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Abstract 12 

Simulating cropland soil carbon changes following a reduction in tillage intensity is 13 

necessary to determine the utility of this management practice in climate change 14 

mitigation. In instances where reduced or no tillage increases soil carbon stocks, this is 15 

typically due to reduced decomposition rates of crop residues. Although some soil carbon 16 

models contain a priori decomposition rate modifiers to account for tillage regime, these 17 

are typically not calibrated to specific climatic regions, and none are currently available for 18 

the Rothamsted Carbon Model (RothC). Here, we present a modelling framework to 19 

estimate a tillage rate modifier (TRM) for the decomposition rate constants in RothC-26.3 20 

which determine decay between soil carbon pools. We demonstrate this for north-west 21 

Europe, using published data assembled through a recent systematic review with 22 

propagation of error from input parameters throughout the framework. The small 23 

magnitude of soil carbon change following a reduction in tillage intensity in this region is 24 
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reflected in our TRM estimates for no-till of 0.95 (95% Credible Intervals 0.91, 1.00) and 25 

reduced tillage of 0.93 (0.90, 0.97), relative to conventional high-intensity tillage with a TRM 26 

of 1. These TRMs facilitate realistic simulation of soil carbon dynamics following a reduction 27 

of tillage intensity using RothC, and our simple, transparent, and repeatable modelling 28 

framework is suitable for application in other climatic regions using input data generalisable 29 

to the context of interest. 30 

 31 

Keywords: carbon sequestration, soil organic matter, arable, RothC model, tillage, 32 

temperate 33 

 34 

1. INTRODUCTION 35 

Reducing tillage intensity in arable cropping systems can increase soil organic carbon (SOC) 36 

(Sanden et al., 2018, Haddaway et al., 2017, West and Post, 2002). Increased adoption could 37 

contribute to land-based climate change mitigation efforts (Bossio et al., 2020, Kämpf et al., 38 

2016, Smith et al., 1998) although the SOC change identified is often small (Jordon et al., 39 

under review), with redistribution of SOC within the soil profile and a concurrent increase in 40 

bulk density resulting in little change in soil carbon stocks (Powlson et al., 2014, Xiao et al., 41 

2020, Angers and Eriksen-Hamel, 2008, Meurer et al., 2018). Determining the potential 42 

contribution, or otherwise, of reducing tillage intensity to greenhouse gas mitigation at a 43 

regional or territorial level requires modelling approaches that adequately reflect the 44 

mechanisms driving soil carbon dynamics. 45 

 46 

The principal mechanisms for increases in SOC are higher plant residue inputs (PRI) to soil 47 

and reduced rates of decomposition of organic carbon within the soil. Reduced tillage 48 
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intensity favours the latter (Senapati et al., 2014, van Groenigen et al., 2011), protecting 49 

SOC from degradation through enhanced soil aggregation and reduced soil temperatures 50 

(Huang et al., 2018), although simultaneous crop residue retention as part of a conservation 51 

agricultural also increases PRI (Lal, 2015). Widely-used and validated soil carbon models 52 

tend to simulate equilibrium soil carbon stocks following a change in management through 53 

adjusting PRI, with movement of carbon between conceptual pools determined by first-54 

order kinetics (Smith et al., 1997). Decomposition rate constants are routinely adjusted or 55 

modified to account for the effect of soil moisture and temperature on decay, and can be 56 

amended to account for tillage regime (Jenkinson, 1990, Parton et al., 1988, Bolinder et al., 57 

2012, Gerik et al., 2015, Li et al., 1994).  58 

 59 

The Rothamsted Carbon Model (RothC) version 26.3 is a process-based five-compartment 60 

model with monthly timesteps (Figure 1), developed under temperate agricultural 61 

conditions and demonstrated to perform well across climates and biomes (Smith et al., 62 

1997, FAO, 2019, Jenkinson, 1990, Jenkinson et al., 1999). Advantages of RothC-26.3 include 63 

its requirement for few, readily-available, parameters and its ability to run both in ‘forward’ 64 

