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Abstract
Fix an odd prime p. The results in this paper are modeled after work of Hesselholt and Hesselholt-Madsen

on the p-typical absolute de Rham-Witt complex in mixed characteristic. We have two primary results. The
first is an exact sequence which describes the kernel of the restriction map on the de Rham-Witt complex over
A, where A is the ring of integers in an algebraic extension of Qp, or where A is a p-torsion-free perfectoid ring.
The second result is a description of the p-power torsion (and related objects) in the de Rham-Witt complex
over A, where A is a p-torsion-free perfectoid ring containing a compatible system of p-power roots of unity.
Both of these results are analogous to results of Hesselholt and Madsen. Our main contribution is the extension
of their results to certain perfectoid rings. We also provide algebraic proofs of these results, whereas the proofs
of Hesselholt and Madsen used techniques from topology.

1. Introduction

Let p denote an odd prime and let A denote a Z(p)-algebra. The (absolute, p-typical) de Rham-Witt
complex over A is defined by Hesselholt and Madsen in (Hesselholt and Madsen, 2004, Introduction) as
the initial object in the category of Witt complexes over A. It is closely related to trace invariants such
as topological Hochschild and cyclic homologies which can be used to compute algebraic K-theory. The
main goal of the present paper is to prove certain algebraic properties of the de Rham-Witt complex.
These results extend earlier work of Hesselholt and Madsen to a certain class of perfectoid rings.
(See Definition 2.19 for the definition of a perfectoid ring.) We also note that our proofs are purely
algebraic, whereas the original proofs by Hesselholt and Madsen used topology.

Every element in the de Rham-Witt complex over A can be expressed using Witt vectors and the
differential map d : WnΩi

A →WnΩi+1
A . Given two such expressions, however, it is difficult to determine

if they are equal. This phenomenon is already present in the module of Kähler differentials: every
element in Ωi

A/R can be expressed using A and the differential map, but in general it is difficult to

determine if two such expressions are equal. The most challenging steps in our proofs involve showing
that certain elements in WnΩ1

A are non-zero. (This includes the case n = 1, i.e., a difficult step involves
showing that certain elements in Ω1

A = Ω1
A/Z are non-zero.)

Our main result is Theorem C below. Theorem C concerns p-torsion in the level n and degree 1
component of the de Rham-Witt complex, WnΩ1

A, for certain perfectoid rings A and for all positive
integers n ≥ 1. Our proof uses induction on n. The base case uses Theorem A below and the induction
step uses Theorem B. Together, these three theorems are the main results of this paper, and we believe
that Theorem A and Theorem B are of interest independent of their use in the proof of Theorem C.
We mention that both Theorem A and Theorem B hold for all p-torsion-free perfectoid rings (unlike
Theorem C). Also, we note that Theorem A and its cotangent complex counterpart, Theorem A.2, do
not involve the de Rham-Witt complex.

We now briefly describe these three main results, going through them in the same order in which
they appear later in the paper. Our first result concerns p-torsion in the module of Kähler differentials.
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Theorem A. Let A denote a p-torsion-free perfectoid ring. The p-adic Tate module of Ω1
A/Zp

, denoted

Tp(Ω
1
A/Zp

), is a free A-module of rank one.

See Theorem 3.5 below for the proof of Theorem A. A similar result appears in (Fontaine, 1982,
Section 1) for the case that A is the ring of integers in a separable closure of a local field.

We give an example of the sort of considerations that arise when trying to prove Theorem A.

Example 1.1. Let R = Zp[ζp]; this ring is not perfectoid because the p-power map is not surjective
modulo p. Because d1 = 0 ∈ Ω1

R/Zp
, it follows directly from the Leibniz rule that dζp is p-torsion.

Proving that dζp 6= 0 ∈ Ω1
R/Zp

is more subtle. One approach is to use the isomorphism Zp[ζp] ∼=
Zp[x]/(xp−1 + xp−2 + · · ·+ x+ 1) together with an exact sequence involving Kähler differentials of a
quotient ring (see (Matsumura, 1989, Theorem 25.2) for the precise result, or see Remark 1.2 below for
a brief summary). Similar considerations can be used for Ω1

S/Zp
when S = Zp[ζpn ] for any n ≥ 1 or for

their union S = Zp[ζp∞ ]. It seems significantly more difficult to extend this style of argument to the
case of the p-adic completion Zp[ζp∞ ]∧ (which is a perfectoid ring, unlike the other rings mentioned in
this example). Different techniques seem necessary to deal with rings like Zp[ζp∞ ]∧, and our approach
is to use the cotangent complex. (For clarification, we briefly point out that dζp is not an S-module
generator of p-torsion in Ω1

S/Zp
for any of S = Zp[ζpn ], n ≥ 2, or S = Zp[ζp∞ ] or S = Zp[ζp∞ ]∧.

Instead, exactly as in (Hesselholt, 2006), there exists a p-torsion element α such that (ζp− 1)α = dζp,
and such an α is a generator of p-torsion.)

Remark 1.2. In Example 1.1 we referenced (Matsumura, 1989, Theorem 25.2); we briefly recall the
context of that theorem. Let R0 → R denote a ring homomorphism and let I ⊆ R denote an ideal.
(What we describe here works in complete generality for commutative rings with unity; the notation
need not refer to any specific rings from Example 1.1.) Then (Matsumura, 1989, Theorem 25.2)
describes an exact sequence of R/I-modules

I/I2 → Ω1
R/R0

⊗R (R/I)→ Ω1
(R/I)/R0

→ 0.

We point out two aspects of this sequence. First, notice that the left-most map is not guaranteed
to be injective. This is again a reflection of the fact that it is in general difficult to prove elements
are non-zero in Kähler differentials (and in the de Rham-Witt complex). Second, notice that if I is a
principal ideal generated by a non-zero-divisor, then I/I2 is isomorphic to R/I. The authors consider
this one of the benefits of the requirement in the definition of perfectoid that ker θ be a principal ideal;
see for example the proof of (Bhatt et al., 2019, Proposition 4.19(2)), which is an essential result in
our arguments involving Kähler differentials.

The strategy described in Example 1.1 relies heavily on having an explicit description of Zp[ζp].
For rings of the generality considered in this paper, we cannot expect such an explicit description.
To prove Theorem A for an arbitrary p-torsion-free perfectoid ring, we rely on properties of the
cotangent complex, and the authors thank Bhargav Bhatt for suggesting this approach to Theorem A.
In particular, our proof of Theorem A is intertwined with the proof of the following. Again, see
Theorem 3.5 below for the proof.

Theorem A.2. Let A denote a p-torsion-free perfectoid ring. The multiplication-by-p map is surjective
on H−1(LA/Zp), where LA/Zp denotes the cotangent complex of Zp → A.

Many of the algebraic arguments in this paper are elementary. With the exception of the final
section relating our results to algebraic K-theory, our arguments involving the cotangent complex
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are the most technically advanced part of this paper. On the other hand, the cotangent complex
arguments are used only to prove results concerning Kähler differentials, so the reader who is willing
to accept these results can understand the paper without the cotangent complex. The authors had
originally hoped to bypass the cotangent complex at the expense of considering only p-torsion-free
perfectoid rings which are rings of integers in a valued field. Even in this case, technical difficulties
arose. To continue the scenario described in Example 1.1, again following Fontaine, we were able to
describe p-torsion in Ω1

Zp[ζp∞ ]/Zp
, but without using the cotangent complex, we were unable to describe

p-torsion in Ω1
Zp[ζp∞ ]∧/Zp

(where Zp[ζp∞ ]∧ denotes the p-adic completion of Zp[ζp∞ ]; perfectoid rings

are by definition required to be p-adically complete).
We have already mentioned the difficulty of proving that elements in the module of Kähler differen-

tials are non-zero. We next discuss results, Theorem B and Corollary B.2, which help to prove certain
elements in the de Rham-Witt complex are non-zero. The results are based on corresponding results
proved by Hesselholt and Madsen; we give a reference to their results after stating Corollary B.2.

The significance of Corollary B.2 in this paper is as follows. Our primary goal is to study p-power
torsion in the de Rham-Witt complex. Assume we have a satisfactory understanding of the Kähler
differentials (e.g., we have an explicit description of all p-power torsion elements in the module of Kähler
differentials), and assume, inductively, that we also have a satisfactory understanding of the level n
and degree 1 component of the de Rham-Witt complex. When A is a p-torsion-free perfectoid ring,
Corollary B.2 below precisely describes the kernel of the surjective restriction map, R : Wn+1Ω

1
A →

WnΩ1
A, and thus enables us to describe the level n+ 1 and degree 1 component of the de Rham-Witt

complex in terms of three other components: A, Ω1
A and WnΩ1

A.

Theorem B. Let p denote an odd prime. Assume A is a ring satisfying one of the following two
conditions:

(1) We have that A is a p-torsion-free perfectoid ring, in the sense of (Bhatt et al., 2018, Defini-
tion 3.5); or

(2) We have that A = OK , where K/Qp is an algebraic extension.

Fix an integer n ≥ 1. Assume ω ∈ Ω1
A and a ∈ A are such that V n(ω)+dV n(a) = 0 ∈Wn+1Ω

1
A. Then

there exists a0 ∈ A such that ω = −da0 and a = pna0.

The significance of Theorem B is due to the following corollary.

Corollary B.2. Let p be an odd prime, let A be a ring as in Theorem B, and let n ≥ 1 be an integer.
Then for every integer n ≥ 1, the following is an exact sequence of Wn+1(A)-modules:

(1.3) 0→ A
(−d,pn)−−−−−→ Ω1

A ⊕A
V n⊕dV n−−−−−−→Wn+1Ω

1
A

R−→WnΩ1
A → 0,

where the Wn+1(A)-module structure is defined as follows. The Wn+1(A)-module structure on the left-
most A in the sequence is induced by Fn, where F denotes the Witt vector Frobenius. The Wn+1(A)-
module structure on Ω1

A ⊕A is defined by

y · (α, a) =
(
Fn(y)α− aFn (dy) , Fn(y)a

)
, where y ∈Wn+1(A), α ∈ Ω1

A, a ∈ A.
The Wn+1(A)-module structure on Wn+1Ω

1
A is the natural one, and the Wn+1(A)-module structure on

WnΩ1
A is induced by restriction.

See Section 4 below for the proof of Theorem B. The remaining portion of the claimed exactness
in Corollary B.2 was proved in complete generality (i.e., with no restrictions on the Z(p)-algebra A)
by Hesselholt and Madsen; see (Hesselholt and Madsen, 2003, Proposition 3.2.6), and note that the
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de Rham-Witt complex is a special case of the logarithmic de Rham-Witt complex, attained by taking
the multiplicative monoid M (as in Hesselholt-Madsen’s notation) to be trivial, M = {1}. Apply-
ing Hesselholt and Madsen’s results, the exact sequence in Corollary B.2 follows immediately from
Theorem B.

Hesselholt and Madsen’s proof of the remaining portion exactness of (1.3) does not involve any
notions from topology, and we simply quote their result. For proofs by Hesselholt and Madsen related
to Theorem B itself, see (Hesselholt and Madsen, 2003, Proof of Theorem 3.3.8) and (Hesselholt, 2006,
Proposition 2.2.1). The argument in (Hesselholt and Madsen, 2003, Proof of Theorem 3.3.8) does use
topology. Our two main contributions with respect to Corollary B.2 are proving exactness in the case
of p-torsion-free perfectoid rings, and providing an algebraic proof of Theorem B in this generality.

The benefit of having an exact sequence as guaranteed in Corollary B.2 is clear from the analogous
situation involving Witt vectors. Recall that, for every ring A and every integer n ≥ 1, we have a
short exact sequence of Wn+1(A)-modules

(1.4) 0→ A
V n−→Wn+1(A)

R→Wn(A)→ 0,

where the Wn+1(A)-module structures are defined as follows. Let F denote the Witt vector Frobenius
and let R denote the restriction map. The module structure on A is induced by Fn : Wn+1(A) →
W1(A) ∼= A. The module structure on Wn+1(A) is the natural one, and the module structure on Wn(A)
is induced by restriction R : Wn+1(A) → Wn(A). The sequence (1.4) is always an exact sequence of
Wn+1(A)-modules, for every ring A, and this fact is very useful when making induction arguments.
For example, using induction on n and exactness of the sequence in Equation (1.4), one proves that
if A is a Z(p)-algebra, then for every positive integer n, the ring Wn(A) is also a Z(p)-algebra; see for
example (Hesselholt, 2015, Lemma 1.9).

The sequence (1.3) from Corollary B.2 is analogous to the sequence (1.4), but for general rings A,
the sequence (1.3) may not be exact. For example, the sequence (1.3) is never exact if the ring A is
an Fp-algebra. Even when the sequence (1.3) is exact, it is typically difficult to prove exactness. (In
contrast, the proof of exactness of (1.4) is trivial.) The ring A = Zp is the easiest case of Theorem B,
but even in this case we are not aware of a simple proof of exactness. (Exactness in this case A = Zp
follows for example from (Hesselholt and Madsen, 2004, Example 1.2.5), which relies on topology. It
was pointed out to the authors by a referee that exactness in this case also follows from Hesselholt’s
direct construction of the (big) de Rham-Witt complex of the ring of integers Z in (Hesselholt, 2015,
Theorem 6.1).)

The Wn+1(A)-module structures described in Corollary B.2 can be imposing at first, but they are
very natural. For example, consider the degree zero case considered in the sequence (1.4). Why
do we use Fn : Wn+1(A) → A to equip A with a Wn+1(A)-module structure, instead of using, for
example, the restriction map, Rn : Wn+1(A) → A? The reason of course is the Witt vector formula

xV n(y) = V n(Fn(x)y); this formula is saying precisely that A
V n→ Wn+1(A) is a Wn+1(A)-module

homomorphism for the proposed module structure using Fn. The case is the same for our module
structures described in Corollary B.2. Let x ∈Wn+1(A), y ∈ Ω1

A, and z ∈ A. Using the same formula
xV n(y) = V n(Fn(x)y) and the Leibniz rule, we compute

x · (V n(y) + dV n(z)) = V n(Fn(x)y) + xdV n(z)

= V n(Fn(x)y) + d(xV n(z))− V n(z)dx

= V n(Fn(x)y) + dV n(Fn(x)z)− V n(zFn(dx))
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= V n

(
Fn(x)y − zFn(dx)

)
+ dV n

(
Fn(x)z

)
.

As above, this formula is saying precisely that Ω1
A ⊕ A

V n+dV n−−−−−−→ Wn+1Ω
1
A is a Wn+1(A)-module

homomorphism for the proposed module structure.
We will use Corollary B.2 during our proof by induction of Theorem C. That is our most important

application and our original motivation for considering Theorem B. Here we first record several other
applications.

Proposition 1.5. Let A0 denote any Z(p)-algebra for which there exists a p-torsion-free perfectoid
ring A and a ring homomorphism A0 → A. (For example, any subring of OCp containing Z(p) is a

suitable choice of A0.) Then dV n(1) ∈Wn+1Ω
1
A0

is non-zero for every integer n ≥ 1.

Proof. The sequence (1.3) is exact for the p-torsion-free perfectoid ring A by Corollary B.2. This shows
that dV n(1) 6= 0 ∈Wn+1Ω

1
A. By considering the map Wn+1Ω

1
A0
→Wn+1Ω

1
A induced by functoriality,

we see that we must also have dV n(1) 6= 0 ∈Wn+1Ω
1
A0

. �

The fact that Proposition 1.5 is not obvious, even in the case A = Z(p), underscores the difficulty
of proving that elements in the de Rham-Witt complex are non-zero.

We briefly point out in the following question that we are unsure how restrictive is the hypothesis
from Proposition 1.5.

Question 1.6. Does the hypothesis of Proposition 1.5 hold for every p-torsion-free, p-adically sepa-
rated ring?

The following provides another basic application of Corollary B.2. Proposition 1.5 is stated mostly
as a curiosity. On the other hand, the following, Proposition 1.7, is more important and will be used
at several different points later in this paper.

Proposition 1.7. Let A denote any p-torsion-free Z(p)-algebra for which the sequence (1.3) is exact

for all integers n ≥ 1. Then for all integers m,n ≥ 1, the map V m : WnΩ1
A →Wn+mΩ1

A is injective.

Proof. Because V m = V ◦ · · · ◦ V (m total iterations), it suffices to prove the map V is injective. We
prove that V is injective using induction on n. When n = 1, WnΩ1

A = Ω1
A, and the result follows from

the exactness of the sequence (1.3), using the fact that A is p-torsion free.
Now assume we know that V : WnΩ1

A → Wn+1Ω
1
A is injective. Consider an element x ∈ Wn+1Ω

1
A

such that V (x) = 0 ∈ Wn+2Ω
1
A. Let R denote the restriction map R : Wm+1Ω

1
A → WmΩ1

A (for some
m). Because R ◦ V = V ◦ R and V : WnΩ1

A → Wn+1Ω
1
A is injective by our induction hypothesis, we

deduce that R(x) = 0 ∈ WnΩ1
A. Hence by exactness of the sequence (1.3), there exist α ∈ Ω1

A and
a ∈ A such that

x = V n(α) + dV n(a) ∈Wn+1Ω
1
A.

Applying V to this element, we get

0 = V (x) = V n+1(α) + V dV n(a) = V n+1(α) + dV n+1(pa) ∈Wn+2Ω
1
A.

Using (the most difficult part of) exactness of the sequence (1.3), we have that pa = pn+1a0 and
α = −da0 for some a0 ∈ A. Because A is p-torsion free, we have that a = pna0. Thus

x = V n(−da0) + dV n(pna0) = 0 ∈Wn+1Ω
1
A,

which completes the proof. �
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Remark 1.8. The analogue of Proposition 1.7 is not true in the classical case that A is an Fp-algebra.
For example, if A = Fp[x] and we consider dx ∈ Ω1

A
∼= W1Ω

1
A, then dx 6= 0 ∈ W1Ω

1
A, but V (dx) =

dV (px) = dV (0) = 0 ∈W2Ω
1
A, so the Verschiebung map is not injective in this case.

The maps V and F on the de Rham-Witt complex were studied extensively by Illusie in the case
of Fp-algebras, and many very explicit formulas are known in that case. For example, the kernel of
Verschiebung is computed in (Illusie, 1979, Equation I(3.21.1.4)): if A is a smooth k-algebra for k a
perfect field of characteristic p, then for all n ≥ 1, we have

ker
(
V : WnΩ1

A →Wn+1Ω
1
A

)
= dV n−1 (A) .

Our formula above comes from the case n = 1. (Our only additional contribution is the remark that
dx 6= 0 ∈W1Ω

1
A when A = Fp[x].)

Nor does the analogue of Proposition 1.5 hold for the case that A is an Fp-algebra. Indeed, V (1) =
p ∈W (A) when A is an Fp-algebra, so dV n(1) = 0 for all integers n ≥ 1.)

We next describe the main result of this paper, Theorem C. It is completely modeled after the work
of Hesselholt in (Hesselholt, 2006), where the case of the ring of integers in an algebraic closure of a
local field is considered.

Theorem C. Let A denote a p-torsion-free perfectoid ring containing a compatible system of p-power
roots of unity (see Notation 5.1). Then the following hold:

(1) For all integers n ≥ 1 and r ≥ 1, the pr-torsion WnΩ1
A[pr] is a free Wn(A)/prWn(A)-module

of rank one.
(2) For every integer n ≥ 1, the p-adic Tate module Tp

(
WnΩ1

A

)
is a free Wn(A)-module of

rank one.

(3) The inverse limit lim←−
F

Tp
(
WnΩ1

A

)
is a free lim←−

F

(Wn(A)) ∼= W

(
lim←−
x 7→xp

A/pA

)
-module of rank one.

The proofs of these claims are located as follows. Claim (2) follows from Theorem 5.8. Once
we know Claim (2), then Claim (1) is a consequence of Lemma 5.7. Lastly, Claim (3) follows from
Corollary 5.18. See (Hesselholt, 2006, Theorem B, Proposition 2.3.2, and Proposition 2.4.2) for closely
related results.

Remark 1.9. The following are possible choices of A satisfying the conditions of Theorem C: OCp ,

Zp[ζp∞ ]∧, Zp[ζp∞ , p1/p
∞

]∧, OCp〈T 1/p∞〉. An example of a p-torsion-free perfectoid ring which does not

contain the p-power roots of unity is Zp[p
1/p∞ ]∧. Thus our Theorems A and B hold for Zp[p

1/p∞ ]∧,
but we are unsure if Theorem C holds for this ring.

Remark 1.10. Our proofs are closely modeled on the work of Hesselholt (Hesselholt, 2006) which
concerned the case of the ring of integers in an algebraic closure of a local field, such as A = OQp

.

Notice that OQp
is not covered by our Theorem C, because OQp

is not p-adically complete and hence

not perfectoid. If K/Qp is algebraic and (OK)∧ is a perfectoid ring, then we expect analogues of
most of our results (and the referenced results of Hesselholt) to hold for A = OK , and it should be
straightforward to adjust our techniques to this situation. For example, it should follow that the p-adic

Tate module Tp

(
WnΩ1

OK

)
is a free Wn(OK)∧-module of rank one. We do not consider non-p-adically

complete rings in this paper for two reasons. The first reason is that, by restricting our attention to
the p-adically complete case, we do not have to reprove results which are essentially automatic in the
perfectoid case (such as the kernel of F : Wn+1(A) → Wn(A) being a principal ideal). The second
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reason is that we are unsure what the correct generality to consider is in the non-p-adically complete
setting. We thank Kiran Kedlaya for calling this question to our attention.

One of the main motivations for studying the p-adic Tate modules Tp
(
WnΩ1

A

)
and lim←−

F

Tp
(
WnΩ1

A

)
comes from topology. The p-adic algebraic K-theory K(A,Zp) maps via the trace maps to TRn(A,Zp)
and TF(A,Zp) which are spectra obtained from the cyclotomic structure on the topological Hochschild
homology THH(A). Using results of Hesselholt ((Hesselholt, 2004) and (Hesselholt, 2006)) and
their generalizations (Bhatt et al., 2019, Remark 6.6), one can conclude that the homotopy groups
π2 TRn(A,Zp) and π2 TF(A,Zp) are isomorphic to the p-adic Tate modules Tp

(
WnΩ1

A

)
and lim←−

F

Tp
(
WnΩ1

A

)
,

respectively. Moreover, one can give an explicit description of the trace mapK2(A,Zp)→ π2 TF(A,Zp)
using the generator from the proof of Theorem C. For more details see the final Section 8, where we
summarize some results on algebraic K-theory and topological cyclic homology and their connections
with the main results of this paper. Most of the material in Section 8 is well-known to the experts
but we still find it important to give an account since it puts the algebraic objects of this paper in
a broader topological context. The readers only interested in algebraic aspects of the de Rham-Witt
can safely skip the last section.

