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Abstract The transition to a clean energy future may require a very substantial increase in resources of
vanadium. This trend brings into focus the potential health issues related to vanadium in the environment. Most
vanadium enters the Earth's crust through volcanic rocks; hence, vanadium levels in groundwaters in volcanic
aquifers are higher than in other aquifers and can exceed local guidance limits. The biggest accumulation

of volcanogenic sediment on the planet is downwind of the Andes and makes up much of Argentina.
Consequently, groundwaters in Argentina have the highest vanadium contents and constitute a global vanadium
anomaly. The high vanadium contents have given rise to health concerns. Vanadium could be extracted during
remediation of domestic and other groundwater, and although the resultant resource is limited, it would be
gained using low-energy technology.

Plain Language Summary The green energy revolution will greatly increase the demand for
vanadium resources, especially for vanadium-flow batteries. Most vanadium is a by-product of processing
volcanic rocks for other metals. The affinity of vanadium for volcanic rocks is reflected in high vanadium
contents in groundwaters in volcanic terrains, in some cases exceeding guidance limits for drinking water. A
review of groundwater compositions across Argentina shows values greatly exceeding guidance limits due to
a very large eastward flux of vanadium from mineralized volcanic rocks in the Andes. The vanadium could be
extracted from groundwaters by developing low-energy technology.

1. Introduction

The high demand for vanadium in support of the green energy revolution will require a substantial increase in
mining for new resources, possibly a 200% rise in annual demand by 2050 (World Bank, 2020). Vanadium is
needed for vanadium-flow batteries, potentially on a very large scale (Colthorpe, 2021; Gencten & Sahin, 2020;
Zhang et al., 2019), in addition to the established demands for high-strength steel and electronics. However, there
is an increasing awareness of the possible health hazards of high levels of vanadium in the environment (Amuah
et al., 2021; Mitchell et al., 2011; Vasseghian et al., 2021; Scibior et al., 2021). Excessive amounts of vanadium
in the human body can affect the digestive system, the urinary tract, and the reproductive system and for exam-
ple, cause anemia, kidney disease, asthma, dermatitis, and rhinitis (Jayawardana et al., 2015; Wilk et al., 2017;
Yang et al., 2017). Exposure to vanadium has also been implicated in birth defects (Hu et al., 2017). Health
problems due to vanadium in groundwater may be exacerbated by co-occurrence with other toxic elements (Chen
et al., 2022; Coyte & Vengosh, 2020). The concerns will rise as more vanadium mining takes place. The bulk of
vanadium is obtained from ores in volcanic rocks containing the mineral titanomagnetite, in which vanadium is a
trace element (Gilligan & Nikoloski, 2020; Yang et al., 2021). There are specific concerns about the consequences
for human health of mining and processing titanomagnetite ores for vanadium (Makhotkina & Shubina, 2017;
Yang et al., 2014; Yu & Yang, 2019; Zhang et al., 2020). There is an appreciation that volcanic activity in general
introduces trace elements, including vanadium, that can be toxic to humans (Duntas, 2016; Nahar, 2017).

The aims of this study are to:

1. Review data about V contents of groundwater in volcanic rocks in comparison with other nonvolcanic ground-
waters and legislative limits for drinking water.

