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Abstract
The molecular characterization of complex behaviours is a challenging task as a range 
of different factors are often involved to produce the observed phenotype. An es-
tablished approach is to look at the overall levels of expression of brain genes—or 
‘neurogenomics’—to select the best candidates that associate with patterns of inter-
est. However, traditional neurogenomic analyses have some well-known limitations: 
above all, the usually limited number of biological replicates compared to the num-
ber of genes tested—known as the “curse of dimensionality.” In this study we imple-
mented a machine learning (ML) approach that can be used as a complement to more 
established methods of transcriptomic analyses. We tested three supervised learn-
ing algorithms (Random Forests, Lasso and Elastic net Regularized Generalized Linear 
Model, and Support Vector Machine) for their performance in the characterization of 
transcriptomic patterns and identification of genes associated with honeybee wag-
gle dance. We then matched the results of these analyses with traditional outputs of 
differential gene expression analyses and identified two promising candidates for the 
neural regulation of the waggle dance: boss and hnRNP A1. Overall, our study demon-
strates the application of ML to analyse transcriptomics data and identify candidate 
genes underlying social behaviour. This approach has great potential for application 
to a wide range of different scenarios in evolutionary ecology, when investigating the 
genomic basis for complex phenotypic traits, and can present some clear advantages 
compared to the established tools of gene expression analysis, making it a valuable 
complement for future studies.
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1  |  INTRODUC TION

The complex relationship between genes and behaviour has fu-
elled a large body of recent research (Robinson, 2004; Weitekamp 
et al., 2017) and we now know that gene activity can influence 
brain function, which in turn may affect behaviour (Robinson et al., 
2008). Several studies have shown that behavioural states (distinct 
and well-characterized behaviours such as foraging or defensive 
behaviour) can be associated with distinct gene expression profiles 
in neural tissue, representing the basis for the neurogenomic ap-
proach: for example, large gene networks have been associated with 
foraging and defence behaviour in honeybees (Hunt et al., 2007), 
and numerous candidate neurological genes have been linked to ag-
gression in a variety of organisms, including honeybees (Liu et al., 
2016) and zebrafish (Filby et al., 2010). Nonetheless, most studies 
have focused on behavioural states that are long lasting or inherent 
to a species (Zayed & Robinson, 2012), whereas more plastic and 
transient social interactions among members of the same species 
(or colony) have been less characterized at the neurogenomic level 
(Taylor et al., 2021). This is probably due to the challenges associated 
with combining accurate behavioural observations with complex ex-
perimental designs to obtain and analyse large sets of gene expres-
sion data (Robinson et al., 2008).

The Western honeybee Apis mellifera has become a model or-
ganism for neurogenomics due to its fascinating sociobiology, the 
ecosystem services it provides as a pollinator and the availability 
of a fully annotated genome (Weinstock et al., 2006). Honeybees 
display perhaps one of the most iconic social behaviours in the 
animal world—the “waggle dance”—where foragers communicate 
the location of suitable food sources and possible nest locations 
to nestmates via stereotyped movements (Couvillon et al., 2012). 
This complex behaviour was described for the first time in the last 
century (von Frisch, 1967, 1974) and since then many details of its 
ecological, evolutionary and physiological underpinnings have been 
characterized (reviewed in Barron & Plath, 2017; Dyer, 2002; Price 
& Grüter, 2015). Despite this, we still do not have a complete picture 
of how the waggle dance is regulated at the brain level. Pioneering 
studies have started to reveal some of the key players at the levels 
of molecules (Barron et al., 2007; Kennedy et al., 2021; Linn et al., 
2020), cell types (Kiya et al., 2007) and genetic pathways (Sen Sarma 
et al., 2009, 2010) associated with dance communication, but it is 
unclear what genes in the honeybee brain trigger the performance 
of dance behaviour once activated.

Traditionally, the neurogenomic approach has consisted of using 
statistical methods to calculate differential gene expression (Fang 
et al., 2012), which requires robust data analysis techniques due to 
the large volumes of sequence reads generated per sample (Kukurba 
& Montgomery, 2015). An interesting development in the field to 
address the increased computational needs of these approaches has 
been the application of machine learning (ML) to genomics studies 
(Libbrecht & Noble, 2015). ML is a branch of computer science which 
focuses on the study of algorithms that can improve automatically 
through experience or by the use of data. These algorithms were 

proposed to address complex problems which could not be solved 
through an explicit list of computational steps. Thus, ML method-
ologies have proved to be powerful resources and have been the 
focus of extensive research recently to identify the possibilities of 
new applications to a wide range of fields in biology and medicine 
(Saeys et al., 2007; Wang et al., 2016; Zhou & Tuck, 2007). Despite 
the abundance of studies applying ML frameworks to transcriptomic 
data, its use to characterize the molecular regulation of highly plastic 
and transient behaviours has not yet been properly explored.

