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A B S T R A C T   

Groundwater recharge is affected by various anthropogenic activities, land use and land cover (LULC) change 
among these. The long-term temporal and seasonal changes in LULC have a substantial influence on groundwater 
flow dynamics. Therefore, assessment of the impacts of LULC changes on recharge is necessary for the sustainable 
management of groundwater resources. The objective of this study is to examine the effects of LULC changes on 
groundwater recharge in the northwestern part of Bangladesh. Spatially distributed monthly groundwater 
recharge was simulated using a semi-physically based water balance model. Long-term temporal LULC change 
analysis was conducted using LULC maps from 2006 to 2016, while wet and dry LULC maps were used to 
examine seasonal changes. The results show that the impervious built-up area has increased by 80.3%, whereas 
vegetated land cover has decreased by 16.4% over the study period. As a result, groundwater recharge in 2016 
has decreased compared to the level seen in 2006. However, the decrease in recharge due to long-term temporal 
LULC changes is very small at the basin scale (2.6 mm/year), although the impact on regional level is larger 
(17.1 mm/year) due to urbanization. Seasonal LULC variations also affect recharge due to the higher potential 
for dry seasonal LULC compared to the wet seasonal LULC, a substantial difference (20.6 mm/year). The results 
reveal important information about the groundwater system and its response to land cover changes in north-
western Bangladesh.   

1. Introduction 

Groundwater is the water in saturated zones underneath the soil 
surface. It is the Earth’s mostaccessed freshwater source (Lall et al., 
2020). Groundwater recharge is “the rate at which aquifers are replen-
ished” and is a key factor in groundwater sustainability (Ajami, 2021). 
Recharge can be greatly affected by climate change and anthropogenic 
activities (Wang et al., 2018). One of the most important anthropogenic 
interventions is changes in land use and land cover (LULC). LULC rep-
resents the naturally and artificially distributed features on the Earth’s 
surface, such as forest vegetation, water bodies and human structures 
(Mahmon et al., 2015). Changes in LULC affect groundwater by modi-
fying the pattern of water balance components (Poelmans et al., 2010; 
Sun et al., 2018; Wang et al., 2019). 

Over the past few decades, human created variations in land use have 
affected hydrological components, such as recharge and runoff (Ansari 

et al., 2016). These variations in land surface can occur over a long 
period, spanning years and decades (long-term temporal changes), or 
covering shorter time cycles (seasonal changes) (Verbesselt et al., 2010; 
Vogelmann et al., 2016). The long-term temporal changes are primarily 
caused by developments such as agricultural expansion, urbanization, 
desertification, the decline of forests, etc. (Vogelmann et al., 2016). 
Agricultural expansion is a dominant cause of the extensive changes in 
LULC which have an influence on the underlying groundwater zone 
(Scanlon et al., 2005). Groundwater-fed irrigated agriculture can have 
detrimental effect on groundwater, including a reduction in recharge 
and declination of water table (Han et al., 2017; Mojid et al., 2019). 
Rapid urbanization is another serious concern for water resources (Zare 
et al., 2016). Increased impervious surfaces created by urbanization, 
such as roofs or roads, can reduce the natural infiltration, decreasing the 
volume of water reaching the water table (Zhu and Li, 2014). This leads 
not only to a reduction in groundwater recharge but also to more flood 
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incidents generated from additional surface runoff (Zhang et al., 2018; 
Astuti et al., 2019). Numerous studies have shown how urbanization has 
led to a decline in regional groundwater recharge (Dams et al., 2013; 
Zomlot et al., 2017; Wen et al., 2019; Adhikari et al., 2020; Ghimire 
et al., 2021). However, urbanization can also decrease the amount of 
vegetation, leading to less evapotranspiration in certain regions, 
possibly resulting in increased recharge (Minnig et al., 2018). These 
types of diverse behaviors make predicting recharge at different loca-
tions and varying climates challenging. Hence, understanding the 
response of groundwater systems to changing LULC is necessary to 
properly manage this resource. Seasonal LULC variations are also mostly 
linked to vegetation or water body changes as a response to the annual 
cycles of climate and related characteristics (Vogelmann et al., 2016). 
These short-term changes in LULC can also affect hydrological processes. 
An increase or decrease in certain land cover classes, such as water 
bodies and forest vegetation, can alter groundwater recharge and other 
hydrological components by affecting interception and infiltration 
processes (Baker and Miller, 2013; Kuroda et al., 2017). The water table 
has been observed to fluctuate with seasonal changes (Kirimi et al., 
2018). Hence, the increase or decrease of such land cover might have 
implications on groundwater recharge. However, unlike in the case of 
long-term temporal LULC changes, there has been little study examining 
the impact of short-term seasonal LULC changes on groundwater 
recharge, making more research necessary in this particular area. 

Although many researchers around the world have been working on 
land use change and its impact on groundwater recharge, as far as the 
author is aware, very little study has been conducted on this issue in the 
context of Bangladesh. Groundwater is the primary, and often the only, 
safe source of drinking, industry and agricultural water in Bangladesh, 
as surface water is scarce and inconsistent (Qureshi et al., 2015; Mustafa 
et al., 2017). In particular, the use of groundwater is higher in the 
northwestern region compared to other regions of the country (Shahid 
and Hazarika, 2010). For example, the amount of groundwater irriga-
tion is 11 km3 in the northwestern region compared to around 14 km3 

for all the remaining regions combined (CSIRO et al., 2014). However, 
this precious resource is under constant threats of overexploitation and 
pollution in this region. Notably in the last decade, this areahas seen a 
substantial decline in the water table with 35 out of 36 groundwater 
monitoring wells in Rajshahi District showing falling water table trends, 
threatening the sustainability of irrigation water use (Jahan et al., 2010; 
Mustafa et al., 2019; Mojid et al., 2019). Due to excessive and inefficient 
use, the water table has fallen and depleted beyond an exploitable depth 
in some part of the northwestern region of Bangladesh (Habiba et al., 
2012). The reason behind the declining northwestern water table and 
the role of anthropogenic factors, such as climate change, in the decline 
is currently unclear (Mojid et al., 2019). Recently, Mustafa et al. (2017) 
reported that groundwater levels in the area decreased by almost 5 m 
between 1979 and 2007 and inferred that climate change was not a 
significant factor in the groundwater level drop. They also examined the 
influence of land cover changes between 1990 and 2010 on groundwater 
recharge and found that the effects were not significant at the large basin 
scale. However, they identified land cover changes due to urbanization 
as one of the influencing factors for groundwater drought and depletion, 
along with groundwater abstraction, and outlined the importance of 
further study at the regional level. Urbanization dominated land use 
change has been observed to have a significant influence on ground-
water recharge, even greater than climate change in a few studies 
(Ghimire et al., 2021). In recent decades, rapid economic growth and 
unprecedented urbanization have caused significant changes in LULC 
patterns. Shi et al. (2018) reported that the LULC change in recent de-
cades is significantly higher than in previous decades. Dey et al. (2021) 
found a 15% increase in urbanized settlements in Rajshahi city between 
2000 and 2020 and predicted a 30% increase in urbanization by 2040, 
compared to the city in 2000. Mojid and Mainuddin (2021) suggested 
that increased urbanization might have an effect on declining ground-
water recharge. However, the effect of this unprecedented urbanization 