2. Assess where the occurrence of V-rich groundwaters in volcanic rocks might be most acute.

3. Make a preliminary assessment of whether the cleanup of high V contents in groundwaters could be linked to
the extraction of V as a resource.
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2. Groundwater in Volcanic Rocks
The high input of volcanic matter is potentially an environmental problem for Argentina. In other parts
of the world, where groundwater occurs in volcanic rocks, the water contains anomalously high amounts
of vanadium (Table 1; Figure 1). The water becomes enriched in vanadium by dissolution of the volcanic
minerals and glass. The benchmarks against which to assess water compositions vary between countries
(Table 2) but values include a health reference limit of 21 pg/L in tap water by the U.S. Environmental
Protection Agency (Environmental Working Group, 2021) and lower limits for groundwater in some Euro-
pean countries (Ldnderarbeitsgemeinschaft Wasser, 2004; Smit, 2012). There is no statutory limit for the
whole European Union, where vanadium values in some Italian groundwaters would probably exceed any
limit due to volcanic activity (Crebelli & Leopardi, 2012). In Britain and Europe, mean groundwater vana-
Table 1
Mean Groundwater Contents of Vanadium in Aquifers in Volcanic Rocks and Detailed Data for Groundwater in Argentina and Adjacent Regions
Data
Country/Province Volcanics Data source V (pg/L) points Reference
Italy, Central Plio-Pleistocene Water in volcanics 13 214 Cinti et al., 2015
Italy, Central Plio-Pleistocene Water in volcanics 36 7 Sappa et al., 2014
Italy, Mt. Etna Recent Water in volcanics 57 10 Marczewski et al., 2015
Italy, Mt. Vulture Pleistocene Water in basalt, pyroclastics 36 34 Parisi et al., 2011
Serbia Paleogene Water in andesites 7.9 2 Petrovic Pantic et al., 2015
Iran Quaternary Water in andesites 32 16 Ghoreyshinia et al., 2020
Ethiopia Quaternary Hot springs in volcanics 10 12 Rango et al., 2010
Djibouti Quaternary Water in basalts 65 13 Ahmed et al., 2017
Tanzania Recent Water in volcanics 18 48 Tomasek et al., 2022
Canary Islands, El Hierro Quaternary-Recent Water in basalts 101 173 Luengo-Oroz et al., 2014
Madeira, Porto Santo Miocene Water in basalts and 109 16 Condesso de Melo
hyaloclastites et al., 2020
Iceland Recent Water in volcanics 5 166 Barbieri et al., 2021
Iceland, Hekla Recent ‘Water in volcanics 16 4 Holm et al., 2010
Korea, Jeju Quaternary Water in volcanics 13 53 Koh et al., 2016
Japan, Mt. Fuji Pleistocene-Recent ‘Water in volcanics 64 5 Kato et al., 2004
Kamchatka, Russian Far East Recent Water in thermal springs 219 6 Bortnikova et al., 2009
Hawaii Holocene Water in lava tubes 74 5 Prouty et al., 2017
Hawaii Holocene Groundwater 40 12 McCleskey et al., 2020
USA, northwestern Miocene (Columbia River) ‘Water in basalts ~10 >20 Newcomb, 1972
Scotland, UK Devonian, Carb., and Water in volcanics 2.2 29 MacDonald et al., 2017
Paleogene
Germany, Eifel Pleistocene Water in volcanics 17 7 Hirter et al., 2020
Germany, Saar-Nahe Basin Permo-Carboniferous ‘Water in mixed volcanics and 19-48 range Leiviski, 2021
sediment
Argentina (Tucuman) Shallow wells Aquifers 31-300 (median 77) 42 Nicolli et al., 2012
45-162 (median 64) 17
Argentina (Salta) Aquifer spring 1-15 (median 4 and mean 6) 10 Concha et al., 2010
Argentina (Cérdoba) Aquifers Aquifers 10-670 (median 30 and 66 Farias et al., 2003
mean 66)
30-2,710 (mean 995) 9 Pérez-Carrera &
Cirelli, 2013
Argentina (Santiago del Aquifers 6-1,003 (median 35 and 37 Bhattacharya et al., 2006
Estero) mean 132)
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Table 1
Continued
Data
Country/Province Volcanics Data source V (pg/L) points Reference
Argentina (Santa Fe) Aquifers 76—1,090 (median 160 and 15 Siegfried et al., 2015
mean 249)
Argentina (Chubut) Aquifers 100-2,500 (median 800 and 14 Del Pilar Alvarez &
mean 918) Carol, 2019
Argentina (Buenos Aires) Aquifers 50-2,470 (median 510 and 101 Fiorentino et al., 2007
mean 548)
13-1,380 (mean 430) 12 Bonorino et al., 2008
40-800 10 Espdsito et al., 2011
141-556 (median 325 and Puntoriero et al., 2014
mean 330)
Argentina (Neuquen) Aquifers 106-1,184 (median 146 and 8 Farnfield et al., 2012
mean 266)
Argentina (San Luis) Aquifers 27-164 (mean 72) 11 Galindo et al., 2007
Argentina (Rio Negro) Aquifers 1-113 (median 64 and mean 20 Al Rawahi & Ward, 2017
30)
Argentina (La Pampa) Aquifers 20-5,400 (median 560 and 108 Smedley et al., 2002
mean 840)
211-4,889 (median 1,486 and 30 Al Rawahi & Ward, 2017
mean 1,620)
1,156-2,472 (mean 1,749) 3 Jaafar et al., 2018
20-1,972 (mean 351) 32 Alcaine et al., 2020
Argentina (Chaco) Aquifers bdl-2,646 (median 76 and 45 Giménez et al., 2013
mean 204)
Bolivia Aquifers 1-40 (median 8 and mean 19 Muiioz et al., 2013
11)
Uruguay Aquifers, potable 3-167 (median 23 and mean 46 Machado et al., 2020
40)
Paran4, S. Brazil Aquifers 5-135 (mean 22) 18 Rezende et al., 2019