There are two key hypotheses on the ring A in Theorem C. The first is that A contain a compatible
sequence of p-power roots of unity. The second is that A be a p-torsion-free perfectoid ring. It will be
repeatedly evident why the p-power root of unity hypothesis is important for our proof of Theorem C:
our constructions make constant use of the elements ζpn for varying n.

The other key hypothesis on the ring A in Theorem C is that it be perfectoid. We offer three
explanations for why this assumption is convenient.

(1) A first reason is mentioned below in Remark 1.11. That example suggests it is essential that
the ring A be infinitely ramified over Zp, at least in the case of subrings of OCp .

(2) A second reason is implicit in Proposition 5.3 below. The condition that A be perfectoid is
closely related to the condition that, for all integers n ≥ 1, the map F : Wn+1(A)→Wn(A) is
surjective. For example, the condition that F : W2(A) → W1(A) be surjective is the same as
the condition that the p-power Frobenius map is surjective on A/pA.

(3) A third reason was already mentioned above in Remark 1.2, where we commented that, in the
usual notation regarding perfectoid rings, it is useful for us that ker θ be a principal ideal.

Remark 1.11. Let K/Qp be an algebraic extension such that the ramification index of K/Qp is finite.
Let OK be its ring of integers. By (Fontaine, 1982, §2), there exists an integer N ≥ 1 such that
pNΩ1

OK/Zp
= 0, and hence the p-adic Tate module Tp(Ω

1
OK

) is trivial. Thus, the analogue of the level

n = 1 case of Theorem C is false for A = OK . (Using induction and an exact sequence analogous to
the sequence in Proposition 5.5, it should also follow that Tp(WnΩ1

OK
) ∼= 0 for all integers n ≥ 1, and

thus the analogue of Theorem C is false for all n ≥ 1.)

The most difficult part of the proof of Theorem C is constructing suitably compatibleWn(A)/pWn(A)-
module generators for the p-torsion WnΩ1

A[p]. We construct them using induction on n, and our induc-
tion makes repeated use of Corollary B.2. Once one has free Wn(A)/pWn(A)-module generators for the
p-torsion in WnΩ1

A, it is relatively easy to produce free Wn(A)/prWn(A)-module generators for the pr-
torsion, and by choosing everything compatibly, we are able to produce free Wn(A)-module generators
for the p-adic Tate module of WnΩ1

A and free lim←−F (Wn(A))-module generators for lim←−F Tp(WnΩ1
A).
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Remark 1.12. Throughout this paper we consider only p-torsion-free perfectoid rings. In the case
of characteristic p perfectoid rings, the de Rham-Witt complex is not interesting. Namely, let A
denote a perfectoid ring of characteristic p; this condition is equivalent to A being a perfect ring
of characteristic p (see, for example, (Bhatt et al., 2018, Example 3.15)). Let n ≥ 1 denote an
integer. Then WnΩd

A is a Wn(A)-module, and hence is pn-torsion, on one hand, but on the other

hand, multiplication by p is surjective on WnΩd
A for all degrees d ≥ 1 by Proposition 5.3 below.

Thus WnΩd
A
∼= 0 for all d ≥ 1. We have not considered the case of perfectoid rings which are not

characteristic p but which do have p-torsion.

Question 1.13. Our construction of Frobenius-compatible generators of the p-torsion in WnΩ1
A is

rather indirect for the levels n ≥ 2. The proof of Theorem C would be simplified considerably if
we could find a more direct construction. We now describe one possible approach. For every integer
n ≥ 1, one can check that there is a unique Witt vector pn

[ζpn ]−1
∈Wn(A) such that pn

[ζpn ]−1
·([ζpn ]−1) =

pn ∈ Wn(A). The elements pn

[ζpn ]−1
d log[ζpn+1 ] seemingly have all the compatibility properties needed

to make our proofs work, although we are only able to prove they are p-torsion in the case n = 1. Are
these elements p-torsion? If not, can they be modified to produce generators for the p-torsion which
are more explicit than what we work with in our proof of Theorem C?

Remark 1.14. Our proofs require p 6= 2. Attaining similar results for p = 2 would necessitate substan-
tial changes. For example, even the definition of the de Rham-Witt complex we use is incorrect for
p = 2 (see (Costeanu, 2008) for the correct definition). The requirement p 6= 2 is also used in the first
author’s paper (Davis, 2019), so the results from (Davis, 2019) which are used in the present paper
would also have to be adjusted to allow for p = 2.

Notation 1.15. Rings in this paper are commutative and have unity, and ring homomorphisms must
send unity to unity. Throughout this paper, p ≥ 3 is a fixed odd prime. When we refer to Witt
vectors, we mean p-typical Witt vectors with respect to this prime, and when we refer to a ring being
perfectoid, it is in the sense of (Bhatt et al., 2018, Definition 3.5), and it is with respect to this same

prime p. When we say that ζp is a primitive p-th root of unity, we mean that 1 + ζp + · · ·+ ζp−1p = 0.
Here is some more specialized notation. For a perfectoid ring A and an integer n ≥ 2, we let

zn ∈ Wn(A) denote a generator of kerFn−1 : Wn(A) → W1(A); in the case that we have identified a
compatible system of roots of unity of A, then we will usually choose the generator 1 + [ζpn ] + · · · +
[ζpn ]p−1. If u is a unit in A (or in Wn(A)), we write d log u for du

u in Ω1
A (or in WnΩ1

A).
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2. Algebraic preliminaries

In this section we gather miscellaneous algebraic results that will be used later. This section is
organized so that all the results concerning Witt vectors come at the end. The de Rham-Witt complex
does not appear in this section. The reader is advised to skip this entire section and return to it as
needed.

We begin with a few standard properties related to the cotangent complex. We use the cotangent
complex extensively in Section 3, with regards to analyzing p-power torsion in modules of Kähler
differentials. (The cotangent complex is not used in the rest of the paper, so the reader who is willing
to accept these results concerning Kähler differentials can skip the arguments involving the cotangent
complex.) There are two results concerning the cotangent complex that we will use repeatedly, the
Jacobi-Zariski sequence and the Universal coefficient theorem.

Proposition 2.1 (The Jacobi-Zariski sequence (The Stacks Project Authors, 2017, Tag 08QX)). Let
A → B → C be ring homomorphisms. Then there is an exact triangle in the derived category of
C-modules

(2.2) LB/A ⊗LB C → LC/A → LC/B,

where ⊗LB denotes the derived tensor product.

Given a chain complex C (cohomologically graded), the notation C[1] denotes the homological
shift, that is H i(C[1]) = H i+1(C). In particular given an R-module G, we denote by G[−1] the chain
complex which has only G in cohomological degree 1. In the following, note that the stated condition
in Part (1) holds in particular when R is a PID.

Proposition 2.3 (The universal coefficient theorem).

(1) Let R be a ring, let C denote a chain complex of R-modules, and let M denote an R-module.
Assume that, for every R-module N and every j ≥ 2, we have

TorRj (N,M) ∼= 0.

Then for every i ∈ Z we have a short exact sequence of R-modules

0→ H i(C)⊗RM → H i(C ⊗LRM)→ TorR1 (H i+1(C),M)→ 0,

where ⊗LR denotes the derived tensor product.
(2) Let C denote a chain complex of abelian groups, and let C∧ denote its derived p-completion,

which by definition is equivalent to the derived Hom-complex

R Hom(Qp/Zp[−1], C).

Then for every i ∈ Z we have a short exact sequence of abelian groups

0→ Ext1(Qp/Zp, H
i(C))→ H i(C∧)→ Hom(Qp/Zp, H

i+1(C))→ 0.

(3) Let C denote a chain complex of R-modules and let G denote an abelian group. For every
i ∈ Z, we have a short exact sequence of R-modules

0→ Ext1(G,H i(C))→ H i(R Hom(G[−1], C))→ Hom(G,H i+1(C))→ 0.

In particular, if we let C∧ denote the derived p-completion of C, which by definition is equiv-
alent to

R Hom(Qp/Zp[−1], C),
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then for every i ∈ Z, we have a short exact sequence of R-modules

0→ Ext1(Qp/Zp, H
i(C))→ H i(C∧)→ Hom(Qp/Zp, H

i+1(C))→ 0.

Also, for every integer n ≥ 1 and every i ∈ Z, we have a short exact sequence of R-modules

0→ H i(C)/pnH i(C)→ H i(C ⊗LZ (Z/pnZ))→ H i+1(C)[pn]→ 0.

Proof. Part (1) follows from (Weibel, 1994, 5.7.6-5.7.8) (see also (Elmendorf et al., 1997, Theorem
4.1)). Though we do not need this, we note that in particular Tor-spectral sequences are strongly
convergent for not necessarily bounded complexes. Part (2) and (3) follow from (Rotman, 2009,
Theorem 10.85). Note that the latter also holds for not necessarily bounded complexes. �

We have the following consequence. We will use this result to analyze p-power torsion in the module
of Kähler differentials Ω1

A/Zp
∼= H0(LA/Zp).

Corollary 2.4. Let A denote a Zp-algebra. Let (LA/Zp)
∧ denote the derived p-completion of LA/Zp,

and let Tp denote the p-adic Tate module. There is a surjective A-module map

H−1
(
(LA/Zp)

∧)→ Tp(H
0(LA/Zp)).

It is natural in the sense that, if A→ B is a Zp-algebra map, then the following diagram commutes:

H−1
(
(LB/Zp)

∧) // Tp(H
0(LB/Zp))

H−1
(
(LA/Zp)

∧) //

OO

Tp(H
0(LA/Zp)).

OO

Proof. Note that for any chain complex C and any i ∈ Z, we have that Hom(Qp/Zp, H
i+1(C)) is

naturally isomorphic to the p-adic Tate module Tp(H
i+1(C)). Now if we take C = LA/Zp , then by

Proposition 2.3, Part (2), we in particular get a surjective map

H−1
(
(LA/Zp)

∧)→ Tp(H
0(LA/Zp))

satisfying the stated naturality. Moreover, this map is in fact an A-module map. This also follows by
naturality, since the cotangent complex is a chain complex of A-modules. �

When R → S is a smooth ring map, the cotangent complex is quasi-isomorphic to the module of
Kähler differentials, concentrated in degree zero (The Stacks Project Authors, 2017, Tag 08R5). The
next few results identify more instances of ring maps R→ S in which the cotangent complex is quasi-
isomorphic to the module of Kähler differentials, concentrated in degree zero. These results are closely
related to exercises in Bhatt’s 2017 Arizona winter school notes (Bhatt, 2017a), with Proposition 2.6
being taken directly from those exercises. We thank the referee for an earlier version of this paper for
suggesting a variant of the following lemma.

Lemma 2.5. Let R→ S be a ring map satisfying the following properties.

(1) The ring S is flat as an R-module;
(2) There exists a non-zero divisor-divisor f ∈ R such that R[ 1f ]→ S[ 1f ] is smooth;

(3) There exists a positive integer n such that S is isomorphic as a ring to R[x1, . . . , xn]/I, where
I is an ideal in R[x1, . . . , xn] generated by a regular sequence.

Then there is a quasi-isomorphism LS/R ∼= Ω1
S/R.
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Proof. Considering the Jacobi-Zariski sequence (2.2) associated toR→ R[x1, . . . , xn]→ R[x1, . . . , xn]/I,
we immediately deduce that H i(LS/R) ∼= 0 for i 6= −1, 0, and that there is an exact sequence

0→ H−1(LS/R)→ I/I2 → H0
(
LR[x1,...,xn]/R ⊗

L
R[x1,...,xn]

(R[x1, . . . , xn]/I)
)
.

It remains to show that H−1(LS/R) ∼= 0. Note that f is a non-zero-divisor on S, because S/R is flat

and f is a non-zero-divisor on R. Because I is generated by a regular sequence, we have that I/I2 is
a free S-module by (The Stacks Project Authors, 2017, Tag 00LN), and hence I/I2 is f -torsion-free,
and hence H−1(LS/R) is f -torsion-free.

We finish the proof by showing that H−1(LS/R) is f -torsion. By (The Stacks Project Authors,
2017, Tag 08SF), we have a quasi-isomorphism

LS[ 1
f
]/R[ 1

f
]
∼= LS/R ⊗LS S[

1

f
].

Because S[ 1f ]/R[ 1f ] is smooth, we deduce that H−1
(
LS/R ⊗LS S[ 1f ]

)
∼= 0. Hence, by the universal

coefficient theorem Proposition 2.3, using that S[ 1f ] is a flat S-module, we have that

H−1(LS/R)⊗S S[
1

f
] ∼= 0.

This shows that H−1(LS/R) is f -torsion, which completes the proof. �

Proposition 2.6 ((Bhatt, 2017a, Exercise 8 and Exercise 12)).

(1) Let L ⊃ K ⊃ Qp denote a tower of algebraic extensions. Then there is a quasi-isomorphism

LOL/OK
∼= Ω1

OL/OK
.

(2) Let V denote a p-torsion-free Zp-algebra. Assume that V is a valuation ring and that FracV
is algebraically closed. Then there is a quasi-isomorphism

LV /Zp
∼= Ω1

V /Zp
.

Proof. Proof of (1). The cotangent complex commutes with filtered colimits by (The Stacks Project
Authors, 2017, Tag 08S9), so colimLBi/Ai

∼= Lcolim(Bi)/ colim(Ai), so it suffices to assume that L/K/Qp

are finite extensions. We now check that the conditions of Lemma 2.5 hold, taking f = p. Because
OK is a valuation ring, we have that OL is a flat OK-module because it is torsion-free. Because K/L
is a finite extension of characteristic zero fields, the map OK [1p ] → OL[1p ] is smooth (see for example

(The Stacks Project Authors, 2017, Tag 07ND)). There exists a polynomial g(x) ∈ OK [x] such that
OL is isomorphic to the quotient ring OK [x]/(g(x)) (see for example (Neukirch, 1999, Chapter II,
Lemma 10.4)). Thus the conditions of Lemma 2.5 hold, and thus we have a quasi-isomorphism
LOL/OK

∼= Ω1
OL/OK

.

Proof of (2). We use the following strategy outlined in Bhatt’s Arizona winter school notes (Bhatt,
2017a): We use de Jong’s alterations theorem to show that every finitely generated Zp-subalgebra R of

V is contained in a regular Zp-subalgebra R1 of V . Thus V is a filtered colimit of such Zp-subalgebras
R1, and the desired result will follow from quasi-isomorphisms LR1/Zp

∼= Ω1
R1/Zp

.

Let R denote a finitely generated Zp-subalgebra of V . By de Jong’s alterations theorem (de Jong,
1996, Theorem 6.5), there exists a regular Zp-scheme X1 and a dominant, proper map X1 → SpecR

such that the function field of X1 is a finite extension of FracR. Because FracR ⊆ FracV and FracV
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is algebraically closed, we deduce that the function field of X1 embeds into FracV . These maps fit
into a solid commutative diagram

X1

��

Spec
(
FracV

)
oo

��
SpecR SpecVoo

ff

By the valuative criterion for properness, there exists a map SpecV → X1 as in the dashed arrow in
the diagram, for which the diagram remains commutative. This map SpecV → X1 factors through
some open affine subscheme SpecR1 ⊆ X1 with R1 regular and with the composite R → R1 → V
injective.

The rings R1 as produced above (for various rings R) fit into a filtered diagram, with arrows
corresponding to commutative diagrams

R2
// V

R1

OO ??

Because the ring R above could be any finitely generated Zp-subalgebra of V , we find that lim−→Rα is a

filtered colimit, and that the corresponding map lim−→Rα → V is a ring isomorphism (where Rα ranges

over the rings R1 produced above).
We conclude the proof again using Lemma 2.5 as follows. Let Rα be as in the previous para-

graph. Because Rα → V is injective and V is p-torsion-free, we have that Zp → Rα is flat. By
(The Stacks Project Authors, 2017, Tag 00TX), we have that Rα[1/p]/Qp is smooth. By (The
Stacks Project Authors, 2017, Tag 0E9J), we may assume each map Zp → Rα can be factored
as Zp → Zp[x1, . . . , xn] → Zp[x1, . . . , xn]/I ∼= Rα, where I is generated by a regular sequence.
Thus the conditions of Lemma 2.5 hold, and so LRα/Zp

∼= Ω1
Rα/Zp

. Because the cotangent com-

plex commutes with filtered colimits by (The Stacks Project Authors, 2017, Tag 08S9), we have that
LV /Zp

∼= lim−→LRα/Zp
∼= Ω1

V /Zp
. �

Remark 2.7. Bhargav Bhatt has recently communicated to us that, in fact, a significantly stronger
version of Proposition 2.6(2) also holds. Namely, if V is a valuation ring and a flat (equivalently, p-
torsion-free) Zp-algebra, then there is a quasi-isomorphism LV/Zp

∼= Ω1
V/Zp

. The proof of this stronger

result relies on resolution of singularities in characteristic zero and a result of Gabber and Ramero,
(Gabber and Ramero, 2003, Theorem 6.5.12). Our proof of Proposition 2.6(2) follows the original
strategy suggested by Bhatt in his Arizona winter school lectures, (Bhatt, 2017a, Exercise 12). Closely
related to our proof is an observation of Elmanto and Hoyois, relying on deep results of Temkin, that
appears in the recent paper (Antieau and Datta, 2020, Proposition 4.2.1); we thank Elden Elmanto
for calling this result to our attention.

The previous result had a hypothesis requiring a certain ring to be a valuation ring, and in fact,
valuation rings play a special role at several points in this paper. One reason is because, if A is a p-
torsion-free perfectoid ring containing a compatible sequence of p-power roots of unity, then A contains
an isomorphic copy of the valuation ring Zp[ζp∞ ]∧. A second reason is because every p-torsion-free
perfectoid ring embeds into a product of perfectoid valuation rings (see Lemma 2.23 and its proof).
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We use (Zariski and Samuel, 1960, Chapter VI) as our basic reference on valuation rings, although
we write our valuations multiplicatively:

v(xy) = v(x)v(y) for all x, y.

(See (Scholze, 2012, Remark 2.3) for a remark on why Scholze writes his valuations multiplicatively.)
We emphasize that our valuation rings are not assumed to be rank one. (For an alternative to Zariski-
Samuel, see (Bourbaki, 2006, Chapter VI).)

Theorem 2.8. Let K1 ⊇ K0 denote two fields and assume there is a valuation on K0. Then there is
a valuation on K1 extending the valuation on K0.

Proof. This fact is well-known. For example, see (Zariski and Samuel, 1960, Chapter VI, Theorem 5′)
for the fact that places can be extended, and (Zariski and Samuel, 1960, Chapter VI, Section 9) for
the correspondence between places and valuations. �

Proposition 2.9. Let K0 denote a field equipped with a valuation, and let OK0 denote the correspond-
ing valuation ring. Let K1 denote an algebraic extension of K0. By Theorem 2.8, the field K1 can be
equipped with a valuation extending the valuation on K0. The corresponding map on valuation rings
OK0 → OK1 is faithfully flat.

Proof. Every valuation ring is in particular a Prüfer domain, and so OK1 is flat over OK0 because it is
torsion-free. We will now show that the induced map SpecOK1 → SpecOK0 is surjective, which will
complete the proof that OK0 → OK1 is faithfully flat. Let v denote the valuation on K1 extending
the given valuation on K0. The most important preliminary result we will need is the fact that the
quotient group v(K1)/v(K0) is torsion or, equivalently, for every element x ∈ K1, there exists some
integer n > 0 such that v(xn) ∈ v(K0). Let us name this condition (*). We do not prove it; it is stated
explicitly as (Zariski and Samuel, 1960, Chapter VI, Section 11, Lemma 1).

Consider any prime ideal p0 ⊆ OK0 . We are trying to show that there exists some prime ideal
p1 ⊆ OK1 such that p1∩OK0 = p0. We may assume p0 is not the zero ideal. Our construction is based
on (Zariski and Samuel, 1960, Chapter VI, Theorem 15). Define

p1 := {y ∈ OK1 : v(y)n = v(x) for some n ∈ Z>0, x ∈ p0}.
Using condition (*) above, we see that p1 is an ideal in OK1 . It is a proper ideal. Lastly, assume ab ∈ p1.
Say v(anbn) = v(x), where x ∈ p0. After possibly raising to a higher power, using again condition (*),
we may assume that v(an) = v(c) and v(bn) = v(d) for some c, d ∈ OK0 . Then cd/x ∈ O×K0

, and hence
cd ∈ p0, and hence c ∈ p0 or d ∈ p0, and hence a ∈ p1 or b ∈ p1. This completes the proof that p1 is a
prime ideal.

It remains to check that p1∩OK0 = p0. Clearly p1∩OK0 ⊇ p0. Conversely y ∈ OK0 and y ∈ p1, then
v(yn) = v(x) for some x ∈ p0 and some n ∈ Z>0, but then yn/x ∈ OK0 , so yn ∈ p0, so y ∈ p0. This
proves the reverse inclusion, p1 ∩ OK0 ⊆ p0. This completes the proof that OK0 → OK1 is faithfully
flat. �

Later in this section we will need to embed a p-torsion-free perfectoid valuation ring into a larger
perfectoid valuation ring for which its fraction field is algebraically closed. In order to accomplish this,
we will need the next few preliminary results.

Lemma 2.10. Let K be a characteristic zero field equipped with a valuation v for which OK is p-
adically separated. The values v(p), v(p2), . . . , v(pn), . . . are cofinal in the set of all values of non-zero
elements in K, in the sense that for every non-zero element x ∈ K, there exists an integer n ≥ 1 such
that v(pn) < v(x).
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Proof. If x ∈ K \ OK , then any value of n will work. Otherwise, because OK is p-adically separated,
we may choose n such that x 6∈ pnOK . �

We next refer to the completion of a field K with respect to a valuation. There seems to be
some subtlety involved in defining the notion of completion for general valued fields (see (Engler and
Prestel, 2005, Section 2.4)), but in our case it is easier, because Lemma 2.10 shows that there exists a
countable sequence of elements which are cofinal in the value group, so the elements in the completion
will correspond to Cauchy sequences (a1, a2, . . .), where the index set is N.

