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methods. However, we empirically find that the image representations produced under the BYOL's self-
distillation paradigm are poorly distributed in representation space compared to contrastive methods. This
work empirically demonstrates that feature diversity enforced by contrastive losses is beneficial to image repre-
sentation uniformity when employed in BYOL, and as such, provides greater inter-class representation separabil-
ity. Additionally, we explore and advocate the use of regularization methods, specifically the layer-wise
minimization of hyperspherical energy (i.e. maximization of entropy) of network weights to encourage repre-
sentation uniformity. We show that directly optimizing a measure of uniformity alongside the standard loss, or
regularizing the networks of the BYOL architecture to minimize the hyperspherical energy of neurons can pro-
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duce more uniformly distributed and therefore better performing representations for downstream tasks.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Unsupervised visual representational learning methods [1,2] have
recently demonstrated performance on downstream tasks that con-
tinues to narrow the gap to supervised pre-training, excelling specifi-
cally in classification and segmentation tasks [3-5]. This success is
largely contributed to contrastive methods which aim to minimize the
distance of the representations pertaining to two views of the same
image in representations space (‘positive pair’), whilst maximizing the
distance of views from different images (‘negative pair’) [6]. This en-
sures that semantically relevant features encoded by representations
of positive pairs are similar, whilst negative pairs are dissimilar. The
study of contrastive losses has shown that this repulsion effect between
dissimilar views is matching the distribution of features in representa-
tional space to a distribution of high entropy [7], in other words, encour-
aging uniformity of representations in space [8]. This balancing of
attraction and repulsion is the mechanism that allows contrastive
methods to learn similar semantic features whilst avoiding collapse in
representation space.

More recently, alternative approaches aim to explore self-
supervised learning avoiding the inherent computational difficulties
imposed by contrastive methods reliance on negative samples [3]. One
method in particular, Bootstrap Your Own Latent (BYOL) [2] falls
under the self-distillation paradigm, where we task an “online network

* Corresponding author.
E-mail address: a.durrant.20@abdn.ac.uk (A. Durrant).

https://doi.org/10.1016/j.imavis.2022.104494

to predict the image representations produced by a 'target” network in a
Siamese fashion, where each network is given a different view of the
same image (visually depicted in Fig. 3). Yet this network does away
with the negative views (views originating from different images),
and the subsequent negative term attributed with contrastive losses.
The theoretical understanding of how these networks avoid the seem-
ingly inevitable collapsed equilibria, given no explicit mechanism asso-
ciated with the negative term of contrastive losses, is still to be
investigated [9].

Intrigued by the property of mode collapse and inspired by [8], we
empirically demonstrate in this work that BYOL fails to distribute its
image representations as uniformly in /»-normalized unit space (i.e.
surface of a unit-hypersphere) compared to its contrastive counterparts.
As such, we ask, can BYOL benefit from mechanisms that introduce feature
uniformity found in contrastive methods? To achieve this, we investigate
an alternative to the uniformity constraint posed by [8] and derived
from the contrastive loss, aiming to maintain the avoidance of negative
sampling advocated in BYOL. We instead propose to utilize minimum
hyperspherical energy (MHE) weight regularization [10] to enforce
neuron (i.e. kernel) uniformity whilst being independent and therefore
robust to smaller batch size (the desirable property of BYOL). We empir-
ically demonstrate how the use of MHE regularization can increase uni-
formity of representation through the concept of neuron redundancy
reduction in the ¢,-normalized unit space, and in-turn lead to better
learned image representations. Our contributions are summarized as
follows: i) we empirically show that BYOL distributes its features poorly
in representational space compared to contrastive counter parts and
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that distribution constraints like those in constrastive losses benefit
image representations in BYOL; ii) we propose to hyperspherically reg-
ularize the network to improve distribution of neurons and subse-
quently achieve a greater diversity of representations improving
image representation separability and performance on downstream
tasks; iii) as a consequence hyperspherically regularized BYOL networks
maintain the benefits of avoiding contrastive loss negative terms, result-
ing in reduced performance drops at smaller batch sizes.

