice - - X - - X - - - - - 14 years - 

Kaur et al., 2008 India Paddy rice Paddy rice - - X - - X - - - - - 14 years - 

Koga and Tsuji 2009 Japan Upland crops Mix-legume - - X - - X - - - - - 4 years - 

Liu et al., 2014 China Paddy rice Paddy rice - - X - - X - - - - - 11 years - 
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Liu et al., 2014 China Paddy rice Paddy rice - - X - - X - - - - - 21 years - 

Liu et al., 2014 China Upland crops Unkown - - X - - X - - - - - 11 years - 

Liu et al., 2014 China Upland crops Unkown - - X - - X - - - - - 11 years - 

Liu et al., 2019 China Upland crops Maize-wheat - - X - - X - - - - - 14 years - 

Liu et al., 2019 China Upland crops Maize-wheat - - X - - X - - - - - 14 years - 

Liu et al., 2019 China Upland crops Maize-wheat - - X - - X - - - - - 14 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 5 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 5 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 5 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 5 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 5 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 5 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 5 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 5 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 5 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 10 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 10 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 10 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 10 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 10 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 10 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 10 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 10 years - 

Lou et al., 2011 China Upland crops Maize - - X - - X - - - - - 10 years - 

Meena et al., 2019 India Upland crops Maize-chickpea - - X - - X - - - - - 5 years - 
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Poeplau et al., 2017 Italy Upland crops Unkown - - X - - X - - - - - 40 years - 

Poeplau et al., 2017 Italy Upland crops Unkown - - X - - X - - - - - 40 years - 

Poeplau et al., 2017 Italy Upland crops Unkown - - X - - X - - - - - 40 years - 

Poeplau et al., 2017 Italy Upland crops Unkown - - X - - X - - - - - 40 years - 

Poeplau et al., 2017 Italy Upland crops Unkown - - X - - X - - - - - 40 years - 

Qi et al., 2018 China Paddy rice Paddy rice - - X - - X - - - - - 10 years - 

Ramdas et al., 2016 India Paddy rice Paddy rice - - X - - X - - - - - 5 years - 

Saha and Ghosh India Upland crops Unkown - - X - - X - - - - - 3 years - 

Shirato et al., 2011 Japan Paddy rice Paddy rice - - X - - X - - - - - 37 years - 

Srinivasarao et al., 
2012b 

India Upland crops Soybean-safflower - - X - - X - - - - - 15 years - 

Srinivasarao et al., 
2012b 

India Upland crops Soybean-safflower - - X - - X - - - - - 15 years - 

Sugihara et al., 2012 Tanzania Upland crops Maize - - X - - X - - - - - 3 years - 

Sugihara et al., 2012 Tanzania Upland crops Maize - - X - - X - - - - - 3 years - 

Sugihara et al., 2012 Tanzania Upland crops Maize - - X - - X - - - - - 3 years - 

Sugihara et al., 2012 Tanzania Upland crops Maize - - X - - X - - - - - 3 years - 

Tong et al., 2014 China Upland crops Wheat-maize - - X - - X - - - - - 17 years - 

van Groenigen et al., 
2011 

Ireland Upland crops Wheat - - X - - X - - - - - 9 years - 

van Groenigen et al., 
2011 

Ireland Upland crops Wheat - - X - - X - - - - - 9 years - 

Wang et al., 2018a China Upland crops Wheat-maize - - X - - X - - - - - 8 years - 

Wang et al., 2018b China Upland crops Wheat/soybean - - X - - X - - - - - 33 years - 

Wang et al., 2018b China Upland crops Wheat/maize/soybean - - X - - X - - - - - 21 years - 

Wang et al., 2018b China Upland crops Maize - - X - - X - - - - - 18 years - 

Yao et al., 2018 China Upland crops Legume - - X - - X - - - - - 4 years - 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Zhang et al., 2010 China Upland crops Maize - - X - - X - - - - - 15 years - 

Zhang et al., 2010 China Upland crops Wheat/maize - - X - - X - - - - - 15 years - 

Zhang et al., 2010 China Upland crops Wheat/maize - - X - - X - - - - - 15 years - 