dium contents are less than 1 pg/L. (MacDonald et al., 2017; Shand et al., 2007; Smit, 2012). A content of
>15 pg/L vanadium in drinking water has been suggested as a potential health risk in the State of California,
USA (Gerke et al., 2010).

The collated data for mean groundwater compositions in volcanic aquifers from several parts of the world show
that:

1. The vanadium values are consistently higher than in nonvolcanic aquifers as represented by the British and
European values.

2. In several cases, the vanadium values exceed the statutory limits set by some countries.

3. Agquifers in old volcanic rocks from the pre-Pleistocene geological record also show values higher than
nonvolcanic aquifers.

In several of these regions, there is concern about the importance of groundwater vanadium for human health,
including Italy (Arena et al., 2015), Germany (Hirter et al., 2020), and the Canary Islands (Luengo-Oroz
et al., 2014).
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Figure 1. Vanadium contents (pg/L) in groundwater in aquifers in volcanogenic rocks compared to groundwaters in
nonvolcanic aquifers and national legal/guidance limits for drinking water. Note that the scale is logarithmic.
3. Andean Mineralization and Groundwater in Argentina
Given the implication of greater V contents and thus greater potential implications for health, in groundwaters in
volcanic rocks, we can predict where this issue might be most acute. The extent of volcanic rocks, or sediments
derived from volcanic rocks, is imposed by plate tectonics and patterns of plates on Earth over the last 100 million
years. The requirements for very extensive volcanic-related aquifers are (a) long-term plate boundary subduction,
causing long-term volcanic activity; (b) long length of boundary, as opposed to the short arcs that typify the
west Pacific Rim; and (c) continued uplift to promote erosion of volcanics and their deposition as a sediment
wedge, built up above sea level. These requirements are met most clearly in South America, where the Andes
PARNELL 4 of 12
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Table 2
Baseline Values of Vanadium (ug/L) Contents in
Region Baseline values V Content (pg/L) Reference
England/Wales Groundwaters Median <1 Shand et al., 2007
Scotland Groundwaters Median 0.4 MacDonald et al., 2017
Sweden Bottled water Median 0.39 Rosborg et al., 2005
Europe Filtered water Median 0.46 Smit, 2012
USA (Environmental Protection Agency) Health reference concentration 21 Environmental Working Group, 2021

