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Abstract 15 

Model-based prediction of fish distribution at fine resolutions in space and time has the 16 

potential to inform area-based and dynamic forms of management, such as permanent marine 17 

protected areas or real-time temporary closures. A major limitation to the spatial and temporal 18 

mapping resolution that is achievable is the amount of high quality, standardised data that can 19 

be utilized for fitting statistical models. To achieve an adequate spatio-temporal resolution 20 

from sparse data, one option is pooling information from several sources, such as scientific 21 

surveys and fisheries data. Because surveys and fisheries data usually use different sampling 22 

methods, pooling information from different sources requires cross-calibration of catch rates 23 

values across multiple gears. However, the individual gear efficiency and selectivity curves 24 

(the ratio between catch and availability at a given length) for all fishing gears and species are 25 

typically unknown. Using cod (Gadus morhua) in the northern North Sea as a case study, we 26 

developed a new formulation of spatio-temporal generalised additive models (GAM) of 27 

relative abundance of fish, combining catch data from multiple sources. Differences in gear 28 

efficiency and selectivity were internally calibrated within the model by the estimation of the 29 

local spatio-temporal variation in abundance. We show that pooling data sources enables the 30 

prediction of multi-annual and seasonal spatial variation in cod relative abundance-at-size, at 31 
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spatio-temporal resolutions that are relevant for informing fishing strategies, e.g., reducing 32 

bycatch in real-time, or management objectives, e.g., real-time closed areas. We also show 33 

that GAM models fit to catch and effort data can reveal the relative efficiency and selectivity 34 

of different survey and commercial gears. The selectivity curve estimates that emerged as a 35 

by-product of our analysis are consistent with expert knowledge of the performance of the 36 

gears employed for cod. Our analytical approach can therefore serve two useful purposes: to 37 

estimate spatio-temporal variation in relative abundance of fish and to estimate relative gear 38 

efficiency and selectivity. 39 

 40 
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 42 

1. Introduction  43 

High resolution descriptive modelling of the distribution of harvested fish populations in time 44 

and space has been the focus of considerable research interest in recent years (e.g. Maunder et 45 

al., 2020; Pinto et al., 2019; Stock et al., 2018; Thorson et al., 2020). Understanding the relative 46 

contribution of spatial and temporal components in fish distribution has direct implications for 47 

implementing spatially-explicit management objectives, particularly avoiding unwanted or 48 

bycatch species. Statistical models that incorporate space, time and other covariates are 49 

inherently complex but advances in computational implementation has made fitting these 50 

models more feasible. One of the most popular statistical approaches for modelling spatio-51 

temporal dynamics in fish populations are the generalised additive models (GAMs, Hastie and 52 

Tibshirani, 1990; Wood, 2006). The popularity of GAMs is due to: 1) flexibility in the non-53 

linear relationship between response and explanatory variables using smoothing techniques; 54 

and 2) the range of error distributions to model the response variable. GAMs allow a 55 

straightforward estimation of spatio-temporal components through bi-variate smooth functions 56 

for two geographical coordinates (longitude and latitude) and time can similarly enter as 57 

smooth, or fixed or random factor terms (e.g. Jaureguizar et al., 2016; San Martín et al., 2013). 58 

GAMs are also computationally efficient for managing datasets that are large but 59 

heterogeneous (in space or time) over broad geographical areas, as is often the case for data 60 

obtained from research vessel surveys and the fishing industry.  61 
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Recent spatio-temporal models developed for commercial fish populations have often focused 62 

on resolving the distributions of unwanted components of the catch, either undersized fish or 63 

non-targeted species which are potential bycatch (e.g. Cosandey-Godin et al., 2014; Rezende 64 

et al., 2019). Unwanted bycatch and discards have been serious concerns globally, posing a 65 

threat to the sustainability of fisheries through economic, biological and ecological losses 66 

(Komoroske and Lewison, 2015). Beginning in 2015, a discard ban known as the Landing 67 

Obligation has been imposed by the Common Fisheries Policy on commercial fishing 68 

operating in European waters. The Landing Obligation requires all catches of regulated 69 

commercial species on-board to be landed and counted against quota. The Landing Obligation 70 

effectively incentivised the fishing industry to avoid catching unwanted species or size classes 71 

given that a single, “lightning strike” haul that exhausts the available quota for that target 72 

species can potentially result in that vessel being tied up if there was no further quota available 73 

to the vessel for the unwanted catch. Incentivising bycatch avoidance has future potential to 74 

changing attitudes of skippers towards sharing catch data and behaviors of skippers with 75 

respect to the use of spatio-temporal information, for example maps of bycatch hotspots (e.g. 76 

Merrifield et al., 2019). 77 

The data used to develop spatio-temporal models are usually obtained from research vessel 78 

surveys which are conducted at fixed time intervals and utilize a statistical survey design 79 

intended to produce unbiased estimators of abundance. An alternative source of data 80 

describing commercial fish populations is generated by fishing vessels, normally collected for 81 

compliance purposes. Combining both data sources together presents several advantages and 82 

disadvantages for modelling fish distribution. Commercial fishing data are a rich source of 83 

highly resolved spatio-temporal sampling of fish distributions, however, these data are 84 

associated with challenging statistical features including a high proportion of zero 85 

observations (Kai et al., 2016; Maunder et al., 2020), non-random spatial sampling (bias) 86 

