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Gene and metabolite expression 
dependence on body mass index 
in human myocardium
Adewale S. Adebayo1, Marius Roman1, Mustafa Zakkar1, Syabira Yusoff1,3, 
Melanie Gulston2, Lathishia Joel‑David1, Bony Anthony1, Florence Y. Lai1, Antonio Murgia2, 
Bryony Eagle‑Hemming1, Sophia Sheikh1, Tracy Kumar1, Hardeep Aujla1, Will Dott1, 
Julian L. Griffin2,4, Gavin J. Murphy1 & Marcin J. Woźniak1,5*

We hypothesized that body mass index (BMI) dependent changes in myocardial gene expression and 
energy-related metabolites underlie the biphasic association between BMI and mortality (the obesity 
paradox) in cardiac surgery. We performed transcriptome profiling and measured a panel of 144 
metabolites in 53 and 55, respectively, myocardial biopsies from a cohort of sixty-six adult patients 
undergoing coronary artery bypass grafting (registration: NCT02908009). The initial analysis identified 
239 transcripts with biphasic BMI dependence. 120 displayed u-shape and 119 n-shape expression 
patterns. The identified local minima or maxima peaked at BMI 28–29. Based on these results and to 
best fit the WHO classification, we grouped the patients into three groups: BMI < 25, 25 ≤ BMI ≤ 32, 
and BMI > 32. The analysis indicated that protein translation-related pathways were downregulated 
in 25 ≤ BMI ≤ 32 compared with BMI < 25 patients. Muscle contraction transcripts were upregulated in 
25 ≤ BMI ≤ 32 patients, and cholesterol synthesis and innate immunity transcripts were upregulated in 
the BMI > 32 group. Transcripts involved in translation, muscle contraction and lipid metabolism also 
formed distinct correlation networks with biphasic dependence on BMI. Metabolite analysis identified 
acylcarnitines and ribose-5-phosphate increasing in the BMI > 32 group and α-ketoglutarate increasing 
in the BMI < 25 group. Molecular differences in the myocardium mirror the biphasic relationship 
between BMI and mortality.

Elevated Body Mass Index (BMI) is an important risk factor for heart failure and cardiovascular death1. However, 
recent studies have reported a biphasic u-shaped relationship between increasing BMI and mortality in clinical 
settings characterized by acute metabolic stress such as cardiac surgery2,3, acute coronary syndromes4, heart 
failure5, and in patients requiring dialysis6. Here people with BMI between 25 and 35 have paradoxically better 
survival than those with low or normal BMI, or very high BMI (> 35)2 These observations may be attributable 
to reverse epidemiology where people who are underweight or who have severe obesity have worse outcomes 
attributable to frailty or sarcopenia, or to unmeasured confounding such as fitness, or the presence or absence 
of metabolic syndrome. Both severe obesity and frailty lead to mitochondrial dysfunction7 and dysregulated 
bioenergetics8. Imbalance of NADH/NAD+ ratio in sarcopenic underweight or normal patients can lead to 
mitochondrial dysfunction and consequently to higher levels of ROS production and low levels of chronic inflam-
mation that affect protein and mitochondria turnover9. In obese patients, nutrient overload can overwhelm the 
TCA cycle, also leading to ROS production and inflammation10. We hypothesized that changes in expression of 
mitochondrial genes and metabolites may contribute to the biphasic association between BMI and adverse events 
following cardiac surgery. We tested this in human myocardial biopsies subjected to untargeted next genera-
tion sequencing and targeted metabolomics acquired as part of an ongoing observational study. The aim was to 
identify genes and energy metabolites whose expression in the biopsies show a biphasic response to increasing 
BMI and to evaluate how these differences could translate into differences in clinical outcomes.
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Results
Study cohort and group definition.  The ObCard study (NCT02908009) screened 558 participants 
between August 2017 and May 2019, out of which 221 were approached. Sixty-eight consecutive patients were 
recruited to the study, with one protocol violation recorded and one participant withdrew from the study 
(Fig. 1A). The distribution of BMI in the sample is shown in Fig. 1B.

Out of 66 collected samples, we analyzed the transcriptome in 53 and metabolites in 55 myocardial biopsies. 
(Fig. 1A and Table S1). Metabolomics data for one sample was not included in the analysis because we were not 
able to detect majority of the metabolites. After data processing, 14,967 transcripts were identified as protein-
coding, 2102 were long non-coding RNAs (lncRNA), 662 were pseudogenes, and the remaining 239 transcripts 
included unknown transcripts, micro-RNAs, rRNA and other non-coding RNAs (Fig. 2A). All samples were 
very similar in transcript biotype composition (Fig. 2B).