USA

USA
Netherlands
Germany
Croatia
Serbia

China

Benchmark values

Potential health risk
Legal limit
Guide limit
Drinking water limit
Drinking water limit

Legal limit

20 chronic (long-term exposure)
280 acute (short-term exposure)

15

W A~ W

—_

50

Suter & Tsao, 1996

Gerke et al., 2010
Smit, 2012
Linderarbeitsgemeinschaft Wasser, 2004
Demetriades et al., 2012
Demetriades et al., 2012
Li et al., 2020

represent over 8,000 km subduction trench length, persistent volcanic activity, and uplift (Sundell et al., 2019)

that have sourced sediment to the east. The Andes have been a plate margin mountain chain for tens of millions

of years (Evenstar et al., 2015) and have shed enormous volumes of sediment eastward across Argentina. Impor-

tantly, Westerly winds have supplemented the eroded volcanic sediments with volcanic glass and ash (Mingari
et al., 2017). Petrographic studies confirm that the sediment in Argentina and Chile contains volcanic debris
derived from the Andes by mechanical erosion (Gémez et al., 2020; Horton, 2018) and volcanic glass. Magnetite
grains in the sediment, in which much vanadium may be exported from the Andes, show evidence of alteration
(Flint et al., 1986), which would have released the vanadium into groundwaters.

Reserves of vanadium-bearing titanomagnetite are greatest in South Africa, Russia, and China (Summerfield, 2019;

Yang et al., 2021). In addition, large amounts of titanomagnetite in the Chilean Andes are mined for iron ore and

contain high levels of vanadium (Broughm et al., 2017; La Cruz et al., 2020; Palma et al., 2020). Mining of iron

and copper in the Andes has caused its own health concerns (Carkovic et al., 2016; Cortés et al., 2021; Reyes

et al., 2020; Tapia et al., 2018). In addition to the release of toxic metals from mining spoil, the same mineralized

volcanic rocks have been releasing trace elements into the environment through natural erosion over a geological

timescale. The mountains are composed of magmatic rocks, which are mineralized by a range of ores including

vanadium-bearing titanomagnetite. The titanomagnetite grains exhibit alteration and dispersion of the vanadium

(Figure 2). Mineral alteration in the volcanic rocks and subsequently during erosion and transport could release

most or all of the vanadium into groundwaters in the sediment wedge that composes Argentina.

The influence of volcanic matter on groundwater is on a larger scale in Argentina than elsewhere. There is

some local concern over vanadium contents in domestic groundwater in Argentina (Espdsito et al., 2011; Jaafar

et al., 2018; Nicolli et al., 2012), but this has been overshadowed by concern about arsenic contamination over

much of South America (Bundschuh et al., 2021; Khan et al., 2020). However, here, we bring together diverse

data sets, which show that high vanadium levels occur in groundwater across Argentina and represent the largest

known region of concern for vanadium toxicity.

Twenty data sets for groundwater (Table 1) represent 12 provinces along the length of Argentina (Figure 3). The

mean values for V range from 6 to 1,749 pg/L. The highest individual value is 5,400 pg V/L, recorded in La

Pampa Province (Smedley et al., 2002). The lowest mean value is in Salta Province in the far north near the Boliv-

ian border (Figure 3). There is a broad distinction between values in the northern provinces (Tucuman, Salta,

Coérdoba, Santiago del Estero, Chaco, Santa Fe, and San Luis) and those in the south (Buenos Aires, La Pampa,

Neuquén, Rio Negro, and Chubut). The weighted mean for the northern provinces is 150 pg V/L (n = 235). The

weighted mean for the southern provinces is 696 pg V/L (n = 338), nearly 5 times as high. The southern provinces

lie east of the major volcanoes in the Andes (Figure 3) and they would have a greater fingerprint of their output.
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Figure 2. Element maps (Fe, Si, Ca, and V) for magnetite grains in andesite, Quebrada Cerrillos, Copiapo, Chile. Maps for Fe and Si show alteration, especially along
fractures, and growth of Si-rich alteration phases. Map for Ca also shows mineral alteration along fractures and additionally beyond periphery of grain. Map for V
shows spread of V beyond periphery into the altered area.