(Conn et al., 2017; Diggle et al., 2010; Pennino et al., 2019) and temporal correlation (Ciannelli 87 

et al., 2008; Cosandey-Godin et al., 2014). Survey data have several advantages over 88 

commercial data because sampling location is determined independently of local abundance 89 

using an underlying statistical design, e.g. stratified random sampling, and consistent methods 90 

are applied over decadal time scales. However, the relatively low intensity of survey data limits 91 

the spatio-temporal resolution of predictions. Recent advances in spatio-temporal modelling 92 

have combined data from commercial fishing and survey sources (Pinto et al., 2019), 93 

enhancing spatio-temporal coverage and resolution, and resulting in improving the analysis 94 
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and understanding of population dynamics. Nevertheless, pooling data from several sources, 95 

is challenging because requires cross-calibration of catches rates across multiple gears. 96 

However, selectivity curves for individual gears (the ratio between catch and availability at a 97 

given length) are typically unknown, since availability at the time and location of the fishing 98 

operation is not directly observable, and gear efficiency experiments are relatively expensive 99 

and difficult to perform.  100 

The clustered nature of fish distribution in space and time (Swartzman et al., 1992) results in 101 

localised areas of high abundance or “hotspots” which limits the ability of fishers to manage 102 

their portfolio of quotas for different species (Bailey et al., 2010). This clustering also adds to 103 

the challenge of developing predictive models that are sufficiently resolved and reliable to be 104 

used to inform tactical decisions at sea. The development of such models will aid manage 105 

unwanted species of size-classes in the catch. Recently, Pinto et al., 2019 proposed a spatial 106 

model to predict occurrence (presence/absence) of data-limited species by combining surveys 107 

and commercial fishing data.  108 

The underpinning rationale in the Pinto et al., 2019 approach is to reduce heterogeneity in 109 

catchability to a point where it should not affect the resulting inference. This was done by 110 

reducing the information to only presence/absence of the species, and by selecting a relatively 111 

homogenous subset of the data (based on mesh size). Drawbacks of the approach include the 112 

loss of information on stock abundance and size structure due to conversion to 113 

presence/absence, and the limited ability to integrate data sources with heterogeneous catch 114 

effort and catchability. Furthermore, modelling bycatch so as to be sensitive to the size 115 

structure of the stock (e.g., to predict local abundance of juveniles) brings an extra complexity 116 

when combining datasets, because size-selectivity of different fishing gears needs to be 117 

accommodated into the modelling approach.  118 

Selectivity refers to the probability of catching to availability at different age/sizes. The term 119 

selectivity is known as direct, if the population age/size structure is known (estimated) as is 120 

the case of selectivity resulting from the application of an integrated stock assessment model 121 

(Quinn and Deriso, 1999). On the other hand, experimental selectivity usually is indirectly  122 

estimated by comparing catches from different variants of the same fishing gear (Millar, 1992). 123 

For example, indirect selectivity studies in trawling are based on the covered codend method, 124 

where a small mesh cover is attached to the outside of the codend to retain most of the fish 125 

that pass through the codend mesh (Madsen and Holst, 2002). Another experimental method 126 
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is the trouser trawl which consists of a net with two codends, each one constructed from a 127 

different size and/or shape of mesh (Cadigan and Millar, 1992). Although commonly 128 

undertaken by gear technologists several decades ago, indirect experiments to estimate 129 

selectivity are expensive because they require specially designed surveys and modifications of 130 

the routinely used commercial fishing gear. Millar, 1992 proposed an alternative statistical 131 

method to estimate indirect selectivity from size structures retained in the total catches in 132 

fisheries in which variants of the same fishing gears (e.g. different types of trawling nets) are 133 

operating simultaneously in the fishing area, without the requirement of a covered codend 134 

design. Millar’s method of statistical inference relies on estimating the parameters of 135 

predetermined selectivity at length functions, using generalised linear models to estimate the 136 

probability of being caught by a fishing gear.  137 

Using cod (Gadus morhua) in the Northern North Sea as a case study, we develop a new 138 

spatio-temporal GAM of fish relative abundance combining survey and commercial fishing 139 

data to explore the potential of high-resolution distribution models as bycatch reductions tools. 140 

Our model-based approach to gear selectivity calibration has conceptual similarities with that 141 

of Millar, 1992, but draws on the opportunities that GAMs provide to estimate catch per unit 142 

effort, by jointly modelling the selectivity function of each fishing gear and the spatio-temporal 143 

variation in availability. Through internal cross-calibration of observations per unit effort for 144 

different sources of data, our model is capable of: 1- estimating high-resolution spatio-145 

temporal trends of cod abundance across length classes, distinguishing repeatable from 146 

stochastic components of distribution between and within years/seasons, and 2- approximate 147 

the relative efficiency and selectivity of survey and commercial fishing gears, without the need 148 

for costly paired gear experiments.  149 

 150 

2. Material and Methods 151 

Study Area 152 

The full application of the Landing Obligation in 2019 created a strong incentive for 153 

developing effective bycatch avoidance strategies to reduce the probability of catching either 154 

choke species or undersized fish that must be counted against the quota but cannot be sold 155 

(Needle et al., 2015). In Scotland, there is previous experience with using spatially resolved 156 

catch data to reduce catch of juvenile cod in the North Sea (Kraak et al., 2013). For a limited 157 

number of years real-time closures were established and had a good level of compliance 158 
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(Holmes et al., 2009; Little et al., 2015; Needle and Catarino, 2011). Currently, there is 159 

renewed interest in applying spatial management measures to conserve North Sea cod (C. 160 

Needle, Marine Scotland Science, personal comm.) which would benefit from combining 161 

different sources of data to identify spatial hotspots of unwanted catches (Marshall et al., 162 

2017).  163 

 164 

Survey Data.  165 

The North Sea International Bottom Trawl-survey (NS-IBTS) is a demersal trawl survey 166 

conducted twice a year (quarter 1 & 3) since 1997 and coordinated by the International 167 