2. Related work
2.1. Unsupervised representational learning

The recent popularity of discriminative unsupervised representa-
tional learning, specifically contrastive methods, has sparked keen in-
terest in the theoretical understanding of their underpinnings,
emerging from their performance rivaling that of supervised methodol-
ogies [1,11]. As to why these methods perform so well has only recently
begun to be understood, notably [8] prove that optimizing contrastive
loss when under a unit ¢,-norm constraint (restricting representational
space to a unit hypersphere) is equivalent to optimizing a metric
of alignment (distance between positive pairs) and uniformity (all fea-
ture vectors should be roughly uniformly distributed on the unit
hypersphere). Additionally, [7] extends this work proposing a generic
form of the contrastive loss, also identifying the same relations of uni-
formity to pairwise potential in a Gaussian kernel, to match representa-
tions to a prior distribution (of high entropy).

Lately, alternatives to contrastive methods [3] have been proposed
alleviating some of the computational drawbacks associated with con-
trastive losses, primarily the necessity of large numbers of negative
pairs generally requiring increased batch sizes [1] or memory banks
[11]. Bootstrap Your Own Latent (BYOL) avoided the use of negative
pairs via an ‘online’ ‘target’ network approach akin to Mean Teachers
[12], where the ‘online’ network and an additional ‘predictor’ network
aim to predict the representations of a slowly updated ‘target’ network
of the ‘online’ network. However, it is not clear how these networks
avoid collapsed representations, it has been hypothesized Batch Nor-
malization (BN) was the critical mechanism preventing collapse
in BYOL [13], yet this hypothesis was refuted, showing batch-
independent normalization schemes still achieve comparable perfor-
mance [9,14].

2.2. Minimal hyperspherical energy and diversity regularization

Many unsupervised representational methods learn their represen-
tations under the constraint to lie on the surface of a unit-hypershpere
via a /,-norm constrain leading to desirable traits [15]. As aforemen-
tioned [3,8] prove that the negative term (repulsion of negative
views) in the contrastive loss is equivalent to the minimization of
hyperspherical energy of representations. The minimization of hyper-
spherical energy, the Thompson Problem [16], is a well studied problem
in Physics finding the minimal electrostatic potential energy configura-
tion of electrons. Yet this problem has also found place in providing
diversity regularization of neurons [10,17], avoiding undesired repre-
sentation redundancy. Our work however, investigates whether these
regularization methodologies, introducing greater feature diversity
and reducing redundancy, can promote more uniformly distributed
image representations in BYOL.

3. Uniform distribution of features

We now define the necessary components of our investigation, spe-
cifically, explicit uniformity constraints on the representation space de-
rived from the InfoNCE contrastive loss [18] and hyperspherical energy
redundancy regularization to enforce representation diversity through
neuron uniformity.
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3.1. Contrastive learning

We begin by defining the contrastive loss, specifically the InfoNCE
loss informally as the softmax cross entropy loss to identify the positive
view among the set of unrelated negative views. Formally, we give this
in the notation style of [8], in which the popular case of contrastive loss
is considered where an encoder f: R"-S™"! is trained and feature
vectors are /,-normalized onto the unit-hyperspher S of m dimensions.

Comael i ME B | eSS (1)
ive(f37,M)= —
contrastive (%.) ~ Ppos gefwfcy)/f 430l () S0
{51 M Py

where Pgqq(+) is the distribution of data over R", Pyos(,-) is the
distribution over positive pairs (augmentations T,T, of image X ~
Pyaa) R™" x R", 7> 0 is a temperature hyperparameter, and M € Z, a
fixed number of negative samples, i.e. M = 2B — 1 in [1] where B is
the batch size. Additionally, under the assumption of our ¢,-norm con-

straint f(-) £ f(:)/ I f(*)l.
3.2. The link to uniformity

It has been shown by the authors of [8] that there is a derivable link
to the enforcement of uniformity in contrastive losses. From the loss in
Eq.1, itis formally shown in [8] that directly optimizing a metric of align-
ment (encourages positive pair representations to be consistent) and
uniformity (encourages negative pairs to be dissimilar by uniformity dis-
tributing representations) is equivalent when M is sufficiently large.

The uniformity loss is given by:

['unifonnily (f t)é IOg . .]E

[e—tnf(x)—f(y)"%}t >0, 2)
iid
Xy ~ Pdata

This derivation, is of our primary interest, where we ponder if the ex-
plicit constraint on uniformity can improve representation diversity and
subsequently improve performance of BYOL.