The immediately surrounding countries of Bolivia, Uruguay, and southern Brazil also yield mildly anoma-
lous groundwater data with mean values of 11, 40, and 22 pg V/L, respectively (Machado et al., 2020; Mufioz
et al., 2013; Rezende et al., 2019). However, these mean values for vanadium in groundwater are lower than
most of the mean values reported in Argentina and suggest a progressive decline with distance from the source
of vanadium.

4. Mitigation

There are strategies available to mitigate high vanadium contents in groundwaters, intended primarily to cope
with contamination from mining and other short-term commercial activities. The methods include adsorp-
tion onto iron oxides, activated carbon, liquid membranes, and combinations of these materials (e.g., Kamal
et al., 2017; Leiviskd, 2021; Sirvio et al., 2016; Sharififard et al., 2016). The emphasis has been in the removal of
a toxic element, but there is a move toward sustainability using innovative extraction of V from wastewater and
V-rich solutions (Petranikova et al., 2020).
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Figure 3. Map of southern South America, including provinces of Argentina, showing mean values for data sets of vanadium

contents (pg/L) in groundwater. Data are listed in Table 1.

The mean V content of sea water is much lower than in the groundwaters discussed, commonly cited as 0.3 pg/L
and up to ~2 pg/L. The extraction of vanadium from seawater is possible (Ivanov et al., 2017; Suzuki et al., 2000)
but not economically feasible. Extraction from groundwater would be more economic if the large scale was not

essential. Groundwater with a V content of 100 pg V/L in 10% aquifer porosity would contain 10* kg V. Given the
7 of 12
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rate at which groundwaters move in Argentina, estimated as 0.01-0.42 m/day and more specifically in one study
as 0.07 m/day (Cabrera et al., 2010, 2017; Maldonado et al., 2016), groundwaters with 100 pg V/L in 10% aquifer
porosity would be replenished within 40 years. Less conservative values of 20% porosity and 200 pg V/L would
see replenishment of all the groundwater V within 10 years. The quantities of V that could be obtained from
groundwater sources may be limited but the technology has the advantage of low temperature and low energy
processing. Incidentally, the mass of V in a large ore body of 108 kg vanadium in sandstone (Kelley et al., 2017)
would be sourced in less than a million years in the 1 km? of groundwater.

Most of the data are from groundwaters in relatively young (<5 Ma) volcanic rocks. An example that includes
older (>100 Ma) volcanic rocks, in Scotland, includes groundwaters with several times the V contents for the
region (MacDonald et al., 2017). However, the contents are modest compared with the values in young volcanic
rocks. This implies that volcanic rocks release much of their mobile V when they are young, probably from
reactive volcanic glass and unstable magmatic minerals. A further implication is that if large volumes of volcano-
genic sediment can be identified in the geological record, they could have hosted V-rich groundwaters and even
sediment-hosted V mineralization.

5. Conclusions

This review of V contents in groundwaters in volcanic terranes confirms previous implications that they are
higher than in nonvolcanic terranes. In particular.

1. In several aquifers in volcanic rocks, the mean vanadium values exceed the statutory limits of some countries.

2. The anomalously large volume of volcanogenic sediment contributed from the long-term erosion of the Andes
is reflected in the very high groundwater V levels in Argentina.

3. The high V contents in groundwaters in young volcanic rocks suggest that the V is liberated early in the rock
history.

Faced with a possibly very big increase in the demand for vanadium to support battery manufacture, new and
more environmentally acceptable technologies, and new sources of vanadium, may be required. A new landscape
for the processing of vanadium must take into account the potential implications for human health. The data
suggest that V-rich groundwaters may incidentally make a modest contribution to resources of the element.
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