Council for the Exploration of the Sea (ICES). The NS-IBTS is a multispecies survey with 168 

standardised data sampling and processing design and provide data for estimation of relative 169 

abundances for fish species in an area within 510-620 N latitude and 40W -90E longitude and 170 

depths shallower than 300 m (Fig.1). Participating countries use a standardised trawl gear for 171 

data collection. The survey area is sampled following a stratified sampling design based on 172 

ICES statistical rectangles of approximately 60x30 nautical miles (1-degree longitude x 0.5-173 

degree latitude). Each country is allocated a certain number of rectangles to sample and 174 

surveys are organised so that each rectangle has at least two hauls sampled by two different 175 

countries (ICES, 2015). Information available for each haul includes georeferenced 176 

starting/finishing trawling (latitude and longitude), date, count of cod caught per length class 177 

to the nearest centimeter and additional information such as trawling depth in meters (ICES, 178 

2015). In terms of the Landings Obligation, juvenile cod were defined as individuals < 35 cm 179 

of total length.  In this study, we used cod count data from 2011-2015 downloaded from 180 

ICES  (https://datras.ices.dk/Data_products/Download/Download_Data_public.aspx; access 181 

date: April 2017) which summed up to a total of 2,462 hauls uniformly distributed throughout 182 

the North Sea (Fig.1). Fishing effort was 0.5 hours for 99.78% of hauls. For the remaining 183 

0.22% of hauls, the raw counts were standardized to 0.5 hours (a legacy of preliminary 184 

analyses)  185 

 186 

Commercial Fishing data  187 

The commercial catch data were obtained from the discard monitoring programs conducted by 188 

Marine Scotland Science (MSS) and Scottish Fishermen's Federation (SFF). A common 189 

https://emea01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdatras.ices.dk%2FData_products%2FDownload%2FDownload_Data_public.aspx&data=04%7C01%7C%7C11b3f1440a80456dfb8108d932d91265%7C84df9e7fe9f640afb435aaaaaaaaaaaa%7C1%7C0%7C637596730404156819%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=0eqbMBV3UVeXqiE1OTEtug%2Fx2zkivvgt5LaMWgkJVxw%3D&reserved=0
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sampling protocol is used by onboard scientific observers in both programs. The MSS and SFF 190 

programs select vessels to carry observers using a stratified random sampling design by area, 191 

gear, and quarter within each year (Jermyn and Robb, 1981). The data collected for each haul 192 

includes count of a sample of cod by length-class to the nearest centimeter, trawl duration, 193 

depth of trawling, and information regarding operational characteristics such as gear type or 194 

mesh size. The total number of individuals at length is then scaled-up to the total amount of 195 

catch per hauls. Effort is predefined as trawling time. 196 

Commercial fishing data available for research purposes were anonymised to protect 197 

confidentiality. Although the MSS/SFF observer program covers a wider area than the NS-198 

IBTS survey, only data for the North Sea (550-610 N latitude & 50-70 W longitude) between 199 

2011-2015 were available for the analysis (Fig.1). Total data used from commercial fishing 200 

represented 3,585 hauls covering all quarters, in depths shallower than 200m and included 201 

multiple fishing fleets targeting different species using nine different trawl-type gears. These 202 

fishing gears are coded as: Seine net (SEN), Light trawl (LTR), Multiple trawl heavy (MTH), 203 

Multiple trawl demersal (MTD), Multiple trawl nephrops (MTN), Pair trawl demersal (PTD), 204 

Industrial Trawl (ITR), Nephrops trawl single (NTR) and Single trawl demersal (MTR).  205 

 206 

Statistical model 207 

The number of cod at length was modelled with a generalised additive model with mixed-208 

effects (GAMs, Hastie and Tibshirani, 1990; Wood, 2006). The proposed model used smooth 209 

functions of geographic location, lengths, fishing gear and temporal attributes (month, year) 210 

and vessels as random effect. A general form is given by the following expression:  211 

 212 

E[Y]=g-1[F + β
0

+ ∑ 𝑠𝑖(𝑋𝑖)𝑖 + 𝒁𝑢]                                             (1) 213 

 214 

where 𝐸[𝑌] is the expected catch of fish at length, g is the link function which defines the 215 

relationship between the response and the linear predictor [F + β
0

+ ∑ 𝑠𝑖(𝑋𝑖)𝑖 + 𝑍𝑢]. β
0
 is 216 

the intercept, F is an offset (variable with fixed coefficient 1),  𝑋𝑘 corresponds to the k-th 217 

covariate and 𝑠𝑘(∘)  is a smooth function of the k-th variable, with a shape to be estimated 218 

from the data. 𝒁  is the design matrix for the random effect 𝑢.  219 

 220 
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The specific model we propose to model cod catch accounts for fixed, random effects and 221 

interactions as follows: 222 

𝑙𝑛(𝑌) = 𝐹 + 𝛽0 + 𝑡𝑖1(𝐸, 𝑁, 𝑀, 𝐿) + 𝑡𝑖2(𝐷, 𝑀, 𝐿) + 𝑡𝑖3(𝐷, 𝐿) + 𝑡𝑖4(𝑀, 𝐿) + 𝑡𝑖5(𝑀) +223 