To identify transcripts and metabolites that display biphasic u- or n-shape BMI relationships, we used the Two 
Lines method developed by Simonsohn11. The algorithm does not impose an assumption of form on the data, 
which overcomes a limitation of quadratic regression known to lead to false positives. The Two Lines method 
tests two regression lines and detects a breakpoint between them. The analysis identified 239 transcripts with 
a biphasic relationship, out of which 107 had their local minimum or maximum at BMI 28 or 29 (Fig. 3A and 
Table S2). None of the analyzed metabolites displayed a biphasic BMI dependence.

Given the limitations of BMI as a measure of obesity and the ad hoc nature of the WHO BMI obesity clas-
sifications we adopted a data-driven approach to group participants. Based on the analysis of transcripts, we 
defined the group that included local minima or maxima of gene expression as BMI 28/29 ± 3, range 25–32 
(Fig. 3B). The other two groups were BMI < 25 and BMI > 32. The three patient groups were well matched with 
respect to baseline demographics, clinical characteristics, medications, and operative procedures (Table 1) apart 
from post-surgery worst multiple organ dysfunction score (MODS, higher in 25 ≤ BMI ≤ 32, and BMI > 32) and 
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Figure 1.   (A) Consort diagram, (B) BMI distribution in the cohort.
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non-red blood cells transfusion (lowest in BMI > 32) that were different between groups. Levels of missing data 
were low (Table 1). The analysis cohort included 53 participants (80.3%) with complete transcriptome data and 
55 participants (83.3%) with complete metabolomics data (Table S1). Baseline characteristics in the complete 
case cohort were comparable to the analyzed cohort (Table S3).

Transcriptomics and metabolomics data analysis.  Hierarchical clustering and principal component 
analyses were performed on log-transformed and quantile normalized transcriptomics data with batch effect 
removed. Neither analysis revealed any clear differences between groups when all transcriptomics data were 
included (Fig. 3C, D). However, only 15.3% of sample variability could be explained indicating that the majority 
of the heterogeneity is not captured by the first two components (Fig. 3D). Clustering of the metabolomics data 
also did not show any clear differences between groups (Fig. 3E, F). Instead, it identified samples 34 and 58 as 
clear outliers. These samples were removed from further analysis. Differential expression (DE) analysis identi-
fied only one significantly different transcript (AC006059.2, logFC = − 3.91, adjusted p value = 0.008) between 
BMI > 32 and 25 ≤ BMI ≤ 32 groups and also across all groups (adjusted p value = 0.018). AC006059.2 encodes an 
uncharacterized protein within the hypoxia-induced gene 1 domain.

To determine differences between groups of transcripts, we performed a differential pathway analysis using 
competitive gene set testing as described by Wu and Smyth12 to identify groups of transcripts annotated to a 
specific pathway (Reactome and Gene Ontology) that behave differently between the BMI groups. Out of 63 
identified pathways (adjusted p value < 0.05), 29 were related to translation and mRNA processing (over 300 
transcripts, Fig. 4A and Table S4). These pathways were downregulated in both the 25 ≤ BMI ≤ 32 and BMI > 32 
groups as compared with the BMI < 25 group. Transcripts involved in striated muscle contraction (29 transcripts; 
Fig. 4A and Table S4) behaved in an opposite manner. They were expressed at higher levels in both 25 ≤ BMI ≤ 32 
and BMI > 32 groups as compared with the BMI < 25 group. In addition, cholesterol biosynthesis (24 tran-
scripts), and innate immunity pathways like FCGR activation (58 transcripts) or creation of C2 and C4 activa-
tors (56 transcripts) were upregulated in the BMI > 32 group as compared with the 25 ≤ BMI ≤ 32 (Fig. 4A and 
Table S4). Ribosomal proteins L3, L4 and L6, signal peptidase complex catalytic subunit (SEC11C), SMG5 and 
proline-rich nuclear receptor coactivator 2 (PNRC2) were the most variable between the groups (p value < 0.05, 
Table S5) and among translation-related transcripts. These transcripts also displayed a biphasic u-shape (or 
n-shape, SMG5) BMI relationship (Fig. 4B). Other transcripts that had membership in significant pathways 
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Figure 2.   (A) Summary of transcript biotypes in the whole transcriptomics dataset. (B) Biotypes percentage by 
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and displaying biphasic BMI dependence are plotted in Figure S1. These include CARS1 (translation), UPF3A, 
PPP2R1A (nonsense-mediated decay), NHP2, THUMPD1 (rRNA processing), IGKV2-28, FCN3 (creation of 
C4 and C2 activators), OAS3 (interferon signaling), KYAT3, RSAD2 (metabolism of amino acids) and TNNT2 
(striated muscle contraction).
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Figure 3.   (A) Distribution of local BMI minima and maxima for transcripts whose expression display U or 
N-shape BMI dependence. (B) BMI groups definition with numbers of samples. (C) Hierarchical clustering 
of samples using transcriptomics data. (D) Principal component analysis of transcriptomics data: the first 
two components were plotted with 95% confidence interval for each BMI group. (E) Hierarchical clustering 
of samples using metabolomics data. (F) Principal component analysis of metabolomics data: the first two 
components were plotted with 95% confidence intervals for each BMI group.
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All (n = 66) BMI < 25 (n = 16) 25 ≤ BMI ≤ 32 (n = 33) BMI > 32 (n = 11) p value* Missing data (n)