in recent years on the groundwater system of northwestern Bangladesh 
is still unknown but is thought to be important for ensuring the sus-
tainable management of the overexploited aquifer. Moreover, identifi-
cation of the effects of regional land cover changes, considering spatial, 
long-term temporal and seasonal effects, is vital. Huq et al. (2019) re-
ported that land use and land cover in southern Bangladesh significantly 
change between the dry and wet seasons because of the non-uniform 
rainfall distribution of the tropical climate. However, the details of 
seasonal land cover changes in the northwestern part of Bangladesh and 
their effect on the groundwater system are still largely unknown. To the 
best of the authors’ knowledge, limited study has been done so far on 
seasonal land cover changes and their effect on groundwater recharge in 
northwestern Bangladesh. Hence, the reliable assessment of human 
induced land use change and its influence on groundwater recharge is 
necessary for understanding groundwater flow dynamics. 

The integration of long-term temporal and seasonal inconsistencies 
in land cover is important for estimating groundwater recharge, 
considering the sensitivity of recharge to varying land types (Dragoni 
and Sukhija, 2008). Recharge is also dependent on a spatially varied 
climate as well as hydrogeological factors like rainfall, soil and topog-
raphy (Batelaan and De Smedt, 2007). Thus, consideration of the 
spatially distributed physical characteristics of a basin is important for 
recharge computation to increase the reliability of the simulated value 
(Gebremeskel and Kebede, 2017). To achieve this, a number of hydro-
logical models have been developed based on concepts such as water 
balance and water table fluctuation (Ahmadi et al., 2012). WetSpass 
(Water and Energy Transfer between Soil, Plants and Atmosphere under 
a quasi-Steady State) is a widely used spatially distributed water balance 
model (Batelaan and De Smedt, 2001). It has been successfully applied 
across the world in different climates (Pan et al., 2011; Dams et al., 
2013; Zomlot et al., 2015; Armanuos et al., 2016; Gebremeskel and 
Kebede, 2017; Salem et al., 2019). The original model can only support 
seasonal temporal resolution. To implement monthly support, 
WetSpass-M was developed (Abdollahi et al., 2017), which has been 
used previously in northwestern Bangladesh (Mustafa et al., 2017, 2018, 
2019, 2020). 

The use of such models requires spatially distributed input data in 
raster form. The resolution of the input data can play a key role in an-
alyses (Arnone et al., 2016) as the degree of raster data detail is 
dependent on the raster resolution. A number of studies have found that 
raster cell resolution can be a significant determinant for model per-
formance, using inputs including land use and land cover, soil and 
digital elevation models (DEM) (Jantz and Goetz, 2005; Ménard and 
Marceau, 2005; Samat, 2006; Chaplot, 2014; Yang et al., 2014; Zhang 
et al., 2014; Jin et al., 2015; Tan et al., 2015; López-Vicente and Álvarez, 
2018; Fan et al., 2021). At the same time, the resolution of input data 
affects the accuracy of input variables, possibly leading to various de-
grees of uncertainty (Zhang et al., 2014; Gires et al., 2015). This issue 
can be explained through the concept of the modifiable areal unit 
problem, which discusses “the variation in results that can often be 
obtained when data for one set of areal units are progressively aggre-
gated into fewer and larger units for analysis” (Openshaw, 1983). Land 
use classes are often small in size (such as urban and rural built-up areas) 
and, as such, detailed spatial data from high resolution maps is required 
for precise information on the physical characteristics of that land use 
class (Díaz-Pacheco et al., 2018). At a broader resolution, a small land 
use unit might be absent, leading to lower accuracy in result prediction 
than in its finer counterpart (Cama et al., 2016). The inaccuracies 
resulting from low detailed spatial data can cause the misinterpretation 
and incorrect analysis of terrain information included in the raster in-
puts. Inputs with incorrect information may, in turn, create un-
certainties in model-predicted results. For example, the misclassification 
of land cover can lead to incorrect parameterization of the land classes, 
resulting in inaccurate recharge estimation (Zomlot et al., 2017). High 
resolution can also be advantageous since it can be modified into a lower 
resolution if necessary. Even though researchers have recognized the 
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value of resolution in modeling (Ménard and Marceau, 2005; van Delden 
et al., 2011), specific studies inferring the influence of inputs at different 
spatial resolutions in groundwater recharge simulation are still lacking. 

On the other hand, finer resolutions do not always lead to the best 
modeling performance (Ménard and Marceau, 2005; Lee et al., 2010; Ye 
et al., 2011; Yang et al., 2014; Arnone et al., 2016; Díaz-Pacheco et al., 
2018). Increased computational load can be an issue with finer resolu-
tion data (Maleika, 2015). At a higher resolution, the number of cells to 
process increases, raising the amount of computational analysis needed 
and, thus, the time requirement, whereas lower raster resolution re-
quires less computational power, albeit at the cost of model accuracy 

(Calder and Mayer, 2003). The lower resolution of rasters also improves 
the model execution period due to the decreased quantity of data 
(Munoth and Goyal, 2019). Overall, the comparison between high and 
low resolution of raster data creates a dilemma of prioritizing result 
accuracy against computational requirements. In fields such as policy 
planning, this is important, as results are often needed in a short time 
without the sufficient availability of powerful computing hardware. 
Hence, more research is needed to address the computational require-
ment and desired degree of accuracy in modeling considering the study 
objectives and applications. 