𝑡𝑖6(𝐷) + 𝑠1,𝑔(𝐿) + 𝑢𝑣 + 𝛽1,𝑦 + 𝛽2,𝑔                (2) 224 

 225 

Where 𝑡𝑖(∘) define a smooth tensor product interaction applied to the variables month (M), 226 

length class (L), depth (D), longitude/eastings (E), latitude/northings (N). 𝑡𝑖(∘)  terms used a 227 

combination of thin plate regression splines (tp) for depth and length class, thin plate 228 

regression splines with smoothing penalties (ts) for longitude and latitude and cyclic cubic 229 

regression spline (cc) (i.e. a penalized cubic regression splines whose ends match) for month. 230 

tp splines were selected among other options for being considered the optimal default spline 231 

for any given dimension/rank (Wood, 2006). ti1 accounts for the spatio-temporal distribution 232 

of fish, assuming continuous variation across length classes. Thus, the model assumes that 233 

hauls that are close in space and time will have more similar counts of cod at length class than 234 

those that are widely separated. ti2 defines the pattern of depth use varying continuously with 235 

fish length class. ti3, ti4, ti5 and ti6 are the nested interactions and main effects of t1 and t2 and 236 

are designed to be orthogonal (Wood 2017). 𝑠1,𝑔(∘)   is tp smooth term of length class for each 237 

fishing gear (𝑔) to capture the length-specific gear selectivity. 𝑢𝑣 is a normal random effect 238 

of individual vessel (𝑣) with mean zero and variance 𝜎𝑣
2 , and 𝛽1,𝑦   and 𝛽2,𝑔  are fixed 239 

effects of year (𝑦) and gear (𝑔) respectively, allowing to account for correlation within groups 240 

(Candy, 2004).  241 

Coming back to the more general model formulation in Eq 1, using a natural log-link function, 242 

and defining F as the natural log of sampling effort, and including the gear effect, we specify 243 

the model:  244 

𝑙𝑛(𝑌) = 𝑙𝑛(𝑒𝑓𝑓𝑜𝑟𝑡𝑔) + β
0

+ ∑ 𝑠𝑖(𝑋𝑖)𝑖 + 𝑍𝑢 + 𝛽2,𝑔 + 𝑠1,𝑔(𝐿)           (3) 245 

which can be re-written as: 246 

𝑌

𝑒𝑓𝑓𝑜𝑟𝑡𝑔
= 𝑒β0+∑ 𝑠𝑖(𝑋𝑖)𝑖 +𝑍𝑢+𝛽2,𝑔+𝑠1,𝑔(𝐿)         (4) 247 

Showing the classical log-link model formulation with log-effort as an offset, in which 248 

coefficients can be interpreted as the multiplicative effect of predictors on catch per unit effort 249 
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(CPUE) (Candy, 2004). In our case a unit effort in one gear type may not be equivalent in 250 

CPUE to a unit effort in another gear type. For example, for a given trawling time, a seine and 251 

a bottom trawl net are unlikely to yield the same catch due to operational characteristics (in 252 

fact in the general case, effort may not even be measured in the same currency for all gear 253 

types, with efforts sometimes being described by area covered, or duration or their 254 

combination). This leads to a potential difficulty of interpretation of the model. 255 

However, re-parametrization of the gear effects 𝛽2,𝑔 + 𝑠1,𝑔(𝐿) yields:  256 

𝑌

𝑒𝛽2,𝑔+𝑠1,𝑔(𝐿)
×𝑒𝑓𝑓𝑜𝑟𝑡𝑔

= 𝑒β0+∑ 𝑠𝑖(𝑋𝑖)𝑖 +𝑍𝑢         (5) 257 

in which it can be seen that the linear predictor of relative abundance is independent of gear, 258 

and the combined gear effects 𝑒𝛽2,𝑔+𝑠1,𝑔(𝐿) estimate the gear-specific effort adjustment factor 259 

for a given fish length. This gear term therefore represents the relative selectivity of survey 260 

and commercial fishing gears, and their efficiency relative to the reference gear (here 261 

arbitrarily defined as the survey gear). 262 

Several options exist for modelling the distributions of count data, including the Poisson or 263 

negative binomial, since all these distributions bound the predictions down to zero. In line with 264 

the expectation for schooling fish species, preliminary examination of residual plots indicated 265 

significant over-dispersion (
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 

𝑛−𝑝 (𝑑𝑓)
>1) compared to the expectation from a Poisson 266 

distribution, and the negative binomial was chosen. 267 

Components of the model in Eqn (2) were chosen to represent the length-specific seasonal 268 

variation in the spatial distribution of fish at length which is the primary focus of the study, 269 

alongside variation due to vessel and gear reflecting important sampling design features. We 270 

used AIC to compare two models with and without the vessel random effect, to evaluate its 271 

importance. Models were fitted using Restricted Maximum Likelihood estimation (REML). 272 

Other terms in the model were core to the aims of the study and were not subjected to selection.  273 

The optimal shape and degree of smoothing for the non-linear terms was automatically 274 

estimated from the data as part of the model fitting procedure using the REML method 275 

implemented in the ‘gam’ function (Wood, 2006). Correct specification of the number of knots 276 

for each smoothing term was checked after initial model fitting following the protocol 277 

described in Wood, 2006. Trials to increase the number of knots in smoothing terms resulted 278 

in a significant intensification of computational power and convergence fails (approximately 279 
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12 hours of computing time with default settings, in a 6th Gen Intel Skylake Core i7-6700HQ 280 

256GB SSD, 16GB RAM processor type for a total of 134,221 fishing operations and 192 281 

knots for ti1). The goodness-of-fit was visually assessed using residuals and fitted values 282 

versus observed values and model covariates to explore heterogeneity and independence 283 

assumptions (Supplementary materials; Fig.1).  284 

Predictions from the model were computed on a grid with a total of 2,141 cells, each 285 

representing 1/16 of an ICES statistical rectangle. Cod length was grouped in 2cm bins to 286 

reduce computational requirements. For each haul, zeros were included when no cod was 287 

captured in a given size class. For visualization purposes, lengths classes were further grouped 288 

in 10 cm bins. Thus, model predictions represent the average counts of cod in 10 cm groups 289 

within each grid cell for a given year/month and by a specific fishing gear. Average depth 290 

within each grid cell was used for model predictions. Bathymetry data was downloaded from 291 