Age (years)—Median (IQR) 68 (52–82) 68 (50–79) 62 (51–72) 0.277 0

Sex (male)—n (%) 14 (88%) 32 (84%) 11 (92%) 0.999 0

Ethnic (White)—n (%) 14 (88%) 32 (86%) 12 (92%) 0.999 0

BMI 21.8 (1.8) 28.2 (2.5) 35.4 (2.3) < 0.001 0

Smoking history

Never smoker—n (%) 6 (38%) 15 (39%) 4 (33%)

0.908 0Ex-smoker—n (%) 8 (50%) 20 (53%) 6 (50%)

Current smoker—n (%) 2 (13%) 3 (8%) 2 (17%)

Diabetes—n (%) 2 (13%) 11 (29%) 4 (33%) 0.403 0

Permanent Pacemaker—n (%) 1 (6%) 2 (5%) 0 (0%) 0.999 0

Stroke/Transient Ischaemic Attack—n (%) 2 (13%) 3 (8%) 1 (8%) 0.844 0

Chronic pulmonary disease—n (%) 3 (19%) 4 (11%) 3 (25%) 0.366 0

Neurological disease—n (%) 0 (0%) 0 (0%) 0 (0%) N/A 0

Renal disease—n (%) 0 (0%) 1 (3%) 2 (17%) 0.126 0

Myocardial infarction—n (%) 5 (31%) 11 (29%) 1 (8%) 0.318 0

Extracardiac arteriopathy—n (%) 2 (13%) 4 (11%) 1 (8%) 1.000 0

Liver disease—n (%) 0 (0%) 0 (0%) 0 (0%) N/A 0

Pulmonary hypertension—n (%) 0 (0%) 1 (3%) 0 (0%) 1.000 0

Statin—n (%) 12 (75%) 28 (74%) 11 (92%) 0.477 0

Anti-platelet agents—n (%) 11 (69%) 32 (84%) 11 (92%) 0.255 0

ACE inhibitors—n (%) 9 (56%) 14 (37%) 5 (42%) 0.487 0

Surgery type

CABG only—n (%) 13 (81%) 32 (84%) 11 (92%)

0.878 0CABG & Valve—n (%) 3 (19%) 5 (13%) 1 (8%)

Others—n (%) 0 (0%) 1 (3%) 0 (0%)

NYHA

Class I—n (%) 4 (25%) 12 (32%) 4 (33%)

0.813 0Class II—n (%) 11 (69%) 23 (61%) 6 (50%)

Class III, IV—n (%) 1 (6%) 2 (5%) 3 (25%)

CCS

Asymptomatic—n (%) 5 (31%) 2 (5%) 2 (17%)

0.228 0
Class I—n (%) 6 (38%) 12 (32%) 4 (33%)

Class II—n (%) 4 (25%) 19 (50%) 5 (42%)

Class III, IV—n (%) 1 (6%) 5 (13%) 1 (8%)

Left ventricular ejection fraction

Good (> 49%)—n (%) 13 (81%) 31 (82%) 9 (75%)
0.912 0

Fair (30–49%)—n (%) 3 (19%) 7 (18%) 3 (25%)

Left main stem disease—n (%) 2 (13%) 9 (24%) 2 (17%) 0.761 0

Extent of coronary disease

Normal/ 1VD—n (%) 1 (6%) 2 (5%) 3 (25%)

0.066 02VD—n (%) 7 (44%) 7 (18%) 2 (17%)

3VD—n (%) 8 (50%) 29 (76%) 7 (58%)