3.3. BYOL and its uniformity on the hypersphere

As previously mentioned, BYOL proposes an alternative to the con-
trastive paradigm, in which two networks, online (fy), and target (fy)
are each input with a different view of the same image (x,y), with
the online network tasked to predict the representations of an
identical but temporally aged version of the online network, the target
network. The BYOL architecture is depicted in Fig. 1, where the predic-
tion is made via a multi-layer perceptron network gq(fy(-)) independent
of the target network. For specifics regarding BYOL architecture please
refer to 3.6 or the original work [2].

The important distinction to the contrastive paradigm regards the
loss function Eq.3 in which no negative samples are draw (i.e. augmen-
tations/views from different source images). Instead, the loss can be
seen as an equivalent to the alignment loss derived from Eq.1 by [8]
(Appendix A.1), formally the BYOL loss is given as follows,

Stop Gind

Fig. 1. Visual depiction of BYOL architecture [2].
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where Gy( f5(%))245( f5(x))/1e( Fo(x)l2 and fe(y)2fc(y)/Ifs(y)l2 are

the normalization terms projecting the representation onto the unit-
hypersphere.

From Eq. 3 we can observe there exists no term that enforces the
separation and therefore diversity of negative views in space. The phe-
nomena associated with the lack of diversity of representations
pertaining to different input samples is known as mode collapse,
where without such term, the network will simple learn trivial and con-
stant representations. The current conjecture as to why BYOL does not
exhibit mode collapse lies in the predictor network gy [2,14] with the
derivation and explanation by [2] given in Appendix A.3.

To explore the distribution of representations and subsequently the
effect of the predictor g, without explicit diversity constraints, we
visualize the uniformity of representations produced by the AlexNet
[19] encoder when training on the CIFAR-10 [20] dataset. Fig. 3 depicts
the distribution of the validation set features, with Fig. 3¢ visualizing the
distribution under BYOL procedure. We can observe that the distribu-
tion of image representations under the BYOL setting, although good
and much better than random, is vastly less uniform compared to its
contrastive counter-parts.

3.4. Explicit uniformity constraint

This observation leads to the question: can BYOL benefit from mecha-
nisms that introduce feature uniformity found in contrastive methods?
More specifically, can the uniformity loss, Eq.2, benefit the representa-
tions learned under BYOL. This question had been partly explored in
[21] and indirectly via exploration of negative samples in [2], yet both
of these consider representations produced by the projector and nega-
tives computed from the target network. Given the intuition of BYOL be-
havior we instead minimize Eq.2 of the online projections fy only and
independent of the predictor ge. The intuition behind this procedure is
to enforce uniform distribution of features output by the online
network, akin to constrastive, whilst maintaining the properties of the
predictor to enforce variation via the maximization of information in
the uniformly distributed online network. The combined loss is as
follows

ﬁBYOHUni(Ba g) = LpyoL (67 g) + Nuni - ﬁum‘formity (fe? t) (4)

where t = 2 and A,,; is a hyperparameter controlling the influence of
the uniformity metric.

It can be observed from Fig. 3d, the addition of £, niformir, during BYOL
training improves the uniformity of representations produced by the
encoder, distributing akin to contrastive (Fig. 3b), confirming expected
behavior.

Although the addition of the contrastive uniformity term exhibits
greater uniformity of representations and subsequent improvement in
performance (Table 3), this term relies on the number of negative sam-
ples, M, being sufficiently large. This is an undesirable computational
necessity which BYOL aimed to remove, therefore introducing the con-
trastive uniformity metric contradicts the advantage of BYOL, the lack of
negative samples. Further analysis of the representations captured and
robustness to smaller batch size are examined in later sections.

3.5. MHE regularization

It has been shown by [9,14] that initialization and regularization of
weights by batch normalization are fundamental to performant self-
supervision. We aim to further extend the power of regularization of
self-supervised learning to enforce uniformity of neurons and
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subsequently the produced representations, whilst avoid the negative
sampling constraints imposed by contrastive terms.