General Bathymetric Chart of the Oceans 292 

(http://www.gebco.net/data_and_products/gridded_bathymetry_data/; access date: April 293 

2017). Coordinates of the center of each grid cell were used as latitude and longitude predictors. 294 

To understand the contribution of each data source in model inference and emphasize the 295 

benefits of data pooling, a second model excluding the survey data was implemented using 296 

Eq.2. Predictions of both models, with and without scientific data were then computed, using 297 

the grid described above, to assess the correlation of the predictions between both data sources. 298 

As we suspect the quality of the available data is strongly affected by the different strata of 299 

our model, predictions were compared in four months and five different length classes. 300 

All analyses were conducted using R (R Core Team, 2021), and code is available at 301 

https://github.com/gfmg/Spatiotemporal-Cod 302 

 303 

3. Results 304 

A comparison of the two models in Table 1 indicated that the vessel effect is relevant, as it 305 

considerably lowered the value of AIC. All the smoothing components of the model were 306 

found to have a significant effect (p<0.05, Table 2). Other terms in the model, such as gear 307 

effects, relate to the model or study design and had to be included irrespective of their 308 

statistical significance. Their statistical significance is irrelevant to the objectives of this study 309 

but were reported (along with confidence intervals) in the interest of illustrating some of the 310 

http://www.gebco.net/data_and_products/gridded_bathymetry_data/
https://github.com/gfmg/Spatiotemporal-Cod
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features of the data and of the corresponding estimates. Fixed year effects were all different 311 

from 2011, except for year 2013. While the reality of differences in catch efficiency across the 312 

variety of gears studied is unquestionable (and not part of the research questions of interest for 313 

the present study), differences between scientific (“GOV”) and commercial gears (all others) 314 

in mean efficiency across all lengths were not significant (p>0.05, Table 2), reflecting the 315 

limited precision of the estimates relative to the size of the true differences. The model 316 

performed well, with a total explained deviance of 60.8% and a coefficient of determination 317 

R2 between log-observed and log-predicted values of 0.371 (Table 2, Supplementary Materials; 318 

Fig.2).  319 

Figure 2 provides an indication of the amount of spatio-temporal overlap between the 320 

deployments of different gears, which is key to enabling the estimation of relative gear 321 

efficiencies in the model. Thanks to an extensive spatial coverage in two quarters of the year, 322 

the IBTS scientific survey has a good volume overlap with most commercial gears. One 323 

commercial gear (MTR) overlapped with a large proportion of other gears, whereas other pairs 324 

of commercial gears ranged from a strong spatio-temporal overlap to an almost complete 325 

segregation. 326 

Our analysis confirms that the data contain sufficient information to estimate relative gear-327 

specific selectivity at length, as indicated by the significant non-linear effect of length on catch 328 

rates per unit effort, for all gear types. The smooth selectivity functions in Figure 3 showed 329 

different patterns across fishing gears, with uncertainty increasing for lengths smaller than 10 330 

cm, as expected given the high escape rate and resulting usual lower sample size for small fish. 331 

Most gears show an asymptotic behavior after 30 cm, except for MTD, MTN and NTR were 332 

a decrease in the effectivity of the fishing gear to catch these size classes is suggested (Fig. 3). 333 

Comparison across fishing gears show a broadly similar pattern among them, except for GOV 334 

and ITR (Fig 3). GOV (survey) gear is the least selective gear for fish <30 cm, due to the 335 

attachment of a codend in survey nets. Among commercial vessels, ITR, MTD, PTD and SEN 336 

gears tend to be more effective at excluding fish <30cm. In particular, ITR gear shows 337 

considerably high selectivity against fish <30cm.  338 

Figure 4 illustrates the marginal main effects of months (ti5 in Eq 2), depth (ti6) and years on 339 

CPUE of juvenile fish. The marginal effect of month showed a peak between July and August. 340 

Afterward, between September and February CPUE of cod decreased with a minimum found 341 

during March-April. Higher relative abundances of cod were found at depths between 50 and 342 
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100 m with low numbers of data and higher levels of uncertainty beyond 150 m (Fig. 4).  343 

Overall cod relative abundance was maximal in 2015 and 2014 and lowest in 2012 (Fig. 4).  344 

In order to evaluate variation in the effects of depth across months and lengths, we used the 345 

sum of marginal predictions of terms ‘ti2’, ‘ti3’ and ‘ti6’ in Eqn 2. Standardised marginal effect 346 

of depth across months and lengths is presented in Figure 5, where a clear separation is found 347 

between fish below and above a length of 25 cm. Fish smaller than 25cm are generally found 348 

in shallower depths. A general pattern can be observed in autumn/winter months (November 349 

to March) when most of fish < 25 cm appear at depths ranging from 80 to 10 m. On the other 350 

hand, during late spring and summer months (May-August) the separation of pattern moves 351 

around 35 cm with an increase of length with depth, with the majority of fish larger than 40 352 

cm are in depth of around 150 m. Fish below 10cm were only found during July, August and 353 

September at very shallow depths below 50m. Conclusions from other periods of the year 354 

cannot be drawn for these smaller fish as few of these sizes classes are present in the data.  355 

Model predictions of cod abundance on the log scale for 10 cm length intervals are shown in 356 

Figure 6 for February, May, August and November. The proposed model captured clear 357 

differences in the spatial distribution of CPUE across length strata and time of year. Markedly 358 

different distribution patterns were found for cod under and above the 20-30cm length stratum 359 