In this study, we sought to identify the genes associated with 
the performance of dance behaviour in honeybee foragers using 
an ML approach. We obtained a transcriptomic data set of brain 
tissues (mushroom bodies) from honeybee foragers that were sam-
pled for another study designed to underpin the molecular basis 
for learning distance and direction through the waggle dance 
(Manfredini et al in prep.): mushroom bodies were targeted for this 
study as they are the best suited brain tissue to explore high cog-
nitive functions in insects (Menzel, 2012; Peng & Chittka, 2017), 
including spatial tasks (Buehlmann et al., 2020; Kamhi et al., 2020). 
We trained three classification algorithms on the expression lev-
els of 15,314 transcripts that equal the total number of currently 
known genes of the honeybee genome, with the direct goal of clas-
sifying honeybees according to whether or not they performed a 
waggle dance upon their return from a foraging trip (i.e., dancers 
vs. nondancers). Thereafter, we unified the information obtained 
from the different ML approaches to identify the genes associated 
with these complex behavioural states, and we compared these re-
sults with more traditional analyses of gene expression based on 
the quantification of transcript abundance across groups (namely, a 
Likelihood Ratio Test [LRT] and a Generalized Linear Model [GLM]). 
Together, our study provides deeper insight into the molecular reg-
ulations of the waggle dance, a plastic and transient behavioural 
state, and promotes incorporating ML in the analysis of transcrip-
tomic data.

2  |  METHODS

2.1  |  Experimental setup and initial data set

The transcriptomic data used for analysis were part of an experiment 
prepared to study the molecular basis for social learning of distance 
in honeybees through the waggle dance (Manfredini, 2021). In this 
experiment honeybees from four different colonies were trained 
to visit a feeder containing a sucrose solution (concentration = 2 m) 
positioned at the end of a 6-m-long tunnel (Srinivasan et al., 2000), 
which was used to alter the bee's perception of distance as follows: 
vertical stripes (with respect to the direction of flight) on the tunnel 
walls were used to increase the estimated flight distance, while hori-
zontal stripes were used to decrease it (Figure 1). Honeybees were 
then marked at the feeder according to perceived distance (similarly 
to Sen Sarma et al., 2010), yielding two groups: “honeybees perceiv-
ing long distance" and “honeybees perceiving short distance."
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Honeybee colonies were housed in an observation hive, which 
allowed direct monitoring of the comb where honeybees normally 
performed the waggle dance after returning from a foraging trip, 
known as the “dance floor" (Tautz, 1996). Bees were trained during 
the morning to visit the feeder at the end of the tunnel—it usually 
took ~5 h to complete this part—and then in the afternoon (between 
2 and 4 pm) foragers that regularly visited the feeder were moni-
tored by an observer while foragers were flying from the dance floor 
to the feeder and vice versa repeatedly. During this 2-h time win-
dow, the dance floor was also recorded with a video camera, pro-
ducing a recording of all waggle dance events that occurred in the 
focal colony. At 4 pm on each day, marked bees were sampled at the 
feeder, by gently catching them with tweezers and quickly freezing 
them in liquid nitrogen. These samples were immediately housed in 
a −80°C freezer and stored there until we proceeded with the mo-
lecular work necessary to isolate RNA samples.

The dance floor footage was carefully analysed to identify 
marked honeybees that performed waggle dances upon their return 
from the feeder (hereafter “dancers”) and separate them from those 
that instead were never seen performing any dance (“nondancers") 
for the whole duration of the 2-h videorecording, despite being vis-
ible on the dance floor upon their return from a foraging trip. We 
allocated to the dancers group bees that were seen performing at 
least one dance in the 2-h time window, but there was a certain level 
of variation in the group, with most bees performing multiple dances 

up to a maximum of 12 dances recorded for one individual. An analy-
sis of the recorded dances confirmed that the manipulation was suc-
cessful: bees exposed to vertical stripes advertised longer distances 
on average in their dances compared to bees exposed to horizontal 
stripes (Manfredini et al. in prep).

This resulted in the following four groups of honeybees: Dancer 
perceiving Long distance (DL), Dancer perceiving Short distance (DS), 
Nondancer perceiving Long distance (NL), and Nondancer perceiving 
Short distance (NS), with eight replicate samples in each of the four 
groups (N = 32). Brain tissues from all these samples were processed 
individually for RNA sequencing (RNAseq) analysis (see Appendix S1). 
Sequencing files were mapped to the most recent version of the hon-
eybee genome (Amel_4.5) using the intron-aware Star aligner, version 
2.6.1a (Dobin et al., 2013), with default settings and using annotation 
information available for Apis mellifera on NCBI. Read counts were 
extracted using the featureCounts function from the Bioconductor R 
package subread version 1.8.0 (Liao et al., 2019) and following recom-
mended parameters. The final data set, which represents the starting 
material for this study, included the read counts for 15,314  genes, 
corresponding to the whole honeybee genome across 32 bees. As 
we noticed some variation in library size for some of the bee sam-
ples (Dataset S3), we normalized read counts by the total library sizes 
to correct for the effect of possible outliers. To test for the existence 
of a colony effect, we used the duplicateCorrelation function in the R 
Bioconductor package limma (version 3.50.0).