We propose the use of hyperspherical regularization [10] alongside
batch normalization to explicitly regularize the network to reduce
hyperspherical energy of neurons (depicted in Fig. 2) to further improve
the diversity of weights in the network and consequently representa-
tion uniformity. Fundamentally, such methods aim to reduce undesired
representation redundancy occurring through non-uniform distribution
of neurons. This choice is particularly motivated the findings in [10],
where scenarios of class imbalance where unrepresented classes were
shown to be well separated as a result of more uniformly distributed
classification neurons. Additionally, [10] argues that the power of neural
representations can be characterized by the hyperspherical energy of its
neurons (i.e. kernels), and as such a minimal hyperspherical energy
configurations can induce better diversity and improve representation
separability. The hyperspherical energy for N neurons, in R+,
Wy = {wy, -, wy € R4V} is defined as:

Es = s.d(wi”il) = i i rs(llwi_wf”)

i=1 j=1,j#i (5)
o Z#jllliv,-—wjll’s., s>0
T Xy log(wi—wil 7Y, s=0

where w; = % is the i-th neuron weight projected onto 8¢, and r(+) is a
decreasing real valued function, which is chosen to be the Riesz s-
kernel, r5(z~*), s > 0 [10]. We therefore aim to minimize the energy E
in Eq.5 by manipulating the orientation of the neurons Wy to solve
minyynEs, s > 0. When s = 0, the logarithmic energy minimization
problem is undertaken, essentially maximizing the product of

Euclidean distance, where in our case this is the angle between neurons.

arg %Ln Ey = arg Ivrvl,{,n exp(Ep) = arg %ﬂxnllwi—wjll (6)

i#j
As an explicit regularization method, we optimize for the joint objec-
tive function:

L 1
L= Covor(6,6) + Ao > "~ {Es} 7)
e ;NJ(N)‘_U s]

where Appe iS a hyperparameter to control the weighting of our
regularization, Ly the number of layers in the online network f, and/or
predictor gy, and N; is the number of neurons in layer j. A further variant
has also been considered in this work simply extending the hyperspherical
energy based on Euclidean distance in Eq.5 to consider geodesic distance
on a unit hypersphere. We define this extension in Appendix A.4 For more
details and all proofs we refer to [10].

3.5.1. Representation uniformity analysis
Demonstrated in Fig. 3 is the distribution of image representations
under MHE regularization following the same visualization methodology

Fig. 2. Visual depiction of the regularization of neurons, {w,-,wy € R(*1}, to minimum
hyperspherical energy, E;, on the unit hypersphere 8%, [10,17].
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Fig. 3. Learned representations of the CIFAR-10 validation set normalized on the unit hypersphere S'. The feature distribution is plotted via Gaussian Kernel Density Estimation (KDE) in
R The corresponding angles for each (x,y) point in R? on the unit hypersphere S' is achieved using the von Mises-Fisher KDE [8].

presented in 3.4, we empirically confirm our hypothesis that improving
the diversity of weights within the network subsequently results in
more diversely distributed representations. Fig. 3e show a significant
improvement in representation uniformity compared to the baseline
in Fig. 3c. To further confirm these findings, we plot in Fig. 4 the
hyperspherical energy of intermediate layer representations of a
ResNet-18 encoder during training on the CIFAR-10 dataset between
standard BYOL and BYOL with MHE regularization applied. We empiri-
cally show that regularizing the neurons via MHE maintains lower
hyperspherical energy on its activation/representations throughout the
whole network, compared to BYOL baseline. It is motivating to note
that the final output layer representations demonstrate immediately
lower hyperspherical energy, and increased uniformity by a measure of
G2 (Appendix A.2), Fig. 5, throughout training by a considerable margin,
an important factor for learning good representations applied to down-
stream tasks. The empirical finding in Fig. 4 support our hypothesis and
rationale that increasing diversity of weights leads to representations
that are in-turn more uniformly distributed. We report performance
benchmarks in 4, and ablations in. 5.

3.6. Implementation details

The implementation follows the procedure presented in [2] with ex-
ception to the addition of the regularization loss terms. As to correspond
with the BYOL procedure, we employ the same image augmentations as
described in [1,2]. Similarly, our experimentation primarily focuses on
the use of two different convolutional residual network [22]

et 18: $iack 1 Arhvation MHE

Fig. 4. Hyperspherical energy vs. iteration during training for intermediate representations
of the ResNet-18 encoder. We compute the MHE on the output of each ResNet block [22].
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Fig. 5. Dynamics during training of the STL-10 dataset. (a) Uniformity measure G2 vs. iter-
ation. (b) MHE regularization objective value vs. iteration.

configurations for our encoders f, ResNet-18 and ResNet-50. Following
the procedure described in BYOL [2], the networks replace the standard
linear output layer with a Multi-Layer Perceptron (MLP) g, projecting
the output of the final average pooling layer to a smaller space. The
MLP is a two layer linear network the first outputting in 4096 dimen-
sions, followed by a second outputting to 256 dimensions. The first
layer only is followed by batch normalization and Rectified Linear Unit
(ReLU) non-linearity. Specifics regarding full augmentation details and
optimization settings are given in full in Appendix B.