(estimate change in SOC for known inputs) and ‘inverse’ (estimate inputs for known change 65 

in SOC) modes (Coleman and Jenkinson, 2014). An inverse modelling approach has 66 

previously been applied directly to the decomposition rate constants in RothC-26.3 to 67 

capture the effects of different tillage intensities (Rampazzo Todorovic et al., 2014), 68 

although this approach risks overfitting model parameters to the data. Alternatively, the 69 

decomposition rate constants could be multiplied by a single tillage rate modifier (TRM) 70 

based on tillage intensity. Soja et al. (2010) calibrated such TRMs in RothC to account for 71 

different tillage practices in Austrian vineyards, and rate modifier terms have also been 72 
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developed to better capture SOC dynamics in saline soils (Setia et al., 2011), and aluminium-73 

rich and paddy soils (Yokozawa et al., 2010). Further, generalisable estimates for RothC 74 

input parameters have previously been calculated using data from multiple study sites 75 

(Falloon et al., 1998). 76 

 77 

Here, we present a modelling framework to estimate tillage rate modifiers for ‘reduced 78 

tillage’ and ‘no tillage’ practices on arable farmland, to be used as multipliers for the 79 

decomposition rate constants in RothC-26.3. We demonstrate this approach for north-west 80 

Europe, using SOC data from studies of tillage intensity in temperate oceanic regions 81 

identified by a recent systematic review (Jordon et al., under review). The TRM estimates 82 

presented here are appropriate for use in north-west Europe and have been applied 83 

elsewhere to simulate adoption of no and reduced tillage practice across arable land in 84 

Great Britain (Jordon et al., 2022). Further, our framework is intended to be applicable in 85 

other regions using data appropriately generalisable to the context of interest. 86 

 87 

2. METHODS 88 

Jordon et al. (under review) identified 20 studies that measured soil organic carbon (and 89 

crop yield) under differing arable tillage intensity regimes in regions of north-west Europe 90 

with a temperate oceanic climate (Köppen-Geiger classification Cfb (Peel et al., 2007)). 91 

Studies identified were conducted in the UK, France, Belgium, Germany, the Netherlands, 92 

Denmark and Spain. From this, we extracted 23 paired observations of soil carbon under 93 

conventional tillage (CT) vs no-till (NT) treatments (12 studies), and 20 observations under 94 

CT vs reduced tillage (RT) treatments (14 studies), available online (Jordon, 2022). We 95 

selected paired observations where the only difference between study treatments was 96 
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tillage regime, such that where studies applied tillage treatments factorially with other 97 

treatments, paired observations were extracted for each level of the factor(s) not of 98 

interest. Where studies presented observations for CT, RT and NT treatments, they were 99 

included both in the CT-NT and CT-RT analyses.  100 

 101 

RothC-26.3 was implemented in R version 4.0.3 using the RothCModel function in the 102 

package SoilR (Sierra et al., 2012, R Core Team, 2020), which allows plant residue input 103 

(PRI), soil carbon pool sizes, and decomposition rates to be explicitly specified. We ran our 104 

model framework for each study site, using site-specific input parameters from global 105 

databases extracted using site coordinates where required parameters were not provided in 106 

article texts or available on request from the corresponding author (Table 1).  107 

 108 

We propagated error through our model framework using standard deviations associated 109 

with inputs to generate normally distributed random samples of parameters for 100 model 110 

iterations per observation. Where clay and bulk density estimates were given in study 111 

articles, their respective standard deviations were assumed to be zero, such that error is 112 

only propagated for WISE30sec values to capture their estimation uncertainty. To derive 113 

standard deviations for the required climatology data, we downloaded monthly averages for 114 

each year in the period 1981-2010 and calculated the mean and standard deviation across 115 

these 30 years. Some studies included in the systematic review database assembled by 116 

Jordon et al. (under review) do not present error terms for SOC estimates. Since discarding 117 

incomplete data can bias model estimates (Weir et al., 2018), we used multiple imputation 118 

methods to generate estimates for missing values, which explicitly represents the 119 

uncertainty associated with imputation in the model output (Lajeunesse, 2013). We used 120 
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the mice package in R to generate ten imputed datasets (van Buuren and Groothuis-121 