The general aim of this study is to examine the effects of land use and 

Fig. 1. Conceptual methodology of the study; GW: groundwater; PET: potential evapotranspiration (reference evapotranspiration for the study); DEM: digital 
elevation model; LULC: land use and land cover. 
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land cover changes on groundwater recharge in northwestern 
Bangladesh, comparing LULC changes between 2006 and 2016 for long- 
term temporal changes and between wet and dry for seasonal changes. 
To achieve this, the water balance model WetSpass-M was used to 
simulate spatially distributed groundwater recharge under different 
LULC conditions. In doing this, the specific objectives are to (1) identify 
and quantify the changes in different land cover types over the study 
period using remote sensing data, (2) assess the relation of groundwater 
recharge with rainfall, soil texture and land cover class and (3) analyze 
the influence of long-term temporal and seasonal LULC changes on 
groundwater recharge. In addition, the scaling effect of different spatial 
resolutions on groundwater recharge simulation will be evaluated using 
inputs at different resolutions. The findings of the study will be useful for 
strategy and policy planning regarding land and water resource man-
agement in the northwestern part of Bangladesh and beyond. 

2. Methodology 

The methodology applied to evaluate the effects of LULC changes on 

groundwater recharge in the study area is shown in Fig. 1. First, spatially 
distributed raster map inputs of 30 m resolution were prepared. These 
are raster of hydrometeorological data (rainfall, temperature, wind 
speed, potential evapotranspiration: PET), DEM, slope, soil texture and 
groundwater depth. The inputs of 30 m resolution were resampled into a 
300 m resolution. Next, LULC maps for 2006 and 2016 were prepared 
from collected multispectral Landsat images using remote sensing. After 
that, the input maps were used to compute monthly spatially distributed 
groundwater recharge using the water balance model WetSpass. In the 
next step, the recharges for 2006 and 2016 LULC were compared to 
analyze the influence of long-term temporal land cover changes. Simi-
larly, the recharges for wet and dry season LULC were compared to 
analyze the influence of seasonal land cover changes. Then, the runoff 
sets for 2006 and 2016 were examined to study the effects of urbani-
zation focused land cover changes between 2006 and 2016. Finally, the 
simulated recharge sets of both the 30 m and 300 m resolutions were 
compared to analyze the scaling effect. 

Fig. 2. Study area: (a) location of the study area in Bangladesh, (b) elevation map with rainfall stations marked with black circles, groundwater observation wells 
marked with triangles and the wetland area (northeast part) marked by the blue circle, (c) the highly urbanized Rajshahi city and (d) monthly rainfall distribution 
from 2006 to 2016 (bars showing average; error lines showing spatial range); GW: groundwater. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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2.1. Study area 

The study area was selected due to its high groundwater dependency 
for agricultural and domestic purposes and consequently high rate of 
abstraction. The district of Rajshahi, shown in Fig. 2a and Fig. 2b, was 
chosen. Lying on the alluvial plains of the river Padma, it is part of the 
northwestern Barind region of Bangladesh. It is located between 24.12◦

and 24.72◦ north and 88.28◦ and 88.97◦ east. The average annual 
rainfall varied between 1350 mm and 1450 mm from 2006 to 2016, but 
this is unevenly distributed throughout the district. Rainfall is irregular 
over the months as well, with the highest rainfall in July (424.7 mm) and 
the lowest in December (1.3 mm), as shown in Fig. 2d. The average 
annual temperature from 2006 to 2016 was 25.8 ◦C, varying from 
11.6 ◦C in winter to 35.9 ◦C in summer. 

Geographically, Rajshahi is situated within the Barind tract, which is 
around 23 m above the mean sea level. The elevation varies from 23 to 
62 m above mean sea level (Fig. 2b). The area comprises Barind land and 
Ganges floodplain, with several types of soil texture, including sand, 
silty loam, loam and clay loam. A large part of the region is covered by 
partially impervious clay-silt aquitard, characterized by a single or 
several layers of aquifer system (Jahan et al., 2007) with low rates of 
infiltration (Adham et al., 2010). The Rajshahi city area (Fig. 2c) has two 
layers in the aquifer system. The upper layer is made of clay and silty 
clay, followed by a composite layer of fine to coarse sand below (Haque 
et al., 2012). The region is also thought to have a potential aquifer 
system for the development of groundwater at greater depths (Ferozur 
et al., 2019). Rainfall acts as the principal source of recharge in the study 
area (Mojid et al., 2019). 

The area is primarily dominated by agriculture. Groundwater 
abstraction for agriculture is high, particularly in the dry season. During 
the rainy season, the aquifer is not usually fully replenished. As a result, 
the groundwater level is declining at a high rate and has not returned to 
its original level after 2002–2004 (Jahan et al., 2015). The wetland re-
gion in the northeast part of the study area (marked with a blue circle in 
Fig. 2b) periodically dries up during the dry months of winter and is used 
for agricultural purposes (Hossain et al., 2009). 

2.2. Model description 

WetSpass is a semi-distributed physically-based water balance model 
which can simulate seasonal groundwater recharge (Batelaan and De 
Smedt, 2001, 2007). It has been applied for land use impact analysis on 

groundwater recharge in numerous studies (Pan et al., 2011; Gebere 
et al., 2016; Zomlot et al., 2017; Mustafa et al., 2017). WetSpass-M is the 
version of the original model which supports monthly calculation 
(Abdollahi et al., 2017). In this study, WetSpass-M was used to simulate 
spatially distributed monthly groundwater recharge. This model takes 
raster maps of various hydrological and meteorological components as 
inputs (Fig. 1). Each raster cell is split into four subdivisions, namely 
open water, vegetated, bare soil and impervious, to consider the het-
erogeneity of land cover. Groundwater recharge of the whole cell is then 
estimated from the water balance of each subdivision. From the 
following water balance equation, groundwater recharge is computed as 
a residual for each raster cell, 

R = P − ET – I − SR  

where, R is groundwater recharge, P is precipitation, ET is evapotrans-
piration, I is interception and SR is surface runoff. WetSpass calculates 
interception as a fraction of precipitation depending on land use; surface 
runoff based on a number of factors including land use, slope, soil 
texture etc.; and evapotranspiration from the sum of evaporation and 
transpiration for each cell. Finally, groundwater recharge is obtained 
from the remaining water balance. 

Fig. 3 depicts a simplified representation of the water balance com-
ponents and the estimation of recharge from these components for a 
raster cell. 