Zhang et al., 2012 China Paddy rice Paddy rice - - X - - X - - - - - 26 years - 

Zhang et al., 2012 China Paddy rice Paddy rice - - X - - X - - - - - 26 years - 

Zhang et al., 2012 China Paddy rice Paddy rice - - X - - X - - - - - 26 years - 

Zhang et al., 2015b China Upland crops 
Corn–millet–corn–

millet 
- - X - - X - - - - - 4 years - 

Zhang et al., 2015b China Upland crops 
Corn–millet–corn–

millet 
- - X - - X - - - - - 4 years - 

Zhang et al., 2015b China Upland crops 
Corn–millet–corn–

millet 
- - X - - X - - - - - 4 years - 

Zhang et al., 2016b China Upland crops Unkown - - X - - X - - - - - 8 years - 

Zhang et al., 2016b China Upland crops Unkown - - X - - X - - - - - 8 years - 

Zhang et al., 2016b China Upland crops Unkown - - X - - X - - - - - 8 years - 

Zhang et al., 2016b China Upland crops Unkown - - X - - X - - - - - 8 years - 

Zhang et al., 2016b China Upland crops Unkown - - X - - X - - - - - 13 years - 

Zhang et al., 2016b China Upland crops Unkown - - X - - X - - - - - 13 years - 

Zhang et al., 2016b China Upland crops Unkown - - X - - X - - - - - 13 years - 

Zhang et al., 2016b China Upland crops Unkown - - X - - X - - - - - 13 years - 

Zhang et al., 2016b China Upland crops Unkown - - X - - X - - - - - 18 years - 

Zhang et al., 2016b China Upland crops Unkown - - X - - X - - - - - 18 years - 

Zhang et al., 2016b China Upland crops Unkown - - X - - X - - - - - 18 years - 

Zhang et al., 2016b China Upland crops Unkown - - X - - X - - - - - 18 years - 

Zhang et al., 2016b China Upland crops Unkown - - X - - X - - - - - 22 years - 

Zhang et al., 2016b China Upland crops Unkown - - X - - X - - - - - 22 years - 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Zhang et al., 2016b China Upland crops Unkown - - X - - X - - - - - 22 years - 

Zhang et al., 2016b China Upland crops Unkown - - X - - X - - - - - 22 years - 

Zhao et al., 2013 China Upland crops Maize-wheat - - X - - X - - - - - 4 years - 

Zhao et al., 2013 China Upland crops Maize-wheat - - X - - X - - - - - 24 years - 

Zhao et al., 2013 China Upland crops Maize-wheat - - X - - X - - - - - 24 years - 

Zhao et al., 2018 China Upland crops Maize-wheat - - X - - X - - - - - 7 years - 

Zhao et al., 2018 China Upland crops Maize-wheat - - X - - X - - - - - 7 years - 

Zhao et al., 2018 China Upland crops Maize-wheat - - X - - X - - - - - 7 years - 

Camargo et al., 2018 Brazil Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Camargo et al., 2018 Brazil Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Dong et al., 2018 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Dong et al., 2018 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Dong et al., 2018 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Dong et al., 2018 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Dong et al., 2018 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Dong et al., 2018 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Dong et al., 2018 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Dong et al., 2018 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Gupta et al., 2016 India Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Gupta et al., 2016 India Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Kreye et al., 2007 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Kreye et al., 2007 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Kreye et al., 2007 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Kreye et al., 2007 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Kumar et al., 2016 India Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Kumar et al., 2016 India Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Kumar et al., 2016 India Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Kumar et al., 2016 India Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Kumar et al., 2016 India Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Kumar et al., 2016 India Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Kumar et al., 2016 India Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Kumar et al., 2016 India Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Kumar et al., 2016 India Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Kumar et al., 2016 India Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

LaHue et al., 2016 US Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

LaHue et al., 2016 US Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

LaHue et al., 2016 US Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

LaHue et al., 2016 US Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

LaHue et al., 2016 US Paddy rice Paddy rice X X - X - - X - - - - - 1 year 

LaHue et al., 2016 US Paddy rice Paddy rice X X - X - - X - - - - - 1 year 

LaHue et al., 2016 US Paddy rice Paddy rice X X - X - - X - - - - - 1 year 

LaHue et al., 2016 US Paddy rice Paddy rice X X - X - - X - - - - - 1 year 

Li et al., 2018 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Li et al., 2018 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Li et al., 2018 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Li et al., 2018 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Li et al., 2018 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Li et al., 2018 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Linquist et al., 2015 US Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Linquist et al., 2015 US Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Linquist et al., 2015 US Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Linquist et al., 2015 US Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Linquist et al., 2015 US Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Linquist et al., 2015 US Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Linquist et al., 2015 US Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Linquist et al., 2015 US Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Linquist et al., 2015 US Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Maris et al., 2016 Spain Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Pandey et al., 2014 Vietnam Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Pandey et al., 2014 Vietnam Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Pandey et al., 2014 Vietnam Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Pandey et al., 2014 Vietnam Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 
Samoy-Pascual et al., 
2019 