Oudshoorn, 2011) and drew ten random samples using the imputed values from each 122 

dataset to generate the 100 samples required. 123 

 124 

Our modelling framework and assumptions are presented in Table 2 and the full R code we 125 

used is provided online (Jordon, 2022). Inverse modelling was conducting via a linear 126 

optimisation process using the optim function with Brent method in base R (R Core Team, 127 

2020). We used CT ‘endline’ SOC (i.e. most recent measurement in study) to inverse model 128 

PRI. We assumed PRI to be the same within each CT-NT/RT paired observation due to the 129 

only difference between study treatment managements being tillage regime. Although crop 130 

residue retention alongside reduced tillage intensity in conservation agriculture may 131 

increase PRI, our pairing of study treatments ensured similar crop residue fate between 132 

treatments, i.e. both removed or burnt, or incorporated in CT/RT and left on surface in NT. 133 

Further, if reduced tillage intensity (RT or NT) resulted in higher crop Net Primary 134 

Productivity (NPP) compared to CT, this would likely increase PRI (Bolinder et al., 2007). 135 

However, meta-analysis of the yield data from the study treatments used here found no 136 

difference in crop yield (Jordon et al., under review) (found to relate to NPP (Bolinder et al., 137 

2007)) between tillage treatments, in agreement with the findings for this region from 138 

another recent meta-analysis (Sun et al., 2020). 139 

 140 

 This allowed us to inverse model TRMs for the RothC decomposition rate constants for NT 141 

and RT endline SOC values by keeping the PRI constant. Our approach assumes a TRM of 1 142 

for conventional tillage, because the decomposition rate constants in RothC were originally 143 

calibrated in arable systems with cultivation. 144 



 7 

 145 

We used the brms package to fit a Bayesian intercept-only model to estimate the average 146 

tillage rate modifier across all paired observations (Bürkner, 2018). Due to the large amount 147 

of data with missing errors imputed for use in our model framework we generated three 148 

estimates to test the sensitivity of the results to different data availability and quality: 149 

1. Errors present (EP) 150 

2. Errors imputed where missing (EI) 151 

3. Critical appraisal (EIHV): as in (2), but only observations that have high validity based 152 

on level of spatial replication and experimental design (see Jordon et al. (under 153 

review) for details) 154 

 155 

3. RESULTS AND DISCUSSION 156 

We present a simple, transparent, and repeatable framework for estimating TRMs to 157 

uniformly adjust the decomposition rate constants in RothC-26.3. We demonstrate our 158 

approach using data from north-west Europe, identifying a TRM for no-tillage in the range 159 

0.95 (0.91, 1.00) to 1.02 (0.97, 1.07) and for reduced tillage between 0.93 (0.90, 0.97) and 160 

0.99 (0.95, 1.03) (Table 3). Of these, only the reduced tillage TRM from the EI analysis has 161 

95% Credible Intervals not overlapping with 1 so is significantly different from the rate of 162 

decomposition under conventional tillage. This is unsurprising given meta-analysis of the 163 

data used here identified only a very small increase in SOC concentration following adoption 164 

of reduced or no tillage in temperate oceanic regions (Jordon et al., under review), without 165 

accounting for any concurrent increase in bulk density which can result in little or no change 166 

in soil carbon stocks on an equivalent soil mass basis (Powlson et al., 2014, Meurer et al., 167 

2018). Nevertheless, our TRM estimates give realistic soil carbon dynamics (i.e. modest 168 
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increase with plateauing dynamic; Smith, 2014) when used in RothC to simulate equilibrium 169 

soil carbon stocks following adoption of no- or reduced-tillage (Figure 2). Further, our 170 

framework is applicable to data from other regions where reduction of tillage has a greater 171 

influence on SOC (Sun et al., 2020, West and Post, 2002), which we would expect to result in 172 

larger TRMs. 173 

 174 

Other models generally assume a larger effect of tillage on the rate of decomposition of soil 175 

carbon pools1. For example, the Century model multiplies decomposition rates by up to 1.6 176 

(Metherell et al., 1993), the Environmental Policy Integrated Climate (EPIC) model applies an 177 

exponential coefficient in the range 5-15 (Gerik et al., 2015), the DeNitrification-178 