4. Linear evaluation

To evaluate the quality of representations learned during self-
supervised training we employ the standard linear evaluation protocol
described in [1,2]. For context, a linear classifier is trained taking as
input the representations produced by the encoder f, which is pre-
trained in a self-supervised manner and then frozen as to not train in
a supervised manner. Table 1 reports the top-1 accuracy in % for the

Table 1

ImageNet Linear Classification: encoder trained for 1000 epochs.
Method Arch. Batch Size top-1 k-NN
Supervised RN50 - 79.3 79.3
SimCLR [1] RN50 4096 69.1 60.7
MoCov2 [23] RN50 4096 711 619
InfoMin [24] RN50 4096 73.0 65.3
BarlowT [25] RN50 4096 73.2 66.0
OBoW [26] RN50 4096 73.8 619
SimSiam [14] RN50 256 713 -
BYOL [2] RN50 4096 743 64.8
BYOL* [2] RN50 4096 74.1 63.7
BYOL-MHE RN50 4096 744 64.9

We report top-1 accuracy (%) and k-NN accuracy. * = Reproduction, RN50 = ResNet-50.
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Table 2

ImageNet Linear Classification: ResNet-50 encoder trained for 300 epochs.
Method Top-1 (%) Top-5 (%)
SimCLR [1] 67.9 88.5
BYOL [2] 725 90.8
BYOL* 719 89.2
BYOL-MHE 724 89.9

We report top-1 and top-5 Accuracy (%). * = Reproduction.

kN Valdation St Avcuracy Duting Training

0 5 W s 0
Valigation Step

Fig. 6. k-Nearest Neighbor accuracy on the STL-10 validation set during training.

ImageNet ILSVRC-2012 test set trained with a standard ResNet-50 for
1000 epochs, we show our reproduction of methods alongside our
MHE regularized variant. We empirically set A,; = 0.125, and Ajpe =
1., choosing the angular variant of MHE regularization with power s =
2 applying to all weights in the encoder, projector and predictor, Appen-
dix C.

We report 74.4 top-1 accuracy with the inclusion of MHE regulariza-
tion, a 0.32% improvement over the standard BYOL baseline, a signifi-
cant improvement in performance which matches the jump made
between other competing methodologies. Additionally, the improve-
ment is maintained at lower epoch counts, and smaller batch sizes,
with Table 2 demonstrating 0.5% improvement at 300 epochs and
1024 batch size. Robustness to hyperparameters is further explore in
5, yet these benchmark results are a substantial and clear improvement,
further validating the capability of our regularization to provide better
representations with minimal overhead. In addition to top-1, we report
the weighted nearest neighbor classifier, k-NN, as a measure of repre-
sentation semantic alignment and separability with very little variation
due to hyperparameter values. Table 1 reports a large improvement
over baseline by 1.0%, and similarly Fig. 6 mirrors such findings when
training on STL-10.

In the case of CIFAR-10, CIFAR-100 and STL-10 datasets we see a
more substantial improvement, reporting a top-1 accuracy of 94.78%,
and 72.56% for CIFAR-10 and CIFAR-100 respectively. This 0.4% im-
provement in CIFAR-10 is comparable to the improvements found be-
tween SimCLR and BYOL, a substantial move towards the supervised
baseline of 95.1% reported in [1]. For the explicit uniformity constraint,
BYOL + Luniformity, We see on average 0.1% improvement from the
MHE regularized variant. This improvement is expected, given the
more explicit nature of the uniformity constraint on directly optimizing
the representations rather than the implicit MHE regularization, and the
observed near uniform distribution depicted in Fig. 3d. Interestingly, we

Table 3
Top-1 (%) Accuracies of Linear Evaluation on CIFAR10 and CIFAR100 datasets with ResNet-
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Table 4
Linear Evaluation on CIFAR10 under different regularization configurations, all networks

for 8ov Go, are regularized when selected.

BN MHE Accuracy (%)
X X 28.76
v X 90.74
X v 45.72
4 v 91.22

find the MHE regularization to be the best performing setting on the
STL-10 dataset, with a 1.1% improvement over baseline, and 0.8% im-
provement over the explicit uniformity constraint. We can conjecture
that the large and diverse nature of the semantic classes in STL-10 unla-
beled set benefit more from the unique representation neuron effect
that enables unrepresented concepts/classes to be uniquely and evenly
assigned [10].