(Fig. 6), reinforcing evidence for a bimodal spatial behavior of cod, with a split around a length 360 

of 25 cm, previously described in Figure 5. Likewise, differences were found among months 361 

in which February and May were characterized by the lack of 0-10 cm (0-group) cod. During 362 

these months the model also predicted a hotspot near the southeast limit of the study area, 363 

while the distribution of higher length classes (20-30, 30-40 & 40-50 cm) appeared more 364 

homogeneously distributed in northern zones, yet changing seasonally (Fig. 6). Depth was an 365 

important predictor of the relative abundance of cod. For example, smaller fish (<20 cm) were 366 

found closer to the coastline, while larger fish were located in deeper waters matching the 367 

bathymetry contours of -50 and -100m depth (Fig.6). Results indicated that the model was able 368 

to capture both large and small scale patterns of relative abundance distribution of specific 369 

lengths of cod, in each month of the year.   370 

Figure 7 shows predictions of models fitted with and without the scientific survey data, across 371 

four different months and five different length classes. The plots show two contrasting 372 

behaviors. For the larger length classes of fish (30-50 cm) there was a good correlation between 373 

both models, whereas the smallest fish (10 cm) showed a strong divergence, with high 374 
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predicted values in the model fitted with only the commercial data. The 20 cm fish show a 375 

transition pattern between the two behaviors described above, with good correlation between 376 

the model predictions only in February and May, months were the IBTS survey occurs (Feb) 377 

or where commercial gears tend to catch these size classes.   378 

 379 

4. Discussion 380 

We proposed a modelling approach which combines commercial fishing and survey data to 381 

predict the spatio-temporal distribution of cod. One of the main strengths of this approach is 382 

the ability to combine information about catch rates coming from gears with different 383 

selectivities. Such combination of information is achieved by implementing an additive model 384 

structure where heterogeneity caused by factors affecting catch rates were incorporated into a 385 

model via fixed or random effects. Combining information from different sources is firmly 386 

rooted in fisheries sciences, particularly in the area of integrated stock assessment modelling 387 

(Maunder and Punt, 2013). However, when dealing with spatial and temporal modelling the 388 

combination of data sources is less common because heterogeneity across fishing methods (i.e. 389 

commercial fishing vs surveys) needs to be incorporated into the modelling approach. 390 

Recently, Pinto et al., 2019 combined survey and commercial fishing data to model the spatio-391 

temporal dynamics with application to data-limited fisheries. The model in Pinto et al., 2019, 392 

is based only on presence/absence of fish in space and the critical assumption is that variability 393 

in selectivity and catchability across sampling methods is negligible in informing the 394 

presence/absence of fish. In other words, if the studied fish species is present in the area, any 395 

of the sampling methods should be able to detect it with the same probability. Our modelling 396 

framework follows a similar philosophy as the analysis in Pinto et al., 2019, in the sense that 397 

all sampling methods (different fishing gears) can detect cod. However, in our case gear 398 

efficiency needs to be accounted to accommodate differences in catch rates among gears, and 399 

because we aim to model sizes, we made extra allowance for differential selectivity of different 400 

fishing gears into the model. We incorporated length effect differences between sampling 401 

methods using spline-based models which proved to be a flexible framework to accommodate 402 

differences in gear selectivity. The shape of these selectivities estimated within the model 403 

broadly agreed with expert knowledge for cod in the North Sea (B. O’Neill, Marine Scotland 404 

Science, personal comm).  405 
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In our study we expect sampling bias by commercial fishers to be reduced by their limited 406 

ability to trigger a fishing operation following detection of demersal fish, but also due to our 407 

focus on undersized fish which are not directly targeted by the fleets (although some degree 408 

of active avoidance may occur). The model approach further makes estimates more robust to 409 

spatially-biased sampling effort. Indeed, the use of flexible smoothing splines serves the same 410 

function as the spatial random fields in Pinto et al., 2019, making the estimation of model 411 

parameters more local spatially and temporally. Intuitively, a more local estimation means a 412 

higher reliance on a smaller pool of local data, and a lesser influence of more distant and 413 

potentially over-sampled areas of low or high fish abundance (depending on the nature of the 414 

sampling bias). Nevertheless, model estimation benefits hugely from highly resolved 415 

commercial data being complemented by systematic surveys, to fill potential data gaps 416 

particularly in the size classes of fish that are not targeted by commercial gears, as the 417 

comparison of predictions after excluding the scientific sources suggests. Bias in the 418 

abundance estimates due to non-random sampling by the commercial fleet may not always be 419 

possible to eliminate effectively, particularly where sampling is very heavily biased towards 420 

high fish densities, as would be the case in pelagic detect-and-catch fisheries without 421 

complementary survey data. In this case, jointly modelling the sampling process and 422 

abundance may be required (Conn et al., 2017; Diggle et al., 2010; Pennino et al., 2019). 423 

Due to their extensive spatial coverage, survey data also ensured a consistent spatio-temporal 424 

overlap with most other sources of data, and thus played an important role in enabling the 425 

cross-calibration of CPUE between gears. Although in the case of the North Sea cod, dropping 426 

the survey data generated some noise in the estimates, there was still enough information in 427 

the commercial data alone for the model to perform well (Fig 7), thanks to the partial overlap 428 

between pairs of commercial gears, despite none of them covering the entire study area (Fig. 429 

2 and Supplementary materials). 430 

Our model estimates reveal important aspects of the biology and life cycle of North Sea cod, 431 

including the size-specific bathymetric preferences and seasonal changes in distribution. In the 432 