Philippines Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 
Samoy-Pascual et al., 
2019 

Philippines Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Su et al., 2017 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Su et al., 2017 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Su et al., 2017 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Wang et al., 2017 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Wang et al., 2017 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Wang et al., 2018c China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Wang et al., 2018c China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Win et al., 2015 Japan Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Win et al., 2015 Japan Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Xu et al., 2015 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Xu et al., 2015 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Xu et al., 2015 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Xu et al., 2015 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Xu et al., 2016 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Xu et al., 2016 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Xu et al., 2016 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Xu et al., 2016 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Yang et al., 2019 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Yang et al., 2019 China Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Zschornack et al., 2016 Brazil Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Zschornack et al., 2016 Brazil Paddy rice Paddy rice X X - X - - X - - - - - 
1 growing 

season 

Fangueiro et al., 2017 China Paddy rice Paddy rice - - X - - - X - - - - 2 years - 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Haque et al, 2017 
South 
Korea 

Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Haque et al, 2017 
South 
Korea 

Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Haque et al, 2017 
South 
Korea 

Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Haque et al, 2017 
South 
Korea 

Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Li et al., 2016 China Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Li et al., 2016 China Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Li et al., 2016 China Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Qu et al., 2012 China Paddy rice Paddy rice - - X - - - X - - - - 7 years - 

Qu et al., 2012 China Paddy rice Paddy rice - - X - - - X - - - - 7 years - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - X - - - - 1 year - 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
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No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Xu et al., 2013 China Paddy rice Paddy rice - - X - - - X - - - - 1 year - 

Xu et al., 2017c China Paddy rice Paddy rice - - X - - - X - - - - 3 years - 

Bhattacharyya et al., 
2012 

India Paddy rice Paddy rice X X X X - - - X - - - 4 years 3 years 

Bhattacharyya et al., 
2012 

India Paddy rice Paddy rice X X X X - - - X - - - 4 years 3 years 

Bhatia et al., 2005 India Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Bhatia et al., 2005 India Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Bhatia et al., 2005 India Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Das and Adhya 2014 India Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Das and Adhya 2014 India Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Das and Adhya 2014 India Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Dash et al., 2017 India Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Dash et al., 2017 India Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Dash et al., 2017 India Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Dash et al., 2017 India Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Dash et al., 2017 India Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Dash et al., 2017 India Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Dash et al., 2017 India Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Dash et al., 2017 India Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Guardia et al., 2017 Spain Upland crops Maize X X - X - - - X - - - - 1 year 

Guardia et al., 2017 Spain Upland crops Maize X X - X - - - X - - - - 1 year 

Lenka et al., 2017 India Upland crops Wheat X X - X - - - X - - - - 
1 growing 

season 

Lenka et al., 2017 India Upland crops Wheat X X - X - - - X - - - - 
1 growing 

season 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Liang et al., 2013 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - X - - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - X - - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - X - - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - X - - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - X - - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - X - - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - X - - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - X - - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - X - - - - 
1 growing 

season 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - X - - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - X - - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - X - - - - 
1 growing 

season 

Mohanty et al., 2017 India Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Mohanty et al., 2017 India Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Mohanty et al., 2017 India Upland crops Aerobic rice X X - X - - - X - - - - 
1 growing 

season 

Mohanty et al., 2017 India Upland crops Aerobic rice X X - X - - - X - - - - 
1 growing 

season 

Shi et al., 2014 China Upland crops Maize X X - X - - - X - - - - 
1 growing 

season 

Sun et al., 2018 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Sun et al., 2018 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Tang et al., 2016 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Tang et al., 2016 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Tang et al., 2016 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Tang et al., 2016 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Tang et al., 2016 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Tang et al., 2016 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Zhang et al., 2016c China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Zhang et al., 2016c China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Zhang et al., 2016c China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Zhang et al., 2016c China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Zhao et al., 2015 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Zhao et al., 2015 China Paddy rice Paddy rice X X - X - - - X - - - - 
1 growing 