5. Ablation and sensitivity analysis

We analyze the behavior of our BYOL constraints exploring the im-
pact of hyperparameter and network configurations. We follow the pro-
cedure described in 3.6 and 3.6, training a ResNet-18 encoder for 300
epochs.

5.1. Batch size

One primary advantage BYOL introduced is the robustness to smaller
batch sizes, this emerges from the avoidance of negative pairs sampled
from within the batch in end-to-end contrastive models. Therefore,
with our addition of Luniformiry (Eq.2) being derived from Eq.1, we
expect robustness to batch size to degrade. We test the performance
under different batch size averaging gradients over N consecutive
steps before updating the network parameters, where N is the factor
of batch size reduction from the baseline [2]. Fig. 8 shows that the
introduction of the explicit uniformity loss reduces robustness to
batch size as expected. We see from a baseline of 91.48%, a — 9.06%
drop with Lyniformity(fy) compared to BYOL's — 5.74%. This expected
result confirms our reasoning to find alternative mechanisms to
enforce uniformity of image representations. For MHE regularization,
we observe little deviation of performance compared to standard
BYOL given the regularization's independence on batch size.

5.2. MHE regularization and batch normalization

Following our intuition and empirical findings that MHE regulariza-
tion encourages representation uniformity, we further investigate the
effect of regularization components. We first explore the uniformity of
CIFAR-10 validation set representations as done in Fig. 2. We can see
the representations in 8! plotted in Fig. 7 and their corresponding linear
evaluation results in Table 4. The results empirically show how without
batch normalization the network fails to learn whilst poorly distributing
representations in space, resulting in collapsed representations coincid-
ing with [9]. Confirming our previous empirical results, BYOL with MHE

Table 5
Linear Evaluation (Accuracy %) on CIFAR10 given different network configurations of MHE
regularization, ‘v’ denotes that MHE regularization has been applied to that sub-network.

50 Encoder trained for 1000 epochs. Layer
Method CIFAR 10 CIFAR 100 STL-10 Encoder fy¢ - v
SimCLR* 93.81 70.98 82.40 propscior oe T /A
BYOL* 94.46 72.10 82.81 o
BYOL + Lyni 94.84 72.62 83.19 MHE (a2) 90.74" 91.64 9136 9146 9138 91.10 9096 91.22
BYOL-MHE 94.78 72.56 83.96 BYOL + Lyni  91.48

*= reproduction.

The encoder is ResNet-18 trained for 300 epochs. t+= BYOL (repro).
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Fig. 8. Reduction in CIFAR-10 linear evaluation top-1% when decreasing batch size for the
proposed variants and repro of BYOL.

regularized alone produces image representations that are distributed
far more uniform than batch norm, Fig. 7c. However, the linear evalua-
tion performance suffers compared to batch normalization, although
our regularization has a similar effect to batch norm in avoiding collapse
of representations, albeit with less impact. We conclude from these
finding that regularization is a key component to avoid mode collapse
in self-distillation methods, where batch normalization is not a funda-
mental necessity rather the diversity of neurons and reduction in redun-
dancy provided by MHE is enough to encourage variation in learned
representations. This is a promising finding which warrants further in-
vestigation in future work.

5.3. MHE regularization parameterization

To investigate how varying hyperparameters for the MHE regulari-
zation affects performance, we report results for network configurations
in Table 5. Additionally, the weight of the regularization Az and
powers s are given in Appendix D.

We report in Table 5 the linear evaluation performance under vary-
ing configurations of MHE regularization to individual sub-networks.
We show that across all configurations we see an increase in perfor-
mance, showing that the improved weight diversity and subsequent
representation diversity improves the quality of representations
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learned. Additionally, referring to our previous notion that it is not pref-
erable to directly enforce uniformity at the predictor of the BYOL archi-
tecture based on the intuition of BYOL's behavior [2], we do not see any
degradation in performance when MHE is applied at the predictor level.
We conjecture that the improved diversity of features helps assist the
online network in capturing more varied representations.