2.3. Land use and land cover classification 

2.3.1. Data and classification 
The United States Geological Survey (USGS) managed Landsat pro-

gram has been a reliable source of remotely sensed Earth terrain data. 
Numerous land use impact analysis studies have used Landsat images 
(Prabhakar and Tiwari, 2015; Zhang et al., 2017; Patra et al., 2018; Wen 
et al., 2019; Chemura et al., 2020). Multispectral images of USGS 
Landsat 5 Thematic Mapper (LT05) and Landsat 8 Operational Land 
Imager (LC08) programs were obtained for 2006 and 2016 LULC, 
respectively. The month of October was chosen. The reason for choosing 
this (post-monsoon) month was because of its minimal cloud coverage 
and the sufficient amount of water remaining on water bodies before the 
drying period started in the winter. The images were collected from a 
USGS Global Visualization Viewer or GloVis (https://glovis.usgs.gov; 
last accessed on 19 June 2021) for the respective years. The visible 
bands (blue, green, red), near infrared and the two shortwave infrared 

Fig. 3. Water balance components and recharge computation for a cell.  
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bands were considered (bands 1, 2, 3, 4, 5 and 7 for LT05 and bands 2, 3, 
4, 5, 6 and 7 for LC08) for this study. The satellite images were arranged 
together into composite maps for both 2006 LT05 and 2016 LC08. The 
composite maps were clipped with the study area shapefile. A training 
sample was generated for a total of 5 land cover classes, as shown in 
Table 1. Maximum Likelihood Supervised Classification was performed 
on the clipped composite maps, based on the training sample, to produce 
2006 and 2016 LULC maps with the desired classes. Two more LULC 
maps for 2006 and 2016 were prepared by clipping the classified LULC 
maps with the highly urbanized Rajshahi city area. This procedure was 
carried out in order to observe whether intense urbanization had a 
greater influence of LULC changes on recharge. 

Land use change analyses were based on two different categories, 
using long-term temporal and seasonal land covers. The long-term 
temporal changes were investigated between 2006 and 2016 in two 
steps. In the first step, the whole study area was considered in a basin 
scale analysis. The last step only took the Rajshahi city area into account 
for a regional scale study of urbanization dominated LULC changes and 
effects on recharge. The seasonal study used wet (May–October) and dry 
(November–April) type LULC for the whole basin, representing the wet 
and dry season, respectively. The classified land cover with the 5 classes 
mentioned (Table 1) was considered as the wet LULC. In the wet season, 
the “Flooded land” areas in the wetland usually stay inundated. How-
ever, during the dry season, this land mostly dries out and is used for 
agricultural practices. Hence, the dry season LULC had 4 classes with 
“Flooded land” converting into “Vegetated” area. For simplicity, all of 
the “Flooded land” was converted into “Vegetated” area during the dry 
season (November–April). 

2.4. Accuracy assessment 

The accuracy of the LULC maps was assessed using kappa statistical 
analysis (Viera and Garrett, 2005) on 2 sets of the 2006 and 2016 
classified (wet) LULC maps. Each set included a reference and a simu-
lated/predicted land class map. The Kappa index was used to show the 
agreement level between the reference and simulated land class maps. 
50 random points were generated in ArcGIS and each point was assigned 
a reference land class using the true color composite of the red, green 
and blue bands for the evaluation. 

Table 1 
Land cover classes and their description.  

Land cover class Description 

Built-up City centers, airports, highways, residential area, semi-urban 
area. 

Vegetated Croplands, woods and smaller forests. 
Bare soil Exposed soil, dunes and beaches, excavated areas. 
Open water Rivers, lakes, ponds. 
Flooded land Seasonal wetlands, low-lying marshes.  

Table 2 
Model inputs, their sources, the period of collected and processed data and the 
spatial resolution of each input for the primary analysis. PET: potential evapo-
transpiration; DEM: digital elevation model; SRTM: Shuttle Radar Topography 
Mission; USGS: United States Geological Survey; BMDA: Barind Multipurpose 
Development Authority; BWDB: Bangladesh Water Development Board; BMD: 
Bangladesh Meteorological Department; WARPO: Water Resources Planning 
Organization; SRDI: Soil Resource Development Institute.  

Inputs Source Collected 
temporal 
period 

Processed 
temporal 
period 

Spatial 
resolution 

Groundwater 
depth 

BMDA, BWDB Weekly Monthly 
average 

30 m 

Rainfall BMD, BWDB Daily Monthly sum 30 m 
Temperature BMD Daily Monthly 

average 
30 m 

PET Calculated from 
Temperature 

Daily Monthly sum 30 m 

Wind speed BMD Daily Monthly 
average 

30 m 

No. of rainy 
days 

Observed 
rainfall 

Daily Monthly sum – 

DEM SRTM Static raster 
map 

Static raster 
map 

30 m 

Land use USGS 2006 and 
2016 

2006 and 
2016 

30 m 

Slope Processed from 
DEM 

Static raster 
map 

Static raster 
map 

30 m 

Soil SRDI Static raster 
map 

Static raster 
map 

30 m  

Fig. 4. Comparison of simulated AET (blue line) and remote sensing AET (box plots) from 2006 to 2016; AET: actual evapotranspiration. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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2.5. Model inputs 

WetSpass takes raster maps of hydrometeorological components like 
groundwater depth, rainfall, temperature, PET and wind speed as inputs 

(Table 2). Data for these components were collected from various 
sources for a period of 11 years (2006–2016). Groundwater depth data 
was collected from the Barind Multipurpose Development Authority 
(BMDA) and the Bangladesh Water Development Board (BWDB). 

Fig. 5. LULC maps for 2006 and 2016 (wet season) with 5 land classes; LULC: land use and land cover.  

Fig. 6. Areal changes for all 5 land classes between 2006 and 2016; wet LULC maps.  
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Climate data (rainfall, maximum and minimum temperatures, wind 
speed), recorded by the Bangladesh Meteorological Department (BMD) 
and BWDB, was collected from the Water Resources Planning 

Organization (WARPO). In this study, reference evapotranspiration 
(ET0) was considered as potential evapotranspiration (PET). ET0 was 
calculated from maximum and minimum temperatures using “ET0 
Calculator” software which uses the FAO Penman-Monteith formula 
(FAO, 2009). WARPO supplied the Soil Resource Development Institute 
(SRDI) developed soil texture map as a shapefile, which was converted 
into raster to use in the model. The Shuttle Radar Topography Mission 
(SRTM) digital elevation model (DEM) of 30 m resolution was used as 
the elevation model. The slope map was prepared from this DEM. 

All of the inputs were at a 30 m resolution for the LULC impact 
analysis. The data was processed in order to prepare raster maps for the 
model. Inverse Distance Weighting (IDW) was used for interpolation 
because of its good performance and relative simplicity compared to 
other methods like Kriging (Hodam et al., 2017). The ArcMap Model 
Builder was used to automate the whole raster building process from the 
input data for a total of 132 months from 2006 to 2016. Each of the land 

Table 3 
Changes in land use and cover in Rajshahi over the study period (positive change 
represents addition, while negative change represents reduction); unit: area in 
Hectare.  