season 

Brar et al.,2015 India Upland crops Wheat-maize - - X - - - - X - - - 36 years - 

Buyanovsky et al., 1998 US Upland crops Wheat - - X - - - - X - - - 26 years - 

Buyanovsky et al., 1998 US Upland crops Corn - - X - - - - X - - - 26 years - 

Cai and Qin 2006 China Upland crops Wheat-maize - - X - - - - X - - - 15 years - 

Cai and Qin 2006 China Upland crops Wheat-maize - - X - - - - X - - - 15 years - 

Cassman et al., 1996 Philippines Paddy rice Paddy rice - - X - - - - X - - - 11 years - 

Cassman et al., 1996 Philippines Paddy rice Paddy rice - - X - - - - X - - - 9.5 years - 

Chen et al., 2017 China Upland crops Maize - - X - - - - X - - - 1 year - 

Chen et al., 2017 China Upland crops Maize - - X - - - - X - - - 1 year - 

Chen et al., 2017 China Upland crops Maize - - X - - - - X - - - 1 year - 

Chen et al., 2017 China Upland crops Maize - - X - - - - X - - - 1 year - 

Fan et al., 2014 China Upland crops Maize-wheat - - X - - - - X - - - 20 years - 

Fan et al., 2014 China Upland crops Maize-wheat - - X - - - - X - - - 20 years - 

Prasad et al., 2016 India Upland crops Millet-legume - - X - - - - X - - - 10 years - 

Prasad et al., 2016 India Upland crops Millet-legume - - X - - - - X - - - 10 years - 

Shahzad et al., 2017 Pakistan Upland crops Maize - - X - - - - X - - - 1 year - 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Shahzad et al., 2017 Pakistan Upland crops Maize - - X - - - - X - - - 1 year - 

Shahzad et al., 2017 Pakistan Upland crops Maize - - X - - - - X - - - 2 years - 

Shahzad et al., 2017 Pakistan Upland crops Maize - - X - - - - X - - - 2 years - 

Srinivasarao et al., 
2012a 

India Paddy rice Paddy rice - - X - - - - X - - - 21 years - 

Srinivasarao et al., 
2012a 

India Paddy rice Paddy rice - - X - - - - X - - - 21 years - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - - X - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - - X - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - - X - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - - X - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - - X - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - - X - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - - X - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - - X - - - 1 year - 

Tripathy and Singh 2004 India Paddy rice Paddy rice - - X - - - - X - - - 1 year - 

Zhang et al., 2010 China Upland crops Maize - - X - - - - X - - - 15 years - 

Zhang et al., 2010 China Upland crops Wheat/maize - - X - - - - X - - - 15 years - 

Zhang et al., 2010 China Upland crops Wheat/maize - - X - - - - X - - - 15 years - 

Zhang et al., 2010 China Upland crops Wheat/maize - - X - - - - X - - - 15 years - 

Zhang et al., 2012 China Paddy rice Paddy rice - - X - - - - X - - - 24 years - 

Zhang et al., 2012 China Paddy rice Paddy rice - - X - - - - X - - - 24 years - 

Zhang et al., 2012 China Paddy rice Paddy rice - - X - - - - X - - - 24 years - 

Zhang et al., 2016a China Upland crops Maize-wheat - - X - - - - X - - - 15 years - 

Zhang et al., 2016a China Upland crops Maize-wheat - - X - - - - X - - - 15 years - 

Wang et al., 2011 Austrilia Upland crops Wheat X X - X - - - - - - X - 1 year 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Wang et al., 2011 Austrilia Upland crops Wheat X X - X - - - - - - X - 1 year 