Lemma 2.11. Let K be a characteristic zero field equipped with a valuation for which OK is p-adically
separated. Let L denote the valued field which is the completion of K, as in (Engler and Prestel, 2005,
Theorem 2.4.3). The corresponding valuation ring OL is p-adically complete and separated.

Proof. We must show that every p-adic Cauchy sequence of elements in OL has a unique limit in OL.
The existence of such a limit in L follows immediately from Lemma 2.10 and the construction of L as
equivalence classes of Cauchy sequences. If the elements in the Cauchy sequence are all in OL, then
the values of the elements in the Cauchy sequence are all at most 1 = v(1). The value of the Cauchy
sequence, viewed as an element of L, is either 0 (in which case it is in OL), or is equal to the value
of an entry in the sequence (in which case it is also in OL). In either case, we see that every p-adic
Cauchy sequence of elements in OL converges in OL.

We next show that OL is p-adically separated. If the Cauchy sequence corresponds to 0 in L, then
there is nothing to check. Otherwise, the value of the Cauchy sequence is equal to the value of one of
its non-zero entries; call that entry x. Because OK is p-adically separated, we have that v(pn) < v(x)
for some integer n ≥ 1. Thus the element corresponding to the Cauchy sequence is not in pnOL. This
shows that OL is p-adically separated. �

Lemma 2.12. Let L denote a characteristic zero field equipped with a valuation for which OL is
p-adically separated. Let L′ denote an algebraic extension of L. Then OL′ is also p-adically separated.

Proof. This follows directly from condition (*) that was named in the proof of Proposition 2.9. �

Lemma 2.13. Let K be a characteristic zero field equipped with a valuation for which OK is p-adically
separated, and let L denote the completion of K, as in (Engler and Prestel, 2005, Theorem 2.4.3). If
K is algebraically closed, then so is L.

Proof. Much of this proof is taken verbatim from notes written by Brian Conrad (Conrad, 2008).
(Those notes are phrased in terms of absolute values rather than valuations. We have attempted to
translate Conrad’s proof into the setting of possibly higher rank valued fields.) We first outline the
proof strategy. We must show that every non-constant polynomial f(x) in L[x] has a zero in L. We
can approximate f(x) by polynomials fj(x) ∈ K[x], each of which has a zero rj ∈ K, because K is
algebraically closed. We will show that some subsequence of (rj) converges to a zero of f(x). Because
L is the completion of K, this will imply that some zero of f(x) lies in L, as desired.

More precisely, the following are the key steps. Let Γ denote the value group of K.

(1) There exists γ ∈ Γ such that v(rj) ≤ γ for all j.
(2) The sequence f(rj) ∈ L converges to zero.
(3) Let λ1, . . . , λn denote the zeros of f(x) in some field L′ which is an algebraic extension of L.

We have that the sequence
(

mini v(rj − λi)
)

approaches zero as j approaches infinity, and
hence, because there are only finitely many values of λi, some subsequence of (rj) is a Cauchy
sequence converging to λk for some 1 ≤ k ≤ n. Thus λk ∈ L, as required.
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We now carry out these steps. The proof of (Engler and Prestel, 2005, Theorem 2.4.3) describes
the valuation on L, and by Theorem 2.8, we can further extend the valuation on L to a valuation
on any field extension L′. If L′/L is algebraic, then OL′ is p-adically separated by Lemma 2.11 and
Lemma 2.12.

We may assume our polynomial is separable. Let f(x) = xn+an−1x
n−1+· · ·+a0 denote an arbitrary

separable, non-constant polynomial in L[x]. It is also convenient for the proof below to assume that
a0 6= 0 and n ≥ 2. Write λ1, . . . , λn for the zeros of f(x) in some field L′ which is algebraic over L.
We can approximate f(x) by polynomials fj(x) = xn + an−1,jx

n−1 + · · · + a0,j ∈ K[x] satisfying the
following two conditions:

(1) If ai = 0, then ai,j = 0 for all j.
(2) If ai 6= 0, then v(ai,j − ai) < min(v(ai), v(pj)) for all j.

These conditions imply that v(ai) = v(ai,j) for all i and all j.
For each j, let rj ∈ K denote a root of fj(x). Because fj(rj) = 0, we have that

v(rnj ) = v

(
n−1∑
i=0

ai,jr
i
j

)
≤ max

i
v(ai,j)v(rj)

i = max
i
v(ai)v(rj)

i.

Hence, for each j, there exists some i(j) ∈ Z in the range 0 ≤ i(j) ≤ n− 1 such that

v(rj)
n ≤ v(ai(j))v(rj)

i(j).

Thus
v(rj) ≤ γ := max

i
v(ai)

1/(n−i).

(Note that, because K is algebraically closed, the group element v(ai)
1/(n−i) makes sense.)

Because f, fj are monic polynomials of the same degree and because fj(rj) = 0 by our assumption,
we have

v(f(rj)) = v(f(rj)− fj(rj))

= v

(
n−1∑
i=0

(ai − ai,j)rij

)
≤ max

0≤i≤n−1
v(ai − ai,j)v(rj)

i.

We know v(rj) ≤ γ, so v(rj)
i ≤ γi, and in particular if γ < 1, then v(rj)

i ≤ 1. If on the other hand
γ ≥ 1, then v(rj)

i ≤ γn−1. In total, we deduce

v(f(rj)) ≤ max
i
v(ai − ai,j) ·max{1, γn−1}.

By our choice of the coefficients ai,j , we have

v(f(rj)) ≤ v(pj) ·max{1, γn−1}.

By Lemma 2.10, there exists some integerm ≥ 1 such that v(pm) < 1
max{1,γn−1} , and hence max{1, γn−1} <

v(p−m) and therefore v(f(rj)) < v(pj−m) for all j. Thus the sequence f(rj) ∈ L converges to 0.
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Recall that we denoted the roots of f(x) by λi ∈ L′, so f(x) =
∏n
i=1(x − λi) ∈ L′[x], where L′ is

some fixed algebraic extension of L. Thus for all j, we have that
n∏
i=1

v(rj − λi) ≤ v(pj) ·max{1, γn−1},

and so for all j, we have that

min
i
v(rj − λi) ≤ v(pj)1/n ·max{1, γ(n−1)/n}.

By the pigeonhole principle, there is some 0 ≤ i0 ≤ n− 1 for which the inequality

v(rj − λi0) ≤ v(pj)1/n ·max{1, γ(n−1)/n}
holds for infinitely many values of j. As in the previous paragraph, some subsequence of (rj − λi0)
converges to 0, and hence some subsequence of (rj) converges to λi0 . Because the elements rj are all
in K, and because L is the completion of K, it follows that some subsequence of rj converges to some
element λ ∈ L. Because f(x) ∈ L[x] is a polynomial and f(rj) converges to 0 in L, we have that λ ∈ L
satisfies f(λ) = 0, as desired. (Alternatively, it could be shown that in fact λ = λi0 , using the fact that
OL1 is p-adically separated, but that argument requires consideration of the case λ, λi0 ∈ L1 \ OL1 .)
This completes the proof that the completion of K is algebraically closed. �

We next discuss perfectoid rings. We follow the presentation and notation of Bhatt-Morrow-
Scholze’s (Bhatt et al., 2018, Section 3). Many of these next results also correspond to related
results in Hesselholt’s (Hesselholt, 2006, Section 1.2). For example, Lemma 2.16 is closely related
to (Hesselholt, 2006, Proposition 1.2.3 and Addendum 1.2.4).

Lemma 2.14 ((Bhatt et al., 2018, Lemma 3.2(i))). Let A denote a ring which is p-adically complete

and separated. Define the tilt of A, denoted A[, to be the ring A[ := lim←−
x 7→xp

A/pA. The map which

reduces each element modulo p,
lim←−
x 7→xp

A→ lim←−
x7→xp

A/pA = A[,

is an isomorphism of multiplicative monoids.

Notation 2.15. For any ring A, we write lim←−F Wr(A) for the ring which is the inverse limit of the
diagram

· · · F−→W3(A)
F−→W2(A)

F−→W1(A),

where the transition maps are the finite-length Witt vector Frobenius. For any integer n ≥ 1, we let
prn : lim←−F Wr(A)→Wn(A) denote the projection.

Lemma 2.16. Let A denote a ring which is p-adically complete and separated. Let notation be as in
Lemma 2.14 and Notation 2.15. There is a unique p-adically continuous ring homomorphism

π : W (A[)→ lim←−
F

Wr(A)

such that, for every integer r ≥ 1 and every (t(0), t(1), . . .) ∈ lim←−x 7→xp A (identified with an element

t ∈ A[ as in Lemma 2.14), we have

(prr ◦ π)([t]) = [t(r)] ∈Wr(A).

The map π is an isomorphism of rings.
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Proof. See for example (Bhatt et al., 2018, Lemma 3.2), and the two paragraphs following that proof.

Uniqueness follows immediately from the fact that every element in W (A[) is a p-adic combination∑
pi[ti], where ti ∈ A[. �

Definition 2.17. Let A be a ring which is p-adically complete and p-adically separated. For every

integer r ≥ 1, we define θ̃r to be the ring homomorphism

θ̃r := prr ◦ π : W (A[)→Wr(A)

from Lemma 2.16. We define the ring homomorphism θ : W (A[) → A to be the composite θ̃1 ◦ F ,

where F : W (A[)→W (A[) is the Witt vector Frobenius.

Remark 2.18. Let t ∈ A[ be arbitrary, and assume t corresponds to (t(0), t(1), . . .) ∈ lim←−x7→xp A. We
have

θ([t]) = t(0).

Definition 2.19 ((Bhatt et al., 2018, Definition 3.5)). We say a ring A is perfectoid if the following
three conditions hold:

(1) The ring A is π-adically complete and separated for some element π such that πp divides p.
(2) The p-power Frobenius A/pA→ A/pA is surjective.

(3) The kernel of θ : W (A[)→ A (with θ as in Definition 2.17) is a principal ideal.

Example 2.20. Assume A is a p-torsion-free ring containing a primitive p-th root of unity, ζp. (As
throughout this paper, we assume p is odd.) Then Condition (1) in the definition of perfectoid can be
replaced with

(1′) The ring A is p-adically complete and separated.

Indeed, on one hand, a perfectoid ring is p-adically complete and separated. On the other hand, if the
p-power map is surjective modulo p on a p-torsion-free ring A containing ζp, then there exists some
π, a ∈ A such that

πp = (ζp − 1) + pa.

If A is p-adically complete, then we deduce that πp divides ζp − 1 (using that p 6= 2), and hence πp

divides p. On the other hand, p divides πp
2
, so the ring A is π-adically complete and separated.

Remark 2.21. We typically use (Bhatt et al., 2018) as our reference, but many of these properties were
studied earlier. For example, the significance of θ was recognized by Fontaine, and the isomorphism
between W (A[) and lim←−F Wr(A) appears (in a slightly different context) in Hesselholt’s (Hesselholt,

2006, Addendum 1.2.4). An isomorphism W (A[) ∼= lim←−F Wr(A) was also studied by the first author

and Kedlaya in (Davis and Kedlaya, 2015, Theorem 3.6), but that isomorphism differs from the
isomorphisms of Hesselholt and Bhatt-Morrow-Scholze. More precisely, the isomorphism from (Davis
and Kedlaya, 2015, Theorem 3.6) is attained from the isomorphism in (Bhatt et al., 2018, Lemma 3.2)

by first applying the Witt vector Frobenius automorphism on W (A[), as indicated in the following
commutative diagram

W (A[)
F //

(Davis and Kedlaya, 2015)

∼

$$

W (A[)

(Bhatt et al., 2018) or (Hesselholt, 2006)

∼

zz
lim←−
F

Wr(A)
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The present paper uses the normalizations of Hesselholt and Bhatt-Morrow-Scholze.

In general, a perfectoid ring A and its tilt A[ may contain zero divisors, and hence W (A[) may also

contain zero divisors. On the other hand, every generator of the ideal ker θ ⊆ W (A[) is a non-zero-
divisor, as we recall in the next result.

Lemma 2.22 ((Bhatt et al., 2018, Lemma 3.10 and Remark 3.11)). Let A denote a perfectoid ring,

and let ξ ∈W (A[) be any generator of ker θ.

(1) The element ξ is a non-zero-divisor in W (A[).
(2) The generators ξ are functorial in the following sense. Let B denote another perfectoid ring,

with corresponding theta map θB : W (B[)→ B. Let f : A→ B denote a ring homomorphism.

By functoriality of tilts and Witt vectors, the map f induces a map W (f [) : W (A[)→W (B[),

and the element W (f [)(ξ) ∈W (B[) is a generator of ker(θB).

One of the deeper results concerning perfectoid rings which we will need is the following.

Lemma 2.23. Every p-torsion-free perfectoid ring A embeds into a product of p-torsion-free perfectoid
valuation rings,

∏
V α, for which each FracV α is algebraically closed.

Proof. It is shown in (Bhatt et al., 2019, Proof of Proposition 4.19) that every perfectoid ring embeds
into a product of perfectoid valuation rings. Every valuation ring is either p-torsion-free or is annihi-
lated by p, and because our ring A is p-torsion-free, if A embeds into a product of perfectoid valuation
rings

∏
Vα, it also embeds into the possibly smaller product consisting of only those Vα which are

p-torsion-free. (If a maps to 0 in this smaller product, then pa maps to 0 in the original product, and
hence pa = 0, and hence a = 0.) For each α, let Kα := FracVα and let Lα denote the completion
(as in (Engler and Prestel, 2005, Theorem 2.4.3)) of an algebraic closure of Kα. Let Wα denote the
valuation ring in Lα. By Lemma 2.13, Lα = FracWα is algebraically closed, so it suffices to show
that Wα is perfectoid. The ring Wα is p-adically separated by Lemma 2.11 and Lemma 2.12, and
Wα is p-adically complete by construction. Let π ∈ Wα denote an element for which πp = p. From
the fact that Lα is algebraically closed, it’s clear that such an element π exists and that the p-power
map Wα/πWα → Wα/π

pWα is surjective. By (Bhatt et al., 2018, Lemma 3.10(ii)), to show that Wα

is perfectoid, it suffices to show that this p-power map Wα/πWα → Wα/π
pWα is also injective, but

this is obvious from the fact that Wα is a valuation ring: if πp | wp, then v(π)p ≥ v(w)p, and so
v(π) ≥ v(w), and so π | w. �

We next transition to our algebraic results concerning Witt vectors. A foundational result is the
following, which is due to Hesselholt.

Lemma 2.24 ((Hesselholt, 2006, Lemma 1.1.1)). Let A denote a p-adically complete and p-torsion-free
ring. Then for each integer n ≥ 1, the ring Wn(A) is also p-adically complete and p-torsion-free.

Most of our Witt vector results in this section are less foundational and more specialized. We briefly
indicate the significance of these technical results. Theorem C relates p-torsion in the de Rham-Witt
complex to Wn(A)-modules of the form Wn(A)/pWn(A). In almost every situation, it is easier to
prove results about Wn(A)/pWn(A) than to prove results about WnΩ1

A[p]. In this section we gather
several algebraic results concerning Wn(A)/pWn(A).

Lemma 2.25. Let A denote a perfectoid ring. Assume f : A/pA → A/pA is a map of Wn+1(A)-
modules, where A/pA is equipped with a Wn+1(A)-module structure via Fn. If there exists a unit
u ∈ A/pA which is in the image of f , then f is an isomorphism.
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Proof. Using that Fn : Wn+1(A)→W1(A) is surjective, we find that f(a) = af(1) for every a ∈ A/pA,
so it suffices to prove that f(1) is a unit in A/pA, and this follows by our assumption, which shows
that some multiple of f(1) is a unit. �

Before stating another Witt vector result, we state a general result about the tilt of a p-adically
complete valuation ring.

Lemma 2.26. Let A denote a p-adically complete and p-adically separated valuation ring. Then the
ring A[ is a valuation ring.

Proof. The authors noticed this argument in notes from a course of Bhargav Bhatt (Bhatt, 2017b).

We first observe that A[ is an integral domain; indeed, elements in A[ are uniquely representable by
p-power-compatible sequences of elements in A (as opposed to A/pA, see for example (Bhatt et al.,

2018, Lemma 3.2(i))), and multiplication on A[ corresponds to componentwise multiplication of these

sequences. Because A is an integral domain, it is then clear that A[ does not have any zero divisors.
To prove that A[ is a valuation ring, we show that if x, y ∈ A[, then either x divides y or y divides x.
Write x = (xi) where xi ∈ A and xpi = xi−1 and similarly for y = (yi). Notice that in the valuation
ring A, we have that xi divides yi if and only if xpi divides ypi : the forward direction is obvious. For the
other direction, assume xpi a = ypi and yib = xi. Then we have xpi ab

p = xpi , and hence (unless xi = 0)
b is a unit, and hence xi divides yi. The result now follows. �

The ring Zp[ζp∞ ]∧ plays a special role in this paper, especially in the proof of Theorem C. The next
result concerns this ring.

Lemma 2.27. Let A0 = Zp[ζp∞ ]∧ and let n ≥ 1 be an integer. The ring Wn(A0)/pWn(A0) has the
following property: If N ⊆ Wn(A0)/pWn(A0) is an ideal and x, y ∈ Wn(A0)/pWn(A0) are such that
x, y 6∈ N and x ≡ y mod N , then there exists a unit u ∈Wn(A0)/pWn(A0) such that x = uy.

Proof. The ring homomorphism θ̃n : W (A[0) → Wn(A0) is surjective (see for example (Bhatt et al.,

2018, Lemma 3.9(iv))), and hence we have a surjective ring homomorphism A[0
∼= W (A[0)/pW (A[0)→

Wn(A0)/pWn(A0). By Lemma 2.26, this means Wn(A0)/pWn(A0) is a quotient of a valuation ring.

Write x = y+ z, where z ∈ N . Let x′, y′ ∈ A[0 denote elements mapping to x, y (respectively) under

this surjection A[0 � Wn(A0)/pWn(A0). We find that z′ := x′ − y′ ∈ A[0 maps to z. We cannot have
y′

z′ ∈ A
[
0, because we know that y 6∈ N , and hence y is not a multiple of z in Wn(A0)/pWn(A0), and

hence y′ is not a multiple of z′ in A[0. Then because A[0 is a valuation ring, we know z′

y′ ∈ A
[
0, and

(1 + z′

y′ )y
′ = x′ ∈ A[0. In other words, x′ is a multiple of y′ in A[0. Reversing the roles of x and y in

the argument, we find that y′ is also a multiple of x′ in A[0. Because A[0 is an integral domain, x′ is a
unit multiple of y′, and hence x is a unit multiple y in Wn(A0)/pWn(A0), as required. �

Here is a more basic result.

Lemma 2.28. Let A denote a p-adically complete ring. An element x ∈Wn(A) is a unit if and only
if its projection x ∈ Wn(A)/pWn(A) is a unit. Furthermore, x ∈ Wn(A) is a unit if and only if its
first Witt coordinate is a unit in A.

Proof. Certainly if x is a unit, then its projection to any quotient ring is a unit. On the other hand, if
x, y, z ∈ Wn(A) satisfy xy = 1 + pz, then because Wn(A) is p-adically complete (Lemma 2.24), there
exists u ∈Wn(A) such that (1 + pz)u = 1 ∈Wn(A). Thus x(yu) = 1 ∈Wn(A). This shows that if the
image of x is a unit in Wn(A)/pWn(A), then x is a unit in Wn(A).



20 CHRISTOPHER DAVIS AND IRAKLI PATCHKORIA

The proof of the second assertion is similar. If x ∈ Wn(A) is a unit, then clearly the first Witt
coordinate of x is a unit in A. Conversely, if the first Witt coordinate of x is a unit, then

x = [x0] + V (y)

for some y ∈ Wn−1(A). If we multiply by the unit [x−10 ] ∈ Wn(A), we reduce to showing that every
Witt vector in Wn(A) of the form 1 + V (y′) is a unit. This again follows because Wn(A) is p-adically
complete, using that

(
V (y′)

)m ∈ pm−1Wn(A) for every integer m ≥ 1. �

A similar result is the following.

Lemma 2.29. Assume A is a p-torsion-free perfectoid ring containing a primitive pn-th root of unity
ζpn for some integer n ≥ 1. (Recall that throughout this paper, p 6= 2.) If y ∈ Wn(A) satisfies
([ζpn ]− 1)y = ([ζpn ]− 1) ∈Wn(A)/pWn(A), then y is a unit in Wn(A)/pWn(A).

Proof. Let y0 denote the first Witt component of y. The condition implies

(ζpn − 1)(y0 − 1) = pb

for some b ∈ A. Because A is p-torsion-free, it is also (ζpn − 1)-torsion-free, so we have that

y0 ≡ 1 mod
p

ζpn − 1
A.

Because A is p-adically complete (since it is perfectoid), it is also p
ζpn−1 -adically complete. Thus y0 is

a unit in A and thus by Lemma 2.28, y is a unit in Wn(A). �

The following result is taken from (Bhatt et al., 2018). See also (Hesselholt, 2006, Proposition 1.2.3)
for a related result.

Lemma 2.30 ((Bhatt et al., 2018, Corollary 3.18(i))). Let A denote a p-torsion-free perfectoid ring
containing a compatible system of p-power roots of unity, and let r > s ≥ 1. The kernel of F r−s :

Wr(A) → Ws(A) is the principal ideal generated by
∑ps−1

i=0 [ζpr ]
i. In particular, the kernel of Fn :

Wn+1(A)→W1(A) is the principal ideal generated by

zn+1 = 1 + [ζpn+1 ] + [ζpn+1 ]2 + · · ·+ [ζpn+1 ]p−1 ∈Wn+1(A).

Determining whether one Witt vector is divisible by another Witt vector is often difficult. One result
we will need in this direction is the following lemma. It is required for our proof of Proposition 5.15.
The following result should be compared to (Bhatt et al., 2018, Lemma 3.23).

Lemma 2.31. Fix an integer n ≥ 1. Let A0 = Zp[ζp∞ ]∧. If x ∈Wn(A0) is in the intersection

x ∈
∞⋂
s=1

[ζpn ]− 1

[ζpn+s ]− 1
Wn(A0),

then x ∈ ([ζpn ]− 1)Wn(A0).