Pre-operative PaO2/FiO2 ratio—Median 
(IQR) 533 (445–691) 457 (410–533) 457 (410–495) 0.399 8

Pre-operative Platelets count (× 109/L)—
Mean (STD) 222.3 (55.7) 229.3 (63.3) 227.5 (62.0) 0.928 1

Pre-operative Serum Creatinine 
(umol/L)—Median (IQR) 78.5 (70.6–102.5) 79.5 (69–89.3) 86.0 (77.5–96.5) 0.483 0

Pre-operative Bilirubin (umol/L)—
Median (IQR) 10.0 (7.5–12.5) 11.0 (8–13) 8.5 (8–13.5) 0.754 5

Postoperative

Hct (%)—Mean (STD) 31.9 (3.9) 34.2 (4.0) 35.5 (4.9) 0.069 0

MABP (mm Hg)—Median (IQR) 76 (68.8—85.0) 72.5 (64.3—75.8) 67.5 (63.3—73.5) 0.739 0

Lactate (mmol/L)—Median (IQR) 1.5 (1.1–2.0) 1.9 (1.4–2.3) 1.5 (1.1–1.9) 0.985 1

Inotropic score at 24 h—Median (IQR) 0 (0–2) 1.5 (0–3) 0 (0–3) 0.282 7

Vasoactive score at 24 h—Median (IQR) 5 (2.5–9) 6 (3–8) 3 (1–7) 0.426 4

MODS ICU—Median (1st—3rd quartile) 1 (1–3) 2 (2–3) 3 (1.8–3) 0.122 2

Continued
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Metabolite analysis identified α-ketoglutarate as significantly upregulated in the 25 ≤ BMI ≤ 32 group when 
compared with the BMI < 25 group (Table 2). α-ketoglutarate also has membership in one of the significant 
pathways, i.e., selenoamino acid metabolism (Fig. 4A). Two Lines analysis of α-ketoglutarate expression did not 
identify significant u or n-shape BMI dependence (Fig. 4B). However, metabolite-transcripts association analysis 
found its expression patterns similar to some of the transcripts with annotations in translation (RPL3, RPL4, 
RPL14, RSL24D1) and RNA processing (PNRC1 and RPPH1, Fig. 4C). Long and middle chain acylcarnitines 
expressed at highest levels in the BMI > 32 group as compared with both the 25 ≤ BMI ≤ 32 and BMI < 25 groups. 
There was no significant difference between the BMI < 25 and 25 ≤ BMI ≤ 32 groups. Two line analysis indicated 
that acylcarnitines significantly increased in patients with BMI greater than 25 (Figure S2 and Table S2). Four 
out of eight acylcarnitines (C16-OH, C18-OH, C18:1-OH, C18:2-OH) were hydroxylated. Their unhydroxylated 
counterparts (apart from carnitine C18) did not show any significant BMI dependence (Table S2). Ribose-
5-phosphate was also significantly upregulated in the BMI > 32 group as compared with the BMI < 25 group and 
its expression increased significantly with BMI (Figure S2 and Table S2).

Next, we examined whether groups of genes without any form of pathway information were differential, and 
whether such groups show biphasic BMI relationship. We explored correlations between expression patterns of 
429 transcripts that were most variable between the three BMI groups (p value < 0.05, Table S5) using weighted 
gene correlation networks analysis. The analysis grouped the transcripts into twelve networks. Eigengene values 
of five showed either u or n shape BMI relationship (Turquoise, Purple, Grey, Green and Yellow in Fig. 5A) and 
eigengene values of one network significantly increased with BMI across the whole range (Black in Fig. 5A). The 
networks’ eigengene values for each of the six networks were different between the three BMI groups as indicated 
by one-way ANOVA (Fig. 5B).

To identify the biological function of the six significant networks, we submitted the specific transcripts to 
Reactome pathway enrichment tool13. Risosomal protein transcripts from the Turquoise network significantly 
(adjusted p value < 0.05) enriched translation and RNA processing pathways; transcripts from the Purple network 
(Hydroxymethylglutaryl-CoA synthase, Insulin-induced gene 1, Glutathione hydrolase 1, Tumor necrosis factor 
ligand superfamily member 10 and Low-density lipoprotein receptor) enriched lipids and steroid metabolism, 
biological oxidations, and apoptotic pathways. Transcripts from the Yellow network enriched muscle contrac-
tion pathways with tropomyosin β-chain, desmin, myosin regulatory light chain (MYL12A), myosin-binding 
protein C and Ca2+/calmodulin-dependent protein kinase type II subunit gamma (CAMK2G). Interleukin-2 
receptor alpha chain from the Green network enriched ‘RUNX1 and FOXP3 control the development of Treg’. 
Cytochrome P450 (CYP4FA) present in the black network enriched ‘Cytochrome P450 substrates’ (Fig. 5C). 
The Grey network included ten transcripts that were not clustered in any other network and, as expected, did 
not significantly enrich any pathway.