6. Conclusion

We empirically show that uniformity constrains like those in con-
trastive losses can be beneficial in BYOL and self-distillation methods
in general where negative samples are negated. To maintain the compu-
tation benefits proposed by BYOL we investigate the use of regulariza-
tion methods that minimize the hyperspherical energy between
network neurons. We show that this type of redundancy regularization
implicitly improves distribution uniformity representations learned by
the encoder, leading to improved results in all experimentation over
the baseline whilst remaining robust to changes in batch size, with min-
imal additional computational. Empirical exploration demonstrates the
degree in which MHE regularization impacts the uniformity of repre-
sentations during training throughout the encoder network, validating
our intuition that more diverse neurons result in more diverse repre-
sentations.

Performance gains from our regularization are significant given
no architectural change, nor augmentation change, common in alter-
native approaches. We believe further performance improvements
can be made with tuning of hyperparameters. Yet how the avoidance
of fully collapsed equilibria in the presence of MHE regularization
identified in this work is still yet to be understood, as is how the max-
imization of kernel diversity improves activation diversity. However,
from this work we have identified the importance of regularization
in self-supervision and its effect on learned image representations
in space.

6.1. Future work

This works empirically identifies unexpected training behavior of
the self-supervised, self-distilled method BYOL, and as such expanding
this exploration to alternative methods is a natural continuation. In ad-
dition, the further analysis of regularization in self-supervision as a
whole is an importance next step to understand the training dynamics.
Furthermore, the identified phenomena shows such regularization
impacting uniformity may be enough to solely avoid mode collapse cur-
rently prevented by the predictor network [14], establishing the hy-
pothesis for future investigations.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgments

This work used the Cirrus UK National Tier-2 HPC Service at EPCC
(http://www.cirrus.ac.uk). Access granted through the project: ec173 -
Next gen self-supervised learning systems for vision tasks, supported
by the Engineering and Physical Sciences Research Council (EPSRC).
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.imavis.2022.104494.


http://www.cirrus.ac.uk
https://doi.org/10.1016/j.imavis.2022.104494
https://doi.org/10.1016/j.imavis.2022.104494
Image of Fig. 7
Image of Fig. 8

A. Durrant and G. Leontidis

References

(1]

2

3

[4

5

6

(7

[8

[9

[10]

[11]

[12]

[13]

T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A simple framework for contrastive
learning of visual representations, International Conference on Machine Learning,
PMLR 2020, pp. 1597-1607.

J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch, B.
Pires, Z. Guo, M. Azar, et al., Bootstrap your own latent: A new approach to self-
supervised learning, Neural Information Processing Systems, 2020.

M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, A. Joulin, Unsupervised learning
of visual features by contrasting cluster assignments, 34th Conference on Neural In-
formation Processing Systems, NeurIPS'20, vol. 33, Curran Associates, Inc 2020,
pp. 9912-9924.

M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, A. Joulin, Emerging
Properties in Self-Supervised Vision Transformers, IEEE/CVF International Confer-
ence on Computer Vision, 2021 9650-9660.

Y. Zhang, Q. Liang, K. Zou, Z. Li, W. Sun, Y. Wang, Self-supervised part segmentation
via motion imitation, Image Vis. Comput. 104393 (2022).

S. Chopra, R. Hadsell, Y. LeCun, Learning a similarity metric discriminatively, with
application to face verification, 2005 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR'05), 1, IEEE 2005, pp. 539-546.

T. Chen, L. Li, Intriguing Properties of Contrastive Losses, Advances in Neural Infor-
mation Processing Systems, 34, 2021.

T. Wang, P. Isola, Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere, International Conference on Machine
Learning, PMLR 2020, pp. 9929-9939.

P.H. Richemond, J.-B. Grill, F. Altché, C. Tallec, F. Strub, A. Brock, S. Smith, S. De, R.
Pascanu, B. Piot, et al., Byol Works Even Without Batch Statistics, arXiv Preprint,
2020 (arXiv:2010.10241).

W. Liu, R. Lin, Z. Liu, L. Liu, Z. Yu, B. Dai, L. Song, Learning towards minimum
hyperspherical energy, Adv. Neural Inf. Proces. Syst. 31 (2018) 6222-6233.

K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised visual
representation learning, Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition 2020, pp. 9729-9738.

A. Tarvainen, H. Valpola, Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results, Advances in
Neural Information Processing Systems 2017, pp. 1195-1204.