Proof. We prove this using induction on n. The base case follows by considering valuations in A0.
Assume now the result has been shown for some fixed value n− 1 ≥ 1. We will prove the result also
for n. Thus, assume x ∈Wn(A0) is in the intersection. Again considering valuations, we find that the
first Witt component of x must be divisible by ζpn − 1, say x0 = (ζpn − 1)y0. Consider the element
x′ := x− ([ζpn ]− 1)[y0] ∈ Wn(A0). If we can prove that x′ is divisible by [ζpn ]− 1, then it will follow
that x is also divisible by [ζpn ]− 1, and we will be done. We have that x′ is in the same intersection,
and also x′ = V (z) for some z ∈Wn−1(A0).
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We claim that z is divisible by
[ζpn−1 ]−1

[ζpn−1+s ]−1 in Wn−1(A0) for every integer s ≥ 1. Fix s ≥ 1. We know

that

V (z) =
[ζpn ]− 1

[ζpn+s ]− 1
y

for some y ∈ Wn(A0), and considering the first Witt components, we see that y = V (y′) for some
y′ ∈Wn−1(A0), so

V (z) =
[ζpn ]− 1

[ζpn+s ]− 1
V (y′) = V

(
F

(
[ζpn ]− 1

[ζpn+s ]− 1

)
y′
)

= V

(
[ζpn−1 ]− 1

[ζpn−1+s ]− 1
y′
)
.

This proves the claim that z is divisible by
[ζpn−1 ]−1

[ζpn−1+s ]−1 in Wn−1(A0) for every integer s ≥ 1. Fix s ≥ 1.

By our induction hypothesis, we have that z = ([ζpn−1 ]− 1)w for some w ∈Wn−1(A0). Thus

x′ = V (z) = V
(
([ζpn−1 ]− 1)w

)
= ([ζpn ]− 1)V (w).

This proves that x′ is divisible by [ζpn ] − 1 in Wn(A0), and as explained above, this finishes the
proof. �

We will eventually prove that, when A is a p-torsion-free perfectoid ring containing a compatible
sequence of p-power roots of unity, then the p-adic Tate module Tp(WnΩ1

A) is a free Wn(A)-module of
rank one. The restriction map from level n + 1 to level n on the Tate modules does not correspond
to the restriction map on Witt vectors. Instead it will correspond to the map Rzn+1 appearing in the
following lemma.

Lemma 2.32. Let A denote a p-torsion-free perfectoid ring containing a compatible system of p-power
roots of unity. We have an exact sequence of Wn+1(A)-modules

0→ A
V n−−→Wn+1(A)

Rzn+1−−−−→Wn(A)
Fn−−→ A/pnA→ 0,

where the module structures and maps are defined as follows. Both A and A/pnA are considered as
Wn+1(A)-modules via Fn, and Wn(A) is considered as a Wn+1(A)-module via restriction. The map
Rzn+1 denotes the composite given by multiplication by zn+1 followed by Frobenius:

ψn : Wn+1(A)
1+[ζpn+1 ]+···+[ζpn+1 ]p−1

−−−−−−−−−−−−−−−−→Wn+1(A)
R−→Wn(A).

The map Fn : Wn(A)→ A/pnA is defined using the isomorphism Wn(A) ∼= Wn+1(A)/V n(A).

Proof. It’s clear that V n(A) is in the kernel of Rzn+1. Conversely, if y ∈ Wn+1(A) is in the kernel
of Rzn+1, then

(
1 + [ζpn+1 ] + · · ·+ [ζpn+1 ]p−1

)
· y ∈ V n(A). Because the first n ghost components of

1 + [ζpn+1 ] + · · ·+ [ζpn+1 ]p−1 are not zero divisors (because A is p-torsion-free), we see that the first n
ghost components of y are zero, and hence y ∈ V n(A), proving the other inclusion.

The map Wn(A) ∼= Wn+1(A)/V n(A)→ A/pnA induced by Fn is surjective (see for example (Bhatt
et al., 2018, Lemma 3.9(iv))). It remains to show that its kernel is equal to the image of the map
Rzn+1. Because Fn(1 + [ζpn+1 ] + · · · + [ζpn+1 ]p−1) = 0 ∈ W1(A), we see that the image of Rzn+1 is
contained in the kernel of Wn(A) → A/pnA. For the reverse inclusion, say x ∈ Wn+1(A) is the lift
(under restriction) of some element in the kernel of Wn(A) → A/pnA. Write Fn(x) = pna, where
a ∈ A. Then Fn(x − V n(a)) = 0, and so by Lemma 2.30, we can find an element y ∈ Wn+1(A) such
that (

1 + [ζpn+1 ] + · · ·+ [ζpn+1 ]p−1
)
y = x− V n(a).

Applying R to both sides, we get that R(x) is in the image of Rzn+1, as required. �
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3. On p-torsion in the module of Kähler differentials

Our goal in this section is to determine the pn-torsion in the module of absolute Kähler differentials
Ω1
A := Ω1

A/Z for a p-torsion-free perfectoid ring A. Our strategy is first to consider the cotangent

complex LA/Zp , then to consider the relative Kähler differentials Ω1
A/Zp

, and then finally (and this is

the easiest part) to consider the absolute Kähler differentials Ω1
A.

Our starting point is a result of Bhatt-Morrow-Scholze which states that when A is a perfectoid
ring, the derived p-completion (as defined in Proposition 2.3) of LA/Zp is quasi-isomorphic to A[1].
We recall this result in Proposition 3.1. (It does not require our usual p-torsion-free assumption.)

Proposition 3.1 ((Bhatt et al., 2019, Proposition 4.19(2))). Let A denote a perfectoid ring. The

derived p-completion of LA/Zp is naturally quasi-isomorphic to ker θ/(ker θ)2[1], where θ : W (A[)→ A

is Fontaine’s map. By choosing a generator ξ of ker θ, we can identify ker θ/(ker θ)2[1] with A[1]. Hence
the derived p-completion of LA/Zp is quasi-isomorphic to A[1] and this quasi-isomorphism depends on
the choice of ξ.

An immediate corollary of this is the following.

Proposition 3.2. Let A denote a p-torsion-free perfectoid ring and let n ≥ 1 denote an integer. Then
we have a quasi-isomorphism

LA/Zp ⊗
L
Zp Z/pnZ ' (A/pnA)[1].

Proof. Let M denote the derived p-completion of LA/Zp . On one hand, we have

LA/Zp ⊗
L
Zp Z/pnZ ∼= M ⊗LZp Z/pnZ.

On the other hand, by Proposition 3.1, we have

M ∼= A[1].

The claimed result now follows directly from the universal coefficient theorem (Proposition 2.3). �

We immediately deduce the following consequence concerning p-power torsion in the module of
relative Kähler differentials.

Corollary 3.3. Let A denote a p-torsion free perfectoid ring and let n ≥ 1 be an integer. Then we
have a short exact sequence of A-modules

0→ H−1(LA/Zp)/p
nH−1(LA/Zp)→ A/pnA→ Ω1

A/Zp
[pn]→ 0.

Proof. Again from the universal coefficient theorem (Proposition 2.3), we know there is a short exact
sequence

0→ H−1(LA/Zp)⊗Zp Z/pnZ→ H−1(LA/Zp ⊗
L
Zp Z/pnZ)→ Tor

Zp
1 (H0(LA/Zp),Z/p

nZ)→ 0.

Using Proposition 3.2 to replace the middle term with A/pnA, the result follows. �

Remark 3.4. Since the quasi-isomorphism (LA/Zp)
∧ ' A[1] in Proposition 3.1 depends on the choice

of ξ, we must be careful regarding any desired functoriality properties of maps deduced from this
quasi-isomorphism. For example, the A-module homomorphism

A/pnA→ Ω1
A/Zp

[pn]

appearing in Corollary 3.3 is not functorial in A. However, we will see below that this map A/pnA→
Ω1
A/Zp

[pn] is an isomorphism and is determined uniquely if we moreover fix ξ ∈W (A[) such that ξ is a
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generator for the kernel of Fontaine’s map θ : W (A[)→ A. Notice that, because ξ is a non-zero-divisor,

any two such generators differ by a unit u ∈ W (A[), and it will follow that the two corresponding
isomorphisms A/pnA→ Ω1

A/Zp
[pn] will differ by the unit θ(u) ∈ A.

The most important result in this section is the following.

Theorem 3.5. Let A denote a p-torsion-free perfectoid ring.

(1) Multiplication by p is surjective on Ω1
A/Zp

.

(2) For every integer n ≥ 1, we have an isomorphism of A-modules

Tp(Ω
1
A/Zp

)/pnTp(Ω
1
A/Zp

) ∼= Ω1
A/Zp

[pn].

(3) For every integer n ≥ 1, the map from Corollary 3.3

A/pnA→ Ω1
A/Zp

[pn]

is an isomorphism of A-modules.
(4) We have an isomorphism of A-modules

A
∼→ Tp(Ω

1
A/Zp

)

that, when reduced modulo pn for any integer n ≥ 1, induces the isomorphism from Part (3).
(5) We have an isomorphism of A-modules

H−1(LA/Zp)/pH
−1(LA/Zp)

∼= 0.

Proof. Part (1) is true more generally for any ring A with the property that the p-power map is
surjective modulo p. Namely, it suffices to prove that an element of the form da is divisible by p,
where a ∈ A is arbitrary, and this follows after writing a = ap0 + pa1 and applying the Leibniz rule.

Part (2) is true more generally for any module M on which multiplication by p is surjective. Namely,
the natural projection map

Tp(M)→M [pn]

is surjective because any pn-torsion element can be extended to an element in Tp(M), and so it suffices
to show that the kernel of this projection consists precisely of those elements which are divisible by
pn. Thus let (m1,m2, . . .) ∈ Tp(M), where mi ∈ M [pi], and assume mn = 0. Consider the element
(mn+1,mn+2, . . .); clearly pn(mn+1,mn+2, . . .) = (m1,m2, . . .), and moreover (mn+1,mn+2, . . .) is in
the Tate module, because mn = 0 shows that mn+i ∈M [pi] for all integers i ≥ 1.

We next prove Part (3) in a special case. Let V denote a p-torsion-free perfectoid ring which is
moreover a valuation ring with FracV algebraically closed. By Proposition 2.6, we have H−1(LV /Zp)

∼=
0, and hence from Corollary 3.3, we have a V -module isomorphism V /pnV

∼−→ Ω1
V /Zp

[pn]. This proves

Part (3) in this special case. Before proving this part in general, we consider Part (4).
Let A be an arbitrary p-torsion-free perfectoid ring. By Corollary 2.4 and Proposition 3.1, we have

a surjective A-module homomorphism

A� Tp(Ω
1
A/Zp

),

and for any integer n ≥ 1, we have an induced map

A/pnA� Tp(Ω
1
A/Zp

)/pnTp(Ω
1
A/Zp

) ∼= Ω1
A/Zp

[pn].
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Moreover, this map agrees with the map in Corollary 3.3. The reason is that the universal coefficient
sequence in Proposition 2.3(3) is natural in G, and hence the diagram

H−1((LA/Zp)
∧)

��

// Tp(Ω
1
A/Zp

)

��
H−1((LA/Zp)⊗LZ Z/pnZ) // Ω1

A/Zp
[pn]

commutes. Here the vertical maps are induced by (derived and underived) mod pn reduction. We
also note that the identification H−1((LA/Zp) ⊗LZ Z/pn) ∼= A/pnA which is used to define the map

A/pnA → Ω1
A/Zp

[pn] in Corollary 3.3 is determined by the identification H−1((LA/Zp)
∧) ∼= A which

itself up to unit only depends on the choice the generator of ker θ (see (Bhatt et al., 2019, Proposition
4.19)). Now in the case A = V , this map is the isomorphism of the previous paragraph. Thus the
map V → Tp(Ω

1
V /Zp

) is an inverse limit of isomorphisms, and hence is an isomorphism. This proves

Part (4) in the case of V .
We now return to the case that A is an arbitrary p-torsion-free perfectoid ring, and consider an

injective ring homomorphism A→
∏
V α, as in Lemma 2.23. We would like to construct a commutative

diagram ∏
V α

//
∏
Tp(Ω

1
V α/Zp

)

A //

OO

Tp(Ω
1
A/Zp

)

OO

The problem here is that the map A → Tp(Ω
1
A/Zp

) is only unique after the choice of a generator of

ker θ. Let fα : A→ V α denote the given embedding to
∏
V α composed with the projection onto the

α factor. By Corollary 2.4 we have a commutative diagram

H−1((LV α/Zp)
∧) // Tp(Ω

1
V α/Zp

)

H−1((LA/Zp)
∧)

(fα)∗

OO

// Tp(Ω
1
A/Zp

)

(fα)∗

OO

Further, following (Bhatt et al., 2019, Proposition 4.19), we also have a commutative diagram with
horizontal arrows isomorphisms

ker θV α/(ker θV α)2
∼= // H−1((L

V α/W (V
[
α)

)∧)
∼= // H−1((LV α/Zp)

∧)

ker θA/(ker θA)2
∼= //

(fα)∗

OO

H−1((LA/W (A[))
∧)

(fα)∗

OO

∼= // H−1((LA/Zp)
∧)

(fα)∗

OO

Let ξ ∈ W (A[) be a generator of the principal ideal ker θA. The key observation is that the image

of ξ under the map induced by functoriality, W (f [α)(ξ), is a generator of ker θV α in W (V
[
α); see

Lemma 2.22. The elements ξ and W (f [α)(ξ) are non-zero-divisors (see again Lemma 2.22) and hence
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determine isomorphisms ker θV α/(ker θV α)2 ∼= V α and ker θA/(ker θA)2 ∼= A. This compatible choice
of generators allows us to fit the latter isomorphisms in a commutative diagram

V α

∼= // ker θV α/(ker θV α)2

A
∼= //

fα

OO

ker θA/(ker θA)2

(fα)∗

OO

By combining the last three commutative diagrams, we obtain, for every α, a commutative diagram

V α
// Tp(Ω

1
V α/Zp

)

A //

fα

OO

Tp(Ω
1
A/Zp

)

(fα)∗

OO

Here the horizontal arrows are the morphisms obtained using Corollary 2.4 and Proposition 3.1 (and,

which we again emphasize, depend up to a unit on the choice of a generator of ker θ in W (A[)). Now
passing to the products we attain the desired commutative diagram∏

V α
//
∏
Tp(Ω

1
V α/Zp

)

A //

OO

Tp(Ω
1
A/Zp

)

OO

The left vertical map and the top horizontal map are injective, so the map A→ Tp(Ω
1
A/Zp

) is injective,

and we have already remarked that it is surjective. This proves Part (4) in general, and reducing
this isomorphism modulo pn proves Part (3) in general. Finally, Part (5) follows in general from
Corollary 3.3 and the fact that A/pnA→ Ω1

A/Zp
[pn] is an isomorphism. �

Theorem 3.5 indicates that, for every p-torsion-free perfectoid ring A, multiplication by p on Ω1
A/Zp

is far from being injective. We next give a complementary result, which indicates a situation where
multiplication by p on Kähler differentials is injective.

Lemma 3.6. Let k denote a perfect ring of characteristic p. The multiplication-by-p map

p : Ω1
W (k)/Zp

→ Ω1
W (k)/Zp

is an isomorphism of W (k)-modules.

Proof. The proof is the same as the proof of (Davis, 2019, Proposition 2.7) (which concerned absolute
Kähler differentials), simply by replacing every occurrence of Z in that proof with Zp. The result is
also a consequence of (Bhatt et al., 2018, Lemma 3.14). �

When A is a p-torsion-free perfectoid ring, we know from Theorem 3.5 that there exists α ∈ Ω1
A/Zp

which freely generates Ω1
A/Zp

[pn] as an A/pnA-module. The following two results concern identifying

such a generator α. The more explicit of the two results, Corollary 3.8, requires that A contain a
compatible system of p-power roots of unity. The same condition appears in Theorem C.
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Proposition 3.7. Let A denote a p-torsion-free perfectoid ring. Let ξ ∈ W (A[) denote a generator
of ker θ. Let αn ∈ Ω1

W (A[)/Zp
denote the unique element such that pnαn = dξ. Then Ω1

A/Zp
[pn] is

generated as an A/pnA-module by the image of αn under the map θ : Ω1
W (A[)/Zp

→ Ω1
A/Zp

.

Proof. Uniqueness of the element αn follows from Lemma 3.6. From the ring homomorphisms Zp →
W (A[)

θ→ A, the Jacobi-Zariski sequence (2.2) associates an exact triangle in the derived category
D(A)

LW (A[)/Zp
⊗L
W (A[)

A→ LA/Zp → LA/W (A[).

From the associated long exact sequence in cohomology, using that θ is surjective with kernel generated
by a non-zero divisor (so ker(θ)/ ker(θ)2 ∼= A), there is an exact sequence

· · · // A // Ω1
W (A[)/Zp

⊗W (A[) A
// Ω1

A/Zp
// 0.

We then form a double complex

· · · // A // Ω1
W (A[)/Zp

⊗W (A[) A
// Ω1

A/Zp
// 0

· · · // A //

pn

OO

Ω1
W (A[)/Zp

⊗W (A[) A
//

−pn
OO

Ω1
A/Zp

//

pn

OO

0.

The horizontal maps A→ Ω1
W (A[)/Zp

⊗W (A[) A send 1 7→ dξ ⊗ 1 (see for example (Matsumura, 1989,

Theorem 25.2)). Multiplication by pn is an isomorphism on Ω1
W (A[)/Zp

(by Lemma 3.6) and hence also

on Ω1
W (A[)/Zp

⊗W (A[)A. Considering the two spectral sequences associated to this double complex, we

must have a surjective map A/pnA→ Ω1
A/Zp

[pn] given by 1 7→ θ(αn). This completes the proof. �

Corollary 3.8. Let A denote a p-torsion-free perfectoid ring and assume furthermore that A contains
a compatible system of p-power roots of unity ζpn. There exists an element α ∈ Ω1

A/Zp
such that

(ζp − 1)α = d log ζp, and any such element is p-torsion and freely generates Ω1
A/Zp

[p] as an A/pA-

module.

Proof. We first prove that there is at least one such element α satisfying all the listed conditions, and
then prove that any element α ∈ Ω1

A/Zp
satisfying (ζp − 1)α = d log ζp is automatically p-torsion and

a free A/pA-module generator of Ω1
A/Zp

[p].

Let ε ∈ A[ consist of the p-power compatible system (ζpn)n≥0. One generator of ker θ is ξ :=

1 + [ε1/p] + [ε1/p]2 + · · ·+ [ε1/p]p−1 (see (Bhatt et al., 2018, Example 3.16)). Define

α1 :=

p−1∑
m=1

m[ε1/p]m d log[ε1/p
2
] ∈ Ω1

W (A[)/Zp
.

Note that pα1 = dξ. By Proposition 3.7, we know that θ(α1) ∈ Ω1
A/Zp

freely generates Ω1
A/Zp

[p] as an

A/pA-module. On the other hand,

θ(α1) =

p−1∑
m=1

mζmp d log ζp2 ∈ Ω1
A/Zp

.
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Because

(ζp − 1)

p−1∑
m=1

mζmp = p,

this shows that the element θ(α1) satisfies all the conditions of the statement.
Now let α ∈ Ω1

A/Zp
denote an arbitrary element which satisfies (ζp − 1)α = d log ζp. From

pα =
p

ζp − 1
(ζp − 1)α =

p

ζp − 1
(ζp − 1)θ(α1) = pθ(α1) = 0,

we see that α is p-torsion. Because θ(α1) generates the p-torsion, we have α = aθ(α1) for some a ∈ A,
and we must furthermore have

(ζp − 1)a ≡ ζp − 1 mod pA,

because (ζp−1)aθ(α1) = (ζp−1)θ(α1). By Lemma 2.29, we then have that a is a unit in A/pA, which
completes the proof. �

In Theorem B, in addition to considering p-torsion-free perfectoid rings, we also consider rings of
integers in finite extensions of Qp. The following algebraic result enables us to relate such rings to the
perfectoid ring OCp .

Proposition 3.9. Let K denote an algebraic extension of Qp and let K denote an algebraic closure
of K.

(1) The natural map
Ω1
OK/Zp

→ Ω1
OK/Zp

is injective.
(2) For every integer n ≥ 1, the natural map

Ω1
OK/Zp

[pn]→ Ω1
OCp/Zp

[pn]

is an isomorphism.

Proof. We know H−1(LOK/OK
) ∼= 0 by Proposition 2.6, so the map

Ω1
OK/Zp

⊗OK OK ↪→ Ω1
OK/Zp

is injective by the Jacobi-Zariski sequence (2.2). We know OK → OK is faithfully flat by Proposi-
tion 2.9, so the map Ω1

OK/Zp
→ Ω1

OK/Zp
⊗OK OK is injective by (Matsumura, 1989, Theorem 7.5).

Thus the composite of these two maps Ω1
OK/Zp

→ Ω1
OK/Zp

is also injective. This completes the proof

of the first statement.
We now prove the second statement. Let R denote either of the rings OK or OCp . In both cases,

H−1(LR/Zp)
∼= 0, again by Proposition 2.6. By Proposition 2.3, in both cases we have

H−1
(
LR/Zp ⊗

L
Zp (Z/pnZ)

)
∼= Ω1

R/Zp
[pn].

By flat base change, we have

H−1
(
LR/Zp ⊗

L
Zp (Z/pnZ)

)
∼= H−1(L(R/pnR)/(Z/pnZ));
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see for example (The Stacks Project Authors, 2017, Tag 08QQ). The second result now follows from
the fact that

OK/p
nOK

∼= OCp/p
nOCp .

�

This concludes our treatment of the relative Kähler differentials, Ω1
A/Zp

. We are ultimately interested

in the p-power torsion in the module of absolute Kähler differentials, Ω1
A := Ω1

A/Z. Although Ω1
A is

much larger than Ω1
A/Zp

, their pn-torsion modules are isomorphic.

Lemma 3.10. Let A denote a p-torsion-free Zp-algebra for which the multiplication-by-p map

H−1(LA/Zp)
p→ H−1(LA/Zp)

is surjective. (For example, A could be any p-torsion-free perfectoid ring; see Theorem 3.5.) Then for
every integer n ≥ 1, the natural map

Ω1
A[pn]→ Ω1

A/Zp
[pn]

is an isomorphism.