Discussion
Main findings.  The obesity paradox refers to a u-shaped biphasic relationship between BMI and mortality 
in people exposed to acute metabolic stress including cardiac surgery2. In the current analysis we show that 
groups of myocardial transcripts involved in translation and muscle contraction show biphasic BMI depend-
ence; specifically the expression of genes involved in muscle contraction were greatest, and the expression of 
genes associated with translation were lowest in the 25 ≤ BMI ≤ 32 group. In addition, BMI > 32 was associated 
with upregulated innate immunity and cholesterol synthesis. These results were consistent across both competi-
tive gene set analyses, and weighted gene correlation networks analysis. Contrary to our original hypothesis, 

Table 1.   Pre- and post-operative characteristics. (*)—Tests among BMI groups were conducted by exact test 
for categorical variables, and ANOVA or non-parametric Kruskal–Wallis test for continuous variables. Data 
are presented as n (%) for categorical variables and mean (standard deviation, STD) or median (interquartile 
range, IQR) for continuous variables. ACE, Angiotensin Converting Enzyme; AKI, Acute Kidney Injury; 
CABG, Coronary artery Bypass Grafting; CCS, Canadian Cardiovascular Society; Hct, Haematocrit; FiO2, 
Fraction of Inspired Oxygen; KDIGO, The Kidney Disease Improving Global Outcomes; MABP, Mean Arterial 
Blood Pressure; MODS, Multiorgan Dysfunction Syndrome; NYHA, New York Heart Association; PO2, Partial 
Pressure of Oxygen; RBC, Red Blood Cells; VD, Vessel Disease.

All (n = 66) BMI < 25 (n = 16) 25 ≤ BMI ≤ 32 (n = 33) BMI > 32 (n = 11) p value* Missing data (n)

Worst postoperative MODS—Median 
(IQR) 2.5 (1–5) 3 (2–4) 3 (2.5–4) 0.048 1

PaO2/FiO2 ratio at 48 h—Median (IQR) 410 (342–573) 358 (307–410) 433 (359–460) 0.144 1

Serum creatinine 48 h (umol/L)—Median 
(IQR) 73 (67.5–90.0) 75.5 (60.3–84.0) 74.5 (72.3–78.3) 0.390 2

RBC transfused postoperative—n (%) 8 (50%) 15 (39%) 2 (17%) 0.186 0

nonRBC transfusion at more than 
48 h—n (%) 2 (13%) 4 (11%) 1 (8%) 0.999 0

nonRBC transfusion within 48 h—n (%) 6 (40%) 7 (18%) 0 (0%) 0.031 1

PaO2/FiO2 ratio at 48 h <  = 300—n (%) 3 (19%) 7 (18%) 2 (17%) 0.999 1

AKI according to kdigo criteria—n (%) 1 (6%) 1 (3%) 0 (0%) 0.807 1
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metabolites involved in energy production did not demonstrate biphasic BMI dependence. Instead, acylcarniti-
nes and ribose-5-phosphate increased together with BMI. Our findings are summarized in Fig. 6.

Clinical Importance.  These findings provide new evidence that BMI is associated with molecular differ-
ences in human myocardium that mirror the clinical biphasic relationship between BMI and mortality in the 
obesity paradox. These findings do not prove causality between obesity and improved outcomes, neither do they 
disprove unmeasured confounding or reverse epidemiology as explanations of the obesity paradox. Rather they 
support the hypothesis that the obesity paradox is attributable to an underlying molecular mechanisms, and sug-
gest that further explorations of the therapeutic potential of these findings are warranted.