A. Fetterman, ]. Albrecht, Understanding Self-Supervised and Contrastive Learning
with Bootstrap Your Own Latent (byol), https://www.untitled-ai.com/understand-
ing-self-supervised-contrastive-learning.html 2020.

(14]

[15]

(16]

(17]

(18]
(19]
(20]

(21]

(22]

(23]

(24]

Image and Vision Computing 124 (2022) 104494

X. Chen, K. He, Exploring simple siamese representation learning, Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition 2021,
pp. 15750-15758.

J. Xu, G. Durrett, Spherical latent spaces for stable variational autoencoders, Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing
2018, pp. 4503-4513.

JJ. Thomson, Xxiv. on the structure of the atom: an investigation of the stability and
periods of oscillation of a number of corpuscles arranged at equal intervals around
the circumference of a circle; with application of the results to the theory of atomic
structure, Lond. Edinb. Dublin Philos. Mag. J. Sci. 7 (39) (1904) 237-265.

R. Lin, W. Liu, Z. Liu, C. Feng, Z. Yu, ] M. Rehg, L. Xiong, L. Song, Regularizing neural
networks via minimizing hyperspherical energy, Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition 2020, pp. 6917-6927.

AV.D. Oord, Y. Li, O. Vinyals, Representation Learning with Contrastive Predictive
Coding, arXiv Preprint, 2018 (arXiv:1807.03748).

A. Krizhevsky, 1. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, Commun. ACM 60 (6) (2017) 84-90.

A. Krizhevsky, G. Hinton, et al, Learning Multiple Layers of Features from Tiny
Images, University of Toronto, 2009.

H. Shi, D. Luo, S. Tang, J. Wang, Y. Zhuang, Run Away from your Teacher: Under-
standing Byol by a Novel Self-Supervised Approach, arXiv Preprint, 2020 (arXiv:
2011.10944).

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition 2016,
pp. 770-778.

X. Chen, H. Fan, R. Girshick, K. He, Improved Baselines with Momentum Contrastive
Learning, arXiv Preprint, 2020 (arXiv:2003.04297).

Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, P. Isola, What Makes for Good Views
for Contrastive Learning, Advances in Neural Information Processing Systems, 33,
2020 6827-6839.

[25] ].Zbontar, L. Jing, I. Misra, Y. LeCun, S. Deny, Barlow Twins: Self-Supervised Learning

(26]

Via Redundancy Reduction, In International Conference on Machine Learning, PMLR,
2021 12310-12320.

S. Gidaris, A. Bursuc, G. Puy, N. Komodakis, M. Cord, P. Pérez, Online Bag-of-Visual-
Words Generation for Unsupervised Representation Learning, InProceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021
6830-6840.


http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0005
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0005
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0005
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0010
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0010
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0010
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0015
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0015
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0015
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0015
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0020
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0020
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0020
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0025
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0025
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0030
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0030
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0030
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0035
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0035
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0040
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0040
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0040
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0045
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0045
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0045
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0050
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0050
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0055
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0055
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0055
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0060
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0060
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0060
https://www.untitled-ai.com/understanding-self-supervised-contrastive-learning.html
https://www.untitled-ai.com/understanding-self-supervised-contrastive-learning.html
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0070
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0070
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0070
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0075
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0075
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0075
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0080
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0080
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0080
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0080
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0085
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0085
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0085
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0090
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0090
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0095
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0095
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0100
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0100
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0105
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0105
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0105
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0110
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0110
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0110
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0115
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0115
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0120
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0120
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0120
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0125
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0125
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0125
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0130
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0130
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0130
http://refhub.elsevier.com/S0262-8856(22)00123-8/rf0130

	Hyperspherically regularized networks for self-�supervision
	1. Introduction
	2. Related work
	2.1. Unsupervised representational learning
	2.2. Minimal hyperspherical energy and diversity regularization

	3. Uniform distribution of features
	3.1. Contrastive learning
	3.2. The link to uniformity
	3.3. BYOL and its uniformity on the hypersphere
	3.4. Explicit uniformity constraint
	3.5. MHE regularization
	3.5.1. Representation uniformity analysis

	3.6. Implementation details

	4. Linear evaluation
	5. Ablation and sensitivity analysis
	5.1. Batch size
	5.2. MHE regularization and batch normalization
	5.3. MHE regularization parameterization

	6. Conclusion
	6.1. Future work

	Declaration of Competing Interest
	Acknowledgments
	Appendix A. Supplementary data
	References