Proof. Consider the double complex

· · · // H−1(LA/Zp)
// Ω1

Zp/Z
⊗Zp A // Ω1

A/Z
// Ω1

A/Zp
// 0

· · · // H−1(LA/Zp)
//

pn

OO

Ω1
Zp/Z

⊗Zp A //

−pn
OO

Ω1
A/Z

//

pn

OO

Ω1
A/Zp

//

−pn
OO

0.

Each of the four displayed vertical maps is surjective, and in fact, multiplication-by-p is an isomorphism
on Ω1

Zp/Z
⊗Zp A (see for example (Hesselholt and Madsen, 2003, Lemma 2.2.4) or (Davis, 2019,

Proposition 2.7)). Because the rows of this complex are exact, the two spectral sequences associated
to this double complex must both converge to zero. Consider the spectral sequence attained by first
taking cohomology along the columns. The E1-page of this spectral sequence will be

· · · // 0 // 0 // Ω1
A/Z/p

nΩ1
A/Z

// Ω1
A/Zp

/pnΩ1
A/Zp

// 0

· · · // H−1(LA/Zp)[p
n] // 0 // Ω1

A/Z[pn] // Ω1
A/Zp

[pn] // 0.

Because of the two zeros at the top-left of the diagram, we deduce that Ω1
A/Z[pn] → Ω1

A/Zp
[pn] is an

isomorphism, as required. �

We end this section with the following corollary. It is the key result used in the base case of our
inductive proof of Theorem C.

Corollary 3.11. Assume A is a p-torsion-free perfectoid ring containing a compatible system of p-
power roots of unity. There exists an element α ∈ Ω1

A satisfying (ζp − 1)α = d log ζp, and given any

such element, it is p-torsion and the map A/pA
α→ Ω1

A[p] given by a 7→ aα is an isomorphism of
A-modules. Writing A0 := Zp[ζp∞ ]∧, we may furthermore find one such α in the image of the natural
map Ω1

A0
→ Ω1

A.
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Proof. Consider any α ∈ Ω1
A satisfying (ζp − 1)α = d log ζp. (For example, we can take α =∑p−1

m=1mζ
m
p d log ζp2 = p

ζp−1 d log ζp2 .) We do not yet know that such an element is p-torsion, but

pα is certainly p-torsion, since p d log ζp = d log 1 = 0. By Lemma 3.10, we know that the map
Ω1
A[p]→ Ω1

A/Zp
[p] is injective. Under this map, pα 7→ 0 ∈ Ω1

A/Zp
[p] by Corollary 3.8, so pα = 0 ∈ Ω1

A[p],

so α is p-torsion in Ω1
A.

The composition

A/pA
α→ Ω1

A[p]→ Ω1
A/Zp

[p]

is an isomorphism by Corollary 3.8. The second map in this composition is an isomorphism by
Lemma 3.10, and hence the first map is also an isomorphism.

Our example of α at the beginning of the proof was in the image of Ω1
A0
→ Ω1

A, which justifies the

final assertion of the corollary, i.e., we can find such an α which is in the image of Ω1
A0

. �

4. Proof of Theorem B and Corollary B.2

Most of the exactness asserted in Corollary B.2 holds in much more generality than the cases covered
by Corollary B.2, thanks to the following result of Hesselholt and Madsen. (We state the result for the
de Rham-Witt complex, whereas their result concerns the logarithmic de Rham-Witt complex. Notice
that the de Rham-Witt complex is a special case of the logarithmic de Rham-Witt complex, attained
by taking the trivial monoid M = {1} when specifying the log ring (A,M).)

Proposition 4.1 ((Hesselholt and Madsen, 2003, Proposition 3.2.6)). Let A denote a p-torsion-free
Z(p)-algebra. For a fixed integer n ≥ 1, recall the sequence (1.3) of Wn+1(A)-modules

0→ A
(−d,pn)−−−−−→ Ω1

A ⊕A
V n⊕dV n−−−−−−→Wn+1Ω

1
A

R−→WnΩ1
A → 0,

where the module structure is the same as in Corollary B.2. This sequence is exact at all slots, except

that possibly the segment A
(−d,pn)−−−−−→ Ω1

A ⊕ A
V n⊕dV n−−−−−−→ Wn+1Ω

1
A is not exact. Furthermore, we have

im
(
− d, pn

)
⊆ ker

(
V n ⊕ dV n

)
.

The statement of Theorem B is the inclusion ker
(
V n ⊕ dV n

)
⊆ im

(
− d, pn

)
.

The results in the previous section immediately imply Part (1) of Theorem B and Corollary B.2.
With a little more effort, we will use Part (1) to deduce Part (2) of Theorem B.

Proof of Theorem B and Corollary B.2, Part (1). It was shown in (Davis, 2019, Section 6) that the
sequence (1.3) is exact if A is a p-torsion-free perfectoid ring and, moreover, there exists a p-torsion
element α ∈ Ω1

A with annihilator equal to pA. Theorem 3.5 and Lemma 3.10 guarantee the existence
of such an element α. �

We now prove Part (2) of Theorem B and Corollary B.2. A version of this result for the log
de Rham-Witt complex can be found in (Hesselholt and Madsen, 2003, Proposition 3.2.6 and Proof of
Theorem 3.3.8).

The sequence (1.3) is exact for B = OCp by Part (1), because OCp is a p-torsion-free perfectoid ring.
To prove exactness for A = OK , where K is an algebraic extension of Qp, we will use the following
result.

Proposition 4.2. Let A denote a p-torsion-free Z(p)-algebra such that there exists a p-torsion-free
ring B ⊇ A with the following properties.

(1) The sequence (1.3) is exact for the ring B for all integers n ≥ 1.
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(2) For all integers n ≥ 1, we have A ∩ pnB = pnA.
(3) For all integers n ≥ 1, the natural map Ω1

A[pn]→ Ω1
B[pn] is injective.

Then the sequence (1.3) is also exact for the ring A for all integers n ≥ 1.

Proof. We need to show that if α ∈ Ω1
A and a ∈ A are such that V n(α) +dV n(a) = 0 ∈Wn+1Ω

1
A, then

there exists a0 ∈ A such that pna0 = a and −da0 = α. By exactness of the sequence for B, there exists
an element b0 ∈ B such that pnb0 = a and −db0 = α ∈ Ω1

B. By our assumption that A ∩ pnB = pnA,
we deduce that there at least exists a1 ∈ A such that pna1 = a; we will be finished after we show that
−da1 = α ∈ Ω1

A.
We know

V n(α) + dV n(a) = 0 ∈Wn+1Ω
1
A

and

V n(−da1) + dV n(pna1) = 0 ∈Wn+1Ω
1
A,

and because pna1 = a, we have

V n(α+ da1) = 0 ∈Wn+1Ω
1
A.

Applying Fn to both sides of this last equation, we have that α + da1 ∈ Ω1
A[pn]. We also have

V n(α + da1) = 0 ∈ Wn+1Ω
1
B. Because V n is injective on Ω1

B by Proposition 1.7, we have that
α + da1 = 0 ∈ Ω1

B. Thus the element α + da1 is simultaneously pn-torsion in Ω1
A and is also in the

kernel of Ω1
A → Ω1

B. By our assumption (3), we have that α+ da1 = 0 ∈ Ω1
A, as required. �

We can now prove Part (2) of Theorem B and Corollary B.2.

Proof of Theorem B and Corollary B.2, Part (2). Let A = OK and B = OCp . It suffices show that
the conditions of Proposition 4.2 are satisfied for this choice of A and B. Because B is a p-torsion-free
perfectoid ring, we saw at the beginning of this section that the sequence (1.3) is exact for B. We also
have OK ∩ pnOCp = pnOK (for example, by considering the valuations on OK and OCp).

We now verify Condition (3). First note that H−1(LA/Zp)
∼= 0 and H−1(LB/Zp)

∼= 0 by Proposi-
tion 2.6. Although our desired statement concerns absolute Kähler differentials, by Lemma 3.10, it
suffices to show that for every integer n ≥ 1, the map

Ω1
A/Zp

[pn]→ Ω1
B/Zp

[pn]

is injective. This was proved in Proposition 3.9. �

We end this section with an application of exactness from Corollary B.2. (Two other applications
were given in the introduction; see Proposition 1.5 and Proposition 1.7.) The following result gives
conditions on rings A→ B under which the induced map WnΩ1

A →WnΩ1
B is injective.

Corollary 4.3. Let A ⊆ B be p-torsion-free rings, and assume the following conditions are met.

(1) For all integers n ≥ 1, we have A ∩ pnB = pnA.
(2) For all integers n ≥ 1, the sequence (1.3) is exact for both A and B.
(3) The induced map Ω1

A → Ω1
B is injective.

Then for all integers n ≥ 1, the induced map

WnΩ1
A →WnΩ1

B

is injective.
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Proof. We prove this using induction on the level n. The base case n = 1 is precisely condition (3). Now
assume the result holds for some fixed value of n. Let hn : A→ Ω1

A⊕A be given by hn(a) = (−da, pna),
and similarly for the ring B. Consider the double-complex of Wn+1(A)-modules arising from the
sequences (1.3),

0 //
(
Ω1
B ⊕B

)
/hn(B) // Wn+1Ω

1
B

// WnΩ1
B

// 0

0 //
(
Ω1
A ⊕A

)
/hn(A) //

OO

Wn+1Ω
1
A

//

OO

WnΩ1
A

//

OO

0.

These are short exact sequences because we are assuming the sequence (1.3) is exact for both A and
B. From our induction hypothesis, we know the right-hand vertical map is injective. The horizontal
sequences are exact, so by the snake lemma, it suffices to show that the left-hand vertical map is
injective. Assume (ω, a) ∈ Ω1

A ⊕ A maps to an element (−db, pnb) ∈ Ω1
B ⊕ B. Thus the element a is

in A ∩ pnB, so there exists a0 ∈ A such that a = pna0 = pnb. Because B is p-torsion-free, we know
that in fact a0 = b. Thus the differentials ω,−da0 ∈ Ω1

A are equal in Ω1
B. Because the map Ω1

A → Ω1
B

is injective by our assumption, in fact ω = −da0 ∈ Ω1
A. Thus (ω, a) = 0 ∈

(
Ω1
A ⊕A

)
/hn(A), so the

left-hand vertical map is injective, as required. �

Example 4.4. These conditions of Corollary 4.3 are not so easy to verify in practice, but only because
it is difficult to verify the “base case” of level n = 1, i.e., that Ω1

A → Ω1
B is injective. (That is clearly a

necessary condition.) The conditions are satisfied, for example, for the rings A = OK , B = OL, when
Qp ⊆ K ⊆ L is a tower of algebraic extensions. In particular, Condition (3) in this case follows from
Proposition 3.9.

5. On p-power-torsion in the deRham-Witt complex

This section contains the main results of the paper, including the proof of Theorem C from the
introduction. These results are valid for a ring A satisfying the following assumptions.

Notation 5.1. Let A denote a p-torsion-free perfectoid ring which contains a sequence (1, ζp, ζp2 , . . .)

of pn-th roots of unity, compatible in the sense that ζp
pn+1 = ζpn for each integer n ≥ 1, and where ζp

is a primitive p-th root of unity in the sense that ζp satisfies 1 + ζp + · · ·+ ζp−1p = 0. We fix a choice

of such elements. Let zn := 1 + [ζpn ] + · · ·+ [ζp−1pn ] ∈Wn(A).

Remark 5.2. We list here a few observations related to Notation 5.1. First of all, for A as in No-
tation 5.1, the choices of ζpn for n ≥ 1 determine a preferred ring homomorphism A0 → A, where
A0 := Zp[ζp∞ ]∧. Because A is p-torsion-free, that map A0 → A is injective, and so A0 may be consid-
ered as a subring of A. Our formulation of “primitive” p-th root of unity is taken from (Bhatt et al.,
2018, Example 3.16); note that it is a strictly stronger requirement than requiring ζpp = 1 and ζp 6= 1.
For example, (ζp, 1) ∈ A0 × A0 satisfies this latter condition but not the condition of Notation 5.1.

Lastly, it is convenient to notice that zn =
[ζpn−1 ]−1
[ζpn ]−1

∈ Wn(A). This latter formulation is well-defined

because [ζpn ]− 1 is a non-zero-divisor in Wn(A), as can be seen by considering ghost components and
using that A is p-torsion-free.

This section concerns p-torsion in WnΩ1
A, for rings A satisfying Notation 5.1 above. Before consid-

ering p-torsion, we consider the image of multiplication by p; this image can be analyzed much more
easily and in more generality. We say a ring A is Witt-perfect (at p) if for every integer n ≥ 1, the
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Witt vector Frobenius F : Wn+1(A)→Wn(A) is surjective; see (Davis and Kedlaya, 2014, Section 5).
All perfectoid rings are Witt-perfect, by (Bhatt et al., 2018, Lemma 3.9(iv)), but Witt-perfect rings
are not required to be p-adically complete.

Proposition 5.3. Let A denote a Witt-perfect ring. (For example, as explained above, the ring A
could be a perfectoid ring.) Then for all integers n ≥ 1 and d ≥ 1, the multiplication-by-p map,

p : WnΩd
A →WnΩd

A,

is surjective.

Proof. Note that any element in WnΩd
A can be written as a sum of terms xdy1 · · · dyd, where x, yi ∈

Wn(A). Because A is Witt-perfect, we can find y′1 ∈ Wn+1(A) such that F (y′1) = y1. But then we
have

xdy1dy2 · · · dyd = xdF (y′1)dy2 · · · dyd = pxF (dy′1)dy2 · · · dyd.
This shows that every element in WnΩd

A is a multiple of p. �

Our arguments in this section analyze the structure of WnΩ1
A[p] using induction on the level, n. We

have W1Ω
1
A
∼= Ω1

A (for every Z(p)-algebra A, see (Hesselholt and Madsen, 2004, Theorem D and the
first sentence of the proof of Proposition 5.1.1)), and so the base case of our induction will rely heavily
on the results from Section 3. To relate levels n and n + 1, we use Corollary B.2, as in the proof of
the following result. Our original motivation for considering Theorem B was to enable these sorts of
arguments.

Proposition 5.4. Let A denote any p-torsion-free perfectoid ring and let r ≥ 1 be an integer.

(1) We have an exact sequence of Wn+1(A)-modules,

Wn+1Ω
1
A[pr]

R→WnΩ1
A[pr]→ A/pmin(r,n)A→ 0,

where the Wn+1(A)-module structure on A/pmin(r,n)A is induced by Fn and where the Wn+1(A)-
module structure on WnΩ1

A[pr] is induced by restriction.
(2) Set N r := ker

(
R : Wn+1Ω

1
A[pr]→WnΩ1

A[pr]
)
. We have an exact sequence of Wn+1(A)-

modules,

0→ Ω1
A[pr]

V n→ N r → pmax(r−n,0)A/prA→ 0,

where the Wn+1(A)-module structures on Ω1
A[pr] and on pmax(r−n,0)A/prA are induced by Fn.

Proof. Consider the double complex of Wn+1(A)-modules

0 // A
(−d,pn) // Ω1

A ⊕A
(V n,dV n) // Wn+1Ω

1
A

R // WnΩ1
A

// 0

0 // A
(−d,pn) //

−pr

OO

Ω1
A ⊕A

pr

OO

(V n,dV n) // Wn+1Ω
1
A

−pr
OO

R // WnΩ1
A

pr

OO

// 0.

Because the rows are exact by Corollary B.2, both spectral sequences associated to this double complex
must converge to 0.
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Consider the spectral sequence with E1 page attained by taking cohomology along the columns.
Using in particular Proposition 5.3, the E2 page of this spectral sequence has the following form:

0

++

pmax(r−n,0)A/prA

++

A/pmin(r,n)A

,,

0 0 0

0 0 ker(V n) N r/(imV n) WnΩ1
A[pr]/R(Wn+1Ω

1
A[pr]) 0.

All these d2 maps must be isomorphisms of Wn+1(A)-modules, and so the results follow. �

A consequence of the last proof is the following. A key observation is the similarity between the
exact sequence appearing in Proposition 5.5 and the exact sequence from Lemma 2.32.

Proposition 5.5. Let A denote a p-torsion-free perfectoid ring. For every integer n ≥ 1, we have an
exact sequence of Wn+1(A)-modules

0→ Tp(Ω
1
A)

V n−−→ Tp(Wn+1Ω
1
A)

R−→ Tp(WnΩ1
A)

g−→ A/pnA→ 0,

where the Wn+1(A)-module structure on Tp(WnΩ1
A) is induced by restriction, and where the Wn+1(A)-

module structures on Tp(Ω
1
A) and A/pnA are induced by Fn. (We do not specify the map g.)

Proof. We use the exact sequences from Proposition 5.4 in the case r ≥ n. The double complex used to
obtain the exact sequences for pr+1 maps to the double complex for pr via the identity on the top row
and p on the bottom row. This induces a map of spectral sequences and hence we get commutative
diagrams with exact rows:

0 // N r // Wn+1Ω
1
A[pr]

R // WnΩ1
A[pr] // A/pnA // 0

0 // N r+1

p

OO

// Wn+1Ω
1
A[pr+1]

p

OO

R // WnΩ1
A[pr+1]

p

OO

// A/pnA // 0

and

0 // Ω1
A[pr]

V n // N r // A/pnA // 0

0 // Ω1
A[pr+1]

p

OO

V n // N r+1

p

OO

// A/pnA //

p

OO

0.

From this last diagram we obtain an isomorphism

Tp(Ω
1
A)

V n−−→ lim←−
r

N r.

Furthermore, the maps Ω1
A[pr+1]

p−→ Ω1
A[pr] are surjective and the tower

· · · p−→ A/pnA
p−→ A/pnA

satisfies the Mittag-Leffler condition, so using the lim←−-lim←−
1 exact sequence (see for example (Weibel,

1994, Section 3.5 and Proposition 3.5.7)), we deduce that lim←−
1N r = 0.

Let Ir denote the image
im
(
R : Wn+1Ω

1
A[pr]→WnΩ1

A[pr]
)
.
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Because multiplication by p maps Wn+1Ω
1
A[pr+1] surjectively onto Wn+1Ω

1
A[pr] (using Proposition 5.3),

it follows immediately that multiplication by p maps Ir+1 surjectively onto Ir. We deduce for later
that lim←−

1
r
Ir = 0. These lim←−

1 computations will be used below.
We can split the first commutative diagram above into two commutative diagrams with exact rows:

0 // N r // Wn+1Ω
1
A[pr]

R // Ir // 0

0 // N r+1

p

OO

// Wn+1Ω
1
A[pr+1]

p

OO

R // Ir+1

p

OO

// 0

and
0 // Ir // WnΩ1

A[pr] // A/pnA // 0

0 // Ir+1

p

OO

// WnΩ1
A[pr+1]

p

OO

// A/pnA // 0.

Altogether we obtain two short exact sequences of inverse systems. Taking into account that lim←−
1
r
N r =

0 and lim←−
1
r
Ir = 0 as remarked above, again using the lim←−-lim←−

1 exact sequence, we obtain exact
sequences

0 // lim←−rN
r // TpWn+1Ω

1
A

R // lim←−r I
r // 0

and

0 // lim←−r I
r // TpWnΩ1

A

g // A/pnA // 0.

Now splicing these exact sequences together and using the isomorphism Tp(Ω
1
A)

V n−−→ lim←−rN
r, we obtain

the desired exact sequence

0 // Tp(Ω
1
A)

V n // TpWn+1Ω
1
A

R // TpWnΩ1
A

g // A/pnA // 0.

�

Lemma 5.6. Let A denote any p-torsion-free Z(p)-algebra for which the sequence (1.3) is exact and

let n ≥ 1 be an integer. We have an inclusion Wn+1Ω
1
A[p] ∩ kerR ⊆ kerF. In particular, if A is a

p-torsion-free perfectoid ring and if x, y ∈ Tp(Wn+1Ω
1
A) are such that R(x) ≡ R(y) mod pTp(WnΩ1

A),
then F (x) ≡ F (y) mod pTp(WnΩ1

A).

Proof. Let x ∈ Wn+1Ω
1
A[p] ∩ kerR. The fact that x ∈ kerR implies, using exactness of (1.3), that

there exist α ∈ Ω1
A and a ∈ A such that

x = V n(α) + dV n(a).

To prove Wn+1Ω
1
A[p] ∩ kerR ⊆ kerF , we wish to show that if px = 0, then F (x) = 0. Using standard

identities within the de Rham-Witt complex, we wish to show that if px = 0, then V n−1(pα) +
dV n−1(a) = 0. We compute

0 = px = V n(pα) + dV n(pa) = V n(pα) + V
(
dV n−1(a)

)
= V

(
V n−1(pα) + dV n−1(a)

)
.

Because V is injective by Proposition 1.7,

0 = V n−1(pα) + dV n−1(a).
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This proves the first assertion. The second assertion about Tate modules follows directly because, as
in the proof of Theorem 3.5, we have Tp(Wn+1Ω

1
A)/pTp(Wn+1Ω

1
A) ∼= Wn+1Ω

1
A[p]. �

We will soon prove that Tp(WnΩ1
A) is a free Wn(A)-module of rank one for rings A as in Notation 5.1.

It turns out there is essentially no difference between proving this and proving that the p-torsion
WnΩ1

A[p] is a free Wn(A)/pWn(A)-module of rank one. This is the content of the following lemma.

Lemma 5.7. Let A be a p-torsion-free perfectoid ring, and let n ≥ 1 be an integer. If α ∈ Tp(WnΩ1
A)

freely generates Tp(WnΩ1
A) as a Wn(A)-module, then the projection of α to WnΩ1

A[pr], written α(r),
freely generates WnΩ1

A[pr] as a Wn(A)/prWn(A)-module. Conversely, if α ∈ Tp(WnΩ1
A) is such that

α(1) freely generates WnΩ1
A[p] as a Wn(A)/pWn(A)-module, then α freely generates Tp(WnΩ1

A) as a
Wn(A)-module.

Proof. The first statement follows from the short exact sequence

0→ Tp(WnΩ1
A)

pr−→ Tp(WnΩ1
A) −→WnΩ1

A[pr]→ 0.

(See the proof of Theorem 3.5.) The second statement follows by showing, level-by-level, that multi-

plication by α(r) induces an isomorphism of Wn(A)/prWn(A)-modules Wn(A)/prWn(A)→WnΩ1
A[pr],

using induction and the following diagram:

0 // WnΩ1
A[p] // WnΩ1

A[pr]
p // WnΩ1

A[pr−1] // 0

0 // Wn(A)/pWn(A)

α(1)

OO

pr−1

// Wn(A)/prWn(A) //

α(r)

OO

Wn(A)/pr−1Wn(A)

α(r−1)

OO

// 0.