A novel finding of this study is that the expression of translation-related genes showed biphasic BMI depend-
ence. However, it is not clear why this would provide an advantage to the 25 ≤ BMI ≤ 32 participants. Sarcopenia 
and frailty commonly observed in people who are under- and normal weight, or who have severe obesity, are 
more often associated with reductions in protein synthesis. Importantly, levels of protein synthesis were not 
measured in this analysis, so the results do not allow us to speculate on whether this was influenced by the 
observed global differences in translation. Changes in protein translation may have multiple other effects on cell 
metabolism. For example changes in ribosomal proteins influence processes like regulation of gene expression, 
cell cycle control, apoptosis, cell migration in angiogenesis, and intimal thickening (reviewed in14). Dysregulation 
of ribosomal proteins expression is also a characteristic of cancer progression15. In the current study, changes 
in the expression of ribosomal proteins in 25 ≤ BMI ≤ 32 patients appear to regulate the expression of specific 
transcripts. Out of 104 transcripts in the Turquoise network (Fig. 5), at least thirteen have a clear function in 
translation-related processes. These results warrant further investigation of translation-related and associated 
transcripts and proteins to determine whether they could explain the apparent survival benefits of overweight 
patients in cardiac surgery.

The expression of genes involved in muscle contraction were increased 1.05–1.6-fold in the 25 ≤ BMI ≤ 32 
group compared with BMI < 25 and BMI > 32 groups. These included tropomyosin β-chain, desmin, myosin 
regulatory light chain (MYL12A), myosin-binding protein C and Ca2+/calmodulin-dependent protein kinase 
type II subunit gamma (CAMK2G). Evidence indicates that changes in the expression of proteins responsible 
for muscle contraction lead to cardiomyopathies. Mutations in myosin regulatory light chains associate with 
disruptions of contractility and hypertrophy. Some of the mutations disrupt phosphorylation sites of the myosin 
regulatory light chains that is proposed to be mediated by Ca2+/calmodulin-dependent protein kinase and essen-
tial for muscle contraction16. Mutations in myosin-binding protein C also leads to hypertrophy17 and decreased 
desmin expression levels associated with the progression of heart failure18. Imaging studies demonstrate reduced 
contractility in the atria of people with severe obesity, with remodeling and improved contractility following 
weight loss interventions19. These observations support the further evaluation of pre-surgery weight loss as an 
organ protection strategy in people with severe obesity.

The muscle contraction transcripts were linked with 26 other transcripts that included tRNA methyltrans-
ferase O (TRMO) and SMG5 nonsense mediated mRNA decay factor that are involved in RNA processing. These 
transcripts can potentially form a regulatory network controlling expression of muscle contraction. A question 
appears whether there is a functional relationship between expressions of ribosomal and muscle contraction 
genes.

Table 2.   Differentially expressed metabolites between analyzed groups. Positive log2 fold change (log2 FC) 
indicates higher expression in the group with the higher BMI. VIP score, Variable Importance in Projection 
in the Partial Least Square Discriminant Analysis; PLS Coefficient, regression parameters in the Partial Least 
Square model.

Comparison Metabolite VIP score PLS Coefficient t statistics p value Fold Change log2 FC

25 ≤ BMI ≤ 32 vs BMI < 25 α-ketoglutarate 2.0512 76.278 2.233 0.031 0.687 − 0.541