LULC types Area (ha) Change 

2006 2016 

Built-up 10,578 (4.3%) 19,045 (7.8%) 8467 (3.5%) 
Vegetated 178,422 (73.2%) 175,517 (72%) − 2905 (− 1.2%) 
Bare soil 27,564 (11.3%) 23,174 (9.5%) − 4390 (− 1.8%) 
Open water 10,941 (4.5%) 10,679 (4.4%) − 262 (− 0.1%) 
Flooded land 16,257 (6.7%) 15,347 (6.3%) − 910 (− 0.4%) 
Total 243,762 (100%) 243,762 (100%) –  

Fig. 7. Expansion of Rajshahi city urban area and changes in the adjacent Padma River due to meandering between 2006 and 2016.  

Fig. 8. A similarly patterned time series of monthly rainfall and groundwater recharge (blue bars indicate monthly rainfall and the green line represents monthly 
recharge). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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use maps (2006, 2016, wet, dry) were used to simulate groundwater 
recharge from the 132 sets of monthly inputs. 

2.6. Model tuning 

In situ river discharge and actual evapotranspiration (AET) data were 
not available in the study area. So, the model performance was evalu-
ated using data from two different sources, (i) available remote sensing 
AET products and (ii) available groundwater recharge data by studies 
covering the same area. Weerasinghe et al. (2020) recommended remote 
sensing AET products as an alternative to observed data in data-scarce 
areas. In this study, three widely used remote sensing AET products, 
namely the Moderate Resolution Imaging Spectroradiometer MOD16 
algorithm (MODIS; Mu et al., 2007, 2011), Simplified Surface Energy 
Balance model (SSEBop; Senay et al., 2013) and TerraClimate (Abat-
zoglou et al., 2018), were used to evaluate the simulated results. The 
remote sensing AET products varied in range compared to simulated 
evapotranspiration, as shown in Fig. 4. However, the simulated AET was 
in strong agreement with the remote sensing AET products. The seasonal 
AET variation was also appropriately captured by the simulated AET 
series. This shows the good simulation capacity of the model. After the 
comparison with remote sensing AET data, simulated recharge was then 

compared with the available data on groundwater recharge from studies 
covering the same area (details in the Simulated groundwater recharge 
section). 

2.7. LULC impact assessment 

The impact analysis of LULC changes was performed in 3 steps using 
3 different scenarios. The first scenario focused on the impact of long- 
term temporal LULC changes on the basin scale. For this, the simu-
lated recharges for both 2006 and 2016 LULC over the whole study area 
were compared. The second scenario analyzed the long-term temporal 
LULC changes on a regional scale based on the highly urbanized Raj-
shahi city area. Similarly to the basin scale analysis, recharges for 2006 
and 2016 LULC were compared considering only the Rajshahi city area 
instead of the whole study area. The impact of seasonal LULC changes 
was then assessed in the third scenario. At this step, the simulated re-
charges over the whole study area for wet and dry LULC were compared. 
Similarly, runoff sets for 2006 and 2016 LULC were compared, once 
considering the whole study area and then considering only Rajshahi 
city. 

2.8. Effect of resolution scaling 

The input maps were resampled into 300 m resolution to analyze the 
effects of different resolutions of input on the results. All of the modeling 
and analytical procedures were repeated with the resampled maps. The 
results were then compared with those from the 30 m resolution. During 
the simulation processes, the times needed to complete the simulation of 
the whole 132 months for the LULC impact assessment scenarios were 
recorded for inputs of both a 30 m and 300 m resolution. The recorded 
times of the corresponding scenarios at both a 30 m and 300 m resolu-
tion were compared to examine the difference in computational time 
requirement for the simulation of both resolutions. 

2.9. Data analysis, visualization, and computation 

For data analyses and plotting, Python modules NumPy, Pandas and 
Matplotlib were used. GIS applications (ArcGIS 10.5 and QGIS 3.6) and 
Python module Rasterio were used for geospatial analysis, land cover 
classification and mapping. The Mann–Whitney U test and Kruskal- 
Wallis H test were performed to check the statistical significance of 
the results using Python module SciPy. The images were prepared using 
Microsoft Excel 2010 and the GNU Image Manipulation Program 
(GIMP). The flowchart was drawn using the online diagram editor Draw. 
io (https://app.diagrams.net; last accessed on 19 June 2021) and the 
Sankey diagram (Fig. 6) was produced on SankeyMATIC (https 
://sankeymatic.com/; last accessed on 29 September 2021). The 
modeling simulations were performed on a computer with a 3.70 GHz 
processor and 8 GB RAM. 

3. Results and discussion 

3.1. Changes in LULC between 2006 and 2016 

The LULC maps for 2006 and 2016 for the wet season are shown in 
Fig. 5. The Kappa coefficients of the maps were 0.86 and 0.82 for the 
respective maps. As both Kappa indices were over 0.8, the land classi-
fication was adequately accurate (Wen et al., 2019). They revealed an 
increase of built-up area within the study period, amounting to 8481ha 
(an increase of 80.3%). For the other LULC types, all reduced in total size 
with bare soil decreasing the most (by 16.4%) by 2016. The remaining 
vegetated, open water and flooded land areas also declined in size. The 
water bodies, namely open water and flooded area, saw a slight decrease 
of 2.2% and 4.6%, respectively. Table 3 shows the changes in area be-
tween land cover maps between 2006 and 2016. In the case of the LULC 
maps for the dry seasons, the flooded land was fully converted into 

Fig. 9. Monthly recharge as a function of monthly rainfall for each soil texture. 
This shows the highest rainfall induced recharge in sand. 

Fig. 10. Monthly recharge for each LULC class using the 2006 LULC map (box 
plots), including mean values (red dots). (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of 
this article.) 
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vegetated land as agriculture is usually practiced on dried up wetlands 
and other low-lying regions. 