DeComposition (DNDC) model increases rates by 1.5 times for disk cultivation and by 3 179 

times for ploughing (Li et al., 1994), and an optimised rate modifier of 1.2 has been used in 180 

the Integrated Carbon Balance Model (ICBM) for rotations with more frequent tillage 181 

(Bolinder et al., 2012). Other approaches include increasing the proportion of net primary 182 

productivity retained as crop residues, from 35% for conventional tillage to 55% for 183 

conservation tillage as in SOCRATES (Grace et al., 2006). Although these higher adjustments 184 

have been found to perform well, this could be due in part to their development using 185 

datasets from different climates or cropping systems to our demonstration region, and 186 

differences between models in their underlying decomposition rate constants. Where 187 

future research uses data from warmer or drier climates to parametrise our framework, this 188 

may result in a greater magnitude of TRM than we identify here (Sun et al., 2020). Although 189 

 
1 Most models increase tillage rate modifiers to account for higher tillage intensity rather than decrease to 

account for reduced tillage intensity as in our approach. 
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some syntheses have found little influence of temperature or rainfall (Luo et al., 2010), or 190 

climate zone (Haddaway et al., 2017), on SOC changes under different tillage regimes, this 191 

could be due to their focus on predominantly temperate regions. 192 

 193 

Key advantages of our approach include the use of a systematic review database to 194 

parametrise our modelling and ability to propagate error from the underlying studies. 195 

However, our results are sensitive to which, and how many, observations are used to 196 

estimate TRMs, with a trend towards a greater magnitude of TRM when more observations 197 

are included (Table 3). This highlights the issue of data completeness when attempting to 198 

derive model parameters from published studies; six NT studies and eight RT studies in our 199 

dataset did not present error terms for SOC measurements, necessitating multiple 200 

imputation methods for inclusion. Further, it would be more mechanistically accurate to 201 

initialise baseline (i.e. pre-intervention) soil carbon pools for the CT and NT/RT treatments 202 

using baseline SOC measurements, to enable PRI to be estimated for the study duration 203 

rather than over a 1000-year spin-up. This was not possible as 13 CT-NT observations and 12 204 

CT-RT observations did not present baseline data. We were unable to use imputed baseline 205 

values as this led to a modelling artefact where it appeared that SOC greatly increased in the 206 

CT treatments, resulting in unrealistically high estimates of study PRI which led to incorrect 207 

dynamics of increased decomposition in NT and RT treatments in order to match study SOC 208 

measurements. Where sufficient baseline SOC data is available in future work, this should 209 

be incorporated when implementing our framework. Although we feel that assuming PRI is 210 

constant within each CT-NT/RT paired observation is reasonable here due to the reasons 211 

outlined in the Methods, in instances where PRI is anticipated to differ due to differences in 212 

crop residue management or known changes in crop yield, a modified approach would be 213 
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required to implement our framework. Identifying the effect of reduced tillage intensity vs 214 

crop residue retention via an inverse modelling approach would require a dataset with 215 

factorial treatments of tillage intensity and straw retention to establish the PRI increase 216 

from straw retention, tillage rate modifier from reduced tillage intensity, and any 217 

interaction between these. Further, where differences in crop yield between tillage regimes 218 

are known to exist, a method similar to that described by Bolinder et al. (2007) could be 219 

implemented to estimate a proportional tillage factor for PRI using crop yield data, thus 220 

accounting for this effect in an additional step between stages 2 and 3 in our framework 221 

(Table 2). 222 

 223 
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 381 

6. TABLES 382 

Table 1. Input parameters for RothC-26.3 in our model framework. Global spatial data are 
at 1km resolution, and were extracted for each study site using degree decimal coordinates 

Model parameter Source Citation 

Soil organic carbon (g.100g-1) Studies in systematic 
review database 

(Jordon et al., under 
review) 

Soil clay content (%) WISE30sec* (Batjes, 2016) 

Soil bulk density (g.cm-3)† 

Mean monthly air temperature (oC)†† TerraClimate (Abatzoglou et al., 2018) 