BMI > 32 vs BMI < 25

Carnitine C18:1-OH 2.4149 100 2.885 0.006 1.826 0.869

Carnitine C16-OH 2.1871 90.332 2.582 0.014 1.788 0.838

Carnitine C18-OH 2.2476 92.902 2.511 0.017 1.607 0.684

Carnitine C12 1.8269 75.046 2.162 0.037 1.698 0.764

Carnitine C14:1 1.9594 80.669 2.144 0.039 1.749 0.806

Carnitine C18:2-OH 1.862 76.536 2.065 0.046 1.535 0.618

Ribose-5-phosphate 1.998 82.309 2.033 0.049 2.159 1.111

Carnitine C8:1 1.6912 69.286 2.012 0.052 1.707 0.772

BMI > 32 vs 25 ≤ BMI ≤ 32

Carnitine C18-OH 2.8381 100 − 4.061 0.000 2.294 1.198

Carnitine C16-OH 2.741 96.576 − 3.599 0.002 2.378 1.250

Carnitine C18:1-OH 2.3023 81.117 − 2.703 0.013 1.858 0.894

Carnitine C18:2-OH 1.9685 69.358 − 2.210 0.037 1.675 0.745

Glutarylcarnitine (C5DC) 1.8308 64.506 − 2.130 0.044 1.854 0.891

Carnitine C12 1.8479 65.107 − 2.079 0.049 1.880 0.911
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The metabolite analysis identified several long and middle-length acylcarnitines that were significantly 
increased in the BMI > 32 group. The longest-chain acylcarnitines were hydroxylated (C16-OH, C18-OH, 
C18:1-OH and C18:2-OH). This type of modification of acylcarnitines was recently identified as a biomarker of 
mitochondrial myopathy20. Their unhydroxylated counterparts did not change significantly between the groups, 
however, the significance of this finding can be biased by the fact that increasing BMI positively correlates with 
circulating lipid levels. In this study, we did not measure plasma metabolites to adjust for that. Also ratios of 
hydroxylated/unhydroxylated acylcarnitines were not statistically different. Apart from acylcarnitines, we did 
not detect any significant difference in expression of glycolytic and oxidative phosphorylation metabolites. The 
reason can be the fact that there was no significant difference between the groups in the incidence of diabetes and 
heart failure between the groups, which have clear associations with BMI and where the role of mitochondria 
is clearly established21. Alternatively, it is possible that the differences become apparent after surgery. Overall, 
the results do not allow us to speculate on the role of mitochondria in the obesity paradox. Nevertheless, the 
levels of α-ketoglutarate, involved in branched amino acids catabolism in mitochondria, were increased in the 
BMI < 25 group and its expression patterns were similar to ribosomal proteins. The significance of this finding 
needs further investigation.

The study has several limitations. First, the sample size was small. As a result we could not detect significant 
differences in single gene expression. Second, the samples collected during surgery also potentially differed in 
the percentage of cardiomyocytes and could include fragments of blood vessels or fat tissue. Due to small biopsy 
sizes (30–100 mg), it was impossible to assess the cell-type heterogeneity of the samples. Third, we recruited a 
very low risk cohort to the analysis; rates of acute kidney injury, lung injury, and low cardiac output were very 
low. This, along with the small sample size reduced our ability to demonstrate differences in clinical outcomes 
between the three groups. Finally we did not collect information on glucose levels, past diseases or exercise, 
which would further add to the interpretation of the omics data.

In summary, our results indicate that the expression of genes involved in translation and related processes 
are downregulated in the myocardium of 25B ≤ MI ≤ 32 patients. In contrast genes involved in muscle contrac-
tion are overexpressed. To establish whether the two groups of genes are functionally related requires further 
research. Future research should also assess whether interventions targeting these processes may have transla-
tional potential for clinical myocardial protection.

Methods
Study design.  Ob-Card—a Case–Control Study to Identify the Role of Epigenetic Regulation of Genes 
Responsible for Energy Metabolism and Mitochondrial Function in the Obesity Paradox in Cardiac Surgery was 
a prospective observational study approved by The East Midlands—Nottingham 1 Research Ethics Committee. 
The study protocol was registered at https://​clini​caltr​ials.​gov/​ct2/​show/​NCT02​908009. The study is reported as 
per the STrengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement. Informed 
consent was received from all participants and all methods were performed in accordance with the Declaration 
of Helsinki.

Study cohort.  Adult cardiac surgery patients (> 16 years) undergoing coronary artery bypass grafting with 
or without valve surgery. Patients with pre-existing paroxysmal, persistent or chronic atrial fibrillation, pre-exist-
ing inflammatory state (sepsis undergoing treatment, acute kidney injury within five days, chronic inflammatory 
disease, congestive heart failure), ejection fraction < 30%, pregnancy and in a critical preoperative state (Kidney 
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Disease: Improving Global Outcomes (KDIGO) Stage 3 AKI22 or requiring inotropes, ventilation or intra-aortic 
balloon pump) were excluded. Emergency or salvage procedures were also excluded.

Sampling.  Atrial biopsies (30–100  mg) were collected prior to cardiopulmonary bypass from the right 
atrium auricle from patients that fasted at least eight hours before the surgery. Samples were immediately snap-
frozen in liquid nitrogen, split for RNA isolation and metabolomics analysis and stored at − 80 °C.

Outcomes.  Levels of metabolites and transcripts in atrial biopsies.

RNA isolation and sequencing.  RNA was isolated from 20 mg of tissue using ISOLATE II RNA Mini Kit 
(bioline, London, UK). Sample quality was assessed using the RNA ScreenTape assay on the Agilent Tapestation 
4200. Only samples with RNA integrity number equal to or greater than eight were sequenced.

Library preparation and sequencing was carried out in two batches by Source BioScience (Nottingham, UK). 
The Stranded total RNA libraries were prepared in accordance with the Illumina TruSeq Stranded Total RNA 
Sample Preparation Guide with Ribo-Zero Human/Mouse/Rat for Illumina Paired-End Multiplexed Sequencing. 
The libraries were validated on the Agilent BioAnalyzer 2100 to check the size distribution of the libraries and 
on the Qubit High Sensitivity to check the concentration of the libraries. Sequencing was performed using 75 bp 
paired-end chemistry on HiSeq 4000 with the TruSeq Stranded Total RNA Human kit.