All LULC transformations between 2006 and 2016 are shown in 
Fig. 6. In general, most of the LULC from 2006 remained the same in 
2016. The highest change was observed in the conversion of 9821ha of 
the vegetated area into built-up zones due to urbanization. Considerable 
transformations between vegetated, bare soil and open water areas were 
also observed. These can be explained by the meandering actions of the 
river Padma. Old sandbars sank while newer sandbars emerged due to 
the meandering of Padma. This natural action was mostly responsible 
for the changes between the LULC classes. This was also true for the 

transitions on sandbars, as some agriculture is practiced there. The 
changes caused by the meandering of the river Padma through Rajshahi 
city are shown in Fig. 7. One notable part was the conversion of built-up 
area into vegetated area. This may be due to population migration to 
urban regions, caused by a hope for higher income and a better quality 
of life. UN-Habitat (2012) also reported that about 3 million people were 
estimated to move into cities every week globally. The mass movement 
of people to cities was associated with the enhanced well-being of people 
(IOM (International Organization for Migration) 2015). Seto (2011) 
showed that the significant rise in the urban population in the 
Ganges-Brahmaputra delta over the past 20 years was due to the high 

Fig. 11. Spatial distribution of monthly average changes in groundwater recharge over 11 years due to variations in long-term temporal LULC.  
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economic, demographic and political inequalities between societies. As 
a result of this migration, rural and semi-urban zones are often aban-
doned and converted into agricultural lands and smaller woods. 

3.2. Simulated groundwater recharge 

Monthly groundwater recharge, considering the LULC map of 2006 
(wet) along with rainfall, is shown in Fig. 8. It revealed that the trend of 
recharge was similar to that of rainfall. In the wet months (May to 
October), recharge was very high because of high rainfall. Conversely, 
recharge rates dropped during the dry season (November to April). 
Monthly recharge varied between 0.2 mm (January) and 80.9 mm 
(July), averaging 26.8 mm/month over all 12 months. Annual simulated 
recharge was observed to range from 215 mm to 512.5 mm. The average 
annual recharge was 321.2 mm. This is similar to the findings of 
Shamsudduha et al. (2011), who reported annual recharge values 
varying from 250 mm to 600 mm in the same region. Mustafa et al. 
(2017) also found annual recharge between 230 mm and 660 mm in 
northwestern Bangladesh. The recharge was also spatially varied over 
the study area. 

Fig. 9 presents the relationship between rainfall and recharge on 
different soil textures. The average recharge was highest in sand (28 
mm/month), closely followed by loam (26.1 mm/month). Clay soil had 
the lowest value amongst all the soil types (18.1 mm/month). This was 
because recharge is closely related with the permeability of soil textures. 
Coarser soil textures, such as sand or loam, were observed to have higher 
recharge due to their higher permeability compared to finer textures, 
such as clay (Tafasca et al., 2019). Recharge was also found to be close to 
zero when rainfall was ≤50 mm. Zomlot et al. (2015) found comparable 
results in loam dominated Flanders, in Belgium, with high recharge in 
sand and low recharge in clay type soils. 

Groundwater recharge was strongly correlated with land cover 
classes, as shown in Fig. 10. Bare soil and the vegetated area both had 
high average monthly recharge, with 30.5 mm and 29.2 mm, respec-
tively. The built-up area, characterized by both fully and partially 
impervious lands with vegetation, was observed to have a 23 mm annual 
average recharge. WetSpass-M assigned no recharge for water surface 
covers (both flooded land and open water classes). This was because the 
model assumed that rainfall-induced recharge on water surface covers 
was negligible compared to the recharge from the water body itself 
(Batelaan and De Smedt, 2007). As the recharge in this study was only 
sourced from rainfall, there was zero recharge in the flooded land and 
open water LULC classes. Mustafa et al. (2017) reported similar findings 
for recharge using the same WetSpass model in northwestern 

Bangladesh. 

3.3. The impact of LULC changes on spatially distributed groundwater 
recharge 

3.3.1. The impact of long-term temporal LULC changes 
The annual average groundwater recharges were 322.5 mm and 

319.9 mm for the 2006 and 2016 land covers, respectively. Similarly, 
monthly recharge for 2016 land cover dropped to 26.7 mm from its 26.9 
mm level in 2006. The recharge was high in the months of June, July, 
August and September. Contrarily, little to almost zero recharge was 
observed during the dry period (November–April). Overall, the recharge 
in the basin decreased by 2.6 mm/year from changes in long-term 
temporal land use and land cover. This was caused by the difference 
in the rate of recharge for 2006 and 2016 land covers. The monthly 
spatially varied differences between 2006 and 2016 over the study area 
are mapped in Fig. 11. The variation due to long-term temporal LULC 
changes was found to be statistically insignificant (p > 0.05; 95% con-
fidence level). The changes were small over the whole basin. This 
insignificant change in recharge was primarily caused by the expansion 
of built-up areas (8467ha; 3.5% in total). Reduction in the vegetated 
area (2905ha; 1.2% in total) also played a part in decreasing recharge. 
The decrease in vegetation cover led to reduced evapotranspiration. This 
raised surface runoff in 2016 LULC compared to 2006. The increase in 
surface sealing through urbanization lowered infiltration and increased 
runoff from the water balance in the 2016 LULC, resulting in lower 
recharge. However, the growth in built-up and fall in vegetated land 
cover types was still too small, considering the whole study area 
(243762ha), to influence recharge by a large margin. Mustafa et al. 
(2017) reported similar small changes in recharge due to the long-term 
temporal LULC changes between 1990 and 2010 in northwest 
Bangladesh. 

The regional scale study involved the highly urbanized Rajshahi city 
area which saw a 815ha increase in built-up land (increase by 55%). 
Recharge here declined by about 17.1 mm/year or 1.4 mm/month from 
2006 to 2016. Fig. 12 shows the spatially varied changes (July average) 
in recharge in the urbanized area. Though the change was higher in the 
city area compared to the basin as a whole, the difference in recharge 
between 2006 and 2016 was not significant (p > 0.05; 95% confidence 
level). The reason behind this change was the heavy increase in the 
built-up area as a result of rapid urbanization. Vegetated areas with high 
recharge were converted into built-up zones. Consequently, the overall 
recharge in urbanized Rajshahi city considerably decreased. Similarly, 
Adhikari et al. (2020) and Ghimire et al. (2021) found a similar reduc-
tion in recharge under medium and high urbanization scenarios in 
Vietnam and Thailand, respectively. However, Minnig et al. (2018) 
observed increased groundwater recharge in Dübendorf, Switzerland, 
even with the effects of urbanization. They inferred the reduced 
evapotranspiration rate caused by urban growth as the primary factor 
responsible. This agreement and disagreement might be attributed to 
climatic characteristics, particularly temperature and associated 
evapotranspiration. Temperature was a major influential factor in 
determining evapotranspiration from water balance (Pan et al., 2011). 
Switzerland, as a significantly colder region compared to Bangladesh, 
witnessed enough reduction in evapotranspiration to result in increasing 
recharge. Contrarily, Thailand and Vietnam have similar temperatures 
to Bangladesh and, as a result, the decrease in evapotranspiration was 
lower and was too insufficient to considerably affect recharge in these 
regions. 