F I G U R E  1  Schematic representation of the experimental design. (a) Honeybees visited a feeder through a tunnel, used to alter their 
distance perception (vertical stripes with respect to the direction of flight increased, while horizontal stripes decreased the distance 
perceived), and were then marked accordingly. (b) At the observation hive, honeybees were recorded while performing or not performing 
dancing behaviour and were finally prepared for RNAseq analysis (c). (d) Three machine learning algorithms (SVM, GLMNET and RFE) were 
trained on the preprocessed sequence reads (Training Classifiers). (e) Key features from each model were compared to identify common 
elements (genes or predictors)
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2.2  |  Model hyperparameters and data 
preprocessing

We used the caret package version 6.0-90 (Kuhn, 2008) in the pro-
gramming language r version 4.1.1 (R Core Team, 2018) to train and 
assess the performance of the classifiers. To evaluate the models, 
a randomly allocated 20% of the data (six samples: DL1, DL3, DL7, 
NL1, NL6, NL7) were retained for testing and only the remaining 
80% (26 samples) were used to train each model. Considering that 
the distance component had no visible effect on the distribution of 
our data as revealed by the initial analyses, we decided not to control 
the train/test split regarding the distance component. Furthermore, 
as part of the preprocessing requirements, the data were centred, 
scaled and freed from variables of (near) zero variance, to improve 
computation time by faster convergence. For this, the nearZeroVar 
function from the caret package was used with the default cut-off 
values of 95/5 for frequency, and 10 for uniqueness. Thus, a variable 
was flagged if its frequency ratio (frequency of the most common 
value to second most common) was more than 19, and the percent-
age of unique values (number of unique values divided by total num-
ber of samples × 100) was below 10.

While training, we assessed the performance of each classifier 
on a validation set using repeated k-fold cross-validation (cv) on the 
26 samples with 100 repeats per model (Beleites & Salzer, 2008). We 
chose the number of folds to be 10, a standard practice in ML (Kuhn 
& Johnson, 2013), which meant subdividing the training set (26 sam-
ples) into 10 bins and assessing the model performance on each one 
of the bins, after being retrained on the remaining nine. For each of 
these 10 runs, the area under the receiver operating characteristic 
curve (AUROC) (Marzban, 2004) was accessed using twoClassSum-
mary as the summary function in the train control, and their perfor-
mance was averaged to give one value for that run. Since we only 
had a handful of samples, the performance of the models could be 
highly dependent on the cv splits. Performing k-fold cv repeatedly 
(100 times) eliminated this possibility and ensured that each model 
was trained and validated on most (if not all) of the 26 samples.

As cv is performed to find the best parameters for the model, 
these 100 repeats were executed for each set of hyperparameters. 
The optimal hyperparameters were found by caret implicitly, by per-
forming a grid search through the 10 most likely values for each pa-
rameter, which were then reported.

2.3  |  Selected machine learning algorithms

We used principal component analysis (PCA) (Jolliffe & Cadima, 
2016) to explore the underlying structure of our data set. As a re-
sult of this set of preliminary analyses, we carefully selected the 
classification algorithms shown in Table 1. For a brief description of 
these algorithms see the Appendix S1. We also made use of “Feature 
Selection” techniques (FS) (Saeys et al., 2007; Wang et al., 2016) to 
identify the most suitable features (genes) at predicting the correla-
tion between gene expression data and dance behaviour.

We explored three fundamentally different approaches with 
implicit feature ranking procedures based on previous studies (see 
Table 1 and also the Appendix S1): Random Forests (RF), Lasso and 
Elastic net Regularized Generalized Linear Model (GLMNET), and 
Support Vector Machine (SVM). Due to the complexity of the data, 
we decided to use a radial kernel for SVM, as supported by previous 
research (Kasnavi et al., 2018). These methods, also known as “em-
bedded techniques,” rank the features based on the already trained 
classifier, and as a result, the predictive power of the selected fea-
tures is dependent on the performance of the model. The selected 
approaches proved to converge on the same final set of predictors 
even when subjected to repeated random starting conditions.