(Notice that Wn(A) is p-torsion-free because A is p-torsion-free, and so the lower-left map given by
multiplication by pr−1 is indeed injective.) Using that Wn(A) is p-adically complete (Lemma 2.24), it
follows that multiplication by α induces an isomorphism of Wn(A)-modules

lim←−
r

Wn(A)/prWn(A)
α−→ Tp(WnΩ1

A).

This completes the proof of the second statement. �

Theorem 5.8. Let A be a ring as in Notation 5.1. For every integer n ≥ 1, the p-adic Tate module
Tp(WnΩ1

A) is a free Wn(A)-module of rank one. Furthermore, there exists αn ∈ Tp(WnΩ1
A) which is a

generator and such that the projection of αn to WnΩ1
A[p], written α

(1)
n , satisfies

([ζpn ]− 1)α(1)
n = d log[ζp] ∈WnΩ1

A[p].

Proof. We prove a stronger result using induction on n. Let A0 = Zp[ζp∞ ]∧.

• For every integer n ≥ 1, there exists α0,n ∈ Tp(WnΩ1
A0

) such that

([ζpn ]− 1)α
(1)
0,n = d log[ζp] ∈WnΩ1

A0
[p],

and such that, under the map induced by functoriality, Tp(WnΩ1
A0

) → Tp(WnΩ1
A), the image

of α0,n freely generates Tp(WnΩ1
A) as a Wn(A)-module. We write αn for this generator of

Tp(WnΩ1
A).
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We prove the base case. Because multiplication by p is surjective on Ω1
A0

, given any element x ∈
Ω1
A0

[p], there exists α0,1 ∈ Tp(Ω1
A0

) with α
(1)
0,1 = x. Thus, by Corollary 3.11, there exists α0,1 ∈ Tp(Ω1

A0
)

satifying all the listed properties, with the exception that we do not yet know its image α1 ∈ Tp(Ω1
A)

is a generator for Tp(Ω
1
A) as an A-module. As yet, we only know (again by Corollary 3.11), that α

(1)
1 is

a generator for the p-torsion. But then α1 is a generator for the Tate module Tp(Ω
1
A) by Lemma 5.7.

Now inductively assume the result has been proved for some fixed value of n, and let α0,n and αn
denote the corresponding elements. Considering the Wn+1(A0)-module structure on the terms in the
exact sequence from Proposition 5.5, we see that g(R(zn+1)α0,n) = Fn(zn+1)g(α0,n) = 0 ∈ A0/p

nA0,
so there must exist α′0,n+1 ∈ Tp(Wn+1Ω

1
A0

) such that R(α′0,n+1) = R(zn+1)α0,n. Fix one such element

α′0,n+1 and its image α′n+1 ∈ Tp(Wn+1Ω
1
A). We have the following commutative diagram:

Tp(Wn+1Ω
1
A0

) //

R
��

Tp(Wn+1Ω
1
A)

R
��

Tp(WnΩ1
A0

) // Tp(WnΩ1
A)

α′0,n+1
� //

_

��

α′n+1_

��
R(zn+1)α0,n

� // R(zn+1)αn

In particular, R(α′n+1) = R(zn+1)αn.
By patching together the exact sequences from Proposition 5.5 and Lemma 2.32, we form a com-

mutative diagram in which the rows are exact sequences of Wn+1(A)-modules:

(5.9)

0 // Tp(Ω
1
A)

V n// Tp(Wn+1Ω
1
A)

R // Tp(WnΩ1
A)

g // A/pnA // 0

0 // A

Fn(α′n+1)

OO

V n // Wn+1(A)

α′n+1

OO

Rzn+1 // Wn(A)

αn

OO

Fn // A/pnA

?

OO

// 0

By our induction hypothesis, the vertical map given by αn is an isomorphism. There exists a unique
vertical map as in the dashed arrow. By a diagram chase, that vertical map is surjective, and viewing
it as a map of A/pnA-modules, we see that it is also an isomorphism.

Notice that ([ζpn+1 ]− 1)zn+1 = [ζpn ]− 1, and so

R(d log[ζp]) = R(([ζpn+1 ]− 1)α
′ (1)
0,n+1) ∈WnΩ1

A0
[p].

Then by Lemma 5.6, we have

F (d log[ζp]) = F
(

([ζpn+1 ]− 1)α
′ (1)
0,n+1

)
∈WnΩ1

A0
[p],

and therefore, applying Fn−1 to both sides, we have

d log ζp = (ζp − 1)Fn
(
α
′ (1)
0,n+1

)
∈ Ω1

A0
[p],

and by functoriality, we have

d log ζp = (ζp − 1)Fn
(
α
′ (1)
n+1

)
∈ Ω1

A[p].

Again using Corollary 3.11, we know that Fn(α
′ (1)
n+1) freely generates Ω1

A[p] as an A/pA-module, and

hence Fn(α′n+1) freely generates Tp(Ω
1
A) as an A-module by Lemma 5.7. Thus the left-hand vertical

map in the diagram (5.9) is also an isomorphism. It follows by the five lemma that the remaining
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vertical map, given by multiplication by α′n+1, is also an isomorphism. This shows that Tp(Wn+1Ω
1
A)

is a free Wn+1(A)-module of rank one. We must still construct the element α0,n+1 from α′0,n+1.

We recall that we have elements α0,n and α′0,n+1 satisfying

([ζpn ]− 1)α
(1)
0,n = d log[ζp] ∈WnΩ1

A0
[p].

and

R(α′0,n+1) = R(zn+1)α0,n.

We claim that there exists a unit u ∈Wn+1(A0)/pWn+1(A0) such that

([ζpn+1 ]− 1)uα
′ (1)
0,n+1 = d log[ζp] ∈Wn+1Ω

1
A0

[p].

Because d log[ζp] is p-torsion and because α
′ (1)
0,n+1 freely generates the p-torsion inWn+1Ω

1
A0

by Lemma 5.7,

we know there exists a (unique) element x ∈Wn+1(A0)/pWn+1(A0) such that d log[ζp] = xα
′ (1)
0,n+1. Let

J := ker

(
Wn+1(A0)/pWn+1(A0)

Rzn+1−→ Wn(A0)/pWn(A0)

)
.

Note that J ⊆Wn+1(A0)/pWn+1(A0) is an ideal. Because

R(xα
′ (1)
0,n+1) = R(([ζpn+1 ]− 1)α

′ (1)
0,n+1) = d log[ζp] ∈WnΩ1

A0
[p],

we have
x ≡ ([ζpn+1 ]− 1) mod J.

These elements x and [ζpn+1 ]− 1 are not themselves in the ideal J , because d log[ζp] 6= 0 ∈ WnΩ1
A0

[p]

(the element d log[ζp] is non-zero because its restriction to W1Ω
1
A0

is non-zero by Corollary 3.8). Thus,
by Lemma 2.27 (which applies because we are considering the subring A0 ⊆ A), there exists a unit
u ∈ Wn+1(A0)/pWn+1(A0) such that x = u([ζpn+1 ] − 1). Write u also for a unit u ∈ Wn+1(A0)
which lifts u ∈ Wn+1(A0)/pWn+1(A0); any lift to Wn+1(A0) is in fact a unit by Lemma 2.28. Let
α0,n+1 := uα′0,n+1 ∈ Tp(Wn+1Ω

1
A0

) and write αn+1 := uα′n+1 ∈ Tp(Wn+1Ω
1
A) for its image. Because

α′n+1 freely generates Tp(Wn+1Ω
1
A), the same is true for this unit multiple αn+1, and by construction

it is the image of an element α0,n+1 satisfying ([ζpn+1 ] − 1)α
(1)
0,n+1 = d log[ζp]. This completes the

induction. �

We proved in Theorem 5.8 the existence of a generator of Tp(WnΩ1
A) as a free rank one Wn(A)-

module. The next result gives a condition for identifying generators.

Corollary 5.10. Let A be a ring as in Notation 5.1 and let n ≥ 1 be an integer. Let αn ∈ Tp(WnΩ1
A)

be any element satisfying ([ζpn ] − 1)α
(1)
n = d log[ζp] ∈ WnΩ1

A[p]. Then αn freely generates Tp(WnΩ1
A)

as a Wn(A)-module.

Proof. Fix α ∈ Tp(WnΩ1
A) such that ([ζpn ] − 1)α(1) = d log[ζp] ∈ WnΩ1

A[p] and such that α freely
generates Tp(WnΩ1

A) as a Wn(A)-module; such an element α exists by Theorem 5.8. Now let αn be as
in the statement of the corollary. There exists a unique y ∈ Wn(A) such that αn = yα, and we know
that

([ζpn ]− 1)yα ≡ ([ζpn ]− 1)α mod pTp(WnΩ1
A).

Therefore
([ζpn ]− 1)y ≡ ([ζpn ]− 1) mod pWn(A).
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So y projects to a unit in Wn(A)/pWn(A) by Lemma 2.29. Thus y is a unit in Wn(A) by Lemma 2.28.
Because α was a generator, then αn = yα is also a generator. This completes the proof. �

We also have the following consequence.

Corollary 5.11. Let A be a ring as in Notation 5.1, let A0 = Zp[ζp∞ ]∧, and let n ≥ 1 be an
integer. The natural map induced by functoriality Tp(WnΩ1

A0
) → Tp(WnΩ1

A) induces an isomorphism
of Wn(A)-modules

Wn(A)⊗Wn(A0) Tp(WnΩ1
A0

)
∼−→ Tp(WnΩ1

A).

Proof. Let α0,n ∈ Tp(WnΩ1
A0

) be as in Corollary 5.10 (such an element exists by Theorem 5.8). The

mapWn(A)⊗Wn(A0)Wn(A0)→Wn(A)⊗Wn(A0)Tp(WnΩ1
A0

) sending x⊗y 7→ x⊗yα0,n is an isomorphism.
The composition

Wn(A)→Wn(A)⊗Wn(A0) Wn(A0)→Wn(A)⊗Wn(A0) Tp(WnΩ1
A0

)→ Tp(WnΩ1
A)

is an isomorphism by Corollary 5.10, and hence the result follows. �

The elements produced in Theorem 5.8 are not canonical. We next describe canonical generators.
Our description of these generators is modeled after Hesselholt’s (Hesselholt, 2006, Theorem B). For
rings A as in Notation 5.1, there is an obvious element in Tp(WnΩ1

A); namely, for the component

in WnΩ1
A[pr], we take the element d log[ζpr ]. We refer to the corresponding element as d log[ζ

(∞)
p ] ∈

Tp(WnΩ1
A). Notice that our way of writing this element does not indicate the level n. These elements,

for various n, are all compatible under the restriction map (as well as the Frobenius map). This
compatibility under restriction is the key observation to identifying a canonical generator of Tp(WnΩ1

A).

This generator α
(∞)
n will satisfy

([ζpn ]− 1)α(∞)
n = d log[ζ(∞)

p ] ∈ Tp(WnΩ1
A);

notice that this is similar to the condition of Theorem 5.8, but the condition of Theorem 5.8 was only

a condition modulo p. Proving the existence of such an element α
(∞)
n seems rather delicate and will

require several preliminary results.

Lemma 5.12. Fix an integer n ≥ 1. Let A and zn+1 be as in Notation 5.1. We have that β ∈
Tp(WnΩ1

A) is in the image of the restriction map

R : Tp(Wn+1Ω
1
A)→ Tp(WnΩ1

A),

if and only if there exists α ∈ Tp(WnΩ1
A) such that R(zn+1)α = β.

Proof. The “if” direction was shown in the proof of Theorem 5.8; it was used to produce the element
α′0,n+1. We now prove the “only if” direction. We know Tp(WnΩ1

A) ∼= Wn(A) as Wn(A)-modules or,

equivalently, as Wn+1(A)-modules via restriction. Fix one such isomorphism, and let αn ∈ Tp(WnΩ1
A)

correspond to 1 ∈ Wn(A). Let g : Tp(WnΩ1
A) → A/pnA be the Wn+1(A)-module map indicated in

Proposition 5.5. Because g is surjective, we know g(αn) is a unit in A/pnA.
Return now to our element β ∈ Tp(WnΩ1

A) which is in the image of restriction. We have β = R(x)αn
for some x ∈ Wn+1(A). Because β is in the image of restriction, by exactness of the sequence from
Proposition 5.5, we have g(β) = 0 ∈ A/pnA. Thus, considering the Wn+1(A)-module structure, we
find

g (R(x)αn) = Fn(x)g(αn) = 0 ∈ A/pnA.
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We have already observed that g(αn) is a unit in A/pnA, so Fn(x) = 0 ∈ A/pnA. By Lemma 2.32,
this means precisely that R(x) = R(zn+1y) for some y ∈Wn+1(A). For our desired element α, we may
then take R(y)αn. �

Lemma 5.13. Let A denote a ring as in Notation 5.1. Fix integers n, s ≥ 1. If β ∈ Tp(WnΩ1
A) is in

the image of the restriction map

Rs : Tp(Wn+sΩ
1
A)→ Tp(WnΩ1

A),

then there exists α ∈ Tp(WnΩ1
A) such that

Rs(zn+s) · · ·R2(zn+2)R(zn+1)α = β.

Proof. We prove this result using induction on s. The base case s = 1 is precisely Lemma 5.12. Now
assume the result has been shown for some fixed value of s, i.e., assume the claimed result holds for
that value of s and for all values of n ≥ 1. We will prove that the claimed result holds also for s+ 1
and all values of n ≥ 1.

We know that for all integers n ≥ 1, there exists αn ∈ Tp(WnΩ1
A) such that αn freely generates

Tp(WnΩ1
A) as a Wn(A)-module. It clearly suffices to show

Rs+1(αn+s+1) = Rs+1(zn+s+1) · · ·R2(zn+2)R(zn+1)α

for some α ∈ Tp(WnΩ1
A). By the induction hypothesis (applied to the values s and n+ 1), we know

Rs(αn+s+1) = Rs(zn+s+1) · · ·R(zn+2)α
′

for some α′ ∈ Tp(Wn+1Ω
1
A). We also know

R(α′) = R(zn+1)α

for some α ∈ Tp(WnΩ1
A) by Lemma 5.12. The desired result follows immediately from the two previous

displayed equations. �

Proposition 5.14. Let A denote a ring as in Notation 5.1. Fix an integer n ≥ 1. There exists
α ∈ Tp(WnΩ1

A) such that

([ζpn ]− 1)α = d log[ζ(∞)
p ].

Proof. By functoriality, it suffices to prove this result for the ring A0 = Zp[ζp∞ ]∧. Choose αn ∈
Tp(WnΩ1

A0
) which freely generates Tp(WnΩ1

A0
) as a Wn(A0)-module. Then there exists some unique

x ∈Wn(A0) such that

xαn = d log[ζ(∞)
p ].

By Lemma 2.31, it suffices to show, for every integer s ≥ 1, that x is a multiple of
[ζpn ]−1

[ζpn+s ]−1
. Notice

that for every integer s ≥ 1, we have

Rs
(

d log[ζ(∞)
p ]

)
= d log[ζ(∞)

p ],

where the d log[ζ
(∞)
p ] on the left is considered as an element in Tp(Wn+sΩ

1
A0

), and where the d log[ζ
(∞)
p ]

on the right is considered as an element of Tp(WnΩ1
A0

). Thus our desired result follows immediately
from Lemma 5.13 and the fact that

Rs(zn+s) · · ·R2(zn+2)R(zn+1) =
[ζpn ]− 1

[ζpn+s ]− 1
∈Wn(A0).

This completes the proof. �
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The following result is one of the most important results of this section. Its proof contains no
new ideas; it simply requires assembling the results attained earlier. This result should be compared
to (Hesselholt, 2006, Theorem B); notice that Hesselholt’s proof uses techniques from topology (see
especially (Hesselholt, 2006, Section 3)).

Theorem 5.15. Let A denote a ring as in Notation 5.1. For each integer n ≥ 1, there exists a

unique element α
(∞)
n ∈ Tp(WnΩ1

A) with ([ζpn ] − 1)α
(∞)
n = d log[ζ

(∞)
p ]. This element freely gener-

ates Tp(WnΩ1
A) as a Wn(A)-module. For each n ≥ 1, these elements satisfy F (α

(∞)
n+1) = α

(∞)
n and

R(α
(∞)
n+1) = R(zn+1)α

(∞)
n .

Proof. We first claim that if α and α′ ∈ Tp(WnΩ1
A) are such that

([ζpn ]− 1)α = d log[ζ(∞)
p ] and ([ζpn ]− 1)α′ = d log[ζ(∞)

p ],

then α = α′. Choose an isomorphism of Wn(A)-modules Tp(WnΩ1
A) ∼= Wn(A); this is possible by

Theorem 5.8. Let x, y ∈Wn(A) correspond to α, α′, respectively, under our chosen isomorphism. Our
assumption implies

([ζpn ]− 1)x = ([ζpn ]− 1)y ∈Wn(A),

but we then find x = y because [ζpn ] − 1 is not a zero divisor in Wn(A). We already know such an
element α ∈ Tp(WnΩ1

A) exists by Proposition 5.14, and now that we know it is unique, we name it

α
(∞)
n . It freely generates Tp(WnΩ1

A) as a Wn(A)-module by Corollary 5.10.
It remains to check the stated compatibilities under Frobenius and restriction. Applying Frobenius

to both sides of
([ζpn+1 ]− 1)α

(∞)
n+1 = d log[ζ(∞)

p ],

we find that F (α
(∞)
n+1) satisfies

F ([ζpn+1 ]− 1)F (α
(∞)
n+1) = ([ζpn ]− 1)F (α

(∞)
n+1) = d log[ζ(∞)

p ].

Thus by uniqueness, we have F (α
(∞)
n+1) = α

(∞)
n .

Similarly, applying restriction to both sides of

([ζpn+1 ]− 1)α
(∞)
n+1 = d log[ζ(∞)

p ] ∈ Tp(Wn+1Ω
1
A),

we find that R(α
(∞)
n+1) satisfies

([ζpn+1 ]− 1)R(α
(∞)
n+1) = d log[ζ(∞)

p ] ∈ Tp(WnΩ1
A).

On the other hand, α
(∞)
n satisfies

([ζpn ]− 1)α(∞)
n = d log[ζ(∞)

p ],

so

([ζpn+1 ]− 1)R(zn+1)α
(∞)
n = d log[ζ(∞)

p ].

The fact that R(α
(∞)
n+1) = R(zn+1)α

(∞)
n follows because [ζpn+1 ]− 1 is not a zero divisor in Wn(A). �

We next record a few easy consequences of Theorem 5.8 and Theorem 5.15.

Corollary 5.16. Let A denote a ring as in Notation 5.1. Then for all integers n, r ≥ 1, we have that
WnΩ1

A[pr] is a free Wn(A)/prWn(A)-module of rank one
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Proof. This follows immediately from Theorem 5.8 and Lemma 5.7. �

Corollary 5.17. Let A denote a ring as in Notation 5.1 and let r, n ≥ 1 be integers. The Frobe-
nius map F : Wn+1Ω

1
A[pr] → WnΩ1

A[pr] is surjective. Also the Frobenius map F : Tp(Wn+1Ω
1
A) →

Tp(WnΩ1
A) is surjective.

Proof. These follow immediately from the fact that F : Wn+1(A)→Wn(A) is surjective, and the fact
from Proposition 5.15 that Frobenius maps a generator of Tp(Wn+1Ω

1
A) to a generator of Tp(WnΩ1

A).
�

The following corollary is analogous to (Hesselholt, 2006, Proposition 2.4.2); see also the para-
graph immediately preceding that proposition. The proof of (Hesselholt, 2006, Proposition 2.4.2) uses
topology.

Corollary 5.18. Let A denote a ring as in Notation 5.1. Consider lim←−F Tp
(
WnΩ1

A

)
as a W (A[)-

module via the ring isomorphism lim←−F Wn(A) ∼= W (A[) from Lemma 2.16. For each integer n ≥ 1,

let α
(∞)
n ∈ Tp(WnΩ1

A) be the element specified in Theorem 5.15, and let α ∈ lim←−F Tp
(
WnΩ1

A

)
be the

sequence of elements

α = (α
(∞)
1 , α

(∞)
2 , . . .) ∈ lim←−

F

Tp
(
WnΩ1

A

)
.

Let ε = (1, ζp, ζp2 , . . .) ∈ A[. The following properties hold.

(1) The element α is the unique element satisfying ([ε]− 1)α = (d log[ζ
(∞)
p ]).

(2) The W (A[)-module lim←−F Tp
(
WnΩ1

A

)
is a free module of rank one, generated by α.

Proof. Notice that θ̃r([ε]) = [ζpr ] ∈ Wr(A). The stated properties follow immediately from Theo-
rem 5.15. �

Corollary 5.19. Let A denote a ring as in Notation 5.1 and let r ≥ 1 denote an integer. The
projection map

lim←−
F

Tp
(
WnΩ1

A

)
→ Tp

(
WrΩ

1
A

)
is a surjective map of W (A[)-modules, where the W (A[)-module structure on Tp

(
WrΩ

1
A

)
is defined

via θ̃r.

Proof. This follows immediately from Corollary 5.18 and the fact that, for each integer r ≥ 1, the

projection map θ̃r : W (A[) ∼= lim←−F Wn(A)→Wr(A) is surjective. �

Let (x1, x2, . . .) denote an arbitrary element in lim←−F Tp(WnΩ1
A), where for each integer n ≥ 1, we

have xn ∈ Tp(WnΩ1
A). Let R : Tp(Wn+1Ω

1
A) → Tp(WnΩ1

A) denote the restriction map. The sequence
(R(x2), R(x3), . . .) is still Frobenius-compatible, and we again use R to denote the corresponding map
(x1, x2, . . .) 7→ (R(x2), R(x3), . . .). Over the next few results, we seek to describe the elements which
are fixed by this map R.

The map R is not a W (A[)-module map for the module structure defined in Corollary 5.18, but we
do have the following structure.