The monthly average changes in groundwater recharge differed 
considerably with spatial variation. The dry months presented very 
small differences. For the most part, wet months were similar. However, 
they revealed significant distinctions when spatial variation was 
considered. July showed the highest change for both basin and regional 
scale. These were caused by changes in land cover type over the study 
period. Specifically, the areas adjacent to the River Padma saw 

Fig. 12. Spatial distribution changes in recharge (July) in Rajshahi city.  
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substantial changes in recharge. Padma meandered greatly over the 11 
years of the study period, transforming open water areas with zero 
recharge into sandbars of bare soil with maximum recharge and vice 
versa. As a result, this particular area was associated with the greatest 
long-term temporal change in groundwater recharge rate. For the 
remaining region, the smaller decreases were caused by the increase in 
built-up zones. The wetland region at the northeast showed increases, 
mostly due to the transformation of flooded lands into vegetated areas. 

4. The impact of seasonal LULC changes 

The average groundwater recharges were 309.8 mm/year and 330 
mm/year for wet and dry land covers, respectively. Wet LULC produced 
an average recharge of 27.5 mm/month, compared to 25.8 mm/month 
for dry LULC. High recharge was observed in the months of June, July, 
August and September. Conversely, the recharge was almost zero during 
the dry period months (November–April). In general, the recharge in the 
basin increased by 20.6 mm/year with changes in seasonal land use and 
land cover. This meant that if the other governing variables, like rainfall, 
were the same, dry seasonal LULC would yield higher recharge 

Fig. 13. Spatial distribution of the monthly average changes in groundwater recharge over 11 years due to variations in seasonal LULC.  
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Fig. 14. Spatial distribution changes in recharge (July) in the wetland region.  

Fig. 15. Monthly average surface runoff for 2006 and 2016 LULCs in Rajshahi city; blue bars represent surface runoff for 2006 LULC, red bars represent surface 
runoff for 2016 LULC. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 16. Rajshahi city: (a) the transformation of vegetated and bare soil areas in 2006 into built-up areas in 2016 and (b) changes in runoff (July).  
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compared to wet seasonal LULC. In other words, dry seasonal LULC had 
a higher potential for recharge than that of wet from the same rainfall. 
During the wet season, flooded lands were complete water bodies and 
thus the flooded land class was in a fully saturated condition. Due to this 
complete soil saturation condition, water could not infiltrate through 
this land cover and instead became surface runoff (Rahmati et al., 2018). 
The rate of evaporation was also considerably higher from the saturated 
surface for wet season LULC, raising the quantity of evapotranspiration. 
During the dry season, however, flooded lands transformed into vege-
tated land cover which was not fully saturated. Furthermore, vegetation 
covers improves infiltration by delaying surface runoff (Song et al., 
2021). Hence, the vegetated land class allowed a substantial quantity of 
infiltration compared to the zero infiltration in flooded land. In addition, 
lower evaporation from vegetated land cover for dry season LULC kept 
the overall evapotranspiration lower than that for wet season LULC. Less 
water was attributed to the evapotranspiration and runoff components 
of the water budget for dry season LULC. This resulted in higher 
recharge for dry season LULC. The difference in recharge due to seasonal 
LULC changes was statistically insignificant (p > 0.05; 95% confidence 
level). However, the effects of seasonal LULC changes were high at the 
basin-scale, unlike the long-term temporal changes. This happened due 
to the conversion of approximately 16000ha (6.5% of the total area) of 
flooded land into vegetated area. As explained, there was no recharge 
for the flooded land class. In contrast, recharge for vegetated cover was 
quite high, as shown in Fig. 10. Thus, the rate of recharge increased due 
to the decrease in water bodies. Dissimilar results were found regarding 
water body associated recharge in the study by Kuroda et al. (2017), 
where the authors used observation wells for groundwater analysis. 
They concluded that surface water bodies like ponds contributed to 
groundwater recharge in suburban Hanoi, Vietnam by up to 120 
mm/year from downward seepage. This difference in results was caused 
by the method of recharge estimation used in the current study. The 
WetSpass-M model, which was used in this study, considered rainfall as 
the only source in the water budget. Hence, this study interpreted 
rainfall-induced recharge as the actual recharge. Zero rainfall-induced 

recharge was assigned by the model for the flooded land LULC class 
due to it being negligible compared to the recharge from water bodies 
(Batelaan and De Smedt, 2007). In general, seasonal LULC changes had a 
considerable influence on groundwater recharge. This information 
showed that dry season LULC can allow more water to convert into 
recharge from precipitation and other water sources above ground level, 
such as irrigation for agriculture during the dry season in the study area 
(Hossain et al., 2009). 

The monthly, spatially varied differences between recharge for wet 
and dry seasonal LULCs are mapped in Fig. 13. Like the long-term 
temporal changes, the dry months presented very little change. For 
the most part, wet months were similar. However, significant differences 
were observed with spatial variation, with July showing the highest 
difference. These differences were caused by changes in land cover type 
due to seasonal change. The changes considering spatial variations were 
also highly notable. In particular, the northeastern region displayed 
substantial changes in groundwater recharge, as presented in Fig. 14 (for 
July). This section was mostly covered by flooded land with zero 
recharge during the wet season. However, in the dry season, the flooded 
lands were fully transformed into vegetated lands with a very high 
recharge rate. This caused a considerable increase in overall recharge 
between wet and dry season land covers. The remaining areas were 
unchanged and, as a result, there was no difference in recharge. 