Whereas embedded methods obtain the importance of certain 
features from the trained model, wrapper methods, such as Recursive 
Feature Elimination (RFE), add an extra layer to the training process, 
and embed the model hypothesis search within the feature subset 
search (Saeys et al., 2007). More specifically, RFE uses backwards se-
lection to assess the importance of each feature to the model, and dis-
cards or keeps them accordingly at each iteration. The best performing 
subset of features is then reported and the model is refitted on them. 
The ranking of the features is done by the underlying algorithm, which 
can be RF, SVM, GLMNET or others (Granitto et al., 2006; Li et al., 
2015; Zhou & Tuck, 2007). Considering the promising properties of RF 
for genomic studies (Statnikov et al., 2008), we decided to use RF as 
the underlying model for recursive feature elimination. Even though 
RF had been explored as an FS algorithm in the early stages of this 
study, we decided to only include results of RF being run as part of the 
RFE procedure (RFE-RF), to avoid any overrepresentation of predic-
tors selected by RF in the final set of focal genes.

2.4  |  Characterization of focal genes

The results of the described approaches were used comparatively to 
characterize the relevance of the ML models and obtain a final set 
of predictors. First, we reported the subset of features identified by 
RFE-RF and compared them with the top ranked features of SVM 
and GLMNET, in order to contrast the three approaches, and distil 
an initial list of common features.

As our goal was to identify the most promising set of candidate 
genes and discuss them in detail, we then focused on a restricted 
subset of the main output. Namely, we obtained the top 20  most 
important features according to the individual ranking of each ap-
proach, which were then compiled into a single list of focal genes. 
To test the statistical significance of the overlaps, we calculated 
the Jaccard Index and Odds Ratio with the GeneOverlap r package 
(Shen, 2021). The annotations of overlapping genes were obtained 
using NCBI (https://www.ncbi.nlm.nih.gov/). Where NCBI could not 
provide any information on putative gene function, we used blast 
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) using default settings and 
the nucleotide-to-nucleotide function. We initially compared the 
sequence of the transcript of interest against the honeybee genome 
(A. mellifera) and then, if this did not provide any meaningful results, 

https://www.ncbi.nlm.nih.gov/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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we compared it against the whole repository, to see whether any 
significant sequence similarity was detected against orthologues 
in other organisms (i.e., matches with high score and low E-value). 
We then performed overlap analyses to detect candidate genes that 
were in common among the three algorithms. For comparison with 
standard analytical methods, we also analysed the same data set of 
RNAseq read counts with a traditional transcriptomic approach to 
identify differentially expressed genes across groups (see Fang et al., 
2012; Kukurba & Montgomery, 2015). We used two different statis-
tical analyses using the Bioconductor R package: we performed LRT 
using deseq2, version 1.24 (Love et al., 2014), where we created a 
reduced model to test for the effect of any treatment (or behavioural 
group in this case, i.e., DL, DS, NL and NS) on gene expression, and 
we fit a simple GLM using edger (Robinson et al., 2010), where we 
grouped bees according to presence/absence of dance behaviour 
and we contrasted against each other ([DL + DS] vs. [NL + NS]). 
We followed recommended settings for both analyses (normaliza-
tion performed with the variance stabilizing transformation or vst 
function in deseq2, and with Trimmed Mean of M-values or TMM in 
edger) and we adopted a false-discovery rate (FDR) equal to 0.05 to 
invoke a statistically significant difference in gene expression. Last, 
we compared the outputs of these analyses with the list of candidate 
genes from the ML approaches to identify common genes. The LRT 
was also used to check for the possibility of any effects due to col-
ony of origin or lane of the sequencer used that could be responsible 
for driving the observed patterns of gene expression: none of these 
factors was associated with a significant effect (FDR > 0.05).

3  |  RESULTS

3.1  |  Exploratory analysis

The consensus correlation for the colony effect yielded a negative 
value (−0.3327), disproving that some colonies were more correlated 
with the dance behaviour than others, and suggesting therefore the 
absence of a colony effect in the data. Moreover, PCA was unable to 
clearly separate the four groups of bees according to the combina-
tion of dance behaviour (dancer (D)/nondancer (N)) and distance per-
ceived (long (L)/short (S)) (Figure 2), or according to the colony of origin. 
However, when considering the dance factor alone, we obtained a 

low-dimensional representation/projection of the data using only few 
principal components (PCs), which produced easily distinguishable 
clusters of samples, that is dancers and nondancers (Figure 3). The rep-
resentation was dominated by PC1, accounting for 51% of the variance 
in the data, while PC2 only accounted for 14.4% (Figure 3; Figure S1).

PCA clearly showed that dancers were clustered together to-
wards the centre of the plot, showing lower variance than non-
dancers; this indicates more consistent global patterns of gene 
expression in dancers vs. nondancers. We also found four nondanc-
ers (NS2, NS4, NL6, NL5) which formed a separate cluster further 
along the PC1. These samples showed the highest loadings for PC1 
(Dataset S1), with levels around 200, much higher than dancers (cen-
tred around 0) and the other nondancers (all below 0). We identified 
the three genes with maximal loadings for PC1: GB52651 (diphthine-
ammonia ligase), GB49108 (PDZ domain-containing protein 8) and 
GB44753 (uncharacterized gene). Comparing the maximally loaded 
genes for PCs 1–3 (top 5,000, for consistency) and the genes identi-
fied by the embedded methods as key predictors, we found overlaps 
of 0% (PC1), 67.54% (PC2) and 85.39% (PC3).