Mean monthly precipitation (mm) 

Potential evapotranspiration (mm) 

* where not presented in study 
† Soil bulk density was required to convert soil carbon data from concentration (g.100g-1) 
to stocks (t.ha-1) in order to input to RothC 
†† TerraClimate only provides monthly minimum and maximum temperatures, so we 
approximated monthly mean temperature by averaging the minimum and maximum 

 383 

Table 2. Modelling framework used to estimate tillage rate modifiers (TRM), parametrised with paired 
observations of conventional tillage (CT) with no-till (NT) or reduced tillage (RT). PRI: plant residue input. 
Stage SOC 

input† 
Output Model 

run time 
Initial 
soil 
carbon 
pools 

Plant 
residue 
input 

Decomposition 
rate constants 

Assumptions 

1. Inverse model 
PRI for CT endline 

CT 
endline 

CT endline 
PRI 

1000 
years 

0‡ Inverse 
modelled 

Model defaults CT SOC is at 
equilibrium at study 
endline 

2. Spin up NT/RT 
baseline SOC pool 
sizes 

na NT/RT 
baseline SOC 
pool sizes 

1000 
years 

0‡ CT 
endline 
PRI (1) 

Model defaults NT/RT baseline SOC is 
at equilibrium; PRI is 
same as CT treatment 

3. Inverse model 
decomposition 
rate modifier for 
NT/RT treatment 

NT/RT 
endline 

NT/RT rate 
modifier 

Study 
years 

NT/RT 
baseline 
SOC pool 
sizes (2) 

CT 
endline 
PRI (1) 

Model defaults 
multiplied by 
single rate 
modifier 

PRI is same as CT 
treatment  

† used in inverse modelling stage 
‡ Inert organic matter (IOM) pool estimated as 𝐼𝑂𝑀 = 0.049(𝑆𝑂𝐶1.139) following Falloon et al. (1998), where SOC is the soil organic 
carbon stock (t.ha-1) 

 384 

 385 

 386 

 387 
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 388 

 389 

Table 3. Tillage rate modifier (TRM) estimates for no-till (NT) and reduced tillage (RT) with 95% 
Credible Intervals (* denotes where not overlapping with 0). 

 NT TRM Observations Studies RT TRM Observations Studies 

Error present 
(EP) 

1.02 
(0.97, 1.07) 

16 6 
0.93 

(0.75, 1.09) 
12 6 

Error imputed 
(EI) 

0.95 
(0.91, 1.00) 

23 12 
0.93 

(0.90, 0.97)* 
20 14 

Error imputed, 
high validity 
(EIHV) 

1.02 
(0.97, 1.07) 

18 8 
0.99 

(0.95, 1.03) 
14 8 

 390 

 391 

7. FIGURE LEGENDS 392 

Figure 1. Conceptual soil carbon pools in RothC-26.3, after Coleman and Jenkinson (2014). 393 

DPM: decomposable plant material, RPM: resistant plant material, BIO: microbial biomass, 394 

HUM: humified organic matter, IOM: inert organic matter. Decay of pools determined by 395 

first-order kinetics with decomposition rate constant, apart from small inert pool resistant 396 

to decomposition. 397 

 398 

Figure 2. RothC soil carbon pool dynamics, initialised for 500 years using conventional tillage 399 

(CT) plant residue input (PRI) from dataset, followed by simulated reduction of tillage 400 

intensity using tillage rate modifier (TRM) from year 500 (dashed vertical line). All 401 

parameters are mean values from implementation of respective modelling framework. (a) 402 

No-till: CT PRI 2.68 t.ha-1.month-1, TRM 0.95, SOC500 47.4 t.ha-1, SOC1000 49.8 t.ha-1. (b) 403 

Reduced tillage: CT PRI 3.52 t.ha-1.month-1, TRM 0.93, SOC500 60.2 t.ha-1, SOC1000 64.4 t.ha-1. 404 

DPM: decomposable plant material, RPM: resistant plant material, BIO: microbial biomass, 405 

HUM: humified organic matter, IOM: inert organic matter. Figure after Sierra (2015). 406 

 407 
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