4.1. The impact of LULC change on surface runoff 

Fig. 15 illustrates how runoff was unevenly distributed throughout 
the year, with a high quantity during the wet months but a lower amount 
during the dry months. The annual average surface runoff increased 
from 284.1 mm to 292.8 mm due to changes in LULC between 2006 and 
2016 over the whole study area. Compared to the whole area, Rajshahi 
city witnessed an increase of 22.3 mm in annual average surface runoff, 
from 281.7 mm annual runoff to 304 mm from 2006 to 2016 LULCs. This 
increase in runoff was likely caused by urbanization. At the study area 
level, the built-up area expanded by 3.5% (8467ha), while the built-up 

Fig. 17. Spatially distributed average recharge (July) maps at (a) 30 m and (b) 300 m resolutions.  
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area of Rajshahi city expanded by 55% (815ha). Higher urbanization in 
the city resulted in a greater rise in surface runoff. Fig. 16a shows the 
transformation of vegetated and bare soil areas in 2006 into built-up 
area in 2016, and Fig. 16b shows the spatial variation in runoff from 
2006 to 2016. These maps display an increase in runoff in zones where 
urbanization took over vegetated and bare soil areas. This result was in 
agreement with the study by Astuti et al. (2019) in Indonesia, with 
intense rainfall during the wet season but little rainfall during the dry 
season. They observed a 36 mm rise in average yearly surface runoff 
from 1995 to 2015 and pointed to concentrated urbanization as a major 
cause. Wakode et al. (2018) also showed that impermeabilization due to 
urbanization resulted in rainfall being mostly converted into surface 
runoff in Hyderabad, India. Zhang et al. (2018) also reported that areas 
with high urbanization become more prone to flooding. 

4.2. The effect of spatial resolution difference 

The above results were all produced with a 30 m raster resolution. 
The same procedures were all performed with rasters at 300 m resolu-
tion. Fig. 17 shows the average recharge maps for July at both 30 m and 
300 m resolutions. The results show that the spatially distributed 
monthly average recharge at 30 m and 300 m resolutions were 26.76 
mm/month and 26.77 mm/month. The difference was very small (0.01 
mm/month). Considering computational time, it took an average of 
193.4 minutesto simulate one-year of recharge at a 30 m resolution. On 
the other hand, simulation at 300 m raster only needed an average of 
10.7 min to complete. Thus, simulation with the lower resolution (300 
m) was approximately 18 times faster than that with the higher reso-
lution (30 m). In brief, the differences in model output and results were 
very low but the difference in computational time was massive. 

However, the LULC maps for the lower resolution had problems with 
accurately representing land classes. A raster grid cell of a map had only 

Fig. 18. Parts of maps of (a) LULC at a 30 m resolution, (b) LULC at a 300 m resolution, (c) recharge (average July) at a 30 m resolution and (d) recharge (average 
July) at a 300 m resolution (black circles indicating the zones of interest). 
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one value within its own area. Thus, every 90000 m2 area in a map at a 
300 m resolution was completely homogeneous. In contrast, the smallest 
area of homogeneity was 900 m2 in a map at a 30 m resolution. Regions 
smaller than 90000 m2 might not be precisely included when repre-
sented in a 300 m resolution raster. Consequently, smaller areas of a 
certain class were mixed into other classes in the map at a lower reso-
lution. This misclassification caused the incorrect computation of 
groundwater recharge in those areas. Similarly, Zomlot et al. (2017) 
observed incorrect approximations of recharge due to misrepresentation 
and overestimation of vegetated and built-up land classes. Fig. 18 shows 
some of the variance between maps at 30 m and 300 m resolution. The 
black circles point to the zones of interest. The small built-up and floo-
ded land areas (marked with the circles) at a 30 m resolution (Fig. 18a) 
were not present at a 300 m resolution (Fig. 18b). These areas were 
grouped with bigger vegetated areas in the latter. This was clearly a 
misclassification of land cover. Both built-up and flooded land had much 
lower recharge rates than vegetated areas. As a result, recharge in these 
particular zones was inaccurately simulated in the 300 m resolution 
LULC map compared to at 30 m, as shown in Fig. 18d and c. Thus, the 
land heterogeneity was lost to some degree in the lower resolution 
recharge maps. Hence, studies requiring precision for smaller regions 
would need rasters at a higher resolution for proper representation. 

5. Conclusions 

This study assessed the influence of LULC changes on spatially 
distributed groundwater recharge in northwestern Bangladesh. All data 
was processed into rasters and used as input in the water balance model 
WetSpass to simulate monthly groundwater recharge. 

From 2006 to 2016, Rajshahi had a huge increase in built-up areas. 
Impervious built-up zones almost doubled over the 11 years. The most 
notable land cover transformation was within the streamline of Padma 
River due to meandering. 

From land cover change analysis, the recharge decreased from 2006 
to 2016 LULC as a result of the increase in built-up areas. Most variations 
were detected in regions adjacent to the river, caused by transformation 
between bare soil and open water due to meandering. However, the 
change at the basin scale was very small (2.6 mm/year). The effects of 
LULC change were found to be considerably higher (17.1 mm/year) in 
the highly urbanized Rajshahi city area, primarily owing to urbaniza-
tion. Seasonal LULC changes had a major impact on groundwater 
recharge. The LULC status during the dry season was found to have a 
higher potential for rainfall-induced recharge due to the conversion of 
flooded land into vegetated land cover. In the study area, recharge from 
rainfall increased by 20.6 mm/year with the dry LULC condition 
compared to the wet seasonal condition. In addition, a runoff analysis 
showed a 22.3 mm rise in generated surface runoff in Rajshahi city from 
2006 to 2016 due to urbanization. 

The resolution scaling analysis showed very little change in results at 
both 30 m and 300 m spatial resolution. The reduction in computational 
time in the 300 m simulation (an 18 times reduction on average) was 
noteworthy. However, the inputs of the 300 m resolution were not 
precisely representative of smaller areas. This led to misclassification of 
inputs like land cover and issues with predicting recharge in smaller 
sections. Therefore, using lower resolution maps for simulation can be 
recommended only when a quick investigation is required over precision 
analysis. Otherwise, maps at a higher resolution are recommended for 
the level of precision they offer. 

Overall, long-term temporal LULC changes over the whole study area 
did not significantly influence groundwater recharge. However, the 
same LULC changes had a notable effect on the urbanization dominated 
Rajshahi city area. The changes in seasonal LULC also had a major 
impact on groundwater recharge in the study area. Furthermore, ur-
banized Rajshahi witnessed an increase in runoff which might lead to 
more flooding. These indicate that authorities should take urbanization 
into account when formulating new land and water management 

policies, especially in the city of Rajshahi. Seasonal land cover change 
can also play an important role in water management planning. For 
example, artificial recharge schemes can be planned during the dry 
season, as the terrain will have higher potential for recharge. Finally, 
future research could focus on other possible influencing factors, 
including climate change, which might also affect groundwater dy-
namics. Research could also be done on detailed flood analysis for better 
disaster management. In addition, as RS data were used in this study for 
model calibration due to the lack of in-situ measurement, further studies 
could be conducted using in-situ measurement of variables used for 
model calibration. 
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