Dancers showed the highest levels of positive correlation 
between global patterns of gene expression when represented 
with components PC1 and PC2 (DL = 0.711 and DS = 0.574) and 
showed the highest level of negative correlation on PC2 and PC3 
(DL  =  −0.434 and DS  =  −0.934, Figure 2). Overall, the analysis 
showed a clear underlying structure in the data set with respect to 
the dance component (dancers vs. nondancers), while no evident 
structure appeared to be associated with the perceived distance 
(long vs. short). Based on these findings, we proceeded in our ML 
analyses focusing on the “dance” factor alone.

3.2  |  Recursive feature elimination

The model achieved high accuracy even when using only a portion of the 
available features (genes in this case). The algorithm found the optimum 
using 5,000 of the original features (Figure S3, Dataset S2—Sheet 5), 
which is around 34% of the available data. The model achieved 0.99025 
AUROC, 0.9615 sensitivity and 0.906 specificity on the training data. 
However, the model achieved similar results using only a small fraction 
of these features: with only 20 variables it achieved 0.9752 AUROC, 
0.906 sensitivity and 0.8715 specificity on the training set. Therefore, 

TA B L E  1  Benchmark algorithms. We chose to test SVM, GLMNET, RF and RFE for our study, based on their use in previous research

Algorithm FS Method Reviewed in: Featured in:

Support Vector Machine (SVM) Embedded Noble (2006) Aruna and Rajagopalan (2011), Guyon 
et al. (2002), Huang et al. (2018), 
Taylor et al. (2021)

Random Forest (RF) Embedded Breiman (2001) Chen and Ishwaran (2012), Díaz-Uriarte 
and Alvarez de Andrés (2006)

Generalized Linear Model (GLMNET) Embedded Friedman et al. (2010) Engebretsen and Bohlin (2019)

Recursive Feature Elimination (RFE) Wrapper Granitto et al. (2006), Saeys et al. (2007) Zhou and Tuck (2007)

Note: The first three algorithms use embedded feature selection (FS) to obtain key predictors from the trained model (Embedded), while RFE requires 
an underlying embedded approach for the ranking (Wrapper). We report the studies that featured or reviewed these algorithms.
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the model was able to represent the data using only limited informa-
tion, and to generalize from the training data, obtaining 100% accuracy 
(ACC) on the test set. We then compared and examined the first 5,000 
features (Figure S4), and then further analysed the top 20 of these 
genes (Figure 4), finding significant overlap with the other methods.

3.3  |  Embedded methods

We trained two classifiers with the underlying algorithms SVM and 
GLMNET (see Table 1) using the hyperparameters as described in 
the Appendix S1 (Dataset S2—Sheet 1 and Sheet 3). For SVM the 
optimum was achieved with sigma = 4.801305e-05 and C = 4, with 
0.99875 AUROC, 0.948 sensitivity and 0.9875 specificity. GLMNET 
used alpha = 0.4 and lambda = 0.03060868, to obtain 0.998 AUROC, 
0.938 sensitivity and 0.9885 specificity on the training set. Both al-
gorithms achieved 100% ACC on the test set, with a 95% likelihood 

that the true value laid between 54% and 100%; the wide range is 
due to the limited size of the test set. The No Information Rate (NIR) 
was 0.5, as we started from a balanced data set, and the p-value for 
ACC > NIR was 0.01563. We concluded that both algorithms gen-
eralized successfully, as high performance was achieved on both the 
training and test data sets (Figure S2).

3.4  |  Overlap between selected features

The selected 5,000 features from RFE-RF (Dataset S2—Sheet 6) 
were compared with the top ranked genes from SVM (top 5,000 
for consistency, Dataset S2—Sheet 4) and the variables selected by 
GLMNET (see Figures S5 and S6 for a list of the 20 most important 
genes for these approaches). GLMNET found only 86 genes to be 
important (Dataset S2—Sheet 2) and set the coefficients (impor-
tance) of the remaining 15,228 genes to 0. All these 86 genes were 