North Sea, cod spawning occurs between February and April, while larvae settling during the 433 

late summer/ autumn months (Brander, 2005). The increase in relative abundance for cod 434 

between 0-10cm predicted by the model during the August/November months in the shallower 435 

South-Eastern limit of the North Sea and coastal areas of Scotland, agrees with previously 436 

reported nursery grounds (Brander, 2005; Fox et al., 2008; Lelièvre et al., 2014). Larger size 437 

classes of cod are known to appear in deeper waters and broadly geographically distributed 438 
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throughout the North Sea. In addition, our model shows a clear pattern of sizes and depth in 439 

which cod smaller than 25 cm rarely appearing beyond 100 m of depth. This is consistent with 440 

Neat et al., 2006, who reported that cod generally stayed deeper during winter/spring from 441 

mark-recapture experiments. Our results describing the distribution of very small fish (<10 cm) 442 

should be interpreted with caution due to the limited sample sizes. However, results of 443 

distribution of smaller size classes can be seen as suggesting the behaviours of smaller fish 444 

which should be considered when designing nursery areas or closed areas for fisheries 445 

management purposes. 446 

A major strength of the modelling framework is to combine commercial and survey data, 447 

accommodating high resolution variations of cod at length, season, depth, space and fishing 448 

gear. High spatio-temporal resolution is enabled by combining interaction smoothing terms 449 

giving account of the space (latitude, longitude), depth, month effects, using a (very) large 450 

number of knots, with the achieved resolution being determined statistically by the amount of 451 

data available locally and/or practically by increasing computational costs. The modelling of 452 

a fine scale spatial pattern in many cases will prove more useful for the fishing fleet in terms 453 

of fishing suitability maps. In fisheries with large amount of bycatch, the location of areas that 454 

are temporarily closed to fishing in order to avoid unwanted catch is determined empirically 455 

from real-time data provided by fishing vessels and shared among other members of the fleet 456 

(Little et al., 2015). Several examples worldwide have shown successful outcomes as the finer 457 

spatial and temporal scale of this approach better addresses fisheries management issues (e.g. 458 

Bailey et al., 2010; Cosandey-Godin et al., 2014). Compared to richer mechanistic population 459 

models (e.g. Kristensen et al., 2014), the high resolution, simplicity and computational speed 460 

of our descriptive modelling method mean that it has potential for informing spatial fisheries 461 

management in near-real time.  462 

The proposed approach aims at modelling spatio-temporal variation in fish relative abundance 463 

across size classes and could aid fisheries managers to tackle bycatch problems or inform 464 

marine spatial planning. Moreover, recent advances in CPUE standardization have recognized 465 

the importance of explicitly including spatio-temporal correlation in catch rates (e.g. Grüss et 466 

al., 2019; Maunder et al., 2020; Thorson, 2019; Zhou et al., 2019). We suggest that our spatio-467 

temporal modelling approach may be used for CPUE standardization, adding the ability to 468 

standardize CPUE across multiple commercial or scientific gears at once. Indeed, abundance 469 

or recruitment indices may be derived by integrating our model predictions over areas and 470 

length classes of interest, for example in the context of integrated stock assessment. In doing 471 
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so, practitioners should pay attention to selecting an appropriate time of the year as a reference. 472 

Where a biomass index is required, weight-at-length relationship may be used for conversion, 473 

although it could be advantageous to directly model the log-biomass of the catch in place of 474 

fish count, when fitting the model.  475 

An emergent property of the proposed model, not formally noted in previous investigations of 476 

cross-calibration studies (e.g. Punt et al., 2000), is the potential for generating selectivity 477 

curves from different fishing gears from routine commercial and observational data. This can 478 

be seen as a by-product of the spatial model, because these selectivity curves are needed to 479 

accommodate differences between fishing gear efficiencies into the modelling approach.  480 

Our approach to estimating selectivity functions within the model has some similarities with 481 

that of Millar, 1992. In this study, Millar used generalised linear models to estimate the 482 

parameters of predetermined selectivity at length functions, using the contrast between the size 483 

structures retained in two fishing gears operating experimentally in close proximity. The 484 

greater flexibility of GAMs allows us to relax two major constraints of Millar’s method. First, 485 

smoothing splines of fish size effects remove the need to assume a parametric form of the 486 

selectivity function. Second, the smooth spatio-temporal terms effectively act as a soft 487 

statistical pairing device, performing “on the fly” matching of fishing operations with different 488 

gear types based on spatio-temporal proximity. The approach therefore relies on having partial 489 

spatial and temporal mixing of different sampling gears, as was the case in the North Sea cod 490 

data. It draws on a similar idea as Punt et al., 2000, but introducing size-dependence of relative 491 

catch efficiency, allowing arbitrary catch effort currencies, and relaxing reliance on pre-492 

defined arbitrary regions. The method appears to work well in a data-rich context like the 493 

North-Sea cod, producing results consistent with the empirical knowledge of the stock and of 494 

the gears in use. It is unclear yet the extent to which reducing the resolution of the spatio-495 

temporal trends in the model would lower the precision of relative gear efficiency estimates, 496 

for example in the case of more data-poor species. Simulation studies and further application 497 

of the proposed method would be required in this regard, but earlier work by Punt et al., 2000 498 

suggests that much coarser spatial resolutions would still afford useful estimates. More 499 

generally, empirical and simulation studies would also be useful to better understand factors 500 

affecting the accuracy of the relative abundance estimates, including the use of more 501 

environmental predictors, and the levels of spatio-temporal overlap between gears that are 502 

likely to be sufficient for effective CPUE cross-calibration. Our statistical method for jointly 503 

estimating spatio-temporal fish distributions and relative selectivity of any number and type 504 
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of gears is promising, because the shape of the selectivity is usually unknown in most fisheries. 505 