Lemma 5.20. Let A denote a ring as in Notation 5.1. Let R denote the map

R : lim←−
F

Tp(WnΩ1
A)→ lim←−

F

Tp(WnΩ1
A),
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defined by sending (x1, x2, x3, . . .) 7→ (R(x2), R(x3), . . .). Let ϕ : W (A[) → W (A[) denote the Witt
vector Frobenius ring automorphism, and let ϕ−1 denote its inverse. For an arbitrary element t ∈
W (A[) and x ∈ lim←−F Tp(WnΩ1

A), define the product tx ∈ lim←−F Tp(WnΩ1
A) using the isomorphism

W (A[) ∼= lim←−F Wn(A). We have

R(tx) = ϕ−1(t)R(x).

Proof. Let t ∈W (A[) correspond to (t1, t2, . . .) ∈ lim←−F Wn(A) under the isomorphism from Lemma 2.16.
Then

R(tx) = (R(t2x2), R(t3, x3), . . .) =
(
R(t2), R(t3), . . .

)
R(x),

so we reduce to checking that (R(t2), R(t3), . . .) ∈ lim←−F Wn(A) corresponds to ϕ−1(t) ∈ W (A[). For

this last claim, see the last sentence of (Bhatt et al., 2018, Lemma 3.2). �

Proposition 5.21. Let A denote a ring as in Notation 5.1. Let α ∈ lim←−F Tp(WnΩ1
A) denote the

W (A[)-module generator described in Corollary 5.18. Let R : lim←−F Tp(WnΩ1
A) → lim←−F Tp(WnΩ1

A)

denote the map described in Lemma 5.20. Finally, let ε ∈ A[ denote the element (1, ζp, ζp2 , . . .). We
have the following equality of Zp-modules,{

x ∈ lim←−
F

Tp(WnΩ1
A) : R(x) = x

}
=

{
yα ∈ lim←−

F

Tp(WnΩ1
A) : y ∈W (A[) satisfies ϕ(y) =

[εp]− 1

[ε]− 1
y

}
.

Proof. We first find an element t ∈W (A[) such that R(α) = tα. By definition of α, using the notation
of Corollary 5.18, we have

R(α) = (R(α
(∞)
2 ), R(α

(∞)
3 ), . . .) ∈ lim←−

F

Tp(WnΩ1
A)

= (R(z2)α
(∞)
1 , R(z3)α

(∞)
2 , . . .) ∈ lim←−

F

Tp(WnΩ1
A)

= (
[ζp]− 1

[ζp2 ]− 1
α
(∞)
1 ,

[ζp2 ]− 1

[ζp3 ]− 1
α
(∞)
2 , . . .) ∈ lim←−

F

Tp(WnΩ1
A)

=

(
[ε]− 1

[ε1/p]− 1

)
α ∈ lim←−

F

Tp(WnΩ1
A).

Using this preliminary calculation, it is easy to complete the proof. Namely, each element x ∈
lim←−F Tp(WnΩ1

A) can be written uniquely in the form yα for some y ∈ W (A[). We have R(x) = x if
and only if

ϕ−1(y)

(
[ε]− 1

[ε1/p]− 1

)
α = yα,

where we have used Lemma 5.20 to express R(yα) in terms of R(α). Because α is a free generator
and because ϕ is an automorphism, this last equality holds if and only if

y

(
[εp]− 1

[ε]− 1

)
= ϕ(y),

as claimed. �

The following result gives a concrete description of the Zp-module {x ∈ lim←−F Tp(WnΩ1
A) : R(x) = x},

but we are not able to find a similar result in the same generality as Notation 5.1, so in the following
proposition, in addition to the assumptions of Notation 5.1, we assume the ring A is an integral
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domain. The exact same result certainly does not hold in general; for example, it will not hold for
A = Zp[ζp∞ ]∧ ×Zp[ζp∞ ]∧, where the Zp-module in question will be isomorphic to Zp ×Zp. The proof
of Proposition 5.22 is based on (Hesselholt, 2006, Corollary 1.3.3).

Proposition 5.22. Let A be as in Notation 5.1, and assume furthermore that A is an integral domain.
The elements y ∈W (A[) satisfying the equation

ϕ(y) =
[εp]− 1

[ε]− 1
y

are precisely the elements of the form c([ε]− 1) for c ∈ Zp. In other words, the Zp-module{
x ∈ lim←−

F

Tp(WnΩ1
A) : R(x) = x

}
is a free Zp-module of rank one, generated by

(d log[ζ(∞)
p ],d log[ζ(∞)

p ], . . .) ∈ lim←−
F

Tp(WnΩ1
A),

where the element d log[ζ
(∞)
p ] ∈ Tp(WnΩ1

A) was defined in the paragraph after Corollary 5.10.

Proof. Recall that for a characteristic p ring R, the Witt vector Frobenius map Wn+1(R) → Wn(R)
induces the map ϕ : Wn(R) → Wn(R) which sends (r1, r2, . . . , rn) 7→ (rp1, r

p
2, . . . , r

p
n). It suffices to

show, for every integer n ≥ 1, that{
y ∈Wn(A[) : ϕ(y) =

[εp]− 1

[ε]− 1
y

}
=
{
x([ε]− 1) ∈Wn(A[) : x ∈Wn(Fp)

}
.

The inclusion ⊇ is obvious, because ϕ(x) = x for all x ∈ Wn(Fp). We prove equality using induction
on n ≥ 1. In the base case, n = 1, we consider{

y ∈ A[ : yp − εp − 1

ε− 1
y = 0

}
.

Notice that, because we assumed that A was an integral domain, we know further that A[ is an
integral domain (for example, this is clear by considering the isomorphism of multiplicative monoids

A[ ∼= lim←−x→xp A). We already have p solutions to the above equation, and because A[ is an integral
domain, there can be no other solutions. This proves the base case.

Now assume the equality is known for the case of some fixed n ≥ 1, and assume

y ∈Wn+1(A
[) is such that ϕ(y) =

[εp]− 1

[ε]− 1
y.

By our induction hypothesis, we know that

y = x([ε]− 1) + V n(z), for some x ∈Wn+1(Fp), z ∈ A[.

We are finished if we show that there exists a ∈ Fp such that V n(z) = ([ε] − 1)V n(a) ∈ Wn+1(A
[).

Using our assumption on y, we find

ϕ(V n(z)) =
[εp]− 1

[ε]− 1
V n(z) ∈Wn+1(A

[).

Thus

zp =
εp
n+1 − 1

εpn − 1
z ∈ A[.
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The values z = a(εp
n − 1) for a ∈ Fp provide p solutions, and hence all solutions (again using that A[

is an integral domain). This completes the proof. �

Remark 5.23. Proposition 5.22 can be generalized. Let A be a ring as in Notation 5.1. Using algebraic
K-theory and topological cyclic homology, it follows from (Clausen et al., 2018, Corollary 6.9) and
(Anschütz and Le Bras, 2020, Corollary 6.5) that the Zp-module{

x ∈ lim←−
F

Tp(WnΩ1
A) : R(x) = x

}
is isomorphic to the p-adic Tate module Tp(A

×). We do not know an algebraic proof of this fact. More
details are discussed in Remark 8.6 below.

6. Higher degrees

The analysis is easier in degrees d ≥ 2. The main result in this section, Proposition 6.3, is modeled
after (Hesselholt, 2006, Proposition 2.2.1).

Lemma 6.1. Assume that R is a ring, that M is an R-module, and that r ∈ R is such that multipli-
cation by r is surjective on M . Then for every integer d ≥ 2, multiplication by r is an isomorphism
on the exterior power ΛdRM .

Proof. Let M [r∞] denote the submodule of M consisting of all elements which are annihilated by a
power of r. We have a short exact sequence of R-modules

0→M [r∞]→M → R[1/r]⊗RM → 0.

For any integer n ≥ 1, let TnR(M) := M ⊗R M ⊗R · · · ⊗R M , with n total M terms. Because tensor
product is right exact, we obtain an exact sequence of R-modules

M [r∞]⊗R T d−1R (M)→M ⊗R T d−1R (M)→ R[1/r]⊗RM ⊗R T d−1R (M)→ 0.

On the other hand, the left-hand term is zero because multiplication by r is surjective on M . This
shows that multiplication by r is an isomorphism on the R-module T dR(M). It follows immediately that

multiplication by r is surjective on the exterior power ΛdRM . It remains to show that multiplication

by r is injective on ΛdRM .

Assume
∑
rm1i ∧ · · · ∧mdi = 0 ∈ ΛdRM . We must show that

∑
m1i ∧ · · · ∧mdi = 0 ∈ ΛdRM . By

definition of ΛdRM (see for example (The Stacks Project Authors, 2017, Tag 00DM)), we know that∑
rm1i ⊗ · · · ⊗mdi =

∑
aj · xj ⊗ xj · bj ∈ T dR(M),

for some suitable aj , bj ∈ TR(M) and xj ∈M . Choose yj such that ryj = xj . Then we have∑
rm1i ⊗ · · · ⊗mdi =

∑
aj · ryj ⊗ ryj · bj ∈ T dR(M),

Because, as we saw above, multiplication by r is injective on T dR(M), we have∑
m1i ⊗ · · · ⊗mdi =

∑
raj · yj ⊗ yj · bj ∈ T dR(M),

Thus
∑
m1i ∧ · · · ∧mdi = 0 ∈ ΛdRM , as required. �

Corollary 6.2. Let A denote a p-torsion-free perfectoid ring and let d ≥ 2 be an integer. The

multiplication-by-p map Ωd
A

p→ Ωd
A is an isomorphism of A-modules.

Proof. Because multiplication by p is surjective on Ω1
A, this follows immediately from Lemma 6.1. �
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Proposition 6.3. Let A denote a p-torsion-free perfectoid ring and let d ≥ 2 and n ≥ 1 be integers.
There is a short exact sequence of Wn+1(A)-modules

0→ Ωd
A
V n→ Wn+1Ω

d
A →WnΩd

A → 0,

where the Wn+1(A)-module structure on Ωd
A is defined via Fn and where the Wn+1(A)-module structure

on WnΩd
A is defined via restriction.

Proof. By (Hesselholt and Madsen, 2003, Proposition 3.2.6), we always have an exact sequence

Ωd
A ⊕ Ωd−1

A
V n+dV n−→ Wn+1Ω

d
A →WnΩd

A → 0,

so it suffices to show that the map V n : Ωd
A →Wn+1Ω

d
A is injective, and that the image of V n : Ωd

A →
Wn+1Ω

d
A is the same as the image of V n + dV n : Ωd

A ⊕ Ωd−1
A →Wn+1Ω

d
A.

To see injectivity, notice that pn = Fn ◦ V n on Ωd
A, and by Corollary 6.2, multiplication by pn is

injective on Ωd
A (this is one of two places where we use that d > 1), so we have that V n is also injective

on Ωd
A.

To see the claim about the image, it suffices to show that for every α ∈ Ωd−1
A , there exists α′ ∈ Ωd

A

such that dV n(α) = V n(α′) ∈Wn+1Ω
d
A. Because multiplication by p is surjective on Ωd−1

A (this is the
other place where we use that d > 1), we can write α = pnα0. Thus dV n(α) = V n(dα0), and so we
may take α′ = dα0. �

Corollary 6.4. Let A denote a p-torsion-free perfectoid ring and let d ≥ 2 and n ≥ 1 be integers.
Multiplication by p on WnΩd

A is an isomorphism of Wn(A)-modules.

Proof. This follows easily from the above results using the five lemma and induction on n. �

7. Results on the logarithmic deRham-Witt complex

In this section, we consider the logarithmic de Rham-Witt complex, W·Ω
•
(A,M), which is defined by

Hesselholt-Madsen in (Hesselholt and Madsen, 2003, Proposition 3.2.2) as the initial object in the
category of log Witt complexes. We prove that, when A is a p-torsion-free perfectoid ring that is also
a valuation ring, and when M = A \ {0}, then the logarithmic de Rham-Witt complex is the same as
the usual de Rham-Witt complex. Many of the ideas in this section were based on (Hesselholt and
Madsen, 2003, Proof of Proposition 2.2.2) and conversations with Lars Hesselholt. We are also grateful
to the referee for an earlier version of this paper, for showing us that our original results, which were
isomorphisms in the degree one part of these Witt complexes, could be extended to isomorphisms in
all degrees. Several of our arguments in this section were suggested to us by the referee.

The goal of this section is to prove the following.

Theorem 7.1. Let A denote a p-torsion-free perfectoid ring, and assume further that A is a valuation
ring. Let M = A \ {0}. Because W·Ω

•
(A,M) is a Witt complex, we have a natural map

W·Ω
•
A →W·Ω

•
(A,M).

This map is an isomorphism of Witt complexes over A. For every integer n ≥ 1, the corresponding
map

WnΩ1
A →WnΩ1

(A,M)

is an isomorphism of Wn(A)-modules.

We will prove Theorem 7.1 below.



46 CHRISTOPHER DAVIS AND IRAKLI PATCHKORIA

Remark 7.2. There are many immediate consequences of this theorem. For example, for all integers
n ≥ 1 and d ≥ 0, the natural map

WnΩd
A →WnΩd

(A,A\{0})
is an isomorphism of Wn(A)-modules (still requiring that A be a p-torsion-free perfectoid ring and a
valuation ring). As another example, by Theorem 7.1 and Corollary B.2, the analogue of the exact
sequence (1.3) is also exact for the log ring (A,A \ {0}).

There are two major hypotheses in Theorem 7.1: that A be a perfectoid ring, and that A be a
valuation ring. Briefly, the perfectoid hypothesis is used to guarantee certain p-power roots, as in
Lemma 7.3, and the valuation ring hypothesis is used to guarantee certain divisibiliity properties, as
in Lemma 7.4. We now include these preliminary lemmas.

Lemma 7.3. Let A denote a p-torsion-free perfectoid valuation ring. Then for every element a ∈ A,
there exists a unit u ∈ A× and an element ω = (ω(0), ω(1), . . .) ∈ lim←−x7→xp A such that ua = ω(0).

Proof. We adapt the proof of the “moreover” assertion in (Bhatt et al., 2018, Lemma 3.9). Let a ∈ A
be an arbitrary non-zero element, and let π ∈ A be as in the definition of perfectoid. Because A is
π-adically separated, we can write a = πmx for some integer m ≥ 0 and some x ∈ A such that x 6∈ πA.
It suffices to prove the claim for the special cases a = π and a = x separately. The case a = π is
explicitly stated in (Bhatt et al., 2018, Lemma 3.9). As in that proof, we can find η ∈ lim←−x 7→xp A and
y ∈ A with

η(0) = x+ πpy = x(1 +
π

x
py);

note that π
x ∈ A because A is a valuation ring and x 6∈ πA. Because A is p-adically complete, the

element 1 + π
xpy is a unit in A, which completes the proof. �

We next give a preliminary result about divisibility of Witt vectors. Even though we have strong
divisibility properties in the ring A, deducing corresponding properties in the Witt vectors Wn(A) is
more difficult.

Lemma 7.4. Let A denote a p-torsion-free perfectoid valuation ring. Fix an integer n ≥ 1. For every
non-zero a ∈ A, there exists an integer N ≥ 1 and a Witt vector x ∈Wn(A) such that

[a]x = pN ∈Wn(A).

For a fixed value of N , the corresponding value of x is unique.

Proof. The uniqueness is obvious because the ghost components of [a] are non-zero. We prove existence
by proving the following stronger result using induction on n.

• Let n ≥ 1 be an integer. Let a ∈ A be non-zero. There exists an integer N ≥ 1 (depending
on n and on a) such that, if y ∈ Wn(A) has all ghost components in pNA, then there exists
x ∈Wn(A) such that [a]x = y ∈Wn(A).

The base case n = 1 follows immediately from the fact that A is a valuation ring which is p-adically
separated. Now inductively assume the result has been proven for some fixed value of n. We prove the
result for n+1. Let a ∈ A be non-zero, and let N be such that, if y′ ∈Wn(A) has all ghost components
in pNA, then y′ is divisible by [ap]. We claim that if y ∈Wn+1(A) has all ghost components in p2NA,
then y is divisible by [a] in Wn+1(A). Thus, assume we have such a y, and let pNz0 denote the first
Witt component of y. We have that z0 ∈ pNA, so z0 = ax0 for some x0 ∈ A. Then we have

y − [pNx0][a] = V (z′) ∈Wn+1(A)
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for some z′ ∈Wn(A), and note that all the ghost components of z′ are in pNA. Thus

z′ = [ap]z′′ = F ([a])z′′ ∈Wn(A)

for some z′′ ∈Wn(A). Thus

y = [a]

(
[pNx0] + V (z′′)

)
∈Wn+1(A).

This completes the induction. �

We now consider logarithmic differentials. For any log ring (A,M), with map of monoids α : M → A
(where A is viewed as a multiplicative monoid), and for any integer n ≥ 1, we consider (Wn(A),M) as
a log ring using the monoid map m 7→ [α(m)]n ∈Wn(A). (Usually we are not careful about specifying
the level in our Tecihmüller notation, i.e., we usually write [m] instead of [m]n, but in the following
arguments we often are switching levels using Frobenius or Restriction, so we have attempted to be
careful about indicating the level.) In the case considered in this section, that M = A \ {0} and α
is the inclusion, we will commit a slight abuse of notation and write d log[m]n instead of d logm, to
remind ourselves about the presence of this Teichmüller lift. Our main task in the remainder of this
section is, for each element m ∈ A \ {0}, to identify an element in WnΩ1

A (not WnΩ1
(A,A\{0})) which

will correspond to d log[m]n.

Remark 7.5. In this remark we motivate the formula appearing in Part (2) of Lemma 7.6 below. The

element d log[z]n should be thought of as d[z]n
[z]n

. Now assume that [y]p
N

n = [u]n[m]n. Then taking d log

of both sides, we have

pN d log[y]n = d log[u]n + d log[m]n, so
pN

[y]n
d[y]n − [u−1]nd[u]n = d log[m]n,

assuming the element pN

[y]n
makes sense. This informal argument motivates the formula

xd[y]n − [u−1]nd[u]n ∈WnΩ1
A

appearing below.

We will eventually equip W·Ω
•
A with the structure of a log Witt complex over (A,A\{0}). The point

of the following lemma is to identify candidates for the elements d log[m]n ∈WnΩ1
A for m ∈ A \ {0}.

Lemma 7.6. (1) Let A denote a p-torsion-free perfectoid ring, and assume further that A is a
valuation ring. Let m ∈ A \ {0} be arbitrary, and let n ≥ 1 be an integer. Let [m]n ∈ Wn(A)
denote the Teichmüller lift of m in Wn(A). There exists an integer N ≥ 1 and elements
u ∈ A×, y ∈ A, x ∈Wn(A) such that

[m]n | pN ∈Wn(A)

yp
N

= um ∈ A
x[y]n = pN ∈Wn(A).

(2) Keep notation as in the previous part. The element

xd([y]n)− [u−1]nd([u]n) ∈WnΩ1
A

depends only on m and n; it is independent of the choice of N, u, y, x.
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Proof. Proof of (1). The existence of N follows from Lemma 7.4. The existence of u and y follows
from Lemma 7.3. The existence of x is then obvious.

Proof of (2). This part of the proof is more involved. We assume the quadruples N1, u1, y1, x1 and
N2, u2, y2, x2 are as in the statement. We first reduce to the case that N1 = N2. Assume zp = u3y1

(using Lemma 7.3), and hence zp
N1+1

= up
N1

3 u1m. We then have that N1 + 1, up
N1

3 u1, z, px1[u
−1
3 zp−1]n

is also a quadruple N, u, y, x as in the statement. We compute

x1d([y1]n)− [u−11 ]nd([u1]n) = x1d([u−13 ]n[z]pn)− [u−11 ]nd([u1]n)

= x1[u
−1
3 ]np[z]

p−1
n d([z]n)− [u3]

−2
n x1[z]

p
nd([u3]n)− [u−11 ]nd([u1]n)

= px1[u
−1
3 zp−1]nd([z]n)− [u−p

N1

3 u−11 ]nd([up
N1

3 ]n[u1]n).

Thus we can always replace a quadruple involving N with a quadruple involving a larger value of N
without changing the proposed expression xd([y]n) − [u−1]nd([u]n) ∈ WnΩ1

A. Thus we may assume
N1 = N2.

We now assume the quadruples N, u1, y1, x1 and N, u2, y2, x2 are as in the statement. Because A
is a valuation ring, we can without loss of generality assume y2 = y1v for some v ∈ A. Raising both

sides to the pn power and cancelling out m from both sides, we find u2/u1 = vp
N ∈ A; in particular,

v ∈ A is a unit. Because
x1[y1]n = x2[y2]n = x2[y1]n[v]n ∈Wn(A)

and because [y1]n is a non-zero-divisor in Wn(A) (since it divides the non-zero-divisor pN1 ∈Wn(A)),
we have that x1[v]−1n = x2 ∈Wn(A).

We compute

x2d([y2]n)− [u−12 ]nd([u2]n) = x1[v]−1n d([v]n[y1]n)− [u−12 ]nd([u2]n)

= x1d([y1]n) + x1[y1]n[v]−1n d([v]n)− [u−12 ]nd([u2]n)

= x1d([y1]n) + pN [v]−1n d([v]n)− [u−12 ]nd([u2]n)

= x1d([y1]n)− [u−11 ]nd([u1]n).

�

We are now ready to prove Theorem 7.1. We again thank the anonymous referee of an earlier
version of this paper for providing several of these arguments.

Proof of Theorem 7.1. It suffices to equip W·Ω
•
A with the structure of a log Witt complex over (A,M),

because we will then have natural maps between these initial objects

W·Ω
•
A →W·Ω

•
(A,M) →W·Ω

•
A →W·Ω

•
(A,M)

such that the two-map compositions are equal to the identity map.
The main difficulty is to define, for all integers n ≥ 1, a suitable map

d log : M →WnΩ1
A.

We define d log using the formula given in Part 2 of Lemma 7.6; that same lemma shows that the
formula is well-defined. It remains to check that the given map satisfies all required properties to make
W·Ω

•
A a log Witt complex over (A,M).

We first check that d log(m1m2) = d log(m1) + d log(m2). Choose an integer N such that [m1]n | pN
and [m2]n | pN in Wn(A), and using Lemma 7.3, choose u1, u2 ∈ A× and y1, y2 ∈ A and x1, x2 ∈Wn(A)
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such that yp
2N

1 = u1m1, y
p2N

2 = u2m2, x1[y1]n = pN ∈Wn(A) and x2[y2]n = pN ∈Wn(A). Notice that

(y1y2)
p2N = u1u2m1m2 ∈ A and x1x2[y1y2]n = p2N ∈Wn(A). Thus, on one hand,

d log(m1m2) = x1x2d([y1y2]n)− [u1u2]
−1
n d([u1u2]n).