Wang et al., 2011 Austrilia Upland crops Wheat X X - X - - - - - - X - 1 year 

Wang et al., 2011 Austrilia Upland crops Wheat X X - X - - - - - - X - 1 year 

Wang et al., 2011 Austrilia Upland crops Wheat X X - X - - - - - - X - 3 years 

Wang et al., 2011 Austrilia Upland crops Wheat X X - X - - - - - - X - 3 years 

Wang et al., 2011 Austrilia Upland crops Wheat X X - X - - - - - - X - 3 years 

Wang et al., 2011 Austrilia Upland crops Wheat X X - X - - - - - - X - 3 years 

Sainju et al., 2014 US Upland crops Barley X X - X - - - - - - X - 1 year 

Sainju et al., 2014 US Upland crops Barley X X - X - - - - - - X - 1 year 

Sainju et al., 2014 US Upland crops Barley X X - X - - - - - - X - 3 years 

Sainju et al., 2014 US Upland crops Barley X X - X - - - - - - X - 3 years 

Sainju et al., 2014 US Upland crops Barley X X - X - - - - - - X - 1 year 

Sainju et al., 2014 US Upland crops Barley X X - X - - - - - - X - 1 year 

Sainju et al., 2014 US Upland crops Barley X X - X - - - - - - X - 3 years 

Sainju et al., 2014 US Upland crops Barley X X - X - - - - - - X - 3 years 

Yeboah et al., 2016 China Upland crops Wheat X X - X - - - - - X - - 
1 growing 

season 

Yeboah et al., 2016 China Upland crops Wheat X X - X - - - - - X - - 
1 growing 

season 

Yeboah et al., 2016 China Upland crops Wheat X X - X - - - - - X - - 
1 growing 

season 

Yeboah et al., 2016 China Upland crops Wheat X X - X - - - - - X - - 
1 growing 

season 

Fan et al., 2018 China Upland crops Maize X X - X - - - - - X - - 1 year 

Fan et al., 2018 China Upland crops Maize X X - X - - - - - X - - 1 year 

Fan et al., 2018 China Upland crops Maize X X - X - - - - - X - - 1 year 

Fan et al., 2018 China Upland crops Maize X X - X - - - - - X - - 1 year 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
return 

Intermittent 
irrigation 

SN 
replacements by 

ON  

SN 
+ON 

No-tillage 
+straw 
return 

No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Fan et al., 2018 China Upland crops Maize X X - X - - - - - X - - 1 year 

Fan et al., 2018 China Upland crops Maize X X - X - - - - - X - - 1 year 

Fan et al., 2018 China Upland crops Maize X X - X - - - - - X - - 1 year 

Fan et al., 2018 China Upland crops Maize X X - X - - - - - X - - 1 year 

Fan et al., 2018 China Upland crops Maize X X - X - - - - - X - - 2 years 

Fan et al., 2018 China Upland crops Maize X X - X - - - - - X - - 2 years 

Fan et al., 2018 China Upland crops Maize X X - X - - - - - X - - 2 years 

Fan et al., 2018 China Upland crops Maize X X - X - - - - - X - - 2 years 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - - X - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - - X - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - - X - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - - X - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - - X - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - - X - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - - X - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - - X - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - - X - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - - X - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - - X - - - 
1 growing 

season 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
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Intermittent 
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ON  

SN 
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No-tillage 
+straw 
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No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - - X - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - - X - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - - X - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - - X - - - 
1 growing 

season 

Mapanda et al., 2011 Zimbabwe Upland crops Maize X X - X - - - - X - - - 
1 growing 

season 
Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 
1 growing 

season 
Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 
1 growing 

season 
Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 
1 growing 

season 
Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 
1 growing 

season 
Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 
1 growing 

season 
Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 
1 growing 

season 
Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 
1 growing 

season 
Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 
1 growing 

season 
Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 
1 growing 

season 
Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 
1 growing 

season 
Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 
1 growing 

season 



Reference Country 

Crop Variables 
Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
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Intermittent 
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replacements by 

ON  

SN 
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No-tillage 
+straw 
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No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 
1 growing 

season 
Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 
1 growing 

season 
Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 
1 growing 

season 
Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 
1 growing 

season 
Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 
1 growing 

season 
Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Bhattacharyya et al., 
2013b 

India Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Barton et al., 2016 Australia Upland crops Barley X X - X - - - - X - - - 1 year 

Barton et al., 2016 Australia Upland crops Barley X X - X - - - - X - - - 1 year 

Barton et al., 2016 Australia Upland crops Barley X X - X - - - - X - - - 1 year 

Barton et al., 2016 Australia Upland crops Barley X X - X - - - - X - - - 1 year 

Mukumbuta et al., 2017 Japan Upland crops Maize X X - X - - - - X - - - 1 year 



Reference Country 
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Management practices 
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Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-
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replacements by 