Metabolomics.  A panel of 144 metabolites involved in mitochondrial function and energy metabolism 
were analyzed using a targeted assay on a Thermo Quantiva interfaced with a Vanquish Liquid Chromatogra-
phy System as previously described in23,24. In brief, tissue was extracted using a modified Folch extraction into 
chloroform/methanol (2:1 600 μl per 50 mg of tissue, followed by 200 ul of water, 200 ul of chloroform, repeated 
once). For nucleotides and acyl-CoA derivatives one half of the aqueous extract was dissolved in 150 µl of 70:30 
acetonitrile:water containing 20 µM deoxy-glucose 6 phosphate and 20 µM [U–13C, 15 N] glutamate. The result-
ing solution was vortexed, sonicated and centrifuged. Chromatography consisted of a strong mobile phase (A) 
was 100 mM ammonium acetate, and weak mobile phase was acetonitrile (B) and the LC column used was the 
ZIC-HILIC column from SeQuant (100 mm × 2.1 mm, 5 µm).

For amino acids and TCA cycle intermediates aqueous extracts were reconstituted in 50 μl of 10 mmol/l 
ammonium acetate in water before TCA cycle intermediates were separated using reversed-phase liquid chro-
matography on a C18-PFP column (150 mm × 2.1 mm, 2.0 μm; ACE). For chromatography on the UHPLC 
system, mobile phase A was 0.1% formic acid in water, and mobile phase B was 0.1% formic acid in acetonitrile. 
Mass transitions of each species were as follows (precursor > product): D5-L-proline 121.2 > 74.2; D8-L-valine 
126.1 > 80.2; D10-L-leucine 142.0 > 96.2; L-glutamate [M] 148.0 > 84.2; L-glutamate [M + 1] 149.0 > 85.2; L-gluta-
mate [M + 6] 154.1 > 89.1; citrate 191.0 > 111.0; citrate [M + 1] 192.0 > 112.0; citrate [M + 2] 193.0 > 113.0; citrate 
[M + 3] 194.0 > 114.0; citrate [M + 4] 195.0 > 114.0; citrate [M + 5] 196.0 > 115.0; citrate [M + 6] 197.0 > 116.0. Col-
lision energies and radio frequency (RF) lens voltages were generated for each species using the TSQ Quantiva 
optimization function.

Data processing and statistical analysis.  Transcriptomics.  Sequencing data were quality-checked 
with Fastqc v0.11.525, quantified with Salmon v1.2126 after indexing and annotating with Gencode34 (Ensembl 
v100) reference genome and transcriptome files. Transcript quantities were normalized to length-scaled tran-
scripts per million and filtered to retain only high quantities (filterByExpr function in edgeR) before down-
stream analysis using limma-voom model27 with empirical Bayes moderation28 with batch accounted for. The 
false discovery rate was set at 5%. Pathway enrichment in the dataset was tested with camera function (limma)12 
using Reactome13 (protein-coding transcripts) and Gene Ontology29,30 (lncRNA) annotations.

The biphasic BMI relationship of gene and metabolite expression was tested with the Two Line algorithm11 
Weighted gene correlation networks analysis (WGCNA) was performed with the WGCNA R package31. These 
analyses were performed on log-transformed and quantile normalized expression values with batch effect 
removed as they are not multivariate models.

Metabolomics.  Peak area ratios of metabolites were obtained by integration within vendor software (Xcalibur 
QuanBrowser, Thermo Scientific, Hemel Hempstead, UK) and compared with isotopically labelled standards 
for quantification. Data for metabolites where no-expression values were greater than 20% were removed from 
the analysis. Further pre-processing included filtering features of constant value and extreme relative standard 
deviation or coefficient of variation, as well as missing value replacement using MetaboAnalystRv232. The pro-
cessed data was log-normalized and Pareto-scaled. Pairwise comparisons of sample groups were carried out 
using cross-validated PLSDA and t-test. Metabolites were considered differential where variable importance in 
projection scores (VIP) > 1 and t-test p value < 0.05.

Sample separation was visualized using principal component analysis plot of normalized transcriptome and 
metabolite data with R base and ggplot233.

Multiomics analyses.  RNA and metabolite were combined using block sparse PLSDA models using mixOmics 
v0.634. Canonical correlation patterns and association networks derived from the model components were then 
used to infer relationship among genes and metabolites. Network visualization was carried out with Cytoscape35.
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Data availability
Sequencing and samples group data are available via NCBI Gene Expression Omnibus (GSE159612).
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