On the other hand, using pNx1[y1]n = p2N and pNx2[y2]n = p2N , we have

d log(m1) + d log(m2) = pNx1d([y1]n) + pNx2d([y2]n)− [u1]
−1
n d([u1]n)− [u2]

−1
n d([u2]n).

It follows that d log(m1m2) = d log(m1) + d log(m2).
It is easy to see that the restriction of d log([m]n+1) is d log([m]n): namely, simply find the neces-

sary elements N, u, y, x for d log([m]n+1), and notice that we can use the elements N, u, y,R(x) for
d log([m]n).

We next check that F (d log([m]n+1)) = d log([m]n). Choose N ≥ 0 so that [m]n+1 | pN ∈Wn+1(A),

and choose u ∈ A× and y ∈ A such that yp
N

= um ∈ A. Lastly, choose x ∈ Wn+1(A) such that
x[y]n+1 = pN ∈Wn+1(A). We then compute

F (d log([m]n+1)) = F
(
xd([y]n+1)− [u]−1n+1d([u]n+1)

)
= F (x)[y]p−1n d([y]n)− [u]−1n d([u]n).

On the other hand, we have [m]n | pN ∈ Wn(A) and we still have yp
N

= um ∈ A. If we apply F to

both sides of x[y]n+1 = pN ∈Wn+1(A), we have F (x)[y]p−1n [y]n = pN ∈Wn(A). Thus

d log([m]n) = F (x)[y]p−1n d([y]n)− [u]−1n d([u]n).

This completes the proof that F (d log([m]n+1)) = d log([m]n).
We next check that d(d log(m)) = 0 ∈WnΩ2

A for all m ∈M and all n ≥ 1. Choose N ≥ 0 such that
[m]n | pN ∈ Wn(A) and choose N1 ≥ N such that [m]n+N | pN1 ∈ Wn+N (A). Find y1 ∈ A, u1 ∈ A×

such that yp
N1

1 = u1m, and find x1 ∈ Wn+N (A) such that pN1 = x1[y1]n+N . Applying FNd to the
equality pN1 = x1[y1]n+N , we find

0 = FNd(x1[y1]n+N ) = FN (x1)F
N (d([y1]n+N )) + FN ([y1]n+N )FN (d(x1))

and so

−[y1]
pN

n FN (d(x1)) = FN (x1)[y1]
pN−1
n d([y1]n).

By our choice of y1, u1, x1 and our formula for d log(m), we have

d log[m]n+N = x1d([y1]n+N )− [u−11 ]n+Nd([u1]n+N ),

and so
d log[m]n = FN (x1d([y1]n+N ))− FN ([u−11 ]n+Nd([u1]n+N ))

and furthermore

d(d log[m]n) = dFN (x1d([y1]n+N )) = pNFN
(
d(x1)d([y1]n+N )

)
= pN [y1]

pN−1
n FN

(
d(x1)

)
d([y1]n).

We have y1 | m ∈ A, so [y1]n | [m]n ∈ Wn(A), and we have [m]n | pN ∈ Wn(A), so we can write
w[y1]n = pN ∈Wn(A) for some w ∈Wn(A). Thus

d(d log[m]n) = w[y1]
pN

n FN
(
d(x1)

)
d([y1]n).

We saw above that [y1]
pN
n FN

(
d(x1)

)
is a multiple of d([y1]n), and so d(d log[m]n) = 0, as required. �
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8. Connections to algebraic K-theory and topological Hochschild and cyclic
homology

Algebraic K-theory provides one of the motivations for studying the p-adic Tate module Tp
(
WnΩ1

A

)
and the generators α and α

(∞)
n . We describe these connections in this section following mainly (Hessel-

holt, 2006). We will assume that the reader has some familiarity with algebraic K-theory; the readers
only interested in algebraic aspects of the de Rham-Witt complex can safely skip this section. Most
of the results below are well-known to the experts and some of them are more general than we state
here (see (Hesselholt, 2006), (Bhatt et al., 2019), (Clausen et al., 2018)). Hence we do not claim any
originality in this section. We only put the results of Sections 5 and 7 in a topological context.

Let V be a complete discrete valuation ring with quotient field K of characteristic 0 and with a
perfect residue field of odd characteristic p. In (Hesselholt, 2006), Hesselholt studies the p-adic Tate
module of WnΩ1

(V ,M)
, where V is the ring of integers of the algebraic closure K and M = V \ {0}.

He shows that Tp

(
WnΩ1

(V ,M)

)
is a free Wn(V )∧-module of rank 1 on a certain generator αn,ε. It

turns out that one can describe the image of the trace map from the p-adic algebraic K-theory group

K2(K,Zp) to Tp

(
WnΩ1

(V ,M)

)
in terms of this element αn,ε (Hesselholt, 2006). In particular, one can

understand the image of a certain Bott class βε ∈ K2(K,Zp) using the element αn,ε. We note that
this Bott class corresponds to the classical Bott class in complex K-theory by results of Suslin (Suslin,
1983), (Suslin, 1984) which show that ku∧ ' K(K)∧, where ku is the connective complex topological
K-theory spectrum. In this section we show that αn,ε is in fact a special case of the element constructed
in Theorem 5.15 and we compute the image of the Bott class in a more general setting of p-torsion-free
perfectoid rings containing a compatible system of p-power roots of unity.

The main tools which connect K2(K,Zp) with Tp

(
WnΩ1

(V ,M)

)
are the Bökstedt trace and the

cyclotomic trace as constructed by (Bökstedt et al., 1993). These are maps from algebraic K-theory
to invariants called topological Hochschild homology and topological cyclic homology, respectively. We
give now a very brief overview of these objects.

Given a commutative ring A, the topological Hochschild homology spectrum THH(A) is defined
as the tensor construction S1 ⊗ A which is isomorphic to the geometric realization of the cyclic bar
construction of A over the sphere spectrum. For various equivalent definitions of THH(A) and the
equivalences between them, see (Bökstedt, 1986), (Shipley, 2000), (Angeltveit et al., 2018), (Nikolaus
and Scholze, 2018), (Dotto et al., 2019). The classical Dennis trace map

K(A)→ HH(A)

going from algebraic K-theory of A to Hochschild homology can be refined to the map of spectra

trace : K(A)→ THH(A),

known as the Bökstedt trace. The spectrum THH(A) has an action of the circle group S1 by definition
and also has a structure of a p-cyclotomic spectrum in the sense of (Nikolaus and Scholze, 2018). More
precisely it comes equipped with an S1-equivariant map φcycl : THH(A)→ THH(A)tCp , where (−)tCp

denotes the Tate construction (see (Greenlees and May, 1995) and (Nikolaus and Scholze, 2018)). This
map is referred to as the cyclotomic Frobenius. Let THH(A,Zp) denote the p-completion of THH(A),
also referred to as the p-adic THH. We recall from (Nikolaus and Scholze, 2018) and (Bhatt et al.,
2019), the following notations:

TC−(A,Zp) = THH(A,Zp)
hS1
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and
TP(A,Zp) = THH(A,Zp)

tS1
.

Here t again stands for the Tate construction and h for the homotopy fixed points. Using the equiv-

alence (THH(A)tCp)hS
1 ' TP(A,Zp) (see (Nikolaus and Scholze, 2018, Lemma II.4.2)), one gets a

map

φhS
1

cycl : TC−(A,Zp)→ TP(A,Zp).

Additionally one has the canonical map from homotopy fixed points to the Tate construction

can: TC−(A,Zp)→ TP(A,Zp).

One then defines the p-adic topological cyclic homology TC via the fiber sequence of spectra (see
(Nikolaus and Scholze, 2018))

TC(A,Zp) // TC−(A,Zp)
can−φhS1cycl // TP(A,Zp).

One can also consider THH(A) as a genuine S1-equivariant spectrum with respect to the family

of finite subgroups and take the derived fixed points THH(A)Cpn−1 . This spectrum is denoted by
TRn(A). We note that TRn(A) spectra can be also constructed using the cyclotomic Frobenius as in
(Nikolaus and Scholze, 2018, Theorem II.4.10). The spectra TRn(A) for various values of n are related
by morphisms

F : TRn+1(A)→ TRn(A)

and
V : TRn(A)→ TRn+1(A).

The map F is induced by the fixed points inclusion and V is the transfer. Moreover, the cyclotomic
structure induces an S1-equivariant map (with respect residual S1-actions)

R : TRn+1(A)→ TRn(A).

These maps induce obvious maps on graded homotopy rings π∗TRn(A), n ≥ 1 (denoted by the same
letters). Moreover, the circle action induces the differential

d : π∗TRn(A)→ π∗TRn(A)[−1].

It follows from (Hesselholt and Madsen, 1997, Theorem 2.3) that there is natural isomorphism
λ0n : π0 TRn(A) ∼= Wn(A). Now the results of (Hesselholt and Madsen, 2004) imply that for any
Z(p)-algebra A, where the prime p is odd,

(π∗TR•(A), R, F, V, d, λ0•)

forms a Witt complex and hence there is a unique map of Witt complexes from the de Rham-Witt
complex over A to the latter Witt complex:

λ∗• : W•Ω
∗
A → π∗TR•(A).

A theorem of Hesselholt shows that in fact the map

λ1• : W•Ω
1
A → π1 TR•(A)

is an isomorphism (for p an odd prime) (Hesselholt, 2004).
The trace map trace : K(A)→ THH(A) is S1-invariant and has refinements

trace : K(A)→ TRn(A)
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and
trace : K(A,Zp)→ TC(A,Zp).

It follows from (Bhatt et al., 2019, Proposition 7.17), (Anschütz and Le Bras, 2020, Corollary 6.5)
and (Clausen et al., 2018, Corollary 6.9) the canonical maps

K2(A,Zp)
∼= // Tp(K1(A)) Tp(A

×)
∼=oo

are isomorphisms. Here the first map is the map from the universal coefficient sequence for K(A) (see
Theorem 2.3 which is stated for chain complexes but works similarly for spectra) and the second is
induced by the homomorphism A× → GL(A). By naturality we have a commutative diagram

K2(A,Zp)

trace
��

∼= // Tp(K1(A))

Tp(trace)

��
π2 TRn(A,Zp) // Tp(π1 TRn(A)).

We also recall a result of Geisser and Hesselholt (Geisser and Hesselholt, 1999, Lemma 4.2.3), which
states that the composite

A× // K1(A)
trace // π1 TR•(A) ∼= W•Ω

1
A

is given by a 7→ d log[a] = [a]−1d[a].
Let A be a p-torsion-free perfectoid ring containing a compatible system of p-power roots of unity

ε = (1, ζp, ζp2 , ζp3 , . . . ).

We define the Bott class βε ∈ K2(A,Zp) to be the element corresponding to ε under the isomorphism
K2(A,Zp) ∼= Tp(A

×).

Proposition 8.1. Let A be a p-torsion-free perfectoid ring containing a compatible system of p-power
roots of unity

ε = (1, ζp, ζp2 , ζp3 , . . . ).

Then the composite

K2(A,Zp)
trace // π2 TRn(A,Zp) // Tp(π1 TRn(A)) ∼= Tp(WnΩ1

A)

sends the Bott class βε to ([ζpn ]− 1)α
(∞)
n .

Proof. By definition of βε and the commutative square above, it suffices to compute the image of ε
under the composite

TpA
× // TpK1(A)

Tp(trace) // Tp(π1 TR•(A)) ∼= Tp(W•Ω
1
A).

Now by (Geisser and Hesselholt, 1999, Lemma 4.2.3), it follows that ε goes to d log[ζ
(∞)
p ]. By Theorem

5.15, the latter is equal to ([ζpn ]− 1)α
(∞)
n . �

Let TF(A) denote the homotopy inverse limit holimF TRn(A). The trace maps trace : K(A) →
TRn(A) assemble into a trace map trace : K(A)→ TF(A).
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Corollary 8.2. Let A be a p-torsion-free perfectoid ring containing a compatible system of p-power
roots of unity

ε = (1, ζp, ζp2 , ζp3 , . . . ).

Then the composite

K2(A,Zp)
trace // π2 TF(A,Zp) // lim←−F Tp(π1 TRn(A)) ∼= lim←−F Tp(WnΩ1

A)

sends the Bott class βε to ([ε]− 1)α, where α is the generator from Corollary 5.18.

Proof. By Theorem 5.15 the map F : Tp(Wn+1Ω
1
A)→ Tp(WnΩ1

A) sends α
(∞)
n+1 to α

(∞)
n and the diagram

K2(A,Zp)
trace //

trace ((

π2 TRn+1(A,Zp)

F
��

// Tp(π1 TRn+1(A))

F
��

Tp(Wn+1Ω
1
A)

F
��

∼=
oo

π2 TRn(A,Zp) // Tp(π1 TRn(A)) Tp(WnΩ1
A)∼=

oo

commutes. This implies the desired result. �

It turns out that α and α
(∞)
n in fact determine polynomial generators of TF(A,Zp) and TRn(A,Zp).

It follows from (Nikolaus and Scholze, 2018, Lemma II.4.9) and (Bhatt et al., 2019, Proposition 6.5,
Remark 6.6) that π∗TRn(A,Zp) is a polynomial algebra in one variable of degree 2 over Wn(A). In
particular π2 TRn(A,Zp) isomorphic to Wn(A) as a Wn(A)-module, and hence the canonical surjective
map

π2 TRn(A,Zp)→ Tp(π1 TRn(A)) ∼= Tp(WnΩ1
A)

is an isomorphism since the target Tp(WnΩ1
A) is also a freeWn(A)-module on one generator by Theorem

5.15. Consider the inverse

Tp(WnΩ1
A)

∼= // π2 TRn(A,Zp).

Since Tp(WnΩ1
A) is a free Wn(A)-module on the generator α

(∞)
n , we get that the map

Wn(A)[α
(∞)
n ]

∼= // π∗TRn(A,Zp)

is an isomorphism of graded rings. Now again using Fα
(∞)
n+1 = α

(∞)
n , one obtains the following corollary

(see (Bhatt et al., 2019, Remark 6.6)).

Corollary 8.3. Let A be a p-torsion-free perfectoid ring containing a compatible system of p-power
roots of unity

ε = (1, ζp, ζp2 , ζp3 , . . . ).

Then the canonical map

π2 TF(A,Zp)→ lim←−
F

Tp(π1 TRn(A)) ∼= lim←−
F

Tp(WnΩ1
A).

is an isomorphism. This isomorphism induces an isomorphism of graded rings

W (A[)[α]
∼= // π∗TF(A,Zp).

Proof. The F maps induce surjections on homotopy groups. Hence by the Milnor sequence π∗TF(A,Zp) ∼=
lim←−F π∗TRn(A,Zp). The rest follows from the isomorphism of Lemma 2.16 W (A[) ∼= lim←−F Wn(A).

�
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Remark 8.4. The latter results together with (Bhatt et al., 2018, Lemma 3.13) (referred to as Tor-
independence in (Bhatt et al., 2018)) in fact imply the following: Let A→ B denote a ring homomor-
phism, where both A and B are p-torsion free perfectoid rings with compatible systems of p-power
roots of unity. Assume that the homomorphism preserves these systems. Then for any 1 ≤ n ≤ r,

TRn(A,Zp)⊗LTRr(A,Zp)
TRr(B,Zp) ' TRn(B,Zp),

where TRn(A,Zp) is a TRr(A,Zp)-module via F . (This uses that TF(−,Zp)/(
∑pn−1

i=0 [ε]i) ' TRn(−,Zp).)
In fact (Bhatt et al., 2018, Lemma 3.13) has two versions: one has

Wn(A)⊗LWr(A)
Wr(B) 'Wn(B),

where the Wn(A) is considered as a Wr(A)-module via F or R. It turns out that using the results
from Section 5, we also get the following: Let WnΩ1

A be equipped with a Wr(A)-module structure via
either Frobenius or restriction. Then the induced map on derived p-completions(

WnΩ1
A ⊗LWr(A)

Wr(B)

)∧
→
(
WnΩ1

B

)∧
is a quasi-isomorphism. To see this, it suffices to prove that(

Fp ⊗LZ WnΩ1
A

)
⊗LWr(A)

Wr(B)
'→ Fp ⊗LZ WnΩ1

B.

As usual, we replace Fp with the complex · · · → 0→ Z
p→ Z→ 0→ · · · . Because multiplication by p is

surjective on both WnΩ1
A and WnΩ1

B, we reduce to showing that the following is a quasi-isomorphism

WnΩ1
A[p]⊗LWr(A)

Wr(B)
'→WnΩ1

B[p],

where the de Rham-Witt groups are viewed as complexes concentrated in degree −1. By our earlier
results, we reduce to showing that the following is a quasi-isomorphism

Wn(A)/pWn(A)⊗LWr(A)
Wr(B)

'→Wn(B)/pWn(B).

Because A and B (and hence Wn(A) and Wn(B)) are p-torsion free, we reduce to showing that the
following is a quasi-isomorphism(

Fp ⊗LZ Wn(A)
)
⊗LWr(A)

Wr(B)
∼→ Fp ⊗LZ Wn(B).

The result now follows from (Bhatt et al., 2018, Lemma 3.13).
The topological result at the beginning of this remark recovers the F -versions of the algebraic

equivalences on π0 and π2. We do not know what is the topological analogue of the equivalences
involving the map R.

Finally, we explain the connection to the results of (Hesselholt, 2006). Let V be a complete discrete
valuation ring with quotient field K of characteristic 0 and with a perfect residue field of odd charac-
teristic p. In (Hesselholt, 2006), Hesselholt studies the p-adic Tate module of WnΩ1

(V ,M)
, where V is

the ring of integers of the algebraic closure K and M = V \ {0}. He shows that TpWnΩ1
(V ,M)

is a free

Wn(V )∧-module of rank 1 on certain generator αn,ε.

The ring V
∧

satisfies the conditions of Theorem 5.15 and Theorem 7.1. Hence the canonical maps

TpWnΩ1
(V ,M)

// TpWnΩ1
(V
∧
,M
∧
)

TpWnΩ1
V
∧

∼=oo
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are module maps between rank 1 free Wn(V )∧ ∼= Wn(V
∧

)-modules and the right hand map is an
isomorphism. Now by (Hesselholt, 2006, Theorem B, Lemma 2.4.1, Proposition 2.4.2), there is a
generator αn,ε of the left hand side such that

([ζpn ]− 1)αn,ε = d log[ζ(∞)
p ].

Since the the latter zig-zag consists of maps of Wn(V
∧

)-modules, we see that by Theorem 5.15 the

generator αn,ε on the left is mapped to α
(∞)
n and hence the first map in the zig-zag is an isomorphism

too. Finally, we conclude that the generator αε constructed in (Hesselholt, 2006, Proposition 2.4.2)
corresponds to α from Corollary 5.18 under the isomorphism

lim←−F TpWnΩ1
(V ,M)

∼= // lim←−F TpWnΩ1
(V
∧
,M
∧
)

lim←−F TpWnΩ1
V
∧ .

∼=oo

Remark 8.5. It follows from the results of Suslin that K∗(K,Zp) ∼= Zp[βε]. We also note that

K2(K,Zp) ∼= K2(V
∧
,Zp) and that the Bott class corresponds to the Bott class in K2(V

∧
,Zp). Hence

βε ∈ K2(A,Zp) corresponding to ε = (1, ζp, ζp2 , ζp3 , . . . ) under the isomorphism K2(A,Zp) ∼= TpA
×,

generalizes the Bott class of (Hesselholt, 2006), (Suslin, 1983) and (Suslin, 1984) to any p-torsion-free
perfectoid ring A containing a compatible system of p-power roots of unity. We note that TpA

× ∼= Zp
with ε a generator if additionally A is an integral domain but not in general.

Remark 8.6. We also point out how the generators α
(∞)
n are related to the recent result of (Anschütz

and Le Bras, 2020). Let A be a p-torsion-free perfectoid ring containing a compatible system of
p-power roots of unity. Theorem 6.4 of (Anschütz and Le Bras, 2020) computes the composition

TpA
× ∼= K2(A,Zp)

trace // π2 TC(A,Zp)

which is an isomorphism by (Clausen et al., 2018, Corollary 6.9) and (Anschütz and Le Bras, 2020,
Corollary 6.5). It follows from (Bhatt et al., 2019, Section 6), the definition of TC and (Anschütz and
Le Bras, 2020, Section 6) that

π2 TC(A,Zp) ∼=
{
y ∈Wn(A[) : ϕ(y) =

[εp]− 1

[ε]− 1
y

}
,

and under this isomorphism the latter composite is given by the q-logarithm:

logq([x]) =

∞∑
n=1

(−1)n−1q−n(n−1)/2
([x]− 1)([x]− q)([x]− q2) · · · ([x]− qn−1)

[n]q
∈W (A[),

where q = [ε] ∈W (A[) and [n]q = qn−1
q−1 . Recall that there is a cofiber sequence (Nikolaus and Scholze,

2018, Theorem II.4.10)

TC(A,Zp) // TF(A,Zp)
R−1 // TF(A,Zp).

The diagram

TpA
× ∼= K2(A,Zp)

trace //

trace ))

π2 TC(A,Zp)

��
π2 TF(A,Zp)
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commutes. Under the isomorphism π2 TF(A,Zp) ∼= lim←−F Tp(WnΩ1
A), the vertical map in this diagram

corresponds to the inclusion{
y ∈Wn(A[) : ϕ(y) =

[εp]− 1

[ε]− 1
y

}
∼=
{
yα ∈ lim←−

F

Tp(WnΩ1
A) : y ∈W (A[) satisfies ϕ(y) =

[εp]− 1

[ε]− 1
y

}
={

x ∈ lim←−
F

Tp(WnΩ1
A) : R(x) = x

}
⊂ lim←−

F

Tp(WnΩ1
A).

(See Proposition 5.21) If we now plug in ε = x in the above formula, we get logq([ε]) = [ε] − 1 and
hence we recover that the composite

TpA
× ∼= K2(A,Zp)

trace // π2 TC(A,Zp) // π2 TF(A,Zp) ∼= lim←−F Tp(WnΩ1
A)

sends ε to ([ε] − 1)α. This is an alternative way of computing the image of the Bott class in
lim←−F Tp(WnΩ1

A).
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