ON  

SN 
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No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Mukumbuta et al., 2017 Japan Upland crops Maize X X - X - - - - X - - - 1 year 

Mukumbuta et al., 2017 Japan Upland crops Maize X X - X - - - - X - - - 1 year 

Mukumbuta et al., 2017 Japan Upland crops Maize X X - X - - - - X - - - 1 year 

Mukumbuta et al., 2017 Japan Upland crops Maize X X - X - - - - X - - - 1 year 

Mukumbuta et al., 2017 Japan Upland crops Maize X X - X - - - - X - - - 1 year 

Mukumbuta et al., 2017 Japan Upland crops Maize X X - X - - - - X - - - 1 year 

Mukumbuta et al., 2017 Japan Upland crops Maize X X - X - - - - X - - - 1 year 

Mukumbuta et al., 2017 Japan Upland crops Maize X X - X - - - - X - - - 1 year 

Mukumbuta et al., 2017 Japan Upland crops Maize X X - X - - - - X - - - 1 year 

Mukumbuta et al., 2017 Japan Upland crops Maize X X - X - - - - X - - - 1 year 

Mukumbuta et al., 2017 Japan Upland crops Maize X X - X - - - - X - - - 1 year 

Mukumbuta et al., 2017 Japan Upland crops Maize X X - X - - - - X - - - 1 year 

Mukumbuta et al., 2017 Japan Upland crops Maize X X - X - - - - X - - - 1 year 

Mukumbuta et al., 2017 Japan Upland crops Maize X X - X - - - - X - - - 1 year 

Mukumbuta et al., 2017 Japan Upland crops Maize X X - X - - - - X - - - 1 year 

Trinh et al., 2017 Vietnam Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Trinh et al., 2017 Vietnam Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Trinh et al., 2017 Vietnam Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Trinh et al., 2017 Vietnam Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Trinh et al., 2017 Vietnam Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Trinh et al., 2017 Vietnam Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Trinh et al., 2017 Vietnam Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Trinh et al., 2017 Vietnam Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Trinh et al., 2017 Vietnam Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Trinh et al., 2017 Vietnam Paddy rice Paddy rice X X - X - - - - X - - - 1 year 



Reference Country 
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Management practices 

Durations 
Individual Paired 

Category Type CH4 N2O SOCSR Yield 
No-

tillage 
Straw 
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ON  

SN 
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No-tillage 
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No-tillage 
+SN 

SOCSR 
Non-CO2 

GHG&yield 

Trinh et al., 2017 Vietnam Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Trinh et al., 2017 Vietnam Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Trinh et al., 2017 Vietnam Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Trinh et al., 2017 Vietnam Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Trinh et al., 2017 Vietnam Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Trinh et al., 2017 Vietnam Paddy rice Paddy rice X X - X - - - - X - - - 1 year 

Afreh et al., 2018 China Upland crops Maize X X - X - - - - X - - - 1 year 

Afreh et al., 2018 China Upland crops Maize X X - X - - - - X - - - 1 year 

Afreh et al., 2018 China Upland crops Maize X X - X - - - - X - - - 1 year 

Afreh et al., 2018 China Upland crops Maize X X - X - - - - X - - - 1 year 

Afreh et al., 2018 China Upland crops Maize X X - X - - - - X - - - 1 year 

Afreh et al., 2018 China Upland crops Maize X X - X - - - - X - - - 1 year 

Afreh et al., 2018 China Upland crops Maize X X - X - - - - X - - - 1 year 

Afreh et al., 2018 China Upland crops Maize X X - X - - - - X - - - 1 year 

Afreh et al., 2018 China Upland crops Maize X X - X - - - - X - - - 1 year 

Afreh et al., 2018 China Upland crops Maize X X - X - - - - X - - - 1 year 

Afreh et al., 2018 China Upland crops Maize X X - X - - - - X - - - 1 year 

Afreh et al., 2018 China Upland crops Maize X X - X - - - - X - - - 1 year 

Afreh et al., 2018 China Upland crops Maize X X - X - - - - X - - - 1 year 

Afreh et al., 2018 China Upland crops Maize X X - X - - - - X - - - 1 year 

Afreh et al., 2018 China Upland crops Maize X X - X - - - - X - - - 1 year 

Afreh et al., 2018 China Upland crops Maize X X - X - - - - X - - - 1 year 
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