It synthesises and considerably generalises previous methods by Millar, 1992; Punt et al., 2000, 506 

and Pinto et al., 2019, by providing a flexible and generic approach to estimating indirect 507 

selectivity without the need to undertake costly gear research. 508 

 509 
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CAPTIONS 662 

Table 1: Model selection, effective degrees of freedom, and AIC value.  663 

 664 

Table 2: model estimate, standard error (Std.error), effective degree of freedom (edf), value 665 

of Chi square statistic (Chi.sq) and p-values for fixed and smooth terms in model m01. 666 

 667 

Figure 1: North Sea study area for the GAM model with locations of hauls between 2011-668 

2015 for observer data (grey triangles) and NS-IBTS survey data (black circles). 669 

 670 

Figure 2: Overlap between the spatio-temporal distributions of gears in the North Sea cod 671 

data, on a [0-1] scale (left panel). Overlap was approximated using the default parameters in 672 

the R package “hypervolume”. The panels on the right show examples of calculated spatio-673 

temporal volumes around the data for four pairs of gears, including the IBTS survey (“GOV”). 674 

Hypervolumes are materialized by random points within each hypervolume (raw data not 675 
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shown). The 3 axes are: scaled latitude (bottom to top, “ShootLat.sc”); scaled longitude (back 676 

to front-right, “ShootLon.sc”) and scaled time of year (right to left, “J.day.sc”) 677 

 678 

Figure 3: Relative gear selectivity marginal effects according to linear predictor for m01 with 679 

95% confident intervals for: a) GOV; b) ITR; c) LTR; d) MTD; e) MTH; f) MTN; g) MTR; h) 680 

NTR; i) PTD; j) SEN and k) showing comparison between different relative gear selectivity 681 

functions. 682 

 683 

Figure 4: Marginal cod abundance smooth effects from m01 for a) Month; b) Depth and c) 684 

marginal cod abundance fixed effect for Year. The covariates are centered, i.e., zero 685 

corresponds to the mean of the covariate. Shade around smoother corresponds to 95% 686 

confidence bands. 687 

 688 

 689 

Figure 5. Standardised marginal effects by length class according to the combined length and 690 

depth smooth interaction. Values calculated as the sum of marginal effects for terms ti2, ti3 691 

and ti6 in Eq. 2. Marginal predictions for 2015 were standardised to the interval (0-1) by length 692 

classes (within each month). 693 

  694 

 695 

Figure 6: Spatio-temporal model predictions of counts of cod (log scale) for 0-10, 10-20, 20-696 

30, 30-40 and 40-50 cm length groups (columns) during February, May, August, and 697 

November (rows). Prediction for 2015 based on counts per 1h trawling effort. Bathymetry 698 

contours for -50, -100 and -200 meters in blue scale colors.  699 

 700 

Figure 7: model predictions of counts of cod (response scale) with both data sources (X-axis) 701 

and only commercial data (Y-axis) for 10, 20, 30, 40 and 50 cm length bins (columns) during 702 

February, May, August and November (rows). Range of both axes limited from 0-2 to aid in 703 

the visualization of the main cloud of points due to the presence of outliers. Transparency of 704 

predictions proportional to its standard error.    705 
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Table 1: 

Fixed structure 
Random  

intercepts 
Df AIC 

ti(x,y,m,L)+ti(D,m,L)+ ti(D,L)+ti(m,L)+s(L, by=Gear)+ti(m)+ti(D)+Year+Gear - 315.70 833953 

ti(x,y,m,L)+ti(D,m,L)+ ti(D,L)+ti(m,L)+s(L, by=Gear)+ti(m)+ti(D)+Year+Gear Vessel 467.09 244964 
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Table 2 

                  

Fixed terms       Smooth terms       

    Estimate Std.error p-value    edf Chi.sq p-value 

                    

GOV:2011 -7.527 1.066 1.36e-12 ti(x,y,m,L) 142.37 9961.99 < 2e-16 

ITR -5.081 3.436 0.139 ti(m,L,D)   41.81 1329.24 < 2e-16 

LTR -1.822 1.234 0.140 ti(L,D)    14.59 2828.22 < 2e-16 

MTD -2.371 1.246 0.057 ti(m,L)  11.83 1257.71 < 2e-16 

MTH -1.848 1.096 0.091 s(L):GOV    8.91 1845.70 < 2e-16 

MTN -1.352 1.074 0.208 s(L):ITR    5.48 201.54 < 2e-16 

MTR -1.455 1.093 0.183 s(L):LTR   6.34 92.16 < 2e-16 

NTR -1.089 1.079 0.313 s(L):MTD   5.38 146.31 < 2e-16 

PTD -1.082 1.107 0.329 s(L):MTH  6.89 2813.43 < 2e-16 

SEN -2.745 1.453 0.059 s(L):MTN   8.57 2483.16 < 2e-16 

2012 -0.308 0.042 1.1e-13 s(L):MTR   7.28 3037.90 < 2e-16 

2013 -0.037 0.040 0.358 s(L):NTR    7.15 753.85 < 2e-16 

2014 0.122 0.040 0.002 s(L):PTD  6.51 2444.64 < 2e-16 

2015 0.352 0.040 <0.05 s(L):SEN    5.46 660.57 < 2e-16 

        ti(D)     3.77 138.00 < 2e-16 

        ti(m)    2.95 337.35 < 2e-16 

          

Vessel (random 

effect) 152.75 4007.94 < 2e-16 

Total deviance explained 60.80% 
          

          

Shape parameter Theta (θ) 0.179 
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