F I G U R E  2  Principal component analysis. Two-dimensional comparisons of the first five principal components (PC) show clear separation 
between Dancers and Nondancers but not for the distance factor. The scatterplots (bottom left-hand side of the picture) show datapoints 
as they are represented with any two PCs. Each scatterplot corresponds to two PCs, indicated at the top of the figure and on the right: for 
example, the plot in the first column and fifth row corresponds to PC1 (top ID) and PC5 (right-side ID). The diagonal shows the distributions 
for each PC over each group in the experiment (Dancers perceiving Long distance [red], Dancers perceiving Short distance [green], 
Nondancers perceiving Long distance [Blue] and Nondancers perceiving Short distance [purple]). The upper right-hand side of the figure 
shows the correlations between each of the four groups according to the corresponding PC. These values also indicate the direction (if any) 
of the groupwise trends in the scatter plots. Asterisks indicate statistical significance: *p ≤ .05, **p ≤ .01, and ***p ≤ .001, respectively
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included in the optimal subset selected by RFE-RF, with 83 of them 
selected by SVM as well (Jaccard Index 0.016, odds ratio 28.995, 
p < .001). The overlap between SVM and RFE-RF was also significant 
with 3,804 genes in common (see Figure S4), giving a Jaccard Index 
of 0.613, and an odds ratio of 24.246, with p < .001.

3.5  |  Genes identified as key predictors

There were 18 genes (predictors) that were shared between at least 
two approaches (see Figure 4). The largest overlap was observed 
between RFE and SVM (16 genes) while the overlap between SVM 
and GLMNET was smaller (four genes). No overlap was detected 
between RFE and GLMNET. The Jaccard Index between SVM and 
RFE was the most significant (0.739), while between SVM-GLMNET 
and GLMNET-RFE it was 0.111 and 0.052, respectively. Similarly, 
the odds ratio indicated strong association between SVM and RFE 
(10,265.036, p < .001). Overall, elements in common corresponded 
mainly to protein coding genes, except for “GB40714,” indicating 
noncoding RNA. We were able to retrieve functional information for 
most of the genes from annotations of the honeybee genome (see 

Table 2), with the exception of “GB50940” and” GB45448,” where 
annotations were available only for closely related insects (Apis dor-
sata and Apis cerana, respectively), and “GB54617” that we could not 
find any information for.

3.6  |  Comparison with standard gene 
expression analyses

We characterized gene expression patterns in the same groups of 
honeybees as above with standard statistical approaches to iden-
tify possible elements in common with the ML approaches that we 
tested. The LRT approach identified 243  genes that were statisti-
cally different between any two groups of bees, while the GLM 
approach identified 373 genes that were specifically different be-
tween dancers vs. nondancers (see Appendix S1 for the lists of these 
genes). We performed overlap analyses between these two gene 
sets and the list of 18 genes selected by the ML approaches. This 
resulted in five genes in common for the LRT approach, and nine 
genes in common for the GLM approach: both overlaps were statis-
tically significant (representation factors: 17.5 and 20.5; p < .001 in 

F I G U R E  3  Two-dimensional projection of the data with the first two principal components. The difference between the two classes 
“Dancer” (red circles) and “Nondancer” (turquoise triangles) became more evident when excluding the distance factor. Ellipses show 95% 
confidence of the variance for the two class groups
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both comparisons) indicating more genes in common than expected 
by chance. Five genes were shared across all analyses that we per-
formed (see Table 2). Interestingly, all focal genes identified by ML 
approaches (as well as elements in common with gene expression 
analyses) were expressed at higher levels in dancers, indicating 
strong consistency in their expression patterns in association with 
the regulation of dancing behaviour (see Figure 5).

Moreover, we tested the robustness of LRT and GLM by retrain-
ing SVM and GLMNET using only the 243 and 373 identified genes. 
We found that the models achieved the same performance (100% 
ACC) on the test set given the genes identified by LRT but were infe-
rior on the 373 genes found by GLM, as SVM achieved only 66.67% 
ACC, by misclassifying two dancer samples, while GLMNET achieved 
100% ACC. We also compared these subsets of genes to the maxi-
mally loaded genes for PC1 (top 5,000), and we found 15.23% and 
5.9% genes in common, respectively. As this overlap was absent in 
the case of the genes identified by the embedded methods, this led 
us to believe that ML methods were more robust to the separation 
caused by the outliers.

4  |  DISCUSSION

In the present study, we implemented an ML approach to investigate 
the transcriptomic signatures arising from a complex plastic pheno-
type. We explored the unique gene expression profiles of Apis mel-
lifera associated with dance behaviour in order to determine the set 
of focal genes that could play a key role in the regulation of this com-
plex behaviour. Training one wrapper algorithm (RFE-RF) and two 
embedded models (SVM and GLMNET), we were able to achieve 
perfect accuracy in assigning honeybees to the major behavioural 
response that we tested (“dancer” vs. “nondancer”) according to gene 
expression data. The RFE-RF approach highlighted how the genomic 
signature associated with the waggle dance is rather heterogeneric 
and can be traced across a wide portion of the honeybee genome 

(one third). At the same time, using FS and comparative analyses, we 
were able to obtain a restricted set of key predictors for each classi-
fier, which were then distilled into a list of genes. Our results show 
that ML models can be used in addition to standard methods of gene 
expression analysis and as a complementary approach to character-
ize the transcriptomic profile associated with the honeybee waggle 
dance and to identify sets of genes that are promising candidates for 
the regulation of dance behaviour.

In our initial preliminary analyses (PCA) we were able to clearly 
separate dancers from nondancers, except for those four nondancer 
bees that we identified as forming a separate cluster. We exclude 
the possibility that these samples might represent a set of “outliers” 
significantly driving the outcome of our analyses. First, there is noth-
ing visibly different associated with them: they came from different 
colonies (actually from all four colonies tested in our assays), were 
sequenced in different lanes and produced libraries of different size 
(which we controlled for in our normalization step). Furthermore, 
the lack of overlap between the best candidate genes from our ML 
approach and the maximum loadings for PC1 fully supports the 
fact that the molecular separation between dancers and nondanc-
ers was not driven by these four samples. On the other hand, the 
PCA approach was unable to detect any major effects of distance 
perception, which was one of the research questions that we had 
initially pursued. Although we found that the impact of distance per-
ception on gene expression was too subtle to be detected by our 
approaches, other studies have succeeded in identifying the effect 
of distance perception alone on honeybee brain gene expression, 
using more traditional statistical tools of transcriptomic analyses 
(Sen Sarma et al., 2010). It is possible that with an increased sample 
size, we would have been able to investigate this behaviour further. 
Alternatively, the transcriptomic signature associated with distance 
perception might be more significant in honeybees experiencing real 
distance as opposed to the perceived distance that honeybees expe-
rienced through our tunnel manipulation setup. In fact, a larger set of 
genes was found to differ between foragers experiencing real long 

F I G U R E  4  Overlap between selected 
features. We queried the 20 most 
important features in each trained 
classifier, SVM (orange, bottom left), 
GLMNET (purple, bottom right) and 
RFE-RF (green, top), which were then 
compared for overlapping subsets of 
genes. There were 16 genes selected 
both by RFE-RF and SVM, with two genes 
(GB41392, GB49478) selected by all 
three approaches. GLMNET showed little 
overlap with SVM and RFE-RF
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distance vs. short distance (Manfredini et al., in prep.) but we cannot 
exclude that a proportion of these genes might have changed their 
patterns of expression from one group to the other according, for 
example, to different metabolic costs of flight.

It is also worth noting that GLMNET has a fundamentally differ-
ent strategy towards overfitting than the other approaches, as the 
regularization parameter controls the cost of nonzero coefficients in 
the model, whereas in SVM it controls the penalty of misclassifica-
tion, and RF is known not to overfit as the number of trees increases 
(Breiman, 2001) (see Appendix S1 for further details). However, we 
did not expect GLMNET to achieve perfect accuracy while discard-
ing most of its variables (~ 99.44%), and the fact that these genes 
were a subset of the ones selected by other approaches is an excit-
ing result. This also shows how a combination of different tools is the 
best approach for identifying candidate genes.

The extensive overlap between the three approaches, and the 
fact that many of the identified genes were also in common with 
traditional methods of transcriptomic analyses, shows great prom-
ise. We hypothesize that these genes are the best predictors for the 
dance behaviour, as they all appear to be expressed at higher levels 
in dancers vs. nondancers. In particular, the two genes that are in 
common to all three ML approaches and were also identified by at 
least one approach to gene expression analysis deserve special at-
tention. Boss (bride of sevenless) belongs to the group of G-protein-
coupled receptors, an important family of genes often associated 
with expression of behaviour in insects. In particular, boss has been 
linked to a set of different functions in Drosophila, including sight 
and eye development, energy homeostasis and response to glucose 
(Kohyama-Koganeya et al., 2015). Boss might have been co-opted in 
honeybees to regulate dance behaviour, an energetically expensive 

F I G U R E  5  Focal genes heatmap. The heatmap shows the expression patterns for the 18 focal genes across all bee samples (Dancers 
grouped to the left, Nondancers to the right). Expression patterns are shown as the logarithmic transformation (log10) of the number of read 
counts for the focal genes per million counts total (or logCPM). All focal genes showed higher levels of expression in Dancers (indicated by 
darker colours). The gene IDs marked with a single asterisk (*) were identified by gene expression analysis (GLM approach only), while IDs 
marked with two asterisks (**) were identified by both GLM and LRT
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activity that is highly related to feeding behaviour (and therefore 
to sugar response) and relies on visual input for orientation pur-
poses during flight to a foraging site. In support of our findings, two 
previous studies addressing the regulation of the honeybee waggle 
dance at the molecular level have also identified genes linked to 
metabolism and energy production—even though boss is not among 
them (Sen Sarma et al., 2009, 2010). Interestingly, in one of these 
studies, genes associated with metabolism were more highly ex-
pressed in A. mellifera compared to a different honeybee species 
(Apis florea) that performs a simplified version of the waggle dance, 
further supporting the evidence that energy costs of the waggle 
dance can be quantified at the level of gene expression in the mush-
room bodies. As for heterogeneous nuclear ribonucleoprotein A1, 
studies on the Drosophila orthologue HRP59  have revealed a role 
for this gene in alternative splicing (Hase et al., 2006), a molecu-
lar process that allows the translation of a single mRNA molecule 
into multiple protein variants (Wang et al., 2015), significantly in-
creasing the repertoire of responses to a stimulus. Even though the 
role of alternative splicing in the regulation of behaviour is largely 
unknown, this process has started to be characterized in multiple 
organisms, including honeybees (Foret et al., 2012), hinting at the 
possibility that the honeybee orthologue of HRP59 might contrib-
ute to the high plasticity that is necessary to regulate a complex 
behaviour such as the waggle dance.

More functional approaches are needed to move beyond cor-
relation and investigate whether a causal link exists between the 
expression levels of the genes that we identified and the perfor-
mance of dance behaviour. For example, a recent study has re-
vealed that gene expression associated with sensory perception 
rather than high cognitive functions is more important for bees 
following a dance when deciding whether to use personal informa-
tion vs. social cues (the waggle dance) when engaging in the next 
foraging trip (Kennedy et al., 2021): it could be tested whether sen-
sory perception has a role in the regulation of dance behaviour as 
well, by analysing gene expression in other brain parts such as the 
antennal or optic lobes that are clearly linked to the processing 
of sensory inputs. We are aware that other internal or external 
factors could contribute to define the patterns of gene expres-
sion in the honeybees that we analysed, as the brain is a complex 
organ that responds to a wide range of factors and stimuli that we 
could not control totally, such as bee age or number of dances per-
formed, just to mention a few. However, we are confident that our 
strict experimental design enabled us to focus on the set of genes 
that are most relevant for the performance of the waggle dance per 
se: we restricted our analysis to the mushroom bodies (where tran-
scriptomic patterns should mainly reflect behavioural responses, in 
particular in association with high cognitive functions) (Buehlmann 
et al., 2020; Kamhi et al., 2020); we sampled honeybees after they 
spent a whole day foraging back and forth from/to the same food 
source (2% sucrose solution, identical for all bees); and we analysed 
forager honeybees (normally from 2 to 3 weeks of age for colonies 
of size similar to ours; personal observations). If further research 
were to support our findings, these results could then be used to 

test the recruitment potential in a specific colony. By designing 
a diagnostic tool to directly measure the levels of expression of 
the focal genes and compare them against a reference, it would be 
possible to assess the overall ability of a colony at recruiting to a 
foraging site through dancing.

In conclusion, with this study we provide support for using ML 
models as a complementary approach to standard gene expression 
analyses to understand the molecular regulation of a behavioural 
phenotype. We show the potential of ML models to represent com-
plex patterns in a high-dimensional data set with limited information 
(only 0.56% of the honeybee genome in the case of GLMNET), and 
the unique ability of ML approaches to generalize transcriptomic 
patterns from a training set of gene expression data, which testify 
to the predictive power of these tools (Fountain-Jones et al., 2021; 
Smith et al., 2020). This ability to capture transient and nonlinear 
responses with very little statistical supervision, and to treat each 
feature (or gene) as a dynamic component of a larger and cohesive 
picture (the phenotype of interest) is fundamentally different from 
other tools that are more frequently used to analyse transcriptomic 
data, such as deseq2 or edger. These tools are based on the straight-
forward quantification of transcript abundance for individual genes 
and treat each gene as a separate entity, using stringent parame-
ters such as fold-changes and p-values to decide what genes (among 
those showing any difference in expression levels) are biologically 
relevant for the patterns observed. Furthermore, the ML models 
that we propose here appear to be particularly robust to the pres-
ence of few samples that might “behave” differently compared to 
other members of the same cohort and do not fully fit within the 
characteristics of their experimental group (something that can se-
riously limit the power of standard analyses of gene expression, in 
particular when the sample size is small). This is evident from the lack 
of overlap between the features selected by the ML models and the 
genes with maximum loading for PC1 in the PCA, representing the 
genes most significantly associated with the four nondancer bees 
that formed a separate cluster. With high probability, the most strik-
ing feature of ML models as applied to transcriptomic analyses is 
their ability to classify samples of unknown phenotype—including 
those showing intermediate features (Taylor et al., 2021)—according 
to a range of parameters of interest, so that additional individuals 
can be added to a study in future analyses. In the context of the 
honeybee waggle dance, this feature could be exploited, for exam-
ple, to understand what other factors influence the performance of 
the dance behaviour (e.g., age of the bee, colony of origin or forag-
ing patterns) and without the need to carefully monitor every single 
dance event occurring in the hive, which can seriously limit any ex-
